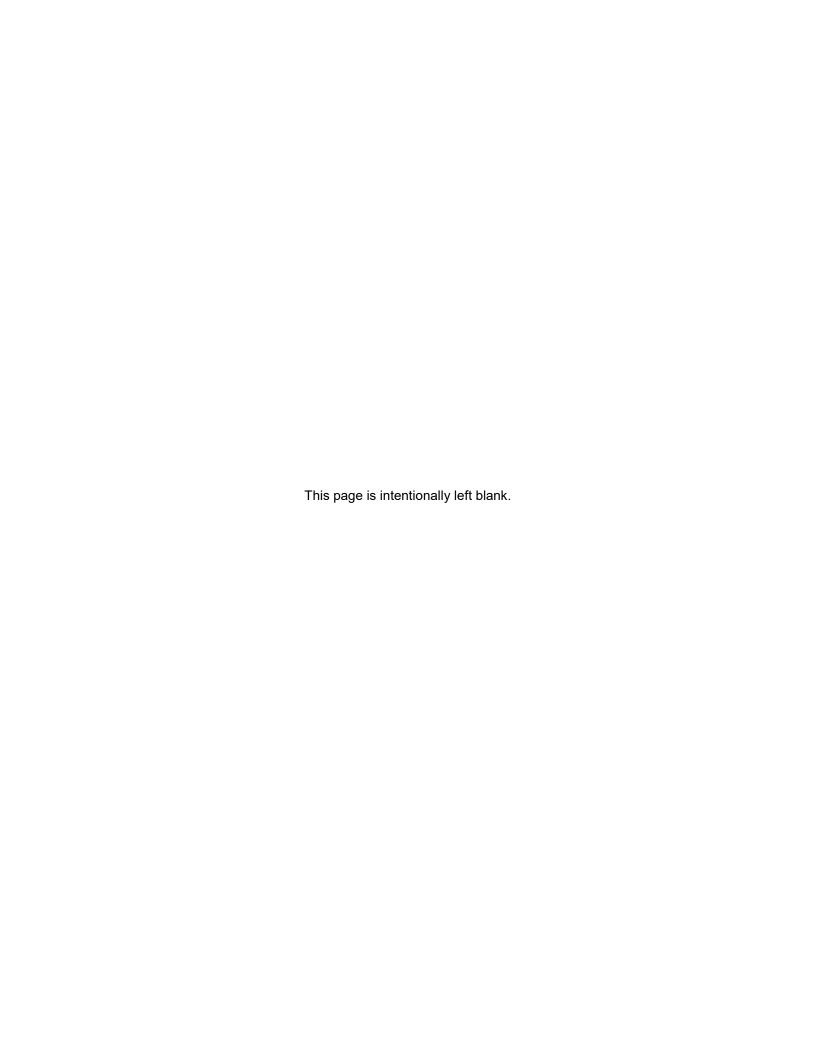


Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

Final

February 2020

Arizona Public Service Company



		diation Program Work Plan Checa		Page 1 of 3
Site Name:	Douglas Former APS Manufacturing Gas F			7
Volunteer/Appl	Aulmana	Public Service		
	licant Email Address and Phone:	judith.heywood@aps.c	om, 480/250-38	50
	ent (AA)/Consulting Company:	Jacobs		
	Email Address and Phone:	dave.allard@jacobs.c	om 480/295-391	3
Reference		tatutory Requirement In their entirety to ensure compliance)	Page(s) Where Addressed in Work Plan (write N/A if not applicable)	VRP Use Only
§49-175A.1	information; information rega	racterization and assessment rding any remediation previously ced reports not previously submitted;	Section 1.	
§49-175A.2	If the site has not been characterization and a sched	Not applicable.		
§49-175A.3.a	remediation will comply with	pleted, a description of how the §49-175B ("Work Plans") and how the Il be verified. A schedule for completion	Section 5, Pages 5-1 through 5-3; Section 7.2, Pages 7-3 through 7-5; Section 7.5, Pages 7-18 through 7- 21; Schedule on page 7-27).	
§49-175A.3.b		pleted, the work plan may provide for ted in phases or tasks. A schedule for	Section 7.7, Page 7-27.	
§49-175A.4	Schedule for submission of p	rogress reports	Section 7.7, Page 7-27.	
§49-175A.5	A proposal for community inv	olvement as prescribed by	Section 7.3.3, Page 7-8.	
§49-175A.6		or engineering controls necessary completion of the proposed remediation ninants.	Section 7.4.7, Pages 7-13 through 7-15.	
<u>§49-175A.7</u>	remediation if necessary to v	ing remediation and after the erify whether the approved remediation attained and will be maintained.	Section 7.5.1 and 7.5.2, Pages 7-18 through 7-21.	
§49-175A.8	A list of any permits or legal or already performed by the a	equirements known to apply to the work applicant.	Section 7.3.2, Pages 7-5 through 7-7.	
849-1754 0		nt, information regarding the financial conduct the work identified in the	Section 7.1, Page 7-2.	

Site Name:	Douglas Former APS Manufacturing Gas Plant VRP Site Code:	513300-00	
Reference	Summary of Statutory Requirement	Page(s) Where Addressed in Work Plan	VRP Use Only
	(please review all statutes in their entirety to ensure compliance)	(write N/A if not applicable)	
<u>§49-175B</u>	Remediation levels or controls for remediation conducted pursuant to this article shall be established in accordance with rules adopted pursuant to §49-282.06 unless one or more of the following applies: see §49-175B.1 through §49-175B.4, below.	Section 7.2, Pages 7-3 through 7-5.	
§49-175B.1	The applicant demonstrates that remediation levels, institutional controls, or engineering controls for remediation of contaminated soil comply with §49-152 and the rules adopted.	Section 7.2, Pages 7-3 through 7-5.	
§49-175B.2	The applicant demonstrates that remediation levels, institutional controls, or engineering controls for remediation of landfills or other facilities that contain materials that are not subject to §49-152 (i.e.: asbestos) do not exceed a cumulative excess lifetime cancer risk between 1X10 ⁻⁴ to 1X10 ⁻⁶ , and a hazard index of no greater than 1.	Section 7.2, Pages 7-3 through 7-5.	
§49-175B.3	The applicant demonstrates that on achieving remediation levels or controls for a source or potential source of contamination to a navigable water, the source of contamination will not cause or contribute to an exceedance of surface water quality standards, or if a permit is required pursuant to 33 United States Code §1342 for any discharge from the source, that any discharges from the source will comply with the permit.	Not applicable.	
§49-175B.4	The applicant demonstrates that, on achieving remediation levels or controls for a source of contamination to an aquifer, the source will not cause or contribute to an exceedance of aquifer water quality standards (AWQS) beyond the boundary of the facility where the source is located.	Section 5, Pages 5-1 through 5-3; Section 7.2.3.1, Pages 7-3 and 7-4.	
§49-175C	The VRP may waive any work plan requirement under this section that it determines to be unnecessary to make any of the determinations required under §49-177. If any waivers are requested in the Work Plan or have been previously requested and approved by the VRP, cite them in the Work Plan, including a citation of the statute for which the waiver applies.	Not applicable.	

wpcklst/jp8/20131112

Site Name: Douglas For	mer APS Manufacturing Gas Plant VRP Site Code:	513300-00	
accompany a Work Plan. 7	stablished by A.R.S. §49-177 and §49-180, the VRP ex The following provides a list of attachments/exhibits v Th a Work Plan to provide the information required by	which are recommended f	
Work Plan Information	Title of Figure/Table/Attachment/Exhibit Where Requested Information is Cited (write N/A if not applicable)	Figure/Table/ Attachment or Report Page Number (write N/A if not applicable)	VRP Use Only
Site Location Map (topographic or aerial)	Site Map	Figure 1-1	
Site Map (to scale)	Site Plan	Figure 1-2	
Historical Sampling Data Table	Analytical summary tables	Tables 1-3 through 1-6, 2-3 through 2-8.	
Historical Sample Location Map (to scale)	Previous investigations soil sampling locations and pre-design testing boring locations.	Figures 1-5 and 2-1.	
Proposed Sample Location Map (to scale)	Not Applicable - Samples will be collected from excavated areas based on SW-846 for sample frequency. The DU areas show the general areas samples will be collected.	Figure 7-2. Section 7.5.1.2. Pages 7-20 and 7-21.	
Sampling and Analysis Plan (includes Field Sampling Plan & Quality Assurance Plan)	Section 7.4 and 7.5	Pages 7-9 through 7- 26	
Proposed Remediation System Location Map	Proposed Excavation Plan	Figure 7-1	
Proposed Remediation System Layout (Design Drawings)	Proposed Excavation Plan	Figure 7-1	
Schedule for Implementation of Project Activities* (Gantt Style Chart)	Section 7.7	Page 7-27	
Project Activities are defined in A.R.S. §§	49-175A.2 through 49-175A.4, and 49-176A.2 (Community Involvement)	
Proposed Language for Public Notification of Remediation (i.e.: example signage)	Section 7.3.3 (English/Spanish, newspaper, site signage, meetings, site status news letters with construction updates).	Page 7-8	
Plan for Investigative Derived Waste (IDW)	Section 7.3.2, Special and Hazardous Waste Requirements, and Section 7.4.8 Soil Segregating.	Page 7-6 and 7-7, 7-15 through 7-18.	
Evaluation of Remedial Alternatives (i.e: for Feasibility Study Work Plan)	Section 6	Pages 6-1 through 6-6	
DOES THE WORK F	PLAN PROPOSE IMPLEMENTING SITE-SPECIFIC REM	MEDIATION LEVELS?	
	Yes No		
DOES THE V	WORK PLAN PROPOSE EVALUATION OF BACKGROU	CALL CONTROL OF THE PARTY OF TH	
	Yes No A lead and arsenic evaluati approved Site Investigation included in the Remedial A	Work Plan with results	

Contents

Acro	nyms aı	nd Abbreviations	vii
1.	Intro	oduction	1-1
	1.1	Site Description	1-2
		1.1.1 Geology	1-2
		1.1.2 Hydrogeology	1-2
	1.2	Surrounding Environmental Issues	1-2
		1.2.1 Local Smelting Operations	1-2
		1.2.2 EDR Search	1-2
		1.2.3 Releases or Enforcement Actions	1-3
		1.2.4 Other Environmental Database Findings	1-4
	1.3	Douglas MGP Site History	1-4
		1.3.1 Site Ownership and Operational History	1-4
		1.3.2 Description of MGP Processes	1-5
		1.3.3 Description of MGP Waste	1-7
	1.4	Previous Site Investigations and Interim Remedial Actions	1-7
		1.4.1 Soil Investigations	1-8
		1.4.2 Remedial Activities – Interim Removal Actions	1-11
	1.5	Site Conditions Prior to Pre-Design Testing Investigation	1-15
2.	Pre-c	design Testing Investigation	2-1
	2.1	Utility Evaluation	
	2.2	Property Ownership and Surveying	2-2
	2.3	Pre-design Testing Investigation	2-2
		2.3.1 Soil Borings	2-2
		2.3.2 Groundwater Well Installation and Results	2-6
		2.3.3 Decontamination	2-8
	2.4	Waste Characterization from Soil Sampling Activities	2-8
	2.5	Known Extents of Site Impacts	2-9
		2.5.1 Soil Detections	2-9
3.	Statis	istical Evaluation of Arsenic and Lead	3-1
	3.1	Data Conditioning	3-1
	3.2	Graphical Presentation of the Data	3-1
	3.3	Descriptive Statistics	3-2
	3.4	Determination of Soil Groupings	3-2
	3.5	Onsite Concentration to Background Comparisons	3-3
4.	Huma	nan Health Risk Assessment	4-1
	4.1	Human Health Risk Assessment Approach	4-1
		4.1.1 Step 1: Data Evaluation	4-1
		4.1.2 Step 2: Exposure Assessment	4-2
		4.1.3 Step 3: Toxicity Assessment	4-3
		4.1.4 Step 4: Risk Characterization	
	4.2	Risk Characterization Results	4-5
		4.2.1 Industrial Exposure Scenario	4-5
		4.2.3 Residential Exposure Scenario	4-6
	4.3	Summary	4-7

5.		Groundwater Protection Level Modeling – Potential Threat to Groundwater from Soil Contaminants			
	5.1		able Cleanup Standards		
	5.2		ion of Modeled Contaminants		
	5.3		ate GPL Development		
		5.3.1	Polynuclear Aromatic Hydrocarbons		
		5.3.2	Metals		
6.	Feas	ihility Sc	reening		
٥.	6.1		dial Action Objectives		
	6.2		diation Technology Screening		
	0.2	6.2.1	No Action		
		6.2.2	Institutional Controls		
		6.2.3	Ex Situ Response Actions		
		6.2.4	In Situ Response Actions		
	6.3	-	diation Technology Screening Results		
	0.5	6.3.1	Soil Remediation Alternatives		
_	_				
7.			ed Remedial Alternative		
	7.1		Recovery		
	7.2		up Criteria		
		7.2.1	Chemicals of Concern		
		7.2.2	Goal of Remediation		
		7.2.3	Applicable Regulatory Cleanup Criteria		
		7.2.4	Site Cleanup Criteria		
	7.3	Pre-re	mediation Activities		
		7.3.1	Property Ownership and Utilities Review and Coordination		
		7.3.2	Regulatory Review and Permitting		
		7.3.3	Public Notice and Public Participation		
		7.3.4	Utility Clearance		
		7.3.5	Access Agreements		
	7.4	Reme	diation Activities		
		7.4.1	Mobilization		
		7.4.2	Site Security and Site Access	7-10	
		7.4.3	Site Preparation	7-10	
		7.4.4	Protection of Existing Site Features		
		7.4.5	Work, Decontamination, and Support Areas	7-10	
		7.4.6	Excavation Activities	7-11	
		7.4.7	Air Quality Monitoring	7-13	
		7.4.8	Soil Segregating	7-15	
	7.5	Sampl	ling and Analysis Procedures	7-19	
		7.5.1	Verification Sampling	7-19	
		7.5.2	Soil Sampling Collection Methods	7-21	
		7.5.3	Air Sampling Procedures	7-22	
		7.5.4	Quality Assurance/Quality Control Sample Collection Procedures	7-23	
		7.5.5	Fixed-base Laboratory Analyses	7-23	
		7.5.6	Data Verification and Data Validation	7-24	
	7.6	Site R	estoration and Post-Remediation Activities	7-26	
		7.6.1	Excavation Backfilling	7-26	
		7.6.2	Demobilization	7-26	
		7.6.3	Reporting	7-27	

	7.7	Site F	Remediation Schedule7	7-27
8.	Referer	nces		. 8-1
Tables				
1-1 1-2 1-3 1-4 1-5 1-6	Summa Summa Summa Summa	ry of H ry of H ry of H ry of H	Operational History Historical Analytical Data for Soil – Polynuclear Aromatic Hydrocarbons (PAHs) Historical Analytical Data for Soil – TPHs and Fuel Hydrocarbons Historical Analytical Data for Soil – BTEX Compounds Historical Analytical Data for Soil – Metals and Reactive Sulfide Historical Analytical Data for Previous Investigations	
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10	Summa Summa Summa Summa Summa Summa Summa Summa	ry of C ry of A ry of A ry of A ry of A ry of A ry of S	Secations During Pre-design Testing Investigation Secotechnical Results Analytical Data for Soil PAHs Analytical Data for Soil Wetals Analytical Data for Soil VOCs Analytical Data for Groundwater PAHs Analytical Data for Groundwater Metals Analytical Data for Groundwater VOCs Soil Waste Characterization Results – Pre-design Testing Investigation Vater Waste Characterization Results – Pre-design Testing Investigation	
5-1	Ground	water	Protection Modeling Results for PAHs	
6-1 6-2			nediation: Feasibility Screening Matrix for Soil Remediation Options nediation: Feasibility Screening Matrix for Treatment Options	
7-1 7-2 7-3	Applicat	ble Sit	Evaluated Against Screening Criteria e Cleanup Criteria for COCs ction Levels and Maximum Allowable Ambient Air Concentrations	
Figures	S			
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9	Parcel M Previous Polynuc Lead in Arsenic Total Pe	n and Map s Inve clear A Soil in Soi etroleu	Former Structures Map stigation Sampling Locations romatic Hydrocarbons (PAHs) in Soil	Soil
2-1 2-2 2-3 2-4 2-5	Utility Lo Polynuc Metals i	ocatio lear A n Soil	ons During Pre-Design Testing Investigation ns, Existing Subsurface Structures and Property Map romatic Hydrocarbons (PAHs) in Soil nic Compounds (VOCs) in Water and Groundwater Flow Direction	
7-1 7-2 7-3 7-4	Propose Propose	ed Exc ed Air	cavation Plan cavation Depths Monitoring Locations gation Flow Chart	

BI1216180825PHX

Appendixes (provided electronically on CD)

Α	Executive Summary of Environmental Data Resources Report, November 2018
В	Historical Sanborn Maps and Aerial Photographs
С	Work Plan for Pre-design Testing Investigation
D	Soil Boring Logs
E	Well Construction Diagrams and Development Logs
_	O a de al altre di Transform II altre a de ma Da a addi

- Geotechnical Testing Laboratory Results
- Laboratory Analytical Reports G
- Η Pre-design Testing Investigation Data Evaluation
- 1 Manifests and Bills of Lading
- Statistical Evaluation Supporting Documentation J
- Κ Human Health Risk Assessment
- **Groundwater Protection Level Modeling** L
- Southwest Gas Corporation Excavation Guidelines M
- ADEQ 2001 Letter regarding MGP Remediation Waste Ν

BI1216180825PHX Vİ

Acronyms and Abbreviations

°C degree(s) Celsius

A.A.C. Arizona Administrative Code

A.R.S. Arizona Revised Statutes

ACM asbestos-containing material

ADEQ Arizona Department of Environmental Quality

ADHS Arizona Department of Health Services

AHERA Asbestos Hazard Emergency Response Act

ANOVA analysis of variance

APS Arizona Public Service Company

AST aboveground storage tank

ASTM ASTM International

ATI Analytical Technologies Incorporated

AWQS Arizona Water Quality Standard

AZTEC Engineering Group, Inc.

BAP TEQ benzo(a)pyrene toxic equivalence quotient

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CESQG conditionally exempt small quantity generator

CFR Code of Federal Regulations

City of Douglas

COC chemical of concern

Code City of Douglas Code of Regulations

COPC chemical of potential concern

CWG carbureted water gas

DEUR Declaration of Environmental Use Restriction

DQO data quality objective

DU decision unit

BI1216180825PHX vii

ECHO Enforcement and Compliance History Information

EDR Environmental Data Resources, Inc.

ELCR excess lifetime cancer risk

JACOBS

EMAP All Places of Interest Listing

EPA U.S. Environmental Protection Agency

EPC exposure point concentration

ERI Environmental Response, Inc.

FINDS Facility Index System/Facility Registry System

foc fraction of organic carbon

ft³ cubic foot (feet)

GC gas chromatography

GPL groundwater protection level

HASP health and safety plan

HHRA human health risk assessment

HI hazard index

HIVOL high volume

HPLC high-performance liquid chromatography

HQ hazard quotient

IC institutional control

IQR interquartile range

IRA interim removal action

ISCO in situ chemical oxidation

LUST leaking underground storage tank

mg/kg milligram(s) per kilogram

mg/L milligram(s) per liter

MGP manufactured gas plant

MS mass spectrometry

NAAQS National Ambient Air Quality Standards

viii BI1216180825PHX

Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

NESHAP National Emissions Standards for Hazardous Air Pollutants

oz ounce(s)

PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl

PCS petroleum-contaminated soil

PID photoionization detection

PPE personal protective equipment

PRG preliminary remediation goal

PUF polyurethane foam

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

RAO remedial action objective

RAP remedial action plan

RCRA Resource Conservation and Recovery Act of 1976

RL reporting limit

RPD relative percent difference

RPF relative potency factor

RSL regional screening level

Site Douglas Former Manufactured Gas Plant site

SRL soil remediation level

SSC Site Safety Coordinator

SVMW soil vapor monitoring wells

SVOC semivolatile organic compound

TCE trichloroethene

TCLP toxicity characteristic leaching procedure

TPH total petroleum hydrocarbon

TR target risk level

BI1216180825PHX ix

UCL upper confidence limit

USACE U.S. Army Corps of Engineers

UST underground storage tank

VCP voluntary cleanup priorities

VOC volatile organic compound

VRP Voluntary Remediation Program

Work Plan site investigation work plan

x BI1216180825PHX

1. Introduction

The Arizona Public Service Company (APS) is proposing to conduct remediation activities at the former manufactured gas plant (MGP) site (the Site) in the City of Douglas (the City), Arizona. This remedial action plan (RAP) for the Site provides a summary of the Site history and previous investigations at the Site (Jacobs, 2019a); presents the results of a human health risk assessment, groundwater modeling, and metals evaluation for the Site; discusses the remedial action objectives (RAOs) and remediation technology screening results; and describes the recommended remedial action activities for the Site. APS is conducting the remediation activities under the Arizona Department of Environmental Quality's (ADEQ's) Voluntary Remediation Program (VRP). The VRP site code for the Site is 513300-00.

The Site is located near the southwest corner of East 3rd Street and Pan American Avenue in Cochise County, Section 13, Township 24 South, Range 27 East, Douglas, Arizona U.S. Geological Survey 7.5-Minute Topographic Quadrangle (**Figure 1-1**). The Site is approximately 200 yards north of the international border between the United States and Mexico and west of the Douglas Arizona Port of Entry located at Pan American Avenue.

The properties adjacent to the western Site boundary are owned by El Paso Natural Gas and a private landowner. Property adjacent to the northern, eastern, and southern Site boundaries are owned by private landowners and the City. The area to the north of the Site is characterized by trees and a wash. The area to the east of the Site contains a walkway from the United States-Mexico border to East 3rd Street. This walkway is used by approximately 3,000 pedestrians per day. The area to the south of the Site is undeveloped land primarily used by the U.S. Border Patrol for border security. The area to the west of the Site is largely undeveloped except for an El Paso Natural Gas metering and compressor station and buried Southwest Gas natural gas utility lines that leave the compressor station and run generally east and north from the station.

The Site was formerly owned by Arizona Edison Company Gas Works, APS's predecessor company (EDR, 2018). The MGP was located at the Site from approximately 1905 through 1947 and operated until at least the early 1930s, when MGP operations were terminated. The Douglas Gas Corporation originally owned and operated the MGP until 1925. During the 1930s, Arizona Edison Company converted the plant to natural gas, purchasing natural gas from the El Paso Natural Gas Company for distribution in the City. Arizona Edison Company provided natural gas to the City until the 1950s, after which APS provided natural gas to the City.

APS sold the Site to a private landowner in 1966. The City acquired the property in 1987. The Site property is crossed by an El Paso Natural Gas easement and Southwest Gas natural gas pipeline. The City currently does not use the property; however, construction debris consisting of soil, gravel, asphalt, and concrete has been dumped on the property by outside entities without approval by the City. Prior to the 2019 site investigation activities, the City removed the construction debris from the Site.

A map based on historical documents (Arcadis/Geraghty & Miller, 1998; Geraghty and Miller, 1996a, 1996b) is presented on **Figure 1-2**. The map shows the Site layout, including the removed and remaining concrete pads and foundations associated with former MGP operations. The approximate locations of the structures and other features associated with the former MGP were identified based on Sanborn fire insurance maps and previous site investigation reports. The property parcels in relation to former MGP operations, based on the historical reports, are shown on **Figure 1-3**.

Based on the findings of previous investigations (1996–1998) and data from the 2019 pre-design testing investigation (Section 2), former MGP operations have impacted surface and subsurface soils at the site, and compounds potentially related to the former MGP operations and existing subsurface features remain. As a result, the Site requires additional remedial activities, including removal of subsurface features related to former MGP processes and the impacted soil.

1.1 Site Description

The geology and hydrogeology of the Site are described in this section.

1.1.1 Geology

The Site is situated in the Douglas Basin of southeastern Arizona at an elevation of approximately 3,950 feet above mean sea level and lies within the Basin and Range Province in the Sulphur Springs valley. Soils from the ground surface to 5 feet below ground surface (bgs) are generally classified as coarse grained with gravels, gravels with fines, and clayey gravel (EDR, 2018). Based on the 1996 site investigation, soils were classified from the center of the Site (soil boring SB-4 shown on **Figure 1-4**) as silt and sand from ground surface to 3 feet bgs; clay with silt and sand from 3 to 7.5 feet bgs; a mix of clayey silt, silt, sand, and clay from 7.5 to 15 feet bgs; and medium coarse sand from 15 to 16.5 feet bgs (Geraghty and Miller, 1996a). The 2019 pre-design testing investigation soil descriptions are generally consistent with the 1996 site investigation.

1.1.2 Hydrogeology

In 1990, groundwater levels within a 2-mile radius of the Site ranged from 46 to 284 feet bgs (Rascona, 1993). Small perched water zones occur locally in the upper alluvial deposits and likely account for the large variation of water levels. According to the Arizona Department of Water Resources, groundwater below the Site may be perched and was likely to be encountered at a depth of approximately 50 feet, with the direction of groundwater flow below the Site unknown because of limited data (Rascona, 1993). Groundwater wells during the pre-design testing investigation indicated water levels of approximately 27 feet bgs at the Site, with the groundwater gradient oriented in a westerly direction based on 2019 survey data.

1.2 Surrounding Environmental Issues

1.2.1 Local Smelting Operations

The Calumet & Arizona Company and Phelps-Dodge Corporation Reduction Works operated two copper smelters approximately 1 mile west of the Site from 1904 to 1931 and 1931 to 1987, respectively (ATSDR, 1995). During the smelting process, metal ores were heated, producing molten metals and releasing sulfur dioxide and particulate matter through two 600-foot stacks. Between 1970 and 1987, ADEQ and EPA periodically monitored offsite ambient air for concentrations of hazardous substances. Prevailing winds generally blew toward the south and north-northeast. The smelter had a history of stack emission rates for particulate matter and sulfur dioxide gas exceeding U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS), which led to closure of the smelter in 1987.

In 1985 the Arizona Department of Health Services (ADHS) collected 52 surface samples offsite of the reduction works property from a widespread area in the City to evaluate background lead concentrations in the area. Lead concentrations in the samples ranged from 50 to 1,170 milligrams per kilogram (mg/kg), with an average lead concentration of 254 mg/kg. The Agency for Toxic Substances and Disease Registry (ATSDR) also reported offsite maximum and mean background arsenic concentrations of 35.8 and 15 mg/kg, respectively, for surface samples collected between 1 and 6 miles of the smelter site all of which exceed the residential SRL.

1.2.2 EDR Search

Environmental Data Resources, Inc. (EDR) completed a search of available environmental databases for the Site and the surrounding area. The executive summary for the EDR report (EDR, 2018), including a listing of databases searched, is presented in **Appendix A**.

1-2 BI1216180825PHX

The Site was identified on the EDR proprietary database for former MGP sites. No other listings for the Site were included in the EDR report. EDR identified 13 additional findings within 1/4 mile of the Site. The findings were included on the following environmental database lists:

- AST—Aboveground Storage Tank (AST) Listing
- AUL—Activity and Use Limitations list, also known as Declaration of Environmental Use Restriction (DEUR)
- AZURITE—ADEQ-maintained repository of sites remediated under ADEQ programs
- **ECHO**—Enforcement and Compliance History Information
- EMAP—All Places of Interest Listing
- FINDS—Facility Index System/Facility Registry System
- LUST—Leaking Underground Storage Tank (LUST) Listing
- MANIFEST—Hazardous waste manifest information
- RCRA-CESQG— Resource Conservation and Recovery Act of 1976 (RCRA) Conditionally Exempt Small Quantity Generator (CESQG)
- UST—Underground Storage Tank (UST) Listing
- VCP—Voluntary Cleanup Priorities (VCP) Listing (i.e., voluntary remediation sites)

Seven of the findings were located within 1/8 mile of the Site, with four of the associated facilities having reported releases and/or violations. The companies and/or generators associated with the listings are presented in Sections 1.2.3 and 1.2.4, along with a summary of the key findings.

1.2.3 Releases or Enforcement Actions

• Border Express, 305 Pan American Avenue – LUST, UST, EMAP, Enforcement

Border Express is a commercial fueling station approximately 0.1 mile northeast (upgradient) of the Site. The station had an 18,000-gallon single-walled fiberglass UST installed in 2000 and reported as a LUST in 2012. The UST was removed, the soil was remediated to Tier 1 standards, and the incident was closed by ADEQ in 2013.

Douglas Port of Entry, 1 Pan American Avenue – VCP

Douglas Port of Entry is the Border Port of Entry for Mexico, located approximately 0.1 mile southeast (upgradient) of the Site. The facility was included on the VCP list for potential groundwater contamination from a former heating oil UST. No further action status for groundwater was issued by ADEQ in 2007 based on benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbon (TPH)-diesel concentrations in the groundwater meeting required remediation levels.

U.S. Department Homeland Security Border Station, 5 N. Pan American Avenue – UST

The Border Station is located approximately 0.1 mile southeast (upgradient) of the Site. A UST was installed in 1934 and removed in 1990. No impacts to groundwater or other releases were reported.

Border Mart Shell, 100 E. 3rd Street – UST, EMAP, Enforcement, Financial Assurance

Border Mart Shell is a commercial fueling station approximately 0.1 mile northeast (upgradient) of the Site. The facility has two double-walled 12,000-gallon petroleum USTs installed in 1997. The facility received enforcement notices for violations in 2008 and 2013; the EDR listed the enforcement notice type as 'not recorded' and the notices have been closed. No environmental releases have been reported.

• Douglas Chevron, 46 N. Pan American Avenue – UST, EMAP, Enforcement, Financial Assurance

Douglas Chevron is a commercial fueling station on the corner of U.S. Highway 191 and 5th Street, approximately 0.2 mile northeast (hydrologically upgradient) of the Site. The station has two 15,000-gallon USTs, which were installed in 2004 to store gasoline and diesel. The facility had reported violations in 2006, 2008, 2013 and 2016. All cases were closed and further investigation was not reported.

1.2.4 Other Environmental Database Findings

White Knight Healthcare, Inc., 300 S. 1st Street – RCRA-CESQG, FINDS, ECHO

White Knight Healthcare is a commercial disposable healthcare equipment manufacturing company located approximately 0.2 mile east of the Site (upgradient). It was identified as a CESQG. No violations or releases have been reported.

• Hamlin, Inc., 230 International Ave. – RCRA Nongen, FINDS, ECHO

Hamlin Inc. is located 0.2 mile east-southeast of the Site and registered with the FINDS database in 1990 and is a RCRA non-generator. No violations or release were reported.

• Walmart, 199 West 5th Street - AST, RCRA-CESQG, EMAP, MANIFEST

Walmart is located approximately 0.25 mile north of the Site (hydrologically downgradient). It is a CESQG with an AST installed in 2004. No violations or releases were reported.

1.3 Douglas MGP Site History

The history of Site operations, a description of MGP processes and waste, and the environmental issues are presented in this section and summarized in **Table 1-1**. Historical information about the Site was obtained from the following documents:

- Site Investigation, Former Manufactured Gas Plant, Douglas, Arizona (Geraghty & Miller, 1996a)
- Composite Soil Sampling, Former Manufactured Gas Plant, Douglas, Arizona (Geraghty & Miller, 1996b)
- Material Removal Activities, Former APS Manufactured Gas Plant Site, Douglas, Arizona (Arcadis/ Geraghty & Miller, 1998)

In addition, the following Sanborn fire insurance maps and aerial photographs from the 1996 Geraghty & Miller site investigation report were reviewed. The maps and photos are presented in **Appendix B**.

- Sanborn Fire Insurance Maps 1909, 1914, 1929, and 1947 (Geraghty & Miller, 1996a)
- Aerial Photographs 1958, 1970, 1979, 1984, 1992, 2003, 2007, 2010, and 2017 (EDR, 2018)

1.3.1 Site Ownership and Operational History

Geraghty & Miller Inc. reviewed Sanborn fire insurance maps from 1909, 1914, 1929, and 1947 and gas production statistics from the *Brown's Directory of American Gas Companies* (Brown's Directory) for select years from 1906 through 1932 to develop an operational history of the Site (**Table 1-1**). Additional historical information was obtained from aerial photographs provided by EDR (EDR, 2018) and previous investigation reports.

The Site began operation as an MGP between 1903 and 1908 and continued until the early 1930s, primarily using oil as the feedstock. The Douglas Gas Corporation operated the MGP until 1925. Sanborn maps indicate that the MGP was operated by Arizona Edison Company, a corporate predecessor of APS, from 1925 until it ceased production around 1932. APS sold the property to a private landowner in 1966. The City acquired the property in 1987. The 1929 Sanborn map shows the relative locations of the former

1-4 BI1216180825PHX

MGP structures. The 1947 Sanborn map shows the Site as mostly vacant, with the former concrete storage shed, purifier, and the concrete meter house still present.

The 1958 aerial photograph in the EDR report has limited resolution; however, the former gas holders and/or concrete pads, purifier structure, and, possibly, the concrete shed are somewhat visible. The wash to the north of the Site is visible, approximately 150 feet north of the purifier structure. The large concrete purifier, small concrete shed, concrete foundations for two gas holders, a generator house, and a steel manhole cover bolted to a crude oil sump were present at the Site in 1996 (Geraghty and Miller, 1996b). Two concrete gas holder pads, two concrete small purifier pads, concrete foundations of the meter house, and a portion of the generator house foundation remained on the Site in 1996 after removal actions were complete (Arcadis/Geraghty & Miller, 1998).

The City property parcel and surrounding property parcels near the Site contained bulk construction debris piles, including soil, concrete, asphalt, and gravel. A vegetative cover can be seen over the construction debris in a 2017 aerial photograph from the EDR report.

The following list provides a summary of the Site structures and operations based on previous investigation reports (Geraghty & Miller, 1996a; Arcadis/Geraghty & Miller, 1998). The approximate locations and sizes of existing and former structures/features based on historical reports are shown on **Figure 1-2**.

- **Generator House**. The generator house was used to manufacture oil gas, with an annual production ranging from approximately 13,700,000 cubic feet (ft³) in 1910 to approximately 51,500,000 ft³ in 1930. A portion of the generator house foundation remains on the Site. Based on available Sanborn maps, the generator house foundation is approximately 4,000 square feet.
- Oil Sump/Tank. An oil sump, approximately 2.5 feet in diameter and 3.5 feet tall and associated with a suspected aboveground oil tank of unknown capacity, was located west of the large purifier. The oil sump/tank was removed in August 1996.
- **Gas Holders**. Two gas holders of unknown capacity were located east and southeast of the generator house. The concrete gas holder foundations/pads remain on the Site. Based on available Sanborn maps, the gas holders have a combined area of 6,000 square feet.

Purifiers.

- One large purifier structure, approximately 40 feet in diameter and 15 feet high, was located northeast of the generator house. The large concrete purifier pad was removed in August 1996.
- Two small purifiers of unknown capacity were located east of the generator house. The two small concrete purifier pads remain on the Site. Based on available Sanborn maps, the purifiers have a combined area of 500 square feet.
- **Meter House**. A meter house of unknown size was located southeast of the generator house. The foundation of the meter house remains on the Site. Based on available Sanborn maps, the meter house foundation is approximately 400 square feet.
- **Debris Pile.** One debris pile, 250 feet long (north-south direction) by 130 feet wide, was located west of the generator house. The debris pile was removed in August 1996.
- Storage Shed. One small concrete storage shed, 10 feet long by 10 feet wide, was located north of the generator house. The concrete shed was removed in August 1996. The concrete foundation of the shed was not observed on the Site during the pre-design testing investigation conducted in 2019 (Jacobs, 2019a).

1.3.2 Description of MGP Processes

In the United States, the first uses of manufactured gas for lighting were reported in Philadelphia in 1796 and in Richmond, Virginia, in 1803. Manufactured gas was produced by the following three primary processes:

Coal carbonization (coal gas)

- Carbureted water gas (CWG)
- Oil gas

Based on historical records, only the oil gas process was used at the Site (Geraghty & Miller, 1996a). However, the coal gas and CWG processes are described in this section for comparison with the oil gas process.

1.3.2.1 Coal Carbonization

The earliest MGPs used coal carbonization to produce gas. Coal gas was used exclusively from 1816 to 1875, when the CWG process was developed. Coal was used as a feedstock to produce gas in various types of retorts, with coke generated as a byproduct. Based on historical records, coal gas was not used at the Site.

1.3.2.2 Carbureted Water Gas

CWG involves the enhancement of water gas (blue gas) by spraying oil into a hot vessel that contains the water gas, thereby increasing the calorific value of the water gas. Blue gas was an abundant byproduct of the petroleum industry, which made CWG the most important manufactured gas process in the United States at the time.

The CWG process is intermittent, with alternating "blows" or blast periods and "runs" or gas-making periods. The typical CWG-generating equipment consisted of three brick-lined cylindrical steel vessels: the generator, the carburetor, and the superheater. During a blow, a producer gas that is high in carbon dioxide is formed in the generator by passing air through an incandescent mass of coke or anthracite. This gas is burned by secondary air. The hot products of combustion heat the carburetor checkbrick and then pass from the top of the superheater to the stack. During a run, water gas is made in the generator and then passed into the top of the carburetor, where the oil is sprayed. This mixture is passed down through the carburetor and up through the superheater. As the mixture passes the hot checkbrick, the mixture is thermally cracked and fixed into gases. The CWG, a mixture of blue and oil gas, is passed from the top of the superheater through a water-sealed wash box, where the gas is initially cooled and some of the heavy tars are condensed and removed.

The gas is passed through additional condensers to cool the gas to ambient temperatures. Direct contact with water cools and scrubs the gas. The gas is then sent to a relief holder, which provides constant pressure for gas outflow to the purifying systems during blows and runs. Larger plants featured tar extractors, naphthalene scrubbers, and liquid purification systems to remove the bulk of the hydrogen sulfide prior to passing the gas through the dry purification systems. After hydrogen sulfide removal at these larger plants, the gas was metered and sent to the storage holders pending distribution to the customers.

1.3.2.3 Oil Gas

The oil gas process consists of thermocracking oil in a steam atmosphere. The generating equipment is similar to that used by CWG production. The generator was replaced by a vaporizer similar to the carburetor, filled with checkbrick, and equipped with an oil spray. The carburetor was replaced by a vaporizer followed by a superheater, similar to the CWG process.

The process is cyclical and consists of blows and runs. During a blow, oil is combusted in the vaporizers, and the products of combustion heat the checkbrick of the vaporizers and superheater and pass from the top of the superheater to the stack. During a run, oil is sprayed into the vaporizer in the absence of air and in the presence of steam. As the mixture passes the hot checkbrick, it is thermally cracked and fixed into gases.

During the run, the stack valve is closed and the oil gas passes to the washbox. The remainder of the process is the same as the CWG process.

1-6 BI1216180825PHX

1.3.3 Description of MGP Waste

The information in this section was obtained from the historical information regarding MGP processes and previous reports.

Byproducts formed during the manufacture of oil gas were iron oxide purifier waste, light oils, tar, and lampblack. The light oils and tars were generally recovered during condensing or scrubbing operations. Each waste is described as follows:

- Lampblack The formation of a large amount of lampblack was unique to the oil-gas processes. Lampblack resulted from the high temperature of the gas-making operation, and the amount of lampblack recovered depended on the manufacturing process used. In most plants, lampblack was regarded as a valuable byproduct and was the source of additional revenue or was used as fuel. Depending on the process, approximately 20 pounds of lampblack were formed for every 1,000 ft³ of gas manufactured, with the majority of the lampblack removed from the gas stream in the wash box. The water from the wash box containing this lampblack in suspension passed through large overflow pipes and was typically stored in settling ponds. Available evidence does not indicate the former presence of a lampblack settling pond. However, because the oil gas process was used at the Site, it is likely lampblack was produced. The chemical constituents of lampblack include carbon, polynuclear aromatic hydrocarbons (PAHs), and heavy metals.
- Tar Tar was primarily a product of the coal carbonization processes, and to a lesser extent, the carbureted water gas processes; the oil-gas processes produced the least amount of tar and consisted of complex hydrocarbons that were removed from the gas stream immediately after generation during cooling, were condensed during gas cooling in the relief holder, or were removed during secondary purification. Areas where tar may have accumulated include the gas holders, areas along underground piping, areas adjacent to gas generators and scrubbers, and in a lampblack settling pond. Chemical constituents of tar include volatile aromatic hydrocarbons and PAHs. The tar was primarily reused as a supplement to boiler fuels, with a small fraction sold.
- Fuel Oil Fuel oil was used as the primary feedstock material for the oil-gas process. Oil was sprayed into the gas-generating apparatus and cracked into lighter hydrocarbon fractions during gas production. Various grades of fuel oil were likely used throughout the Site's history, with increased use of heavy fuel oil or residual oil during peak production years. Areas where oil may be encountered include fuel oil tanks and oil storage tanks. Oil used at the Douglas property was likely stored in an aboveground steel crude oil tank at the Site (Figure 1-2; Geraghty & Miller, 1996a).
- Iron Oxide Purifier Waste Wood chips saturated with ferric hydrate were used to remove the hydrogen sulfide from the gas during the final purification process. Some tars or lampblack may also have been removed in the purifiers. Wood chips were replaced as they became depleted or "spent." Areas that may be impacted by iron oxide purifier waste include the former purifier locations and area between the purifiers. Constituents include metals, sulfur, sulfate

1.4 Previous Site Investigations and Interim Remedial Actions

Since 1995, the following site investigations and interim remedial action (IRA) have been conducted at the Site:

- 1995 Site Investigation. Geraghty & Miller conducted a site investigation, with sampling events in October 1995 and December 1995, to evaluate the presence of MGP residuals at the Site. The primary purpose of the investigation was to assess the nature and extent of potential contamination resulting from past MGP activities at the Site and to assess the presence of potential pathways of contaminant migration. The site investigation was limited to surface and shallow subsurface soil sampling (up to 21 feet bgs). A total of 14 surface soil samples, 23 subsurface soil samples, and 2 duplicate samples were collected.
- 1996 Site Investigation. Based on 1995 investigation results, Geraghty & Miller collected five composite surface-soil samples on June 1, 1996, within a 20-foot radius of the areas where MGP impacted soil was previously identified. Each composite sample consisted of six to eight discrete locations within each sampled area. In addition, a composite of the five composite samples was

submitted to the laboratory for analysis. Based on visual observation and data from the site investigation, five areas of the Site were identified and recommended for soil removal.

• **1996 – Interim Remedial Action.** Geraghty & Miller conducted material removal and sampling activities in August 1996 to address the five areas recommended for soil removal. Based on the analytical results from the initial removal action, three additional areas were identified for soil removal.

Prior to 1997, soil data were compared to ADEQ residential and non-residential health-based guidance levels. In December 1997, Chapter 7, Article 2 of the Arizona Administrative Code (A.A.C.) was amended to establish predetermined residential and non-residential soil remediation levels (SRLs) to protect human health and the environment that were consistent with the methodology used by EPA and Region 9 EPA guidance for the calculation of risk-based screening levels. ADEQ revised these SRLs, effective May 5, 2007. The 2007 SRLs have been used when comparing concentrations to the SRLs unless otherwise noted.

The previous investigations occurred before 1997, when the SRLs were promulgated, or used the 1997 SRLs for comparison during evaluations. To provide consistency, this section compares the results of previous investigations to the 2007 SRLs. Most of the compounds identified in the 2007 SRLs as carcinogens include residential SRL values for both 1 x 10^{-5} and 1 x 10^{-6} excess lifetime cancer risks. The 1 x 10^{-5} risk value may be used during remediation unless a future use of the site will be as a childcare facility or school. Sample results were compared to the 1 x 10^{-5} risk value for carcinogens because the Site is not currently used for, or anticipated to be used for, a school or daycare facility.

The following sections present an overview of the investigations and IRA, including soil sampling results. The former soil sampling locations are shown on **Figure 1-4**.

1.4.1 Soil Investigations

Soil sampling was conducted during previous investigations by Geraghty & Miller and Arcadis/Geraghty & Miller in 1995 and 1996. The soil sample locations from the 1995 soil investigation and the areas where composite samples were collected prior to and after the 1996 soil removal activities are shown on Figure 1-4. The previous soil investigations evaluated the presence of MGP-related contaminants in soil, including PAHs, TPHs, and metals. BTEX was also detected in the oil sludge in the oil sump for waste characterization purposes. The analytical results from former sampling activities for PAHs, TPHs and fuel hydrocarbons, BTEX, and total metals and reactive sulfide are shown in Tables 1-2, 1-3, 1-4, and 1-5, respectively. Table 1-6 provides a description of the previous boring locations and sampling depths. The locations where PAH, lead, arsenic, and TPH were detected during previous investigations are shown on Figures 1-5, 1-6, 1-7, and 1-8, respectively, and further identifies the locations with concentrations above residential or non-residential SRLs.

1.4.1.1 October 1995 – Soil Investigation

The October 1995 site investigation included surface and subsurface soil sampling. Fourteen surface soil samples, 23 subsurface, and 2 duplicate samples were collected. Four of the surface samples (SS-8, SS-11, SS-12 and SS-13) were collected from offsite locations to evaluate local background concentrations of MGP-related compounds. Surface sample locations and soil boring locations are shown on **Figure 1-4**.

1.4.1.1.1 Surface Sampling

Fourteen surface samples were collected between the ground surface and 6 inches bgs. Samples were analyzed for PAHs, total cyanide, and total metals by Analytical Technologies Incorporated (ATI) laboratory in Phoenix, Arizona. Analytical results for PAHs are presented in **Table 1-2**, and results for metals and cyanide are presented in **Table 1-5**.

Eight of the surface soil samples exceeded the residential SRLs for select PAHs as follows:

1-8 BI1216180825PHX

- **SS-1** Benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- **SS-5** Benzo(a)pyrene, benzo(b)fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- SS-6 Benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- **SS-7** Benzo(a)pyrene and indeno(1,2,3-cd)pyrene
- **SS-2**, **SS-10** and **SS-14** Benzo(a)pyrene

Five of the surface soil samples also exceeded the non-residential SRLs for select PAHs as follows:

- **SS-1** Benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene
- **SS-5** Benz(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- **SS-4**, **SS-6**, and **SS-7** Benzo(a)pyrene

The highest concentrations of all PAHs detected were in sample SS-5. Benzo(a)pyrene was detected at a concentration of 230 mg/kg. The residential SRL for benzo(a)pyrene is 0.69 mg/kg. SS-5 was located on the north end of the Site and was not adjacent to any known former MGP structures. The locations where PAHs were detected above SRLs during the October 1995 investigation are shown on **Figure 1-5**.

Arsenic was detected above the residential and non-residential SRL of 10 mg/kg in 11 of the surface samples (SS-1 through SS-7, SS-9, SS-10, SS-11, and SS-13). The highest concentration of 83.5 mg/kg was detected in sample SS-6. Lead was detected in samples SS-6 and SS-7 at concentrations of 2,530 mg/kg and 2,290 mg/kg, respectively, which is above the non-residential SRL for lead of 800 mg/kg. SS-6 and SS-7 were located adjacent to the southern former gas holder and the purifier structure, respectively. The locations where lead and arsenic were detected above the SRLs during the October 1995 investigation are shown on **Figures 1-6** and **1-7**, respectively. Maximum and mean lead concentrations of 1,170 and 254 mg/kg, respectively, were reported in soil collected from a widespread area in the City and maximum and mean arsenic concentrations of 35.8 and 15 mg/kg, respectively, have been reported by the ATSDR in the same area (ATSDR, 1995). The previous remediation effort (Arcadis/Geraghty & Miller, 1998) assumed that the 1995 ATSDR mean arsenic and lead concentrations were representative in the vicinity of the Site and used the mean arsenic concentration as the target soil quality criteria for arsenic. For this RAP, a statistical evaluation of background metals concentration at or near the Site is provided in Section 3, and the surrounding environmental issues are described in Section 1.2.

1.4.1.1.2 Soil Boring Sampling

Twenty-three subsurface samples were collected from 10 soil borings at depths ranging from 1.5 feet to 21.5 feet. The borings were located near former MGP structures. An onsite ATI mobile laboratory analyzed the subsurface samples for BTEX and TPH. Subsurface soil samples that were visibly degraded were also analyzed for total metals, cyanide, and PAHs at the ATI fixed-base laboratory in Phoenix, Arizona. The analytical results for PAHs, TPHs, BTEX, and total metals are presented in **Tables 1-2**, **1-3**, **1-4**, and **1-5**, respectively.

Samples from borings SB-1, SB-2, SB-6, and SB-9 had detections of at least one PAH compound at depths ranging from approximately 1 foot to 10 feet. The only concentration exceeding a residential and/or non-residential SRL was observed in boring SB-4 at 1.5 feet bgs, with a benzo(a)pyrene concentration of 4.5 mg/kg, which exceeded the non-residential SRL of 2.1 mg/kg. SB-4 was located north of the small purifiers and west of the central gas holder. The remaining PAH results from all borings were below the residential SRL. The locations where PAHs were detected above SRLs during the October 1995 investigation are shown on **Figure 1-5**.

BTEX compounds were not detected above the laboratory reporting limit (RL) of < 0.025 mg/kg in any of the soil boring samples. TPH was detected in three soil borings (SB-1, SB-4, and SB-8), with a maximum

concentration of 4,000 mg/kg in boring SB-4 at a depth of 1.5 feet bgs. The deepest observed TPH concentration was at approximately 10 feet bgs in boring SB-8. The locations where TPH was detected during the October 1995 investigation are shown on **Figure 1-8**.

Arsenic was detected above the residential and non-residential SRL of 10 mg/kg in all samples collected from the 10 soil boring locations, except in 1 sample from boring SB-8. Arsenic concentrations ranged from 8.7 to 42.1 mg/kg at depths of up to 16.5 feet, with the highest concentration of 42 mg/kg detected in boring SB-2 at approximately 10 feet bgs.

1.4.1.1.3 Oil Sump and Purifier Contents Sampling

Waste characterization samples were collected from the sludge in the oil sump and the contents of the large purifier. Two samples were collected from the oil sump contents (one for total metals and one for volatile organic compounds [VOCs] and semivolatile organic compounds [SVOCs] analysis) and one sample was collected from the purifier for reactive sulfide. The oily sludge sample from the oil sump was analyzed for TPH, RCRA metals, VOCs, and SVOCs, and the purifier contents sample was analyzed for sulfides, with the following results:

- Total hydrocarbon concentration of 477,000 mg/kg
- Fuel hydrocarbons measured as C6-C10, C10-C22, and C22-C36, with concentrations of 7,300, 270,000, and 200,000 mg/kg, respectively
- No detections of toxicity characteristic leaching procedure (TCLP) SVOCs (analyzed in accordance with the TCLP preparation for hazardous waste characterization)
- One VOC (xylene) detected at 180 mg/kg
- Lead and barium concentrations of 1.7 and 0.6 milligram per liter (mg/L), respectively (analyzed for RCRA total metals)
- Silver, arsenic, cadmium, chromium, mercury, and selenium were not detected based on total metals analysis

Samples were collected from the contents of the purifier from the surface to approximately 6 inches bgs on October 25, 1995 (sample SS-3) and March 20, 1996 (sample "Purifier"). The results from sample SS-3 were as follows:

- Total arsenic at 17.9 mg/kg, above the residential and non-residential SRLs
- PAH and total metals concentrations below the residential SRLs
- Reactive sulfide concentration of 30.3 mg/kg (no SRL)
- Total sulfur content of approximately 12 percent (no SRL)

The contents of the oil sump and the purifier were not characterized as RCRA hazardous waste during the investigation.

1.4.1.2 June 1996 - Composite Surface Soil Sampling

Based on the October 1995 investigation results, composite surface soil sampling was conducted in the areas where the soil appeared to have been impacted by former MGP operations above ADEQ health-based guidance level criteria. The purpose of the sampling effort was to characterize material that potentially could be disposed of during remedial activities.

Samples were collected within a 20-foot radius of each of the five former surface sampling locations (SS-1 and SS-4 through SS-7) that appeared to have been impacted by MGP operations, based on the analytical results from the previous investigation. Sampling areas are shown on **Figure 1-4**. Composite samples were also collected near the offsite background surface sample locations SS-11 and SS-12. A composite sample of all the samples collected (Sample COMP) was also analyzed. The composite samples were analyzed for TPH, TCLP metals, SVOCs, and total metals to evaluate whether soil would

1-10 BI1216180825PHX

need to be managed as a RCRA hazardous waste or an Arizona special waste petroleum-contaminated soil (PCS) during remedial activities.

TPH was detected in all composite samples at concentrations ranging from 40 to 780 mg/kg (SS-6 Area). TPH was also detected in the offsite composite sample from Area SS-11/SS-12 at a concentration of 110 mg/kg. TPH concentrations are presented in **Table 1-3**. Concentrations of BTEX compounds were below the laboratory detection limit of 0.025 mg/kg, as presented in **Table 1-4**. **Figure 1-8** shows the composite sampling areas where TPH was detected during the October 1995 investigation.

Arsenic concentrations exceeded the residential and non-residential SRL of 10 mg/kg in samples from Areas SS-4/SS-7 and SS-6. Lead concentrations exceeded the non-residential SRL of 800 mg/kg in the sample from area SS-6 (1,100 mg/kg) and the residential SRL of 400 mg/kg in the sample from area SS-1 (410 mg/kg). Total metals concentrations are presented in **Table 1-5**. The composite sampling areas where lead and arsenic were detected above SRLs during the October 1995 investigation are shown on **Figures 1-6** and **1-7**, respectively.

TCLP metals and TCLP SVOCs were below the RCRA toxicity characteristic limits.

1.4.2 Remedial Activities – Interim Removal Actions

Based on visual observation and data collected from the soil investigations, the following areas were identified for material removal:

- Oil sump contents
- Purifier structure contents
- Surface soil impacted with metals
- Surface soil impacted with hydrocarbons
- Debris and cinder pile impacted with hydrocarbons

Material removal activities were conducted in two phases. Phase I consisted of removing the debris and cinder pile, select surface soil, the contents of the purifier and oil sump, the concrete shed in the northwestern portion of the Site, and the purifier. Phase II consisted of removing additional surface soil. The remedial action levels used were the 1996 non-residential health-based guidance levels for PAHs. An arsenic cleanup criteria of 15 mg/kg was applied during the 1996 remediation effort based on the ATSDR (ATSDR, 1995) background arsenic concentration for the City area that was also used during the 1995 site investigation (described in Section 1.4.1.1.1).

The analytical results for soil sampling activities conducted during the soil investigations and removal actions are shown in **Tables 1-2** through **1-5**. The locations where PAHs, lead, arsenic, and TPH were detected in previous investigations and IRAs are shown on **Figures 1-5**, **1-6**, **1-7**, and **1-8**, respectively, and further identify the locations where concentrations exceeded residential or non-residential SRLs. TPH does not have an associated 2007 residential or non-residential SRL. Details of the Phase I and Phase II IRAs are provided in this section.

1.4.2.1 August 1996 – Phase I Interim Removal Action

The Phase I IRA was performed in August 1996 and consisted of the following:

- Removing the debris and cinder pile
- Removing the oil sump
- Removing the concrete shed and purifier
- Removing impacted surface soil previously identified as being impacted with metals and/or PAHs and performing confirmation sampling to evaluate whether additional soil removal was required

Environmental Response, Inc. (ERI) was the IRA contractor performing demolition and removal activities; Geraghty and Miller prepared the work plan; and Arcadis/Geraghty Miller provided oversight of ERI and collected soil confirmation samples.

1.4.2.1.1 Debris Pile Removal and Sampling

The debris pile was removed in August 1996. An area measuring 130 feet in an east-west direction by 250 feet in a north-south direction was excavated until visibly clean soil was observed. Available information did not indicate the depth of excavation and referred to the samples as "surface samples." The excavated area is shown on **Figure 1-4** (Geraghty and Miller, 1996b).

The material from the debris pile was placed on a shaker apparatus to separate bricks, vegetation, and other miscellaneous debris from the lampblack material. The lampblack was transported to Waste Management's Butterfield Station Regional Landfill as a special waste PCS and the remaining debris was characterized as PCS solid waste.

Following removal of the debris pile, an area measuring 100 feet east-west by 125 feet north-south was divided into twenty 25-foot square sections, as shown on **Figure 1-5**. A composite sample was collected from each section and analyzed for TPH. If TPH concentrations exceeded 30 mg/kg in a grid section sample, an additional foot of soil was excavated, and a second composite sample was collected. Samples were labeled based on the section from which they were collected (i.e., Debris #) with a "B" added if the area was further excavated and sampled again.

Five additional composite samples (Debris A, B, C, D, and E) were collected by compositing the samples from four grid sections. The samples were submitted to the laboratory for the analysis of lead, arsenic, and PAHs. The composite sampling areas are shown on **Figure 1-5**.

Laboratory TPH results of the section samples indicated the initial samples from grid sections 3, 4, 9, and 19 exceeded 30 mg/kg, with a maximum concentration of 590 mg/kg in sample Debris 4. An additional 1 foot of soil was excavated in these areas and a composite sample of the remaining samples was collected. All results from the second sampling effort were below the laboratory detection limit of 20 mg/kg.

One PAH (benzo(a)pyrene) result of 0.7 mg/kg at area Debris A exceeded the residential SRL of 0.69 mg/kg. Arsenic results from area samples ranged from 14 to 19 mg/kg, exceeding the residential SRL for arsenic, with the results consistent with the ATSDR mean and maximum values of 15 and 35.8 mg/kg, respectively (ATSDR, 1995). It should be noted the 1995 site investigation used the best available information to estimate a background arsenic value, using the mean concentration of 15 mg/kg determined from ATSDR information as the background value in 1995. Lead results ranged from 12 to 100 mg/kg and were below the residential SRL of 400 mg/kg in all samples and below the non-residential SRL. Background metals are further discussed in Section 3.

1.4.2.1.2 Oil Sump Removal

The contents of the oil sump were removed on August 13, 1996. Approximately 30 gallons of fluid were removed. The oil sump was removed on August 16, 1996. When removed, the sump was approximately 2.5 feet in diameter and 3.5 feet long, with no perforations. No visible staining of the surrounding soil was observed during sump removal. The oil sump and contents were recycled at the proper facility. No additional soil sampling was performed at the oil sump location.

1.4.2.1.3 Shed and Purifier Removal and Sampling

The concrete shed and purifier were removed in August 1996 and included the following activities:

• On August 5, 1996, Spray Systems Environmental performed an asbestos inspection prior to removing the concrete shed and purifier and submitted a National Emission Standards for Hazardous Air Pollutants notification for demolition of the structures.

1-12 BI1216180825PHX

- On August 19, 1996, approximately 261 tons of material were removed from the purifier structure and transported to Waste Management's Butterfield Station Regional Landfill as solid waste. The shed and purifier structure were demolished (the concrete pad remained), and approximately 230 tons of concrete from the shed and purifier structure demolition were transported to Speedway Landfill for management as a solid waste.
- On August 20, 1996, composite samples were collected from the following surface locations (**Figure 1-8** and **Table 1-3**) and submitted to the laboratory for TPH analysis:
 - Area adjacent to the north of the purifier (PUR-N)
 - Area adjacent to the south of the purifier (PUR-S)
 - Area adjacent to the east of the purifier (PUR-E)
 - Area adjacent to the west of the purifier (PUR-W)

TPH concentrations in the composite samples ranged from 71 mg/kg at PUR N to 520 mg/kg at PUR E.

• On August 21, 1996, the concrete purifier pad was removed and approximately 78 tons of concrete were transported to Waste Management's Butterfield Station Regional Landfill as solid waste.

Soil to the north and west of the concrete pad was excavated. Depth of the excavation was not provided in the report but is estimated to be approximately 1 foot bgs based on other activities at the site. Soil to the south and east of the pad was not excavated because of the presence of a gas line, which is owned by El Paso Natural Gas.

Composite samples were collected after soil was graded below the purifier pad and north of the purifier pad (the actual depth of sampling was not provided) from the following locations (**Figure 1-8**) and analyzed for arsenic, lead, and TPH:

- Area adjacent to the north side of the purifier (PUR N with 8/21/1996 date)
- Below the former purifier pad (subpurifier)

TPH concentrations were 140 and 57 mg/kg, from PUR N and the subpurifier, respectively. Arsenic concentrations were 11 and 15 mg/kg from PUR-N and the subpurifier, respectively, which are above the residential and non-residential SRLs of 10 mg/kg and below and equal to the ATSDR-determined mean arsenic concentration of 15 mg/kg (Section 1.4.1.1.1).

On August 22, 1996, the area north of the purifier pad and the area below the purifier pad was
regraded and composite samples were collected (PUR N-B and SUBPUR B) and submitted for PAH
analysis. Depth of excavation was not provided in the report but is estimated to be approximately 1
foot bgs. PAHs were detected in PUR-N-B below residential SRLs.

The composite sampling locations are shown on Figure 1-5.

1.4.2.1.4 Surface Soil Impacted with Metals and PAHs Removal and Sampling

Surface soil sampling results from four locations (SS-4 through SS-7) sampled in October 1995 and June 1996 had detections of arsenic, lead, and PAHs. Because of the proximity of SS-4 and SS-7, these two areas were combined and are referenced as SS4/SS-7, resulting in three material removal areas (SS4-7, SS5, and SS6).

On August 19, 1996, approximately 1 foot of soil was removed from each area, resulting in a total of 894 tons of soil and other materials transported offsite to Waste Management's Butterfield Station Regional Landfill as solid waste PCS.

Samples were collected from the base of the excavation after soil removal and analyzed for TPH, arsenic, lead and PAHs, as follows:

- One composite sample (SS4-7) from combined area SS4/SS7
- One composite sample (SS5 Comp) from excavated area SS-5

Three composite samples (SS6W, SS6CENT, and SS6E) from the west, central, and eastern portions
of area SS-6

TPH was not detected above the laboratory RL of 20 mg/kg in SS-5 and SS-4-7 samples. Lead concentrations were below residential SRLs. Arsenic concentrations of 11 and 15 mg/kg for SS-5 and SS-4/SS-7, respectively, were above the residential and non-residential SRL of 10 mg/kg and below and equal to the mean ATSDR background concentration of 15 mg/kg.

TPH concentrations in SS6W, SS6CENT, and SS6E ranged from 39 to 53 mg/kg; lead ranged from 11 and 217 mg/kg (below the residential lead SRL); and arsenic concentrations ranged from 18 to 24 mg/kg (above the SRL of 10 mg/kg and between the mean and maximum ATSDR background concentration of 15 and 35.8 mg/kg).

A composite sample (SS6 PAH Comp) of SS6W, SS6CENT, and SS6E was also submitted for PAH laboratory analysis. The benzo(a)pyrene result of the composite sample was 2.9 mg/kg, which was above the residential SRL.

1.4.2.2 November 1996 – Phase II Interim Remedial Action

The Phase II IRA was performed in November 1996 for removal of the following:

- Additional soil in the SS-6 area
- Additional soil in the area south and east of the purifier
- Additional soil along the western fence of the Site

Excavated areas were identified based on Phase I IRA results and visibly impacted soil. An Orange Coast Analytical Laboratory was onsite with a mobile laboratory to analyze samples for PAHs and determine the extent of the excavation. Samples were not collected from under the generator house, meter house, small purifiers, or gas holder foundations. An El Paso Natural Gas representative was onsite to assist representatives of Arcadis/Geraghty Miller in locating the El Paso gas line.

1.4.2.2.1 Removal Activities

Additional removal activities were conducted on November 4 and 5, 1996, as follows:

- On November 4, 1996, approximately 1 foot of soil was removed from the SS-6 area and composite samples (SS6WC, SS6CC, and SS6EC) were collected from the west, center, and east areas of the excavation and analyzed for PAHs. All sample results were below the residential SRL.
- On November 5, 1996, visibly impacted material was removed from the west fence line and a composite sample (WESTFENCE) was collected for PAH analysis. All sample results were below the residential SRL.
- On November 5, 1996, 1 foot of soil was removed from the south and east of the former purifier and three composite samples were collected (PURS31, PURS32, and PURE31) and analyzed for PAHs with the following results:
 - PURS31 results for benzo(a)pyrene (6.6 mg/kg) and benzo(a)anthracene (6.9 mg/kg) exceeded the non-residential and residential SRLs, respectively.
 - PURS32 result for benzo(a)pyrene (1.8 mg/kg) exceeded the residential SRL.
 - PURE31 result for benzo(a)pyrene (0.64 mg/kg) was below the residential SRL.
- Because of the presence of MGP-impacted soil, an additional 1.5 feet of soil were excavated at these
 locations and two additional composite samples (PURS41 and PURS42) were collected.
 Benzo(a)pyrene exceeded the residential SRL with a result of 1.5 mg/kg at the PURS42 location. The
 remaining PAH results were less than the residential SRL.

1-14 BI1216180825PHX

Approximately 380 tons of material were removed during Phase II activities and transported to Waste Management's Butterfield Station Regional Landfill as solid waste PCS. Upon completion of Phase II activities, approximately 400 tons of clean fill material were used to regrade the Site.

1.4.2.2.2 Investigation-derived Waste

ERI transported the material removed from the site. All petroleum-contaminated material removed during 1996 was transported to Waste Management's Butterfield Station Regional Landfill for management as PCS. All petroleum-contaminated material removed during 1997 was transported to Waste Management's Butterfield Station Regional Landfill for management as a special waste PCS. The uncontaminated solid waste was transported to Speedway Landfill in Tucson, Arizona. The oil sump contents were transported to Allen Moore Diversified Services Incorporated in Chandler, Arizona, to be recycled. The oil sump itself was transported to EMCO Recycling in Phoenix, Arizona, to be recycled (Arcadis/Geraghty & Miller, 1998).

1.5 Site Conditions Prior to Pre-Design Testing Investigation

After the site investigations and IRAs of the 1990s and prior to the pre-design testing investigation in 2019, dumping of construction materials took place at the Site. From 1998 to 2019, construction debris and soil piles accumulated, covering the majority of the City property and private property at the Site with 10-foot-high debris piles. The City removed the debris piles to enable pre-design testing investigation activities.

Based on historical data from previous material removal activities (Arcadis/Geraghty & Miller, 1998), the following five areas at the Site contain soil with concentrations above the current benzo(a)pyrene residential SRL:

- The previous removal action reported an Area A-2 sample concentration of 0.7 mg/kg within the debris and cinder pile removal area after the previous remediation efforts, which is above the current benzo(a)pyrene SRL of 0.69 mg/kg. Pre-design boring B19 within the debris and cinder pile area and Debris A area was used to evaluate this location.
- The benzo(a)pyrene results for the PUR-S 32/42 area south of the former large purifier (which was removed) and northwest of the small northwest purifier pad were 1.8 (PURS32) and 1.5 mg/kg (PURS42) at 1 foot and 2.5 feet bgs, respectively, after the previous remediation efforts. Pre-design boring B17 was used to evaluate this area.
- The benzo(a)pyrene result for the SS-10 surface sample collected west of Gas Holder 1 and south of the former debris pile was 1.3 mg/kg. Pre-design boring B22 was used to evaluate the SS-10 location.
- The benzo(a)pyrene result for the SS-14 surface sample collected north of Gas Holder 2 was 0.76 mg/kg. Pre-design boring B23 was used to evaluate the SS-14 location.
- The benzo(a)pyrene result for the SS-5 surface sample collected north of former MGP operations was 230 mg/kg, in addition to benzo(b)fluoranthene, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and dibenzo(a,h)anthracene results of 170, 160, 160, 93, and 8.6 mg/kg, respectively. Results from the 1996 IRA at this location indicated reductions of all PAHs to below residential SRLs after soil excavation. However, the excavation appears to have been conducted off center to SS-5 location. Pre-design boring B21 was used to evaluate PAH concentration north of the SS-5 excavation location and SS-5 surface sampling location.

The 1997 post-remediation PAH concentrations listed in the previous bullets and associated boring locations and the 2019 pre-design testing investigation results for PAHs above the residential SRL are shown on **Figure 1-9**. The sampling depths during the previous investigation are also shown on **Figure 1-9**.

The Site surface elevation has likely changed between 1998 and 2019 due to the accumulation and removal of surface soil between 1998 and 2019. Therefore, the recent pre-design testing data have been used to evaluate the current Site surface conditions. As described previously, some of the 2019 pre-design surface sample locations were designed to evaluate the existing surface conditions based on the

1996 results (Debris A-2, SS-10, and SS-14). At these locations (B-19, B-22, and B-23), surface sample results for PAHs were below the residential SRLs.

The 1996 soil boring data were all below the residential PAH SRLs except for soil boring SB-4, which had a benzo(a)pyrene result of 4.5 mg/kg at 0 to 1.5 feet bgs. Soil boring SB-4 was located within the PURS32/42 excavation area, which was excavated to 2.5 feet bgs, thereby removing the SB-4 area of high PAH concentration. Depths of sample collection during the 1996 investigation were inconsistent, meaning some borings were sampled only at 9 to 10.5 feet bgs, while others were sampled at 0 to 1.5, 3 to 3.5, 4.5 to 6, 9 to 10.5, 15 to 16.5, or 20 to 21.5 feet bgs, or a combination of these sample depths. The soil boring sampling depths during the 1996 investigation are shown on **Figure 1-9**. The 2019 pre-design testing investigation soil boring depths were sampled at a minimum of every 5 feet to a minimum depth of 20 feet bgs, with soil borings within the Site extent also including the sample intervals at 2.5 to 3 and 7.5 to 8 feet bgs.

Prior to pre-design testing investigation activities, a site fence was installed to prevent dumping at the Site. AZTEC Engineering Group Inc. performed a property boundary survey the week of October 7, 2019, and Daryca installed a Site security fence with a lockable entrance gate between October 14 and 28, 2019.

1-16 BI1216180825PHX

2. Pre-design Testing Investigation

Jacobs completed pre-design testing investigation activities between October 27, 2019 and November 8, 2019. The purpose of the pre-design activities was to:

- Evaluate surface and subsurface soil contamination to further define vertical and lateral extents of MGP-related compounds at the Site.
- Evaluate background metals concentrations near the Site.
- Evaluate Site engineering properties of the soils prior to full-scale remediation design.

The pre-design testing investigation was completed on November 8, 2019. Prior to conducting the pre-design testing investigation, Jacobs prepared a work plan to identify the activities to be accomplished and the methodologies to be used during the investigation (Jacobs, 2019b). The work plan was reviewed and approved by ADEQ in an email dated September 6, 2019. The approved work plan is provided in **Appendix C**.

The activities performed during the pre-design testing investigation between October and November 2019 are summarized as follows:

- Utility Evaluation. The utility evaluation identified utility locations and underground structures that could impact the investigation and/or remedial activities.
- Property Ownership Evaluation and Surveying. A site survey and evaluation were performed to identify property boundaries (completed before the pre-design testing investigation), identify the wash location, and prepare a topographic map of the Site (completed after the pre-design testing investigation).
- Subsurface Soil Investigation.
 - 14 onsite soil borings (borings B11 through B17, B19 through B21, and B23 through B26) were advanced during the pre-design testing investigation to obtain the necessary engineering design parameters (IE moisture content, density, Atterberg limits, etc.) for the full-scale remediation and further define the vertical and lateral extents of contamination. The locations of the pre-design testing investigation borings are shown on **Figure 2-1**. Because the El Paso/Southwest Gas pipeline crosses the Site, borings were prohibited within 10 feet of the high-pressure gas pipeline.
 - 11 offsite soil borings (borings B18, B22, and B27 through B35) were advanced and sampled during the pre-design testing investigation. The primary purpose of the offsite borings was to evaluate background concentrations for lead and arsenic from locations outside the Site and confirm the delineation of vertical and lateral extents of impacts. All borings were analyzed for PAHs and total metals.

2.1 Utility Evaluation

The objective of the utility evaluation was to identify utility locations and potential issues, such as underground structures, that could impact the soil investigation and remedial design. These data are useful to clear boring locations and reveal utility conditions that may need to be addressed during the full-scale remedy. Blue Stake Utility Marking Services was called to locate and mark all functional and abandoned utilities. Utilities were further designated by AZTEC using non-invasive geophysical methods. After the utilities were located, they were surveyed by AZTEC. The utilities at the Site based on the available information and surveys are shown on **Figure 2-2**.

2.2 Property Ownership and Surveying

AZTEC also identified property boundaries based on available Cochise County title information and legal descriptions. The property boundaries, as well as the approximate locations of former MGP structures, are shown on **Figure 2-2**.

2.3 Pre-design Testing Investigation

The objectives of the pre-design testing investigation were to:

- Further evaluate the vertical and lateral extents of contamination at the Site.
- Collect data to evaluate background lead and arsenic levels near the Site.
- Obtain engineering parameters (IE moisture content, density, Atterberg limits, etc.) for use in evaluating treatment options.
- Determine methods of excavation for remedial activities.
- Collect data to complete a human health risk assessment (HHRA) and groundwater protection level (GPL) modeling.
- Evaluate treatment options and select a final remedy.

A description of the sampling locations and associated rationale for the pre-design testing investigation is presented in **Table 2-1**.

2.3.1 Soil Borings

Prior to advancing soil borings, a surface sample was collected at a depth of 1 to 3 inches bgs at all predesign testing investigation soil boring locations. The top 1 inch of surface debris was removed prior to surface sample collection.

Cascade Drilling Services advanced 25 soil borings during the pre-design testing investigation. Twenty-two shallow borings were advanced up to 25 feet bgs (above groundwater) using a track-mounted 8-inch hollow-stem auger drill rig and three soil borings were advanced 50 feet bgs (below the depth to groundwater) using an 8-inch core barrel with a Sonic 600 SC drill rig. Prior to drilling, all borings were hand cleared for utilities between 5 and 10 feet bgs. A Jacobs field engineer/geologist specified the boring locations based on the proposed locations in the work plan and field conditions and observed the drilling operations. Total boring depth sampling intervals, soil conditions, and materials encountered were recorded by Jacobs personnel for each boring. All pre-design boring depths were referenced to the ground surface elevation at the time of drilling. At the conclusion of drilling activities (week of November 11, 2019), a survey of the boring locations and elevations was performed by AZTEC. The elevations and locations recorded during the survey reflect pre-design ground surface conditions during drilling, but likely differ from historical Site surface elevations due to soil and debris being dumped on the site between 1998 and 2019.

Three groundwater monitoring wells were installed at borings B25, B26, and B27. The remaining shallow soil borings advanced to a total depth above groundwater were backfilled with bentonite grout slurry up to approximately 2 feet bgs, followed by native soil to the existing grade. Soil cuttings from each boring were placed in a roll-off container and securely stored onsite pending laboratory analysis. Waste characterization and disposal are discussed in Sections 2.4 and 7.4.8. Boring and well construction logs are presented in **Appendix D** and **Appendix E**, respectively.

To evaluate background conditions, borings were located offsite. Offsite borings are defined as borings advanced outside the Site extent and boundary of historical MGP operations (**Figure 2-1**) with

2-2 BI1216180825PHX

benzo(a)pyrene results below residential SRLs. Offsite borings include borings B18, B22, and B27 through B35. Onsite borings are defined as borings advanced inside the Site extent or at locations with benzo(a)pyrene results above the residential SRLs. Onsite borings include borings B11 through B17 and B19 through B26.

The hollow-stem auger drilling technique was used to advance shallow soil borings with total depths ranging from 15 to 25 feet bgs. Samples were generally collected at 0, 2.5, 5, 7.5, 10, 15, and 20-foot intervals at onsite locations and at 0, 5, 10, 15, and 20-foot intervals at offsite locations.

The shallow soil borings include the following:

- Boring B11 Advanced at the location of the former south gas holder to a depth of 20 feet bgs to
 evaluate the vertical extent of the MGP-related contamination near the former south gas holder.
- Boring B12 Advanced at the location of the former north gas holder to a depth of 25 feet bgs to
 evaluate the vertical extent of the MGP-related contamination near the former north gas holder.
- Boring B13 Advanced at the location of the former meter house to a depth of 20 feet bgs to evaluate the vertical extent of the MGP-related contamination near the former meter house.
- Boring B14 Advanced at the location of the east end of the former generator house to a depth of 20 feet bgs to evaluate the vertical extent of the MGP-related contamination near the former generator house.
- Boring B15 Advanced at the location of the north end of the former generator house to a depth of 15 feet bgs to evaluate the vertical extent of the MGP-related contamination near the former generator house.
- Boring B16 Advanced at the location of the former oil sump to a depth of 20 feet bgs to evaluate the vertical extent of the MGP-related contamination near the former oil sump.
- Boring B17 Advanced west of the location of the former purifiers to a depth of 20 feet bgs to evaluate the vertical extent of former MGP-related contamination near previously sampled locations PURS32/PURS42.
- Boring B18 Advanced northeast of the Site to a depth of 15.5 feet bgs to evaluate background metals and horizontal extent of former MGP-related contamination northeast of the Site.
- Boring B19 Advanced on the northwest side of the former debris and cinder pile to a depth of 20 feet bgs to evaluate the vertical and horizontal extents of former MGP-related contamination at the debris and cinder pile.
- Boring B20 Advanced to the north of the former debris and cinder pile to a depth of 20 feet bgs to
 evaluate the horizontal extent of former MGP-related contamination near the debris and cinder pile.
- Boring B21 Advanced to the north of the previous investigation SS-5 location to a depth of 25 feet bgs to evaluate the horizontal extent of former MGP-related contamination near the SS-5 location.
- Boring B22 Advanced to the south of the previous investigation SS-10 location to a depth of 15.5 feet bgs to evaluate background metals concentrations and the horizontal extent of former MGPrelated contamination near the SS-10 location.
- Boring B23 Advanced to the east of the previous investigation SS-14 location to a depth of 20 feet bgs to evaluate the horizontal extent of former MGP-related contamination near the SS-14 location.

- Boring B24 Advanced west of the location of the former purifiers to a depth of 20 feet bgs to
 evaluate the horizontal extent of former MGP-related contamination east of the former purifiers.
- Boring B25 Advanced west of the debris and cinder pile to a depth of 50 feet to evaluate the
 horizontal extent of MGP-related contamination in soil and potential impacts to groundwater. A
 groundwater well was installed at this location and screened from 25 to 45 feet bgs.
- Boring B26 Advanced south of the gas holders to a depth of 50 feet to evaluate the horizontal
 extent of MGP-related contamination in soil and potential impacts to groundwater. A groundwater well
 was installed at this location and screened from 25 to 45 feet bgs.
- Boring B27 Advanced southwest of the Site to a depth of 50 feet to evaluate background metals
 concentrations in soil and groundwater. A groundwater well was installed at this location and
 screened from 22 to 42 feet bgs.
- Boring B28 Advanced southwest of the Site to a depth of 20 feet bgs to evaluate background metals concentrations near the Site.
- Boring B29 Advanced south of the Site to a depth of 21 feet bgs to evaluate background metals concentrations near the Site.
- Boring B30 Advanced northeast of the Site to a depth of 20 feet bgs to evaluate background metals
 concentrations near the Site.
- Boring B31 Advanced north of the Site to a depth of 21 feet bgs to evaluate background metals concentrations near the Site.
- Boring B32 Advanced north of the Site to a depth of 21 feet bgs to evaluate background metals concentrations near the Site.
- Boring B33 Advanced north of the Site to a depth of 21 feet bgs to evaluate background metals concentrations near the Site.
- Boring B34 Advanced northwest of the Site to a depth of 21 feet bgs to evaluate background metals concentrations near the Site.
- Boring B35 Advanced west of the Site to a depth of 21 feet bgs to evaluate background metals concentrations near the Site.

The sonic drilling method was used to advance soil borings B25, B26, and B27 up to 50 feet bgs and into the groundwater. These borings were advanced to assess the lateral and vertical extents of potential soil contamination, evaluate background lead and arsenic concentrations near the Site, and assess potential MGP-related impacts to groundwater. Groundwater wells were installed at two onsite locations (B25 and B26) and one offsite location (B27) in November 2019. Soil samples were collected at 0, 2.5, 5, 7.5, 10, 15, 20, 30, and 40-foot intervals at the sonic boring locations, and groundwater wells were installed and screened from 25 to 45 feet bgs. Section 2.3.2 provides the details of well installation, development, sampling, and groundwater sampling results.

2.3.1.1 Soil Results

Soil samples were collected from the soil borings for environmental analysis in accordance with the work plan (Jacobs, 2019b). All soil samples were submitted to Xenco Laboratories (ADHS No. AZ0757) in Phoenix, Arizona, and analyzed at Xenco's Texas facility for the following:

- PAHs using EPA Method 8270D-SIM
- Total metals using SW6020/7471B

2-4 BI1216180825PHX

Samples collected at pre-determined locations were also analyzed for the following:

- VOCs using EPA 8260B (select sample locations)
- Fraction of organic carbon (foc) (ASTM D2974; included with geotechnical results; **Table 2-2**)

All samples collected in October and November 2019 were analyzed for PAHs and metals, with select sample locations also analyzed for VOCs based on the Site history. Soil sample analytical results for PAHs, metals, and VOCs are provided in **Tables 2-3, 2-4,** and **2-5**, respectively. Laboratory analytical reports are presented in **Appendix G**. The data quality evaluation of the analytical results is presented in **Appendix H**. The previous locations of SRL exceedances for PAHs and arsenic are shown on **Figures 1-5** and **1-7**, respectively. The locations of SRLs exceedances for PAHs and metals during the pre-design testing investigation are shown on **Figures 2-3** and **2-4**, respectively. All soil VOC results were below the residential soil SRLs.

Soil PAHs

Concentrations of PAHs exceeded residential and/or non-residential SRLs in 25 samples collected from 9 boreholes (B-11 through B-13, B-15 through B-17, B-20, B-21, and B-24). PAH results from samples collected from offsite borings (B-18, B-22, and B-27 through B-35) were below the residential SRLs. Soil borings that did not have PAH results above the residential SRL and that are located outside the Site extent based on historical MGP operational data are classified as offsite locations. Offsite locations include borings B-18, B-22, B27, B-28, B-29, B-30, B-31, B-32, B-33, B-34, and B-35. The PAH analytical results compared to their respective SRLs, if applicable, are shown in **Table 2-3**. The boring locations and PAH results above the SRLs are shown on **Figure 2-3**.

PAH soil results from the deeper borings (B-25 through B-27) were all below the residential SRL.

PAH analytical results above the residential SRLs from onsite borings are summarized next.

Benzo(a)pyrene was detected above the residential SRL of 0.69 mg/kg in 25 samples and above the nonresidential SRL of 2.1 mg/kg in 14 samples collected from 9 borings. Boring B-13 had the highest benzo(a)pyrene result of 28.9 mg/kg from 1 to 1.5 feet bgs, and boring B-12 had the deepest benzo(a)pyrene result of 1.38 mg/kg (above the residential SRL) from 19.5 to 20 feet bgs. The following table includes the deepest sampled depth, deepest result greater than the residential SRL, and deeper results less than the residential SRL. Because benzo(a)pyrene has had the highest concentrations above SRLs at all borings where detections have been above the SRLs, benzo(a)pyrene has been used as an indicator compound. Borings with results above the residential benzo(a)pyrene SRL are listed in the following table:

Boring	Total Sampled Depth (feet bgs)	Deepest Result > Residential SRL	Deepest Result < Residential SRL
B-11	20	3	5.5
B-12	25	20	25
B-13	20	10.5	15.5
B-15	15	8	10.5
B-16	20	8	10.5
B-17	20	10.5	15.5
B-20	20	5.5	8
B-21	25	15.5	20
B-24	20	15.5	20

Soil Lead and Arsenic

Arsenic was detected in all 25 borings advanced during the pre-design testing investigation. Concentrations of arsenic exceeded the residential and nonresidential SRL of 10 mg/kg in 123 samples collected from 25 boreholes, with concentrations ranging from 10.3 to 50.3 mg/kg.

Lead was detected above the residential SRL of 400 mg/kg in two samples collected at borings B11 and B12 (samples B11-2.5-3.0 and B12-7.5-8.0), with results of 420 mg/kg and 531 mg/kg, respectively. Due to the elevated lead concentrations, these samples were analyzed for TCLP metals for waste profiling.

Arsenic and lead data from offsite borings B-18, B-22, and B-27 through B-35 have been used to evaluate background arsenic and lead concentrations near the Site. In Section 5, the methodology and results of the statistical evaluation are discussed. The metals analytical results compared to their respective SRLs, if applicable, are shown in **Table 2-4**. The locations and concentrations of arsenic onsite and offsite and concentrations of lead onsite are shown on **Figure 2-4**.

2.3.1.2 Geotechnical Analysis

Select samples were analyzed for geotechnical parameters during the pre-design testing investigation in October and November 2019. Laboratory tests to determine pertinent index and engineering properties were performed by Hoque & Associates in Phoenix, Arizona. The purpose of the index testing program was to classify soil in areas potentially needing excavation and aid in developing engineering parameters for the materials.

Samples were analyzed using the following geotechnical tests:

- Moisture content (ASTM D2216)
- Sieve analysis (percent passing No. 200)
- Atterberg limit (plastic limit, liquid limit, plasticity index)
- In situ density
- Undrained shear strength
- Dry bulk density (ASTM C128)
- Specific gravity (ASTM D854)

In addition, foc was analyzed by Xenco Laboratories and included with the geotechnical testing. A summary of the geotechnical test results is presented in **Table 2-2**, and geotechnical laboratory results are included in **Appendix F**.

2.3.2 Groundwater Well Installation and Results

Cascade Drilling advanced borings D-MW25, D-MW26, and D-MW27 to 50 feet bgs using a rotosonic drill rig and 8-inch core barrel. Monitoring wells D-MW25, D-MW26, and D-MW27 were installed at borings B25, B26, and B27 on November 1, 3, and 4, respectively. All wells were installed at the same depths and used the same well construction. Each well was screened from 25 to 45 feet bgs using 4-inch-diameter schedule 40 polyvinyl chloride with a 0.010 inch screen slot size. A filter pack was installed around each screen from 22 to 50 feet bgs. A bentonite seal was installed and hydrated for at least 30 minutes from 20 to 22 feet, followed by the addition of cement grout from 0 to 20 feet bgs. An above-grade lockable steel monument was set in a 2 by 2-foot concrete pad completion.

Cascade developed monitoring wells D-MW25, D-MW26, and D-MW27 on November 5 and 6, 2019, with a well development rig within a week of installation, using a combination of bailing, surging, bailing, and pumping. The bentonite and cement grout seals were allowed to set overnight prior to well development. To begin development, the well was bailed to remove sediment that had settled within it during installation. After sediment removal, the well was surged using a surge block for a minimum of 20 minutes at 10-foot intervals along the 20-foot well screen to draw fine sediment out of the adjacent annular space and formation and into the well. After surging, the well was again bailed to remove any sediment generated. Finally, the well was pumped with a submersible pump for at least an hour, which was

2-6 BI1216180825PHX

sufficient to reduce groundwater well turbidity to below 5 nephelometric turbidity units. Both well depth and the firmness of the well bottom were monitored with a tag line throughout development to track the amount of sediment present and verify its removal during bailing. During pumping, groundwater parameters, including temperature, specific conductance, dissolved oxygen, pH, and oxidation-reduction potential, were monitored with a water quality meter by a Jacobs geologist. Well construction diagrams and development logs are provided in Appendix E

2.3.2.1 Monitoring Well Sampling

Groundwater samples were collected after well development at monitoring wells D-MW25, D-MW26, and D-MW27 using a new disposable bailer at each well. Wells were allowed to equilibrate for approximately 24 hours prior to sample collection. Groundwater samples were collected directly from the bailers. One duplicate sample was collected from monitoring well D-MW27 (D-FD01-110719). Collected groundwater was transferred to appropriate sample containers, placed in an iced cooler, and submitted to Xenco Laboratories for laboratory analysis for the following parameters:

- PAHs using EPA Method SW846 8270D-SIM
- Total Recoverable Metals using EPA Method 200.8/245.1
- VOCs using EPA Method SW846 8260C

2.3.2.2 Groundwater Results

All groundwater results for PAHs and metals were below the Arizona Aquifer Water Quality Standard (AWQS). All groundwater results for VOCs were below the AWQS, with the exception of trichloroethene (TCE), which was reported at all three wells.

PAHs

Based on groundwater results, groundwater has not been impacted by PAHs or former MGP-related soil impacts. Groundwater wells MW-25 (boring B-25), MW-26 (boring B-26), and MW-27 (boring B-27) had groundwater results below the laboratory reporting limits and the AWQS and soil results were below the PAH residential SRLs. PAHs are not considered COCs in groundwater.

Metals

All groundwater metal results were below the AWQS; therefore, metals are not considered COCs for groundwater at the Site.

The three groundwater samples collected had arsenic results ranging from 0.00466 to 0.0068 mg/L. All groundwater arsenic results were below the AWQS arsenic standard of 0.05 mg/L. Arsenic is not considered a COC for groundwater.

VOCs

Groundwater samples collected from groundwater wells MW-25 (boring B-25), MW-26 (boring B-26), and MW-27 (boring B-27) had TCE results of 0.0129, 0.0780, and 0.0688 mg/L, respectively, above the AWQS of 0.005 mg/L. 1,1-Dichloroethene and toluene also were detected and were below the AWQS. TCE concentrations in groundwater are not a Site COC for the following reasons:

- Chlorinated VOCs are not a COC for former MGP sites (GRI, 1996).
- MGP operated at the site from approximately 1903 to 1932, which pre-dates the development and
 use of chlorinated VOCs in the United States in the 1950s.
- Toluene results above the laboratory reporting limit ranged from 0.00224 to 0.00792 mg/L. Based on the groundwater gradient (discussed in Section 2.3.2.3), upgradient underground tanks containing

BI1216180825PHX 2-7

gasoline/BTEX sources (including toluene) were reported in the EDR report. A conditionally exempt small quantity generator also is located generally upgradient.

2.3.2.3 Groundwater Gradient

Depth-to-water measurements were collected at all monitoring wells on November 7, 2019, approximately 24 hours after wells were development and prior to groundwater sampling, with results of 26.48, 28.79, and 29.38 feet below top of casing at wells MW-25, MW-26, and MW-27, respectively. On November 12, 2019, Aztec performed a survey of the groundwater well locations. The top of casing of each well was surveyed using the North American Vertical Datum of 1988, with results of 3945.0102, 3949.1597, and 3947.1868 feet above mean sea level for wells MW-25, MW-26, and MW-27, respectively. Groundwater elevations at the Site were calculated by subtracting distance from groundwater to the top of casing from the surveyed top of casing elevation. The resulting groundwater direction is approximately toward the west-southwest, with a 0.008-foot-per-foot gradient. Groundwater flow is shown on **Figure 2-5**.

2.3.3 Decontamination

The split-spoon samplers and sampling sleeves were decontaminated prior to use and between sampling locations. Samplers and sleeves were scrubbed using Alconox® and distilled water, followed by a distilled water rinse. Samplers were allowed to air dry prior to use. The drilling augers and core barrels were pressure-washed prior to drilling at each boring location.

Two equipment blanks, D-EB01-102919 and D-EB01-110219, were collected from the split-spoon samplers and sleeves at both the auger drill rig and the sonic drill rig, respectively, and analyzed for PAHs, metals, total VOCs (BTEX was included in total VOCs). All results were below the laboratory RL except for barium. Barium was detected at 0.00711 mg/L from the equipment blank collected on October 29, 2019. The Arizona water quality standard (drinking water protected use) for barium is 2 mg/L.

2.4 Waste Characterization from Soil Sampling Activities

Soil cuttings generated from the soil borings were placed in a lined roll-off container equipped with a locking lid. After all soil cuttings had been placed into the bin, a four-point composite sample (D-BIN-110719) was collected from the roll-off on November 7, 2019, and submitted to Xenco Laboratories for analysis. The bin and soil cuttings remained onsite pending analytical results, with a "Pending Laboratory Analysis" label on the bin that identified the bin contents, date of generation, and contact information. Upon receipt of the waste characterization results, the soil was profiled by APS and is pending approval for disposal at the Marana Regional Landfill in Marana Arizona; manifests will be included in **Appendix I** upon disposal.

Groundwater produced during well development and decontamination water were stored in three 300-gallon polyethylene tote containers. Groundwater produced during well development remains onsite pending analytical results for profile approval and disposal.

Used, disposable personal protective equipment (PPE) and used disposable equipment were bagged and included with the drilling consumable trash. These wastes were not considered hazardous and were sent to a municipal landfill.

During the investigation, waste characterization soil samples were collected from the ground surface to a depth of 5.5 feet bgs at various locations and analyzed to identify proper waste disposal during the remedial activities. Samples were submitted to Xenco Laboratories and analyzed for the following:

- PAHs using EPA Method SW846 8270D-SIM
- Total RCRA 8 Metals using EPA Method 6020/7471B
- TCLP RCRA metals using EPA Method (6010C/7470A)
- Total VOCs using EPA Method 8260C
- Polychlorinated biphenyls (PCBs) using EPA Method 8082A
- Paint filter using EPA Method 9095B (for liquid/saturated samples)

2-8 BI1216180825PHX

- Ignitability SW846 1010
- pH using EPA Method 9045C (for liquid samples)
- Total cyanide using EPA Method 9012

During the investigation, a small amount of black matter similar in appearance to tar was observed in the drill cuttings at borings B-12 and B-30 at 5 feet bgs. The tar-like matter was collected in a laboratory-provided sample jar, submitted to Xenco Laboratories as sample D-TAR-01, and analyzed for VOCs, TCLP metals, and TCLP VOCs. All results from the tar sample were below the laboratory RLs with the exception of barium, which had a TCLP result of 1.35 mg/L. A summary of waste characterization results for soil and water is provided in **Table 2-9** and **Table 2-10**, respectively.

2.5 Known Extents of Site Impacts

The extents of impacted soil and groundwater at the Site are discussed in the following sections. Information from previous investigations (Section 1) and data from the pre-design testing investigation were used for the evaluations and area discussed in this section. Depths of impacts are based on the depth from the ground surface at the time of pre-design testing investigation sampling and are represented by the topographical survey performed during the week of November 11, 2019. The topographical survey was conducted immediately after the sampling activities in the pre-design testing investigation. The ground surface elevation may differ between historical MGP operations, previous investigations, and pre-design testing investigation activities.

As described in Sections 1.4 and 1.5, the historical accumulation and subsequent removal of surface soil between 1998 to 2019 has altered the Site surface conditions. It is likely that the surface conditions existing during the 1998 investigation did not exist in 2019. Therefore, the surface sampling data collected during the pre-design testing investigation and the subsurface data from the previous investigations and pre-design testing investigation will be primarily relied upon to evaluate potential former MGP-related impacts. In addition to the pre-design testing investigation samples collected inside the known Site extent, offsite borings were advanced to evaluate background metals concentrations and potential MGP-related impacts. In areas where exceedances of residential SRLs existed in 1998, follow-up sampling was conducted in 2019 and is discussed in this section.

2.5.1 Soil Detections

Available data indicate the potential impacts to soil from former MGP operations are generally limited to the upper 15 feet of soil, with one sample result above the residential SRL for benzo(a)pyrene at 19.5 to 20 feet bgs. During the pre-design testing investigation, a definitive layer of lamp black material was not observed, though it is sometimes seen at former MGP sites; however, thin black lines approximately 1 millimeter thick and up to 15 millimeters long of potential MGP material were observed between 2.5 to 10 feet bgs at the onsite boring locations. Historical reports from the 1990s have limited subsurface boring data; however, boring SB-4 had a benzo(a)pyrene concentration of 4.5 mg/kg at 3 to 4.5 feet bgs. In soil boring B17 (near SB-4), the pre-design sampling result for benzo(a)pyrene was 5.31 mg/kg at 2.5 to 3 feet bgs, confirming a benzo(a)pyrene concentration is above the non-residential SRL at this location. Lead was reported above the residential SRL at 2.5 to 3 feet bgs (420 mg/kg) in boring B11 and at 7.5 to 8 feet bgs (531 mg/kg) in boring B12 during the pre-design testing investigation. Arsenic was above the SRL in the majority of the borings, both onsite and offsite, without strong variability. A statistical evaluation of background lead and arsenic concentrations is provided in Section 5. Location specific impacts are discussed next. A correlation was not observed between lead and arsenic or between PAHs and lead and arsenic, meaning the highest lead and arsenic concentrations did not correspond to the highest PAH concentrations.

PAHs

PAHs in soil were observed primarily at and around the former gas holders and meter house locations and along the north extent of the Site. The only previous investigation soil boring with a reported PAH result above the residential SRL was SB-4, with a result of 4.5 mg/kg benzo(a)pyrene at 0 to 1.5 feet bgs. Soil boring SB-4 was also sampled at 3 to 3.5 and 9 to 10.5 feet bgs, with results below the laboratory

BI1216180825PHX 2-9

reporting limit of 0.017 mg/kg. The SB-4 boring was located between the meter house and north gas holder next to the 2019 boring B-17. The highest PAH concentration was reported at the former meter house location (boring B-13), with a benzo(a)pyrene result of 28.9 mg/kg from 1 to 1.5 feet bgs. PAH concentrations were detected above the residential and/or non-residential SRLs at the former gas holders and meter house locations. The deepest PAH concentration of 1.38 mg/kg benzo(a)pyrene was detected at 20 feet bgs at the north gas holder location.

North of the Site, PAH concentrations have been defined north of the wash at borings B-31, B-32, B-33, and B-34. Detections in these borings were below the residential SRLs for PAHs. The extent of PAHs at the wash have not been defined.

East of the Site, PAH concentrations extended to 15.5 feet bgs at boring B-24, with a benzo(a)pyrene result of 0.877 mg/kg, and a maximum benzo(a)pyrene concentration of 1.22 mg/kg at 10.5 feet bgs. The eastern extent of PAH-impacted soil has not been defined; however, the northeast and southeast extents of impact have been defined and MGP operations did not extend farther east beyond the B-24 soil boring location.

South of the Site, PAH concentrations have been defined south of the southern former gas holder. Detections in borings B-26, B-22, and B-28 were below the residential SRLs for PAHs. Also, detections in borings B-29 and B-27 south of the southern Site fence line are below all residential SRLs for PAHs.

West of the Site, PAH concentrations have been defined. Detections in borings B-19, B-25, B-18, and B35 were below the residential SRLs for PAHs.

VOCs

Soil samples were analyzed for BTEX during the previous investigations and VOCs were analyzed during the pre-design testing investigation. BTEX was not detected in Site soil during the previous investigations; however, a sludge sample was collected for waste disposal purposes from the former oil sump prior to the sump's removal. The result for total xylenes was 180 micrograms per liter. During the previous investigations, soil samples were not collected after removal of the former oil sump, so during pre-design testing investigation, soil samples were collected and analyzed for total VOCs at the former oil sump location (boring B-16) at 2.5, 5, 7.5, 10, 15, and 20 feet bgs. All VOC results were below the residential VOC SRLs and the laboratory RLs.

Boring B-13 (former meter house location) was the only location with VOC results above the laboratory RLs, as well as detections below the residential SRLs at 1.5 and 3 feet bgs. VOCs detected at 1.5 feet bgs included benzene (0.509 mg/kg), naphthalene (28.3 mg/kg), toluene (0.38 mg/kg) and total xylenes (0.33 mg/kg). A naphthalene result of 10.5 mg/kg was also reported at 3 feet bgs. All the results are below the residential SRLs. Therefore, VOCs in soil are not considered to be Site chemicals of concern (COCs).

Metals

Soil samples were analyzed for total metals during previous investigations and the pre-design testing investigation. During previous investigations, lead was detected at concentrations above the non-residential SRL at SS-6 and SS-7 locations. These areas were subsequently excavated and sampled again, with lead concentration results below the residential SRL for lead. Borings advanced during the pre-design testing investigation at the former gas holders (near the SS-6 location) had lead results of 420 mg/kg at 2.5 feet bgs and 531 mg/kg at 7.5 feet bgs at borings B-11 and B-12, respectively, which are above the residential lead SRL. The remaining lead results were below the residential lead SRL of 400 mg/kg. Lead results at nearby borings B-13, B-24, and B-26 were below the residential SRL, indicating the lead-impacted soil was confined to the area under the former gas holders. Lead is included as a COC for the decision units (DUs) around the former gas holder areas where lead was detected above the residential SRL.

2-10 BI1216180825PHX

Arsenic concentrations in soil were detected above the residential and non-residential SRL of 10 mg/kg in most of the sampling results from the previous investigations and the pre-design testing investigation. In general, arsenic detections in the City area resulting from historical smelter operations are reported above the arsenic SRL (based on historical arsenic data for the City area [ATSDR, 1995]). Therefore, an evaluation of background arsenic concentrations, statistically comparing offsite and onsite concentrations at the 0 to 5, 5 to 10, 10 to 15, and 15 to 20 foot bgs intervals, was performed and is included in Section 3. Based on the statistical evaluation, onsite arsenic concentrations were similar to offsite (background) arsenic concentrations. Therefore, arsenic is not considered a COC at the Site.

BI1216180825PHX 2-11

This page is intentionally left blank.

2-12 BI1216180825PHX

3. Statistical Evaluation of Arsenic and Lead

ADEQ VRP approved the work plan for the additional investigation in September 2019 and requested APS to evaluate the background metals at the site through the use of the Gilbert Toolbox (Neptune and Company Inc., 2009) instead of a UTL95/95. The Gilbert Toolbox consists of the *t*-test, Wilcoxon rank sum test, quantile test, and slippage test. APS conducted the evaluation using the *t*-test, Wilcoxon rank sum test, and quantile test, which are discussed in this section. The slippage test has a high power for very large data sets and was not used.

The methods used to evaluate the statistical properties of metals (arsenic and lead) concentrations in soil samples collected from background and onsite at the Site also are described in this section. Lead and arsenic were included as smelter byproducts and detected at levels greater than the residential SRLs in soil samples (ATSDR, 1995). The statistical process was used to develop data sets representative of background metals concentrations. The evaluation of the data with regard to combining data sets by soil location and depth, developing descriptive summary statistics for each metal, and comparing onsite data with background are discussed in this section.

3.1 Data Conditioning

For metal/location combinations with duplicate sample results, both the parent sample and duplicate were used for statistical analyses. Although averaging parent sample and duplicate sample results may reduce sample variability, soil samples represent a point measurement with a small representative elementary volume, and based on the heterogeneous nature of the subsurface, each sample likely is a discrete result.

The concentrations of arsenic and lead were all above detectable levels with no censored observations. Estimated concentrations (concentrations denoted with the "J" qualifier) were treated as qualified detected concentrations for the purposes of statistical analysis. No data rejected through analytical data validation were identified in the data sets; therefore, no data were rejected from the data sets used for statistical evaluation.

3.2 Graphical Presentation of the Data

The data were plotted to allow for visual evaluation of the data for each metal for each sample type. Graphical presentations of the data provide insight into data sets that are not possible to visualize and understand by reviewing test statistics. The statistical plotting methods used include index plots, box-and-whisker plots, histograms, and probability plots. Graphical presentations of the data are provided in **Appendix J, Attachments J-1** through **J-4**.

Box-and-whisker plots (referred to as box plots) show the central tendency, degree of symmetry, range of variation, and potential outliers of a data set. The upper value of the box represents the 75th percentile for the data and the lower value of the box is the 25th percentile for the data. Thus, 50 percent of the data fall within the box. The top of the whisker represents the 75th percentile plus 1.5 times the interquartile range (IQR), where the IQR is the 75th percentile minus the 25th percentile. The bottom of the whisker is the 25th percentile minus 1.5 times the IQR. Any value outside this range is considered a potential statistical outlier, which is represented by a dot on the plot. The outlying concentrations of box plots only serve the definition of falling relatively far from the middle 50 percent of the data. If the data are drawn from a highly skewed distribution, or a symmetrical one with long tails, multiple outliers of this type are expected.

Normal probability plots show the ordered sample results versus the corresponding quantiles of a theoretical data distribution, such as the normal distribution, and are described as a quantile-quantile, or Q-Q plot (normal Q-Q plot). Because quantiles are associated with cumulative probabilities, Q-Q plots are also referred to as probability plots. A normal probability plot is used to evaluate the normality of the distribution of a variable (that is, whether, and to what extent, the distribution of the variable follows the normal distribution). If the data are not normally distributed, they will deviate systematically from a straight

BI1216180825PHX 3-1

line. Variability in the data will cause the data to scatter randomly around this line, but the data will still appear to follow a single straight line. Outliers may also be evident in this plot.

A histogram is a visual representation of the data collected into groups. The data range is divided into several bins or classes and the data are sorted into the bins. A histogram is a bar graph conveying the bins and the frequency of data points in each bin. Histograms provide a visual method of accessing location, shape, and spread of the data; the shape of a histogram helps determine whether the distribution is symmetric or skewed. The visual impression of a histogram is sensitive to the number of bins selected. A large number of bins will increase data detail, while fewer bins will increase the smoothness of the histogram.

Color-coded index plots provide added insight about outliers and patterns of multiple groups potentially present in a data set. Index plots are created by plotting the concentration on the horizontal axis and the sample index number on the vertical axis, where each sample index number represents a different sample location.

3.3 Descriptive Statistics

Soil samples were collected from 25 soil boring locations (11 background borings and 14 onsite borings) at depths of up to 40 feet bgs. In this evaluation, only samples collected from depths of up to approximately 20 feet bgs were considered.

The analytical results for the soil samples are provided in **Appendix G**, with metals results listed in **Table 2-4**. Descriptive statistics for each metal are provided in **Appendix J**, **Table J-1** (arsenic) and **Table J-2** (lead). Statistics are provided by borehole location and include the total number of samples, number of detected results, and frequency of detection; the minimum and maximum concentrations for detected and non-detected observations; the mean, median, and standard deviation; and the distribution characteristics of each metal. These statistics also include the normality probabilities that the concentrations came from normal distributions as calculated by the Shapiro-Wilk test. When the Shapiro-Wilk probability is less than 0.05, the assumption of normality is rejected. Profiles of arsenic and lead concentrations in soil versus depth were plotted in **Appendix J**, **Figure J-1** to evaluate the vertical distribution of each metal in soil for each of the 25 boreholes. Different colored symbols represent the two metals.

3.4 Determination of Soil Groupings

This section discusses the evaluation of the data with regard to combining data sets by soil location and depth. Depth was defined based on 5-foot vertical intervals, using the beginning sample interval as the nominal soil sample location. This resulted in four depth intervals: 0 to 5 feet bgs; 5 to 10 feet bgs; 10 to 15 feet bgs; and 15 to 20 feet bgs. If no significant differences in background concentrations exist between soil location and depth, concentrations can be pooled together to compute the background summary statistics.

To determine whether soil locations and soil depths should be combined, analysis of variance (ANOVA) was used to establish whether significant differences exist among soil locations and soil depths. ANOVA is a technique designed to determine whether the mean values of multiple groups are statistically different from one another. Environmental data are often not normally distributed but follow skewed distributions. Thus, a nonparametric ANOVA, using the ranks of the data, as opposed to the concentrations themselves, was used for evaluating the data. Side-by-side box plots and overlapping probability plots were also used to graphically compare the concentrations of metals between the data groups. These graphical displays are provided in **Appendix J, Attachments J-2** and **J-3**.

Appendix J, Table J-3 summarizes the ANOVA performed on arsenic and lead concentrations from the background data and the onsite data. This ANOVA (referred to as two-way ANOVA) studied both soil location and depth simultaneously. The calculated p-values (probabilities that the observed differences between the soil locations or depths could be due to random variability) are provided in this table. This p-value was compared to a significance level of 0.05 (the most common significance level in most statistical works), which limits the potential false conclusion that the populations are not different (when

3-2 BI1216180825PHX

they are) to 5 percent. If the p-value for the comparison by soil location or depth was less than 0.05, the soil locations or depths, respectively, were considered to be significantly different. Otherwise, they were determined to be statistically similar to one another.

For arsenic, there is no significant difference in background concentrations by soil depth, but concentrations are different by location (p-value of 0.018). Background concentrations of lead are significantly different by soil depth (p-value of less than 0.001) but not soil location. For comparison, concentrations of arsenic and lead in onsite soil are significantly different by both soil location (p-values of 0.012 and less than 0.001, respectively) and depth (p-values of less than 0.001). Overall, the p-values for soil depth are lower than the p-values for location in most cases, indicating that the differences between soil depth are typically more significant than the differences between locations for each group (background and onsite). However, onsite concentrations of lead appear strongly influenced by both soil location and depth.

For this reason, subsequent analysis was performed to determine which soil depth intervals are significantly different. The Kruskal-Wallis one-way ANOVA was used for this comparison. The Kruskal-Wallis test is a nonparametric method for testing whether samples from more than two groups originate from the same distribution. To determine which groups are different from the others, post-hoc testing was conducted using the Dunn test (Dunn, 1964; Zar, 2010). When performing a large number of statistical tests, some p-values less than the typical significance level of 0.05 will occur purely by chance, even if all the null hypotheses are true. Thus, the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) was used to control the family-wise error rate in the pairwise comparisons.

Appendix J, Table J-4 summarizes the results of the Kruskal-Wallis test. Similar to the two-way ANOVA results, there is no significant difference in background arsenic concentrations by soil depth. Background lead concentrations appear to be higher in the 0- to 5-foot depth interval compared to deeper soil depths. For Site soil, arsenic and lead concentrations appear to be higher in the 0- to 5-foot and the 5- to 10-foot depth intervals.

3.5 Onsite Concentration to Background Comparisons

Tests of central tendency (two-sample hypothesis tests) were performed to determine with statistical confidence whether arsenic and lead concentrations in each onsite soil depth interval are different, on average, from background concentrations.

The appropriate type of central tendency comparison test was determined based on the statistical distribution of the two data sets being tested. For cases where both data sets appear to be normally distributed, a *t*-test was performed to determine whether the means of the two populations appear to be different from one another. The specific form of *t*-test (Student's *t*-test or Welch's *t*-test) was determined based upon whether the variances of the data sets could be considered equal. If the distributions of the data sets did not coincide or if they were both nonparametric, then the nonparametric Wilcoxon Rank Sum test was used for comparison of central tendency. This is a nonparametric version of a two-sample *t*-test and calculates whether the medians of the two distributions are different or similar. Because the nonparametric Wilcoxon Rank Sum test assumes equal variance, when this assumption was not satisfied, the data were compared using the two-sample Kolmogorov-Smirnov test. The two-sample Kolmogorov-Smirnov test is a nonparametric method that compares the cumulative distributions of two data sets.

Because the nature of the potential impact at the Site is unknown, the quantile test was used in conjunction with the central tendency test. This test focuses on comparing the right tails of the Site and background distributions instead of comparing the medians or means of the two distributions. The quantile test is appropriate to address localized impacts compared to site-wide impacts. The quantile test was performed using the 80th percentile.

To supplement the formal statistical comparisons, overlapping probability plots comparing the quantiles of the background and site-specific data against each other are provided in **Appendix J, Attachment J-4**. This attachment also includes stacked histograms and side-by-side box plots comparing background and

BI1216180825PHX 3-3

site-specific data for each metal. **Appendix J, Table J-5** presents results of the central tendency and quantile tests conducted by soil depth for each metal.

Comparisons were performed using a common null hypothesis that concentrations of arsenic or lead in the onsite sample population are less than or equal to background concentration levels. The tests were conducted using a significance level of 0.05 (corresponding to a 95% confidence level). If the calculated probability (p-value) from a test is below 0.05, a conclusion is drawn to reject the null hypothesis and, instead, determine that a significant test result exists. In these tests, a p-value is calculated that is essentially the probability that the observed differences between the centers of the two sample sets occurred merely due to random variability in the data, or whether those differences are an indication that the center of the Site population is greater than background.

Based on a comparison of onsite and offsite statistical results detailed in the sections above, onsite concentrations appear to be consistent with background concentrations.

3-4 BI1216180825PHX

4. Human Health Risk Assessment

An HHRA was completed to assess the current and potential future cancer risks and noncancer hazards associated with exposures to surface and subsurface soil (0 to 15 feet bgs), deep soil (> 15 feet bgs), and groundwater at the Site to support remedial action decisions for the Site. Risks are estimated for residential and commercial/industrial (non-residential) exposure scenarios for soil and a residential exposure scenario for groundwater to reflect possible future site uses.

4.1 Human Health Risk Assessment Approach

For purposes of this risk assessment and to support risk management decision making, potential onsite receptors are assumed to be exposed to HHRA chemicals of potential concern (COPCs) in soil and groundwater under current and potential future land use conditions. The Site has been owned by the City since 1987 and is crossed by an El Paso Natural Gas easement. As described in Section 1, an IRA was conducted in 1996 to remove the majority of the impacted surface soil. Although the City does not use the property, construction debris consisting of soil, gravel, asphalt, and concrete has been dumped on the property. Prior to the 2019 site investigation activities, the City removed the dumped construction debris from the Site. The compounds potentially related to the former MGP operations and existing subsurface features have impacted the soil at the Site were evaluated during the 2019 pre-design testing investigation. Therefore, the exposure scenarios in this HHRA assume that a final remediation action has not been completed, and no institutional controls (ICs) have been implemented.

Standard-of-practice risk assessment methods and default exposure assumptions were used in the HHRA to develop exposure scenarios for the Site. The HHRA was performed in accordance with ADEQ risk assessment protocols (ADEQ, 2009, 2018), ADHS's *Deterministic Risk Assessment Guidance* (ADHS, 2003), EPA risk assessment guidance (Risk Assessment Guidance for Superfund Parts A, B, C, E, and F; EPA, 1989, 1991a, 1991b, 2004, 2009), and ASTM Risk-Based Corrective Action Guidance (ASTM, 1998).

The following four steps of the risk assessment are discussed in this section:

- 1. Data evaluation
- 2. Exposure assessment
- 3. Toxicity assessment
- 4. Risk characterization

4.1.1 Step 1: Data Evaluation

In the first risk assessment step, an HHRA data set of soil sampling results was compiled for each depth group: surface and subsurface soil (0 to 15 feet bgs) and deep soil (> 15 feet bgs). Soil samples for each depth group were evaluated separately for onsite and background (offsite) areas.

Analytical data collected during the pre-design testing investigation in 2019 at the Site were used in the HHRA. The soil and groundwater sample locations included in the analytical data set are presented on **Figure 2-2**. A list of soil and groundwater samples used in this HHRA is presented in **Tables K-1** and **K-2** in **Appendix K**. Analytical results for soil and groundwater samples collected from these locations are provided in **Attachments 1** through **5** in **Appendix K**. Due to previous interim remediation efforts and changing site conditions over the last 20 years, soil samples from historical investigations were not considered representative of current conditions and, therefore, not used in this HHRA. Pre-design investigation samples for soil and groundwater were analyzed for PAHs, metals, and VOCs. All detected analytes from the pre-design testing investigation in 2019 that are potentially associated with former MGP operations (i.e., PAHs, petroleum VOCs, and lead) were selected as COPCs in this HHRA for quantitative risk estimate calculations.

Following EPA risk assessment guidance, the concentrations for the seven carcinogenic PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene,

BI1216180825PHX 4-1

dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were converted to a benzo(a)pyrene toxic equivalence quotient (BAP TEQ) using the relative potency factors (RPFs) presented in *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons* (EPA, 1993) and Section 2.3.6 of the EPA Regional Screening Levels (RSLs) User's Guide (EPA, 2019a) and the following equation:

$$BAP\ TEQ = ([PAH_i] \times RPF_i) + \dots + ([PAH_{vii}] \times RPF_{vii})$$

Where:

BAP TEQ = benzo(a)pyrene toxic equivalent concentration (mg/kg)

PAH_i = PAH concentration for each of the seven carcinogenic PAHs (mg/kg)

RPF_i = relative potency factor for each carcinogenic PAH (dimensionless)

Both detected and non-detected results were included in the BAP TEQ calculations. For non-detected concentrations, one-half the RL was used as a proxy value in the calculation (i.e., BAP TEQ [ND = ½*RL]). This is a conservative approach for addressing the non-detected concentrations for this screening evaluation. Therefore, to support risk management decision making, the BAP TEQ was also calculated with non-detected results set to zero (i.e., BAP TEQ [ND = 0]).

Attachments 6 and **7** in **Appendix K** present the BAP TEQ concentrations calculated for Site surface and subsurface soil (0 to 15 feet bgs) and **Attachments 8** and **9** in **Appendix K** present the BAP TEQ concentrations calculated for deep soil (> 15 feet bgs).

Because it is unlikely that receptors would be exposed to the maximum detected soil concentrations at the Site given that the majority of impacts are in the subsurface and construction debris covering the surface, the COPCs were further evaluated using statistically derived exposure point concentrations (EPCs), which were identified based on measured COPC concentrations in surface and subsurface soil and in deep soil.

ProUCL Version 5.1.002 (EPA, 2015, 2016) was used to calculate the upper confidence limit (UCL) of the mean concentration for each COPC that had a maximum detected concentration exceeding EPA RSLs for residential and industrial direct contact exposure to soil or groundwater (EPA, 2019b). The RSLs used for the HHRA are based on a target excess lifetime cancer risk (ELCR) of 1 × 10⁵ and a target hazard quotient (HQ) of 1. For the COPCs for which 95-UCLs were calculated, the lower of maximum detected concentration and 95-UCL was used as the EPC. **Tables K-3** and **K-4** in **Appendix K** provide the comparisons of Site surface and subsurface soil (0 to 15 feet bgs) maximum detected concentrations and EPCs to the residential and industrial soil RSLs for onsite and background (offsite) areas, respectively. **Tables K-5** and **K-6** in **Appendix K** provide the comparisons of Site deep soil (> 15 feet bgs) maximum detected concentrations and EPCs to the residential and industrial soil RSLs for onsite and background (offsite) areas, respectively. **Table K-7** in **Appendix K** provides the comparisons of Site groundwater maximum detected concentrations and EPCs to the residential tap water RSLs (EPA, 2019b).

The ProUCL outputs for COPCs in surface and subsurface soil (0 to 15 feet bgs) and deep soil (> 15 feet bgs) are provided in **Attachments 10** through **13** in **Appendix K**.

Cyanide was included in pre-design testing waste characterization from 16 soil boring locations. Risk calculations for cyanide are provided in **Attachment 14** in **Appendix K**.

4.1.2 Step 2: Exposure Assessment

In the second risk assessment step of the HHRA, the following exposure scenarios were evaluated:

• Industrial Worker Exposure Scenario: An occupational scenario for current and possible future industrial use of the Site considers potential exposure to surface and subsurface soil (0 to 15 feet bgs) during general utility and construction activities and deep soil (> 15 feet bgs) during atypical construction/excavation activity. However, during routine use of the Site, potential exposure is

4-2 BI1216180825PHX

expected to be limited to surface soil (0 to 2 feet bgs). As discussed previously, this exposure scenario is considered potentially complete for the Site and is included in the quantitative risk characterization step (Step 4); however, potential exposure under current land use conditions is limited.

- Construction Worker Exposure Scenario: A construction scenario considers current and future onsite construction/utility workers engaged in excavation activities who are potentially exposed to surface and subsurface soil (0 to 15 feet bgs) and deep soil (> 15 feet bgs). However, since the industrial exposure workers' exposure assumptions are more conservative than a construction worker scenario, the industrial worker exposure scenario was considered protective of construction workers for this HHRA. Therefore, construction worker exposure scenario was not evaluated in the risk characterization step separately from the industrial worker exposure scenario.
- Residential Exposure Scenario: There is no historical or current use of the Site as residential. A possible hypothetical future use of the Site for residential scenario and possible use of the Site for groundwater supply well were evaluated. Although residential exposures are unlikely at the Site, it was evaluated to provide a conservative assessment of potential risk. This scenario conservatively considers exposure to surface and subsurface soil (0 to 15 feet bgs) during household activities. During routine household activities, potential exposure is expected to be limited to surface soil (0 to 2 feet bgs). In addition, deep soil (> 15 feet bgs) exposure is evaluated. However, it is rare that deep soil (> 15 feet bgs) will be brought to the surface.
- Trespasser or Recreational Exposure Scenario: The soil exposure pathways for the trespasser or recreational exposure scenarios are also considered potentially complete; however, because of the limited time spent on the Site and the limited amount of exposed soil at the Site, the magnitude of exposure will be considerably less than for the industrial, residential, and construction exposure scenarios. In addition, the Site is a secure facility and public access is prohibited. Therefore, a trespasser exposure scenario was not evaluated in the risk characterization step separately from the industrial worker or residential exposure scenarios.

The following three soil exposure pathways were identified as potentially complete for residential and industrial receptors:

- Incidental ingestion of surface, subsurface, and deep soil.
- Dermal contact with surface, subsurface, and deep soil.
- Inhalation of volatiles and airborne particulates (surface, subsurface and deep soil entrained by wind or mechanical action).

The following three groundwater exposure pathways were identified as potentially complete for residential receptors:

- Incidental ingestion of groundwater as tap water.
- Dermal contact with groundwater as tap water during household activities.
- Inhalation of volatiles during household activities such as showering.

4.1.3 Step 3: Toxicity Assessment

In the toxicity assessment step of the HHRA, the potential adverse health effects associated with the HHRA COPCs are summarized and appropriate EPA toxicity values are identified. These toxicity values are embedded in the EPA RSLs (EPA, 2019a, 2019b). For COPCs without published RSLs, surrogate chemicals were assigned as follows:

- Acenaphthene for acenaphthylene
- Pyrene for benzo(g,h,i)perylene
- Anthracene for phenanthrene
- m-Xylene for m,p-xylenes

BI1216180825PHX 4-3

As described in Section 4.1.1, carcinogenic PAHs were evaluated as BAP TEQ in risk calculations. However, an updated toxicological review of benzo(a)pyrene (EPA, 2017) indicates that exposures to this chemical could result in adverse effects not related to cancer. Therefore, the unadjusted benzo(a)pyrene sample data (i.e., not BAP TEQ) were also evaluated for noncancer effects.

Lead is a probable carcinogen in humans and has multiple toxic effects on the human body, such as decreased intelligence in children and increased blood pressure in adults. However, no toxicity reference values are available for lead. Therefore, lead was evaluated by comparing its concentrations with EPA RSLs of 400 mg/kg and 800 mg/kg under residential and industrial scenario, respectively.

4.1.4 Step 4: Risk Characterization

The information from the first three steps was integrated in the risk characterization step. Numerical estimates were identified for potential cancer and non-cancer risks, and the uncertainties associated with the risk estimates were summarized. EPA uses the general range of 1 x 10^{-6} to 1 x 10^{-4} as a "target range" for total ELCR estimate within which the agency strives to manage risks (EPA, 1989). EPA states that action should be taken to address risks above 1 x 10^{-4} and may be taken to address risks between 1 x 10^{-4} and 1 x 10^{-6} to reduce any potential exposure (EPA, 1991a). In addition, EPA uses a total hazard index (HI) greater than 1 as an indication that there may be a concern for adverse noncancer health effects. The cancer risks and noncancer hazards were calculated using the methods described below.

4.1.4.1 Carcinogenic Risk Estimation

The potential for carcinogenic effects associated with exposure to the COPCs was evaluated by estimating the ELCR. ELCR is the incremental increase in the probability of developing cancer during one's lifetime in addition to the background probability of developing cancer. For example, an individual exposed to a carcinogen with a calculated cancer risk of 2 × 10⁻⁶ indicates the probability of the individual getting cancer increases by 2 out of 1 million compared to background levels.

Chemical-specific ELCRs were calculated using a using a risk ratio approach (EPA, 1991b). For chemicals identified as COPCs based on the comparison of the statistically derived concentration to the RSL, chemical-specific ELCRs were calculated for each identified using the following equation:

$$ELCR = \frac{Soil\ EPC\ (mg/kg) \times TR\ (1 \times 10^{-5})}{Soil\ RSL\ (mg/kg)}$$

Where:

ELCR = excess lifetime carcinogenic risk estimate (dimensionless)

EPC = exposure point concentration (mg/kg)

TR = target risk level

RSL = regional screening level – cancer effects (mg/kg) (EPA, 2019a, 2019b)

The RSLs used to identify the potential for unacceptable carcinogenic effects were based on a target risk of 1×10^{-5} . The ELCR results from multiple chemicals are summed to a total ELCR.

4.1.4.2 Noncancer Hazard Estimation

For noncancer effects, the potential for a receptor to develop an adverse effect was estimated by comparing the predicted level of exposure for a particular chemical with the highest level of exposure that is considered protective (i.e., the screening level). For chemicals identified as COPCs, a corresponding HQ was calculated using the following equation:

$$HQ = \frac{Soil \ EPC \ (mg/kg) \times Target \ Hazard \ (1)}{Soil \ RSL \ (mg/kg)} \ (1)$$

4-4 BI1216180825PHX

Where:

HQ = hazard quotient

EPC = exposure point concentration

RSL = regional screening level – noncancer effects (EPA, 2019a, 2019b)

mg/kg = milligram(s) per kilogram

The HQ results from multiple chemicals are summed to a HI. The RSLs used to identify the potential for unacceptable noncarcinogenic effects were based on a target HQ of 1.

4.1.4.3 Identification of Chemicals of Concern

For this HHRA, compounds were identified as COCs if the total ELCR was greater than 1×10^{-5} and the HI was greater than 1.

4.2 Risk Characterization Results

Risk estimates are provided in **Tables K-8** through **K-12** in **Appendix K** for surface and subsurface soil, deep soil, and groundwater. The risk estimates were calculated using EPCs based on maximum concentrations or 95-UCLs. However, in this HHRA, surface and subsurface soil and deep soil EPCs are generally identified as based on maximum concentrations, and for groundwater, all EPCs are based on maximum concentrations. Therefore, the risk estimates calculated using maximum concentrations are highly conservative.

4.2.1 Industrial Exposure Scenario

4.2.1.1 Onsite Soil

The onsite industrial risk estimates are presented in **Tables K-8** and **K-10** in **Appendix K** for surface and subsurface soil, and deep soil, respectively.

For surface and subsurface soil (0 to 15 feet bgs), the total ELCR at the Site is 2×10^{-5} when the BAP TEQ is based on ND = ½*RL, which is within the EPA target risk range (TR = 1×10^{-6} to 1×10^{-4}) (**Table K-8** in **Appendix K**). The noncancer HI is 0.2, which is less than the target HQ of 1. The primary contributors to the cancer risk are arsenic, chromium, BAP TEQ, and naphthalene.

For deep soil (> 15 feet bgs), the total ELCR (when BAP TEQ is based on ND = $\frac{1}{2}$ *RL) is 1 × 10⁻⁵, which is within the EPA target risk range (TR = 1 × 10⁻⁶ to 1 × 10⁻⁴) (**Table K-10** in **Appendix K**). The noncancer HI is 0.07, which is less than the target HQ of 1. The primary contributors to the cancer risk are arsenic and chromium.

The EPC for lead does not exceed the industrial RSL of 800 mg/kg in surface and subsurface soil (0 to 15 feet bgs) and deep soil (> 15 feet bgs). None of the detected concentrations of lead exceed the industrial soil RSL.

Based on background risk estimates (Section 4.2.1.2) and the statistical comparison (Section 3), arsenic is not considered site related in deep soil. Industrial risks in surface and subsurface soil (0 to 15 feet bgs) for arsenic onsite (6.2E-06, **Table K-8** in **Appendix K**) and offsite (background) soil (5.3E-06, **Table K-9** in **Appendix K**) are similar. Industrial risks in deep soil (> 15 feet bgs) for arsenic in onsite soil (5.6E-06, **Table K-10** in **Appendix K**) and offsite (background) soil (6.0E-06, **Table K-11** in **Appendix K**) are also similar. The statistical comparison shows arsenic above background for the 5- to 10-foot-bgs interval only.

For chromium, risks were calculated using conservative toxicity values of hexavalent chromium (i.e., 100 percent of the chromium in soil is considered to be in the hexavalent form). Chromium in soil is generally in trivalent form. Trivalent chromium and total chromium do not have cancer toxicity values (EPA, 2019b). None of the maximum detected concentrations of total chromium exceed the trivalent chromium soil RSL

BI1216180825PHX 4-5

for an industrial exposure scenario. Based on background risks and a toxicity assumption founded on a highly conservative surrogate, chromium is not considered site related in surface, subsurface, or deep soil.

4.2.1.2 Background Soil (Offsite)

The background (offsite) industrial risk estimates are presented in **Tables K-4** and **K-6** in **Appendix K** for surface and subsurface soil, and deep soil, respectively.

For surface and subsurface soil (0 to 15 feet bgs), the total ELCR (when BAP TEQ is based on ND = $\frac{1}{2}$ *RL) at the Site is 7 × 10⁻⁶, which is within the EPA target risk range (TR =1 × 10⁻⁶ to 1 × 10⁻⁴) (**Table K-9** in **Appendix K**). The noncancer HI is 0.05, which is less than the target HQ of 1. The primary contributors to the cancer risk are arsenic and chromium.

For deep soil (> 15 feet bgs), the total ELCR (when BAP TEQ is based on ND = $\frac{1}{2}$ *RL) is 1 × 10⁻⁵, which is within the EPA target risk range (TR = 1 × 10⁻⁶ to 1 × 10⁻⁴) (**Table K-11** in **Appendix K**). The noncancer HI is 0.05, which is less than the target HQ of 1. The primary contributors to the cancer risk are arsenic and chromium.

The EPC for lead does not exceed the industrial RSL of 800 mg/kg in surface and subsurface soil (0 to 15 feet bgs) or deep soil (> 15 feet bgs).

Table K-12 in **Appendix K** shows the cancer risk and noncancer HI estimates without the non-site-related chemicals (arsenic in deep soil and chromium in surface and subsurface soil and deep soil).

4.2.3 Residential Exposure Scenario

4.2.3.1 Onsite Soil

The onsite residential risk estimates are presented in **Tables K-3** and **K-5** in **Appendix K** for surface and subsurface soil, and deep soil, respectively.

For surface and subsurface soil (0 to 15 feet bgs), the total ELCR (when BAP TEQ is based on ND = $\frac{1}{2}$ *RL) is 2 × 10⁻⁴, which is above the EPA target risk range (TR = 1 × 10⁻⁶ to 1 × 10⁻⁴) (**Table K-8** in **Appendix K**). The noncancer HI is 2, which is above the target HQ of 1. The primary contributors to the cancer risk are arsenic, chromium, BAP TEQ, and naphthalene. There are no primary contributors to the hazard as none of the individual analytes has an HQ greater than 1.

For deep soil (> 15 feet bgs), the total ELCR (when BAP TEQ is based on ND = $\frac{1}{2}$ *RL) is 1 × 10⁻⁴, which is at the higher end of the EPA target risk range (TR = 1 × 10⁻⁶ to 1 × 10⁻⁴) (**Table K-10** in **Appendix K**). The noncancer HI is 0.9, which is less than the target HQ of 1. The primary contributors to the cancer risk are arsenic, chromium, and BAP TEQ.

Based on background risk estimates (Section 4.2.3.2) and the statistical comparison (Section 3), arsenic is not considered site related in soil from 0 to 5 feet bgs or in deep soil (> 15 feet bgs). Residential risks in surface and subsurface soil (0 to 15 feet bgs) for arsenic onsite (2.7E-05, **Table K-8** in **Appendix K**) and offsite (background) soil (2.3E-05, **Table K-9** in **Appendix K**) are similar. Residential risks in deep soil (> 15 feet bgs) for arsenic in onsite soil (2.5E-05, **Table K-10** in **Appendix K**) and offsite (background) soil (2.6E-05, **Table K-11** in **Appendix K**) are also similar. The statistical comparison shows onsite arsenic concentrations were similar to offsite (background) arsenic concentrations.

For chromium, risks were calculated using conservative toxicity values of hexavalent chromium (i.e., 100 percent of the chromium in soil is considered to be in the hexavalent form). Chromium in soil is generally in trivalent form. Trivalent chromium and total chromium do not have cancer toxicity values (EPA, 2019b). None of the maximum detected concentrations of total chromium exceed the trivalent chromium soil RSL for a residential exposure scenario. Based on background risk estimates and a toxicity assumption

4-6 BI1216180825PHX

founded on a highly conservative surrogate, chromium is not considered site related in surface, subsurface, or deep soil.

The EPC for lead does not exceed the residential RSL of 400 mg/kg in surface and subsurface soil (0 to 15 feet bgs) or deep soil (> 15 feet bgs). Two of the 73 surface and subsurface soil concentrations exceed the residential soil RSL of 400 mg/kg: 420 mg/kg in D-B11-2.5-3.0 and 531 mg/kg in D-B12-7.7-8.0. None of the lead concentrations in deep soil exceed the industrial soil RSL.

Cyanide was included in pre-design testing waste characterization from 16 soil boring locations and one composite soil sample (**Attachment 14** in **Appendix K**). The calculated residential HQ for cyanide in 0 to 15 feet bgs soil is 0.03.

4.2.3.2 Background Soil (Offsite)

The background (offsite) residential risk estimates are presented in **Tables K-9** and **K-11** in **Appendix K** for surface and subsurface soil, and deep soil, respectively.

For surface and subsurface soil (0 to 15 feet bgs), the total ELCR (when BAP TEQ is based on ND = $\frac{1}{2}$ *RL) is 7 × 10⁻⁵, which is within the EPA target risk range (TR = 1 × 10⁻⁶ to 1 × 10⁻⁴) (**Table K-9** in **Appendix K**). The noncancer HI is 0.7, which is above the target HQ of 1. The primary contributors to the cancer risk are arsenic, chromium, and BAP TEQ.

For deep soil (> 15 feet bgs), the total ELCR (when BAP TEQ is based on ND = $\frac{1}{2}$ *RL) is 1 × 10⁻⁴, which is at the higher end of the EPA target risk range (TR = 1 × 10⁻⁶ to 1 × 10⁻⁴) (**Table K-11** in **Appendix K**). The noncancer HI is 0.7, which is less than the target HQ of 1. The primary contributors to the cancer risk are arsenic, chromium, and BAP TEQ.

The EPC for lead does not exceed the residential RSL of 400 mg/kg in surface and subsurface soil (0 to 15 feet bgs) and deep soil (> 15 feet bgs).

4.2.3.3 Groundwater

The residential risk estimates are presented in **Table K-12** in **Appendix K** for groundwater. For groundwater, the total ELCR is 3×10^{-7} when the BAP TEQ is based ND = $\frac{1}{2}$ *RL, which is below the EPA target risk range (TR = 1×10^{-6} to 1×10^{-4}) (**Table K-12** in **Appendix K**). The noncancer HI is 0.03, which is above the target HQ of 1.

4.3 Summary

The HHRA used the available soil data, standard-of-practice risk assessment methods, and default exposure assumptions to develop exposure scenarios for the Site. The City owns the property but does not use it. However, construction debris consisting of soil, gravel, asphalt, and concrete has been dumped on the property. Prior to the 2019 site investigation activities, the City removed the dumped construction debris from the Site. The compounds potentially related to the former MGP operations and existing subsurface features have impacted the soil at the Site. Therefore, the exposure scenarios in this HHRA assume that no remedial action has been completed and no ICs have been implemented. Prior to the 2019 site investigation, construction debris piles covered the Site, preventing exposure. Once the debris was removed during the 2019 site investigation, the Site was secured by a fence. The Site security fence will remain in place until the remedial action is completed.

A summary of the estimated cancer risks and noncancer hazards for exposure to surface and subsurface soil (0 to 15 feet bgs) and deep soil (> 15 feet bgs) under industrial and residential scenarios is presented in **Table K-13** in **Appendix K**. For surface and subsurface soil (0 to 15 feet bgs) under the industrial scenario, risks are within the EPA acceptable cancer risk range of 1 x 10^{-6} to 1 x 10^{-4} and noncancer HI is below the target of 1. For the residential scenario, risks are above the EPA acceptable cancer risk range of 1 x 10^{-6} to 1 x 10^{-4} and noncancer HI is above the target HI of 1; however, there is no access or exposure to the soil currently.

BI1216180825PHX 4-7

For deep soil (> 15 feet bgs), the exposure scenarios evaluated are within, or at the higher end of, the EPA acceptable cancer risk range of 1 x 10^{-6} to 1 x 10^{-4} . Estimated noncancer HIs are below the target HI of 1.

For groundwater, the exposure scenario evaluated is below the EPA acceptable cancer risk range of 1×10^{-6} to 1×10^{-4} . Estimated noncancer HI is below the target HI of 1.

The HHRA COCs are the COPCs that contribute to the majority of the cancer risk and noncancer hazard estimates or result in individual cancer risk estimates greater than 1 x 10⁻⁵ or a hazard estimate greater than 1 in surface and subsurface soil (0 to 15 feet bgs) (**Table K-14** in **Appendix K**).

Based on the industrial exposure scenario risk characterization results, arsenic (in soil from 5 to 10 feet bgs only), BAP TEQ, and naphthalene were identified as HHRA COCs in surface and subsurface soil (0 to 15 feet bgs). Based on the residential exposure scenario risk characterization results, arsenic (5 to 10 feet bgs only), BAP TEQ, and naphthalene were identified as HHRA COCs in surface and subsurface soil (0 to 15 feet bgs). Arsenic is not considered an HHRA COC in soil from 0 to 5 feet bgs due to the statistical comparison showing arsenic is similar to background within the 0 to 5 feet bgs soil interval.

No COCs were identified in deep soil (> 15 feet bgs) for the industrial or residential scenarios.

4-8 BI1216180825PHX

5. Groundwater Protection Level Modeling – Potential Threat to Groundwater from Soil Contaminants

This section presents the procedure and results of using ADEQ's GPL screening method presented in *A Screening Method to Determine Soil Concentrations Protective of Groundwater Quality* (ADEQ, 1996) and GPL Spreadsheet (ADEQ, 2013) to determine if residual contaminant concentrations left in place could cause or threaten to cause contamination of groundwater. Data indicate that the vadose zone is composed of unconsolidated alluvium, which is consistent with the approach used by ADEQ (1996, 2013). The depth to groundwater at the Site is about 26 feet based on results from recent site investigation activities.

5.1 Applicable Cleanup Standards

ADEQ has established the following types of predetermined soil cleanup standards:

- SRLs are soil concentrations that are protective of human health, either under residential or non-residential exposure scenarios. A.A.C. R18-7-203(B)(1) allows the use of a pre-determined SRL only if that remediation level is also protective of groundwater.
- Minimum GPLs represent soil concentrations protective of groundwater quality. The minimum GPLs were developed by ADEQ (1996, 2013) to represent a theoretical worst-case scenario in which soil is assumed to be contaminated from surface to groundwater.

In addition to these soil cleanup standards, ADEQ's GPL one-dimensional model for vadose zone contaminant fate and transport can be used to calculate an alternate, site-specific GPL. This is achieved by inputting Site-specific characteristics that impact fate and transport, such as depth to water, depth of detectable contamination, soil porosity, and fraction of organic carbon in soil, along with chemical-specific physical properties such as solubility and ability to adsorb to organic materials in the soil. The process for calculating alternate GPLs for metals is slightly different (ADEQ, 1996). This model was used to calculate GPLs for selected compounds as described in the following sections. The GPLs (minimum GPLs or calculated GPLs) were compared to the residential SRLs and the lowest applicable soil regulatory standard was selected as the applicable cleanup standard for the Site.

A compound must have a water quality standard in order to have a GPL. Typically, the AWQS is used as the water quality standard. However, EPA and ADEQ have also established risk-based standards for compounds that do not have an AWQS (ADEQ, 1996, 2013), as is the case for most PAHs. To comprehensively assess the potential for contaminants in soil to impact groundwater, detected compounds with a risk-based standard, in addition to those compounds with an AWQS, were also modeled.

5.2 Selection of Modeled Contaminants

Section 1.3.1 presents a comparison of historical soil sampling results to SRLs, and **Section 2.4.2** presents a comparison of 2019 soil sampling results at the Site to SRLs. This section evaluates soil sampling results compared to GPLs. As discussed in **Section 1.4**, historical surface soil results were not used in evaluating current site impacts due to previous remediation activities at the Site. Historical subsurface results and 2019 surface and subsurface results were used in this evaluation.

Tables 1-2 and **2-3** present the PAH results in soil at the Site based on previous and pre-design testing investigations. Minimum GPLs are not listed in ADEQ (2013), and Jacobs modeled the 14 PAHs that were detected in subsurface soil samples and have established AWQS or Arizona risk-based standards. Benzo(g,h,i)perylene and phenanthrene do not meet these criteria and were not modeled.

Table 1-3 summarizes historical TPH results in soil at the Site. There is no AWQS or other risk-based standard in Arizona for TPH in groundwater, and GPL modeling was not conducted for TPH.

BI1219190844PHX 5-1

Table 1-4 summarizes historical BTEX at the Site, and **Table 2-5** presents VOC results in soil at the Site. No compounds were detected at concentrations exceeding their minimum GPLs (ADEQ, 2013), if established and GPL modeling was not conducted for VOCs.

Tables 1-5 and **2-4** summarize metals results in soil at the Site. The only compound detected at a concentration exceeding its minimum GPL (ADEQ, 1996) in the subsurface soil samples was lead. An alternative GPL was calculated for lead in subsurface soil samples.

5.3 Alternate GPL Development

5.3.1 Polynuclear Aromatic Hydrocarbons

The ADEQ (2013) spreadsheet model was used to calculate minimum GPLs for the following PAHs:

- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Chrysene
- Dibenzo(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Pyrene

A combination of model default values, chemical-specific values, and site-specific values were used to calculate minimum GPLs for these compounds at the Site. Copies of the modeling spreadsheet for each compound, including the sources of the values used, are included in **Appendix L**. GPL modeling output values are shown on the GPL tab of the model spreadsheet. The ADEQ model does not display results greater than 11 digits, over 1 billion mg/kg, and some results cannot be displayed by the GPL model. GPL results are listed in **Table 5-1**.

Unless otherwise specified, model default values were used. Examples include the release width and soil porosity. Although biodegradation of petroleum hydrocarbons in soil and groundwater is expected, the half-life of 100,000 days, indicating a very low biodegradation rate, was used because PAHs are not as readily degradable as volatile compounds. The default time step of 10 days was used except in some instances where it was adjusted so that the peak liquid phase concentration was clearly visible on the Jury1 Output graph.

Chemical-specific values include the water quality standard or risk-based standard, octanol-water partitioning coefficient, Henry's constant, and solubility. For most of the modeled compounds, these values were obtained from the lookup table in ADEQ (2013). When these values were not available in that source, they were obtained from other sources such as ADEQ (1992), EPA (2019) and the New Jersey Department of Environmental Protection (2019).

Site-specific values include the depth to groundwater, dry bulk density, foc, and moisture content. The depth to groundwater was assumed to be 26.48 feet bgs, which was the minimum depth to water measured in boreholes during the 2019 investigation. This value, converted to 807 centimeters, was also used for the depth of incorporation and the total vadose zone depth. Analytical and geotechnical data from the Site investigation, summarized in **Table 2-2**, were used for the other values. The average dry bulk density was 94.5 pounds per ft³, or 1.51 grams per cubic centimeter. The average foc was 1.9 percent. The average water content, not including two values that were obtained from beneath the water table, was 9.9 percent.

5-2 BI1216180825PHX

Table 4-1 summarizes the modeling results.

Based on modeling results for anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, and pyrene, the calculated GPLs were greater than 1.0 x 10+6 mg/kg (also equal to 1 kg/kg), which exceeds unity. This means that the mass of the contaminant present in the soil would need to exceed the total mass of soil, which is not possible. A GPL could not be calculated for indeno(1,2,3 c,d)pyrene because the model-estimated maximum soil concentration was too low, resulting in attempted division by zero.

The calculated GPLs for acenaphthene (90,300 mg/kg), acenaphthylene (29,100 mg/kg) and naphthalene (113 mg/kg) provide potential cleanup standards for these compounds. None of the PAH concentrations reported in **Table 2-3** exceeded the calculated GPLs.

5.3.2 Metals

ADEQ (1996) describes the method for calculating an alternative GPL for metals. This method uses the ratio between the total metal concentration in soil to the concentration of the metal in the leachate from a TCLP or SPLP procedure. The calculation is (ADEQ, 1996):

$$X = 292.9 \times R \times Cw$$

Where:

- X is the alternative GPL
- R is the ratio of the total metal concentration in soil to the concentration in leachate
- C_w is the maximum allowable groundwater concentration (in this case, the AWQS of 0.05 mg/L)

TCLP analysis was conducted on the two soil samples that exceeded the minimum GPL. Sample D-B11-2.5-3.0 contained lead at a concentration of 420 mg/kg, and the TCLP leachate contained 0.128 mg/L of lead, resulting in a ratio of 3,280. Sample D-B12-7.5-8.0 contained lead at a concentration of 531 mg/kg, and the TCLP leachate contained 0.92 mg/L of lead, resulting in a ratio of 577. To develop a conservative GPL, the lower ratio was used, and the calculation became:

$$X = 292.9 \times 577 \times 0.05$$

The resulting alternative GPL for lead in Site soil is 8,450 mg/kg. None of the measured concentrations exceeded this value.

BI1219190844PHX 5-3

This page is intentionally left blank.

5-4 BI1216180825PHX

6. Feasibility Screening

The site-specific RAOs and the screening and evaluation processes for remediation of soil that is protective of human health and groundwater at the Site are described in this section. Remediation options are screened based on site-specific factors to eliminate technologies that constrain effectiveness, implementability, or cost-effectiveness at the Site and streamline the evaluation process for the technologies retained for a detailed evaluation.

6.1 Remedial Action Objectives

The objectives of this remedial action are to reduce concentrations of COCs, primarily PAHs, and lead in soil to levels below appropriate risk-based cleanup criteria and to remove source material that may potentially impact the groundwater to the extent technically feasible. Site-specific cleanup criteria to achieve the RAOs are discussed in Section 7.2. The Site will be remediated so that concentrations remaining in the soil are protective of human health and the environment.

The following RAOs are based on specific constituents, potential exposure, and future Site uses:

- Reduce the concentration of COCs in soil to below regulatory risk-based levels (residential SRLs)
 where feasible.
- Reduce the concentration of COCs in soil to below levels that could potentially impact groundwater above water quality standards.

6.2 Remediation Technology Screening

To meet the site-specific RAOs, a range of remediation options was considered for the Site.

6.2.1 No Action

The no action response is considered during the development and analysis of alternatives as the baseline against which other technologies are evaluated. The no action response does not provide any additional remediation, containment, or security measures to reduce the potential risk to human health or the environment at the Site.

6.2.2 Institutional Controls

ICs are restrictive measures placed on the use of the Site to prevent or limit exposure to hazardous substances left in place at the Site. Typically, ICs are implemented as engineering and/or legal controls that are often used in conjunction with active remediation activities, such as treatment or containment. Often, it is necessary to implement multiple ICs to provide overlapping assurances of protection of future receptors. ICs result in restrictions that effectively limit the manner in which the Site can be used in the future.

6.2.3 Ex Situ Response Actions

Ex situ response actions for MGP sites consist of the removal of impacted soil followed by treatment and/or disposal. For impacted soil, the response includes excavation of the impacted soil. The excavated soil is disposed of offsite at a permitted facility or can be treated onsite or offsite using enhanced biological or thermal treatment technologies.

6.2.4 In Situ Response Actions

The in situ response actions considered for the Site are described in this section.

BI1219190844PHX 6-1

6.2.4.1 Monitored Natural Attenuation

The monitored natural attenuation response action provides no additional active remediation. It relies on natural chemical, physical, and biological processes to degrade contaminants in soil. This alternative requires ongoing periodic sampling and analysis of the soil samples to monitor the degradation process.

6.2.4.2 Containment

Containment of elevated concentrations of PAHs in soil is a potential response that could be implemented to prevent exposure. Containment actions would be implemented to prevent potential human and/or ecological contact by constructing an engineered cover system over areas of elevated concentrations of PAHs in soil.

6.2.4.3 Thermal Desorption

In situ thermal desorption uses a series of subsurface or in-well heaters that cause the applicable chemicals to volatize. These contaminated vapors are captured and treated/oxidized prior to being released into the atmosphere.

6.2.4.4 Chemical Oxidation

In situ chemical oxidation (ISCO) mineralizes contaminants in place through the addition of a chemical oxidant, such as hydrogen peroxide, ozone, or sodium persulfate. The chemical oxidant is typically introduced into groundwater or saturated soil by injection into wells or the use of in-place soil mixing. Oxidants such as ozone can be introduced into the vadose zone through injection wells.

6.2.4.5 Soil Stabilization and/or Solidification

In situ soil stabilization uses chemical and pozzolan additives to immobilize and/or encapsulate contaminants in the soil. These chemical and pozzolan additives (cementitious material used in cements and concretes) are typically added to the soil by in-place soil mixing.

6.2.4.6 Bioventing

Bioventing enhances the natural biological activity through the introduction of atmospheric oxygen. Air is pumped into the soil through injection wells using low-pressure pumps. The injected air increases the oxygen level, allowing an increased rate of degradation of lighter and mobile fractions of organic contaminants in the soil. Bioventing is typically combined with monitored natural attenuation by measuring the oxygen depletion and the generation of carbon dioxide and other degradation products in monitoring wells near the injection well.

6.3 Remediation Technology Screening Results

The remedial action for the Site is intended to meet the RAOs by addressing elevated concentrations of COCs in soil so that exposure at the Site is reduced or eliminated. To achieve these objectives, soil remediation alternatives were selected during the screening process for further evaluation, as described in the following sections.

6.3.1 Soil Remediation Alternatives

A summary of the remediation technology screening results is presented in **Table 6-1**. The screening evaluation for the additional excavated soil treatment options is presented in **Table 6-2**.

The remediation alternatives are evaluated in detail based on their effectiveness at achieving RAOs, implementability, and cost.

6-2 BI1216180825PHX

To evaluate effectiveness, consideration was given to the overall protection of human health and the environment; reduction in toxicity, mobility, and volume; compliance with ADEQ requirements; and the long-term and short-term effectiveness of the alternative.

To evaluate the implementability of each alternative, the technical feasibility, commercial and administrative feasibility, and acceptance by ADEQ, the City, and the public were considered.

Previously conducted feasibility cost estimates were used to evaluate remedial action costs. The costs were evaluated in ranges of low, mid-range, and high cost based on both capital and operational cost.

6.3.1.1 Alternative 1 – No Action

Under Alternative 1, the no action alternative, no physical remedial actions would be performed to reduce the toxicity, mobility, or volume of contaminants identified in soil at the Site, and no land use controls or land use restrictions would be implemented at the Site. The no action alternative is presented to provide a baseline for comparison with other alternatives that provide a greater level of response.

Effectiveness

The no action alternative would not be effective because contaminants would remain at the Site, future human health and environmental risks would continue to be present, and the remedy does not meet APS's remedial objectives.

Implementability

The no action alternative would be technically easy to implement, but it does not protect human health and the environment and, therefore, is unacceptable.

Cost

No costs are associated with Alternative 1.

6.3.1.2 Alternative 2 – Institutional Controls

ICs under Alternative 2 include administrative land use controls, Site access restrictions, and other restrictions to minimize potential exposure from Site contaminants. The Site is currently secured by a fence and gates. Other ICs would include a DEUR on the property title and inclusion of the facility in the Terradex LandWatch Service to prevent unauthorized activities onsite.

Effectiveness

If properly implemented and maintained, ICs would be effective in limiting human exposure to contaminated soil and potential pathways of concern, such as dermal contact. Continued monitoring of ICs would be required to verify their continued effectiveness and ensure that the exposure pathways are being controlled. However, the remedy would not be effective because it does not meet APS's remedial objectives.

Implementability

ICs would be implementable under current site conditions; however, the City would be unable to develop the property for beneficial public use. The City would not be in favor of having restrictions or a DEUR placed on the Site, and regulatory agencies may not find ICs favorable as a standalone remedy for the Site. ICs can effectively address risks associated with the dermal contact pathway. The use of ICs would severely limit the City's use of the Site. Because contaminants would remain at the Site under this alternative, any future changes to land use would require addressing contamination. This remedy is difficult to implement because only the landowner (the City and/or private landowners) can put a property restriction on the property.

BI1219190844PHX 6-3

Cost

The cost range is estimated to be low. The total cost for Alternative 2 includes the administrative costs associated with implementing a Site DEUR, inspecting land use covenant implementation, performing annual monitoring to ensure the fencing is effective in preventing Site access.

6.3.1.3 Alternative 3 – Excavation and Offsite Disposal

Alternative 3 includes the excavation of soil exceeding Site cleanup goals. Fugitive debris and subgrade structures would be removed and disposed of offsite. Soil would be excavated using heavy equipment, loaded into trailers, and hauled to a licensed offsite disposal facility. The Site would be backfilled with imported clean soil and the surface restored per the City's requirements.

Effectiveness

The excavation and disposal alternative would be an effective and permanent remedial action. This alternative would reduce potential risks to human health and the environment by eliminating contaminants above residential SRLs. The contaminated soil would be removed from the Site and transported to an offsite disposal facility, eliminating contact with potential receptors. The physical removal of the soil would eliminate the exposure of contaminants to receptors and eliminate the mobility of contaminants.

Implementability

This alternative would be difficult to implement. Removal of soil would require mobilization and utilization of heavy equipment. To remove all soil exceeding SRLs, the excavation would need to be extended to at least the existing north Site boundary and potentially require permitting to encroach on the wash north of the Site. There are areas on the Site where the soil exceeds cleanup goals to a depth of more than 15 feet bgs. Excavation of soil to that depth will require sloping and potentially the design and installation of an earth support system, and/or utilizing an auger for soil removal.

Furthermore, high-pressure gas lines (El Paso Natural Gas and Southwest Gas) are located on the Site. These utilities would need to be protected in place and must be considered and addressed to the project.

Excavation activities would result in significant disturbance both onsite and offsite. A substantial amount of pedestrian traffic crosses the entrance to the Site, which will need to be protected during excavation due to additional truck traffic during hauling of soil for disposal. Pedestrian traffic engineering controls would likely need to be implemented to protect the public.

Cost

The cost of Alternative 3 is high. The alternative would include excavation, transportation, disposal, and utility avoidance.

6.3.1.4 Alternative 4 – Containment by Capping and Institutional Controls

Alternative 4 includes the construction of an engineered cover system over the Site along with ICs as described in Alternative 2. The cover system would consist of the existing concrete slabs. New asphalt pavement would be placed over the impacted soil.

Effectiveness

If properly implemented and maintained, a cover system with ICs would be effective in limiting human exposure to contaminated soil and potential pathways of concern, such as dermal contact. Annual inspection of the cover system, along with continued monitoring of ICs, would be required to verify the continued effectiveness and control of exposure pathways. However, the remedy would not be effective because it does not meet APS's remedial objectives.

6-4 BI1216180825PHX

Implementability

The difficulty in implementing this alternative would be moderate. Regulatory agencies may not find the cover system with ICs favorable as a standalone remedy for the Site. The cover system and ICs can effectively address risks to the dermal contact pathway. The use of a cover system would limit the City's future use of the Site; because contaminants would remain at the Site under the cover system, any future subsurface work, including replacement or repairs to utilities, would require breaching the cover system to perform the work. Any future changes to land use would require addressing contamination. A cover system would require a DEUR, with an annual inspection requirement, to be placed on the Site title, which would not be acceptable to the City due to limitation of future property development. This remedy would be difficult to implement because only the landowner (the City and/or private landowners) can put a property restriction on the property.

Cost

The cost range of Alternative 4 is estimated to be moderate. The total cost for Alternative 4 includes the capital cost of installing the asphalt and the administrative costs of implementing a Site DEUR; inspecting the covers system and fencing; conducting maintenance and repairs; and training future staff who work onsite.

6.3.1.5 Alternative 5 – In Situ Chemical Oxidation

This alternative consists of injecting a chemical oxidant into the impacted soil zones at the Site. Because the impacted soil is located in the vadose zone, a gas-phase oxidant such as ozone could be used to achieve greater contact with impacted soil. The system would require the installation of an ozone generator and one or more new onsite injection wells. Several soil vapor monitoring wells (SVMWs) would also be required to evaluate the effectiveness of the system. The SVMWs may be used for soil vapor extraction. The system would be operated to maintain high levels of ozone in the subsurface over a relatively short period of time. The operation of the system would be monitored by measuring the soil vapor concentrations, the consumption of oxygen, and the production of carbon dioxide and degradation products (including methane) in SVMWs around the Site.

Effectiveness

The use of ISCO with ozone in the vadose zone has been effective with some high molecular weight compounds, though it may not be possible to achieve levels below SRLs. The use of a gas increases the potential of oxidant contact with impacted soil. This alternative does not address potential soil contamination from lampblack near the surface onsite. ISCO would not reduce lead concentrations above the residential SRL and GPL. ISCO will not be effective as it does not meet APS's remedial objectives.

Implementability

The difficulty of implementing the ISCO system is moderate to high because of its limited reach to deeper onsite soil. Regulatory agencies would not likely accept ISCO as a standalone remedy. The system requires the design and installation of an ozone generating system, installation of one or more injections wells, and installation of several SVMWs. The use of a system with a corrosive gas in a residential area may cause safety concerns to residents, in addition to workers operating the equipment, and require inclusion of process safety systems. If soil vapor extraction is used, a county air permit may also be required. The injected ozone is highly corrosive. Although the injection system could be designed for the corrosive environment, the impacts on the high-pressure gas lines in the area would need to be evaluated. ISCO also carries a high worker risk during implementation due to worker exposure to corrosive chemicals.

Cost

The cost of the ISCO system would be high. The capital cost of the ISCO system would include installation of an ozone generation system and one or more injection wells. Several SVMWs also would

BI1219190844PHX 6-5

need to be installed to monitor system operation. The system would require ongoing long-term operation, maintenance, monitoring, and repairs. Soil vapor monitoring would likely need to continue for several months until the remediation is complete.

6.3.1.6 Alternative 6 - Bioventing

This alternative consists of installing a bioventing system to pump atmospheric air into one or more new onsite injection wells. The system would be operated to maintain oxygen levels in the subsurface near atmospheric levels. System operation would be monitored by measuring the consumption of oxygen, as well as the production of carbon dioxide and degradation products, including methane in SVMWs around the Site.

Effectiveness

This alternative would not be effective because most of the Site PAH compounds have high molecular weights, and remediation effectiveness would be limited and very slow. Bioventing would not reduce lead concentrations in the soil and would not meet APS's remedial objectives.

Implementability

The difficulty of implementing the bioventing system is low to moderate because of its limited onsite use. Regulatory agencies would not likely accept bioventing as a standalone remedy. The system would be relatively easy to install onsite. The system would require the installation of soil vapor injection wells and SVMWs. The system would need to operate for many years and could interfere with the City's operations at the Site.

Cost

Cost of the bioventing system would be moderate. Capital cost of the bioventing system would include a small blower unit and wells. The system would require ongoing operation, maintenance, monitoring, and repairs. Also, soil vapor monitoring would likely need to continue for several years until the remediation is complete.

6-6 BI1216180825PHX

7. Recommended Remedial Alternative

This section describes the goals and objectives of the proposed remedial action, presents the regulatory cleanup requirements, and describes the pre-remediation and remediation activities, the sampling and analysis procedures, the Site restoration activities, and the post-remediation activities.

Based on the technology evaluation presented in Section 6.3, the remedial action recommended to meet RAOs is Alternative 3, Excavation and Offsite Disposal. The excavation depths will range from up to 5 feet bgs over a portion of the Site to up to 22 feet bgs under the north gas holder where the deepest impacts were reported. Proposed excavation locations and DUs are shown on **Figure 7-1**. Excavation depths within the DUs are shown on **Figure 7-2**. This remedial action will reduce the concentration of PAHs and lead in soil to below residential SRLs. A detailed discussion of the proposed excavation areas and how the recommended remedial action will meet the RAOs is provided in Section 7.4.6.

A project-specific health and safety plan (HASP) will be submitted for the remedial activities. The HASP will outline the minimum health and safety requirements for personnel working on Site remedial activities. The HASP will include the following:

- Project Site description
- Project organization and tasks to be performed
- Hazard evaluation and control
- · Personnel training and requirement
- PPE
- Air monitoring specifications
- Decontamination
- Emergency response plan and contacts

The Quality Assurance Project Plan (QAPP) (Jacobs, 2019c) was prepared for APS's MGP and other sites. The QAPP was developed as specified in *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations* (EPA, 2001a). The QAPP provides a description of the analytical methods to be used, the applicable laboratory analytical methods, and the quality assurance (QA)/quality control (QC) procedures used to evaluate the data.

BI1219190844PHX 7-1

Notary Public

My Commission Expires: _____

7.1 Cost Recovery

The remedial actions to be implemented based on this RAP will be undertaken by APS. APS will not seek to recover any of the costs associated with the implementation of the RAP from any other responsible party.

The undersigned hereby certifies that to his/her knowledge, cost recovery from another responsible party will not be made. State of Arizona SS: County of Cochise Signed this _____, 2020. Signature [APS Representative] Title SUBSCRIBED AND SWORN TO before me this _____ day of _____, 2020.

7-2 BI1216180825PHX

This page is intentionally left blank.

BI1219190844PHX 7-3

7.2 Cleanup Criteria

The purpose of the cleanup is to allow residential and non-residential use of the property after remedial activities are complete and to prevent potential impacts to groundwater. The following sections present the selected cleanup criteria for the remedial action at the Site.

7.2.1 Chemicals of Concern

Jacobs identified the final COCs at the Site based on former MGP operations and the results of previous and pre-design testing investigations. **Table 7-1** lists the compounds that were evaluated as potential COCs for the remedial action. **Table 7-2** presents the final COCs identified at the Site and the associated cleanup criteria.

7.2.2 Goal of Remediation

APS is conducting the remedial action under ADEQ's VRP oversight. The goal of this remediation is to reduce COC concentrations in soil to levels below applicable regulatory cleanup criteria, as discussed in Section 7.2.3. The COCs requiring remediation are primarily PAHs but also include lead (**Table 7-2**).

7.2.3 Applicable Regulatory Cleanup Criteria

This section discusses soil remediation criteria for the remedial action.

7.2.3.1 Soil Remediation Criteria

Numeric soil cleanup regulatory criteria are established by ADEQ as SRLs and GPLs, and are described in the following sections.

Soil Remediation Levels

SRLs are predetermined risk-based remediation levels derived from toxicity data using defined assumptions for possible exposure. SRLs are developed by the ADHS Office of Environmental Health for ADEQ (ADEQ, 2009) and are based on the following:

- EPA Region 9 Preliminary Remediation Goals (PRGs)
- Ingestion, inhalation, and dermal contact risk criteria
- ELCR of 1 x 10⁻⁶ for Class A (known human) carcinogens, and 1 x 10⁻⁵ for Class B and C carcinogens
- HI no greater than 1 for noncancer-causing contaminants

Because of the varied applications of SRLs, the underlying assumptions for their development are very conservative.

The application of SRLs is based on future land use and the potential for contaminated soil to impact human health. Contaminated soil can be remediated to background concentrations, the predetermined SRLs (A.A.C. Title 18, Chapter 7, Article 2), or site-specific remediation standards. SRLs are established for both residential and non-residential uses. Where soil is remediated to the non-residential SRL, but above the residential SRL, the property owner must attach a DEUR to the property deed. Compounds identified in the 2007 SRLs as carcinogens include residential SRL values for both 1 x 10-5 and 1 x 10-6 ELCRs. A.A.C. R18-8-205 states, "a person who elects to remediate to a residential SRL may utilize a 1 x 10-5 excess lifetime cancer risk for any carcinogen other than a known human carcinogen. If the current or currently intended future use of the contaminated site is a child care facility or school where children below the age of 18 are reasonably expected to be in frequent, repeated contact with the soil, the person conducting remediation shall remediate to a 1 x 10-6 excess lifetime cancer risk."

SRLs are developed based on exposure to soil and do not incorporate risk associated with potential leaching of contaminants from soil to groundwater. SRLs may be used only as remediation standards when the value is also protective of aquifer water quality.

7-4 BI1216180825PHX

Groundwater Protection Levels

To evaluate whether impacted soil may pose a threat to groundwater, ADEQ developed a model for determining soil concentrations protective of groundwater quality using mathematical calculations of contaminant partitioning between soil and groundwater to estimate GPLs (ADEQ, 2013). The modeling result is a projection of the leaching potential of COCs from impacted soil to groundwater. GPLs can be calculated for site-specific conditions or a predetermined worst-case scenario. The worst-case scenario is referred to as the minimum GPLs, which are soil concentrations that are protective of groundwater quality under a condition where contaminated soil is in contact with groundwater. Site-specific GPLs can be calculated using geotechnical data and physical properties of the compounds.

HHRA Criteria

The HHRA identified three COCs in soil below 15 feet bgs at the Site, which included arsenic, naphthalene, and BAP TEQ (which represent a total risk value for seven carcinogenic PAH compounds). Naphthalene and arsenic each have residential SRLs, and each of the seven BAP TEQ compounds (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) that comprise the BAP TEQ have applicable SRLs. Therefore, the residential SRLs will be used as cleanup criteria in lieu of developing site-specific HHRA values.

7.2.4 Site Cleanup Criteria

The Site cleanup criteria are based on remediating accessible soil to concentrations of COCs that are protective of human health and the environment. Residential SRLs (using a 1 x 10⁻⁵ ELCR), non-residential SRLs, and minimum GPLs were compared for the Site, and the lowest appropriate remediation level, based on future land use, was selected by APS. Additionally, the COCs identified in the HHRA were compared to the COCs identified based on SRLs to arrive at a final list of COCs for the remedial action. Applicable Site cleanup criteria for COCs are listed in **Table 7-2**. To allow future unrestrictive use of the Site property, the residential SRLs will be used as the soil cleanup criteria.

7.3 Pre-remediation Activities

To meet remediation goals for the Site, APS will complete the following pre-remediation activities before the contractor starts the remedial activities:

- Property ownership review and coordination
- · Regulatory review and permitting
- Public notice and public participation
- Utility clearance

7.3.1 Property Ownership and Utilities Review and Coordination

The Site property is owned by the City and private property owners. APS has obtained an access agreement from the City and private owners to perform the remediation work on the Site.

El Paso Natural Gas and Southwest Gas have high-pressure gas supply pipelines that are located under the Site on City and private property and run between excavation areas. Southwest Gas has provided APS with excavation guidelines (Southwest Gas Form 279.0 (02/2013) for work around Southwest Gas utilities. APS will work with the gas companies for excavations around the pipeline. As a matter of public and worker health and safety, excavation will not occur within 10 feet of the high-pressure gas lines without coordinating with the pipeline owners. Southwest Gas excavation guidelines are provided in Appendix M.

BI1219190844PHX 7-5

7.3.2 Regulatory Review and Permitting

As part of the remedial construction activities, federal, state, and local laws require APS to obtain certain environmental- and engineering-related permits. While permitting activities have been initiated, many of the final permits cannot be obtained until the remedial design is approved and a contractor is selected. Based on existing Site information and agency input, the following permits have been identified as being potentially required to implement the activities specified in the RAP. Based on final agency input after initial permit application submittal and/or changes in activities at the Site, additional permits and/or approvals may be required.

City of Douglas Construction Permit

The Site is located within the City incorporated area. Therefore, in accordance with Title 15 of the *City of Douglas Code of Regulations* and conversations with City personnel, a right-of-way permit application, including the haul route, must be submitted to the City.

APS will coordinate with the City to submit the required application and associated information.

If tree removal is required, the permitting will be coordinated through the City adhering to City tree removal permitting requirements.

Floodplain Use Permit

Based on a review of Federal Emergency Management Agency flood control maps, the Site is not located within a regulatory floodplain. However, in *Arizona Revised Statutes* (A.R.S.) 48-3610 the Arizona State Legislature enabled the City to assume the powers and duties for floodplain management and adopt regulations in conformance with A.R.S. 48-3609 designed to promote the public health, safety, and general welfare of its citizenry (*City of Douglas Code of Regulations*, Chapter 15.20). If the City requires a floodplain use permit, the City will issue a floodplain use permit during the right-of-way permitting process.

Arizona Pollutant Discharge Elimination System Construction General Permit

The anticipated area of disturbance at the Site, including excavation, equipment staging, and other earth-disturbing activities conducted during the remedial activities is expected to exceed 1 acre. A general construction permit will be required per A.A.C. R18-9-A905 and 40 *Code of Federal Regulations* (CFR) 122.26(b)(15), and a notice of intent must be submitted to ADEQ. The anticipated total area of disturbance is greater than 1 acre; therefore, a notice of intent will be required for this remediation project. Additionally, a stormwater pollution prevention plan will need to be prepared for the Site. The stormwater pollution prevention plan will include best management practices and inspection procedures during all construction activities.

Arizona Department of Water Resources Permit for Dewatering Activities

Based on existing groundwater levels, it is not expected that the excavation activities at the Site will require dewatering for completion. However, if dewatering is required, the final dewatering system design will be prepared by the remediation contractor in accordance with requirements in the project specifications. APS will obtain the required Arizona Department of Water Resources permit to meet permit conditions and reporting requirements.

Special and Hazardous Waste Requirements

Because soil sampling results indicate that PAHs are present in Site soil above residential and non-residential SRLs, the soil intended for excavation meets the definition of an Arizona special waste PCS. Therefore, offsite soil disposal requires that the generator must have a special waste generator identification number (ID) and that the transporter must be registered with ADEQ as a special waste shipper. The APS Arizona Special Waste PCS ID number is 320482 and the PCS was issued December 9, 2019.

7-6 BI1216180825PHX

If soil excavated from the Site contains contaminants in concentrations exceeding hazardous waste TCLP levels, the soil will be transported to a facility licensed to receive hazardous waste, but it will be transported as a special waste PCS per the MGP exemption discussed in Section 7.4.8; therefore, a hazardous waste generator ID will not be required.

APS will use a qualified contractor or contractors to transport materials for offsite disposal. APS will verify that any contractor used has the appropriate authorization from ADEQ or EPA to transport the waste materials.

If the soil exhibits the hazardous waste characteristics of corrosivity, reactivity, or ignitability based on analytical results for these parameters, it will be managed as a hazardous waste and will be properly manifested. Copies of manifests will be submitted to ADEQ.

Special waste PCS and/or hazardous waste will be transported to a facility permitted for disposal of these wastes. The soil will be stored prior to disposal in accordance with the requirements for special waste PCS or the requirements for hazardous waste, if applicable. APS will report quantities of special waste shipped from the Site via ADEQ's Special Waste Generator Annual Report Form.

National Emissions Standards for Hazardous Air Pollutants Notification and Demolition Permit

The Site contains no aboveground structures. Subsurface concrete structures are present at the Site and will require sampling prior to disposal. If transite (asbestos) pipe is encountered, or any other asbestos-containing suspect buried material is exposed in a DU, an asbestos survey of the structure to be demolished will be conducted by a certified Asbestos Hazard Emergency Response Act (AHERA) inspector. If asbestos-containing material (ACM) is present, an asbestos abatement contractor will remove the ACM prior to excavation of the DU. A National Emissions Standards for Hazardous Air Pollutants (NESHAP) notification will be filed with ADEQ at least 10 days prior to removal and/or ACM abatement. There is also the potential for ACM to be encountered in subsurface structures or pipelines within the limits of the excavation. If suspected ACM is encountered and/or is planned to be removed, a certified-AHERA inspector will evaluate the structure and collect required samples. If the presence of ACM is verified over the threshold quantities, the appropriate NESHAP notifications will be made to Cochise County at least 10 days before removal of the ACM. All ACM will be managed in accordance with appropriate waste management requirements.

Dust Control Requirements

Based on discussion with representatives of the City, dust control requirements during demolition and excavation activities will be addressed by the City during issuance off the right-of-way permit/approval. Cochise County does not have dust control requirements associated with activities inside the City. However, Cochise County has a land clearing ordinance (No. 00-030) and clearing permit that is submitted with the City construction permit application. Dust control measures using water will be actively applied during all excavation activities to prevent dust.

Section 404 Permit and Supporting Documentation

Construction activities that result in the discharge of dredged or fill material to the "waters of the United States" require a Clean Water Act Section 404 permit issued by the U.S. Army Corps of Engineers (USACE). A wash that is likely jurisdictional is located across the northern portion of the Site and, based on the location of impacted soil near the wash, remediation activities have the potential to affect this wash

A public records request for previous jurisdictional determinations for the area was submitted to the USACE in December 2019. The 2003 and 2004 jurisdictional determinations were received in January 2020 and will be used as reference documents during the Section 404 investigation and permitting processes. A new preliminary jurisdictional delineation was conducted in December 2019 to evaluate the project area and identify potential waters of the United States. APS will submit a Section 404 Nationwide Permit No. 38 preconstruction notification to the USACE to request authorization for potential activities in

BI1219190844PHX 7-7

the wash because (1) the preliminary jurisdictional delineation indicated that the wash determined jurisdictional in 2003/2004 still exhibits characteristics of an ordinary high water mark, and (2) remediation activities have the potential to affect at least one wash recommended as waters of the United States. The preconstruction notification will document compliance with the requirements of Nationwide Permit No. 38, including cultural and biological reviews and other applicable information. Activities cannot commence within any washes recommended as jurisdictional until the USACE has approved the preconstruction notification and issued the permit.

Excavation and related activities at the Site are anticipated to have no effect on threatened and endangered species or their habitat. This assessment is based on the lack of suitable habitat at the Site for any special-status plant or wildlife species, as identified by the U.S. Fish and Wildlife Service and Arizona Game and Fish Department. Therefore, consultation pursuant to Section 7 of the Endangered Species Act is not anticipated.

No known cultural resources sites are located within the anticipated footprint of the excavation and related activities at the Site. Therefore, a project finding of "no historic properties affected" will be recommended to support the USACE's responsibilities under Section 106 of the National Historic Preservation Act. While no further cultural resources work will be recommended along with the project finding, the USACE makes the final decision as to whether Section 106 consultation will be required to support the preconstruction notification. If the USACE chooses to consult with the Arizona State Historic Preservation Office and Tribes, draft Section 106 consultation letters will be prepared and submitted to the USACE.

To streamline the permitting process, the USACE will allow the preliminary jurisdictional delineation and preconstruction notification to be combined into one submittal. The USACE review time is anticipated to be about 45 days if Section 106 consultation is not required and about 2 months with Section 106 consultation.

7.3.3 Public Notice and Public Participation

APS has a community relations and public involvement program for the Site. APS will give the ADEQ-required public notice, specified in A.R.S. Section 49-176, in addition to performing other proactive public participation activities. APS will prepare Site status newsletters in both English and Spanish and distribute them to neighboring businesses, residents and community leaders. A mailing list will be developed that includes community leaders, media outlets, neighboring businesses, residents, and interested community members.

As part of APS's continuing public involvement program, the following additional outreach measures will be taken once the RAP is completed and approved by ADEQ:

- Develop a specific community involvement program that includes state and local participants.
- Update the newsletter to include RAP information and distribute to interested parties.
- Conduct a community leader briefing.
- Maintain a sign at the Site with the name and telephone number of a person who may be contacted for information regarding the field work, in accordance with A.R.S. Section 49-176(A)(2)(a).
- Provide construction updates to the community once work at the Site begins.
- Post a legal notice in *The Douglas Dispatch* newspaper regarding the availability of the RAP for review and the time of the public comment period.
- Provide a public comment period (30 days) as required in Section 49-176. The comment period will
 run concurrently with the activities described previously. As part of the public comment period, APS
 will hold an open house to provide nearby residents and businesses information on the remedial
 activities and request more information.

7-8 BI1216180825PHX

Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

The remediation at the Site is anticipated to take approximately 6 months. During this time, APS will develop a construction progress newsletter for periodic distribution to the community.

7.3.4 Utility Clearance

During the pre-design testing investigation, known utilities were located with the assistance of Blue Stake and utility personnel. AZTEC was also hired to designate and survey utility lines using signal line generators and ferrous magnetic locator method and to survey the locations of the utilities. The objective of the utility evaluation was to identify utility locations and potential issues that may have impacted the pre-design testing investigation and the remedial design. **Figure 7-2** shows the location of the detected utilities.

The main underground utilities on the Site are the El Paso Natural Gas and Southwest Gas high-pressure gas lines. For health and safety reasons the gas lines will not be exposed during the planned excavation activities. Excavations will be located at least 10 feet from the gas lines unless closer work is authorized by the gas utility, APS, the Jacobs responsible health and safety manager, and the contractor. No other utilities are anticipated to impact excavation activities. Overhead power lines run parallel to the gas line on the west side of the Site and are not anticipated to impact excavation activities based on pre-design testing investigation results. Southwest Gas excavation guidelines are provided in Appendix M.

Because of the presence of underground utilities in the proposed excavation areas, an updated Blue Stake ticket will be maintained at all times during the project.

7.3.5 Access Agreements

APS has secured access agreements from the City and private property owners to complete the remediation activities described in this RAP.

7.4 Remediation Activities

7.4.1 Mobilization

The contractor selected by APS will be responsible for mobilization to the Site. APS will gain prior approval from the City and private property owners for Site access, construction trailer locations, and utility hookups such as electrical, and communications. The following activities will be performed as part of mobilization:

- Construction trailers and the required utility hookups will be placed (Jacobs/APS trailer and contractor trailer). Trailers will be equipped with all equipment listed in the contract specifications, including heating, air conditioning, lighting, electrical, telephone service, fax machine, and copier.
- Equipment mobilization will include excavators, loaders, pressure washers, sampling equipment, air monitoring equipment, and health and safety equipment.
- Run-on/runoff control measures will be established that may include silt fences, hay bales, and silt curtains.
- A pre-construction meeting will be conducted to review all aspects of the project, including health and safety, access, authorized personnel, construction schedule, change orders, odor and dust control, stormwater management, and soil and debris segregation.
- Photographs will be used to document the pre-construction conditions of all equipment, roads, driveways, buildings, and any features that might be affected by the remedial activities. This documentation will be conducted prior to the initiation of any construction activities at the Site and updated as Site conditions change.

7.4.2 Site Security and Site Access

The Site is currently enclosed by a 6-foot chain-link fence installed on October 28, 2019. Additional fencing will be placed around any work areas that may extend beyond the existing fence. The location of the perimeter fence is presented on **Figure 7-1**.

Access to the project Site's work areas will be limited to APS, Jacobs, and contractor personnel. All other visitors, including utility and City personnel, will need to be escorted in Site work areas by a designated person selected by APS. All employees and visitors will be required to check-in and sign a visitor's log in the contractor's trailer. Only personnel with the proper training and safety equipment who have reviewed and signed the project HASP will be allowed access to the work areas. APS will coordinate Site activities with Customs and Border Protection (border patrol) and the Department of Homeland Security prior to construction activities.

The contractor will supply, install, and maintain all road markings, signs, and barriers to prevent vehicle and pedestrian traffic access to certain areas. During nonworking hours, the contractor will secure the Site work areas to ensure that unauthorized personnel, such as trespassers, vagrants, children, or animals, do not enter the Site. Additionally, the remediation contractor will coordinate with El Paso Natural Gas and Southwest Gas to protect the high-pressure gas pipelines.

7.4.3 Site Preparation

The following tasks will be implemented during the Site preparation phase; these activities are detailed in other sections of this RAP:

- The contractor will mobilize to the Site and prepare the Site for work activities.
- Site work areas are enclosed by a 6-foot chain-link fence. Additional temporary fencing will be
 installed were needed based on actual Site conditions at the time of excavation. The fence(s) will be
 covered with fence fabric to limit visibility into the work area and minimize dust migration into and out
 of the work area unless the border patrol requires a clear field of vision across the Site. A misting
 system will be installed on the top of the fence to help prevent dust from migrating offsite.
- Work, decontamination, and support areas will be identified and clearly marked.
- Temporary facilities and utilities, such as office trailers, sanitation facilities, power, lighting, and telephones will be installed, as necessary, for use by the onsite personnel.
- The Contractor will work with Southwest Gas to expose existing high-pressure gas line to positively confirm the location. Southwest Gas inspector will be present for any excavation work within 5 feet of the pipeline. Once the pipeline is exposed, deeper excavation can take place. Southwest Gas excavation guidance is provided in Appendix M.
- Existing trees and shrubs within the excavation work areas will be removed as needed with City approval and permits as required.
- Asphalt, wood, or concrete slabs within the excavation area will be removed.

7.4.4 Protection of Existing Site Features

All necessary precautions will be taken to protect the existing above- and below-ground structures surrounding the Site. Site features requiring protection during remedial activities will be identified and the necessary protective controls installed prior to excavation. The main features of concern are buried high-pressure gas lines and overhead electric lines.

7.4.5 Work, Decontamination, and Support Areas

Prior to beginning remedial activities, the Site will be divided into work, decontamination, and support areas as defined by the HASP. This section outlines the three areas to be established by APS, Jacobs, and the contractor.

7-10 BI1216180825PHX

7.4.5.1 Work Area

The work area is the portion of the Site where excavation activities will be conducted. The planned excavation will be performed in small sections to minimize the possibility of adverse effects caused by a significant rain event. Barricades with caution ribbon will be installed within the work area to designate an exclusion zone. To minimize the potential for cross contamination from the excavation area, the following procedures will be followed:

- Personnel not directly involved with the work activities will not be allowed within this zone.
- All personnel and personal vehicles will park in a designated lot outside the project work area. All
 personnel will enter near the construction trailers and sign-in daily.
- All personnel entering the exclusion zone will be required to wear appropriate PPE.
- Personnel leaving the exclusion zone will be decontaminated prior to exit.
- All PPE will be collected and disposed of properly.
- Every truck loaded for offsite disposal of impacted material will be dry decontaminated before the
 truck leaves the Site. Dry decontamination includes the truck, the trailer, and tires. All loads will be
 covered before leaving the Site. Tracking out material will be prevented by loading trucks on a clean
 gravel surface. In the event of rain, one of two options will be implemented:
 - **Option 1:** Suspend loading operations and offsite disposal of impacted material.
 - Option 2: Place 0.75-inch gravel on the ground between the loading point and the Site access point.
 - Option 3: Place and maintain shaker plates near the construction entrance.
- All equipment used to excavate impacted soil will stay within the exclusion zone. If the equipment leaves the exclusion zone or comes into contact with clean soil, the equipment will be decontaminated.

Impacted material will be segregated as described in Section 7.4.8. The contractor will excavate only the soil that can be loaded and hauled out the same day or placed in a lined stockpile area or roll-off container to minimize the amount of soil potentially causing fugitive odors and dust. Soil stockpiles or roll-off containers will be covered each night and when not in use.

7.4.5.2 Support Area

The support area is located outside the exclusion zone where no PPE is required. This area includes the construction trailers, designated eating areas, parking lot, material storage, visitors' area, and vehicle access.

7.4.5.3 Decontamination Area

The decontamination area will be located between the work area and the support area. All personnel will be required to enter and leave the work area through this access. If necessary, the contractor will set up a three-stage decontamination area with plastic bins that will be lined with plastic sheeting. The workers will be required to remove all PPE and equipment that was used within the work area. Boots will be rinsed and scrubbed with brushes to remove any residual contamination. All PPE will be disposed of properly. No smoking or eating will be allowed in the work or decontamination areas.

7.4.6 Excavation Activities

The excavation plan is designed to manage the uncertainties that typically accompany remediation of a site with a lengthy history of multiple activities. The excavation at the Site is designed to accomplish the RAOs by removing PAH and lead impacted soil that exceeds residential SRLs. The general areas proposed for excavation include the following:

- Excavate soil up to 5 feet bgs at the former south gas holder location near soil boring B-11.
- Excavate soil up to 15 feet bgs at the former meter house and southwest of the small purifiers area between the former gas holders near soil borings B-13 and B-17.
- Excavate soil up to 20 feet bgs east of the former small purifiers near soil boring B-24.
- Excavate soil up to 22 feet bgs at the former north gas holder location near soil boring B-12.
- Excavate soil up to 10 feet bgs at the former generator house and oil sump location (shown as Excavation Area DU-2).
- Excavate soil up to 20 feet bgs near the north fence line north of the former oil sump location.
- Excavate soil up to 7 feet bgs north of the north fence line and west of the boring B-21.
- Excavate soil up to 5 feet bgs north of the former generator house and soil boring B-15.

The proposed excavation areas are shown on Figure 7-1.

Historic locations of the remaining subsurface MGP features should be considered approximate. During the pre-design testing investigation, a flat concrete feature was present near the location of soil boring B-24 at ground surface. Soil boring B-24 was moved to the east of the feature to allow hand auger clearing; the historical reports had no record of this feature. Soil boring B-23 was advanced through soil; however, based on historical feature locations the former north gas holder foundation would have been located at boring B-23. The locations of former MGP structures are based on 1929 Sanborn Fire Insurance Company maps and provide approximate locations of known former MGP structures. Removal of subsurface MGP features will take place during excavation activities. Approximate locations of subsurface MGP features are shown on **Figure 7-1**.

7.4.6.1 Excavation

Based on the previous investigations and the pre-design testing investigation, Jacobs estimates that approximately 24,000 tons of impacted soil will be removed by the contractor and hauled to a special waste landfill at an APS-approved offsite treatment facility. Due to sloping and shoring requirements and field conditions, the estimated quantity of soil removed, the excavation time may vary. APS will develop an excavation plan with the contractor based on the following criteria:

- Health and safety requirements will be adhered to for the protection of workers, Site personnel, and the community (air monitoring, odor and dust control, noise).
- Underground and overhead lines will be avoided.
- Excavation will be performed to remove the material that exists at concentrations above the cleanup criteria for the Site.

The excavation plan is based on the following criteria:

- Contractor hours: 5 days per week, 10 hours per day
- Excavation rate: 100 to 300 tons per day
- Material offsite disposal: 5 to 15 trucks per day (average 20 tons per truck)

7.4.6.2 Debris Cleaning and Processing

Construction debris, such as concrete from demolition activities, buried concrete, abandoned utilities, and brick, will be removed and segregated during the excavation activities. This material will be visually inspected to evaluate whether the material is appropriate for disposal at a recycling facility or an APS-approved, locally permitted solid waste landfill. Debris that cannot go to a recycling facility or a locally permitted solid waste landfill because it is contaminated will be manifested as special waste and disposed of at a licensed landfill.

7-12 BI1216180825PHX

Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

If material appears to contain ACM, or if transite (asbestos) pipe is encountered during the remedial activities, an AHERA-certified asbestos inspector will inspect the material or piping and collect samples of the material. If ACM is identified, a licensed asbestos abatement contractor will be contacted to remove and dispose of the ACM. The material will be double-bagged, labeled, manifested, and disposed of at an APS-approved disposal facility. If threshold quantities are exceeded, appropriate NESHAP notifications will be made to ADEQ.

7.4.7 Air Quality Monitoring

Air quality monitoring will be conducted during the remedial activities in accordance with the project HASP. Air monitoring is designed to identify and quantify airborne contaminants, evaluate the impact of Site activities on the worker, and reduce or eliminate the migration of dust and odors offsite. Real-time air monitoring of PAHs will be required during trenching, excavating, and loading of impacted soil. Additionally, during excavation at areas which had lead results above the residential SRL (soil at the former gas holders from soil borings B-11 and B-12), dust monitoring will be conducted to provide real time estimates of lead concentrations.

At no time will the contractor perform remediation activities without a designated Site Safety Coordinator (SSC) overseeing the work area. Daily safety meetings will be conducted to review air monitoring results with workers and discuss the planned work schedule for that day's activities. The SSC will be responsible for determining appropriate PPE and decontamination procedures. In addition, the SSC will conduct hourly air monitoring of the Site perimeter and document readings for VOCs, carbon monoxide, oxygen, lower explosive limit, dust, and noise. A copy of the perimeter air monitoring logs will be kept in the contractors' trailer, which will be available upon request and will become a part of the RAP documentation records.

7.4.7.1 Dust and Odor Control

Dust and odor controls will be implemented at the Site to ensure worker safety and minimize offsite emissions. The following mitigation measures will be implemented at the Site to control emissions:

- Continuously monitor the wind direction with a wind flag or electronic weather monitoring device for changes. In the absence of an electronic weather monitoring device, the wind direction, wind speed, barometric pressure, precipitation, and temperature will be downloaded daily from the local weather station website (http://www.wunderground.com/US/AZ) and recorded in the Site log.
- Minimize the size of excavations.
- Cover stockpile and roll-off containers with a permanent cover or plastic sheeting or a tarp when not in use.
- Install water misters at the fence line to intercept dust and odors prior to leaving the excavation area.
- Apply water alone or water with environmentally safe additives (for example, Envirotech Vapor Suppression, Simple Green, or equivalent) on the excavation area, haul roads, and roll-off containers to control dust and other emissions.
- Apply environmentally safe chemical suppressants or foams (for example, Eco Sorb, Citriclean, Rusmar or equivalent).
- Cover exposed areas with clean fill.
- Stop excavation activities if Site conditions are such that mitigation measures prove unsuccessful in controlling emissions.

The contractor will be responsible for performing all dust and odor controls during the remedial action. The effectiveness of dust and odor controls will be determined by the air monitoring results. Dust control activities will be performed in accordance with requirements specified by the City when applicable building permits are obtained for the excavation activities.

7.4.7.2 Air Monitoring

Health and Safety Air Monitoring (Active Work Areas)

A detailed description of the practices and procedures will be included in the site-specific HASP. The contractor will be responsible for monitoring its employees. At a minimum, each employee should have completed a 40-hour training course for hazardous waste site workers (Occupational Safety and Health Administration 29 CFR 1910.120) and all appropriate refresher courses, be part of a medical monitoring program, and be certified to wear a respirator. Health and safety monitoring may use following equipment:

- Photoionization detector (PID) for monitoring VOC levels in air
- Colorimetric tubes to identify specific types and concentrations of VOCs in the air
- Combustible gas indicator for monitoring oxygen, carbon monoxide, hydrogen sulfide, and explosivity levels
- Miniram dust meter (PDM-3 or equivalent) for real-time dust level monitoring
- Decibel meter to monitor noise levels

The contractor will monitor the work area at all times while excavation activities are being conducted. Additionally, the contractor will monitor the perimeter of the work area for odors and dust on an hourly basis during work activities. The results of the work area and perimeter monitoring will be documented and maintained onsite for the duration of the project. At the conclusion of the project, the records will be turned over to APS.

Baseline (Background) Air Monitoring

Baseline (background) monitoring will be conducted for the four monitoring locations identified for perimeter air sampling. Samples will be collected with high volume (HIVOL) samplers and analyzed using EPA Compendium Method TO-13A. Samples will be collected during the mobilization activities prior to any excavation at the Site. The background samples will be submitted to a qualified ADHS-licensed laboratory for analysis. Background sample results will be compared to the HIVOL air analytical results obtained during the remedial activities.

Background samples will also be collected using hand-held monitoring equipment as specified in the HASP for air monitoring. The data will be collected within the Site and at the upwind and downwind perimeter of the Site. The data will be recorded and stored onsite for comparison during the remedial activities.

Perimeter Air Monitoring

Perimeter air monitoring will be performed to verify compliance with project action levels, which were calculated based on a 1-year, 6-month, or 4-month exposure duration, as presented in **Table 7-3**. The EPA RSLs for air quality (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables) were used to calculate the action levels, based on an assumed 26-year residential exposure duration. This is the relevant update to the EPA Region 9 PRGs for Ambient Air Values, which were used previously.

The typical air monitoring positions will include one upwind sampler and one downwind sampler with respect to the prevailing wind direction, predominantly from west or east. Because of the Site's proximity to surrounding businesses and residents, four perimeter air monitoring stations may be used during excavation. The proposed air monitoring locations are shown on **Figure 7-3**. Sampling procedures, analytical methods, and QA/QC procedures are presented in the QAPP (Jacobs, 2019c).

Each sampling location will be equipped with a modified HIVOL sampler consisting of a sampling pump system with a flow range greater than 200 liters per minute, an orifice and magnehelic gauge to document continuous flow rate, and a sample module that includes a polyurethane foam (PUF) and/or XAD-2 cartridge and quartz filter. Air samples will be collected on an approximate 24-hour basis during

7-14 BI1216180825PHX

Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

excavation and waste loading/hauling activities. Each sample will be analyzed for SVOCs by EPA Compendium Method TO-13A high-performance liquid chromatography (HPLC). PUF samplers will be used during all excavation activities.

VOCs were not detected above the residential SRLs or laboratory RLs during the pre-design sampling; however, if volatile emissions are suspected based on flame ionization detector/PID results, or significant odor, additional air samples will be collected at all monitoring locations. Baseline air samples will be collected prior to excavation where VOCs are suspected. Air samples will be collected in SUMMA canisters over an 8-hour period or the duration of the work day and analyzed by EPA Compendium Method TO-15. All air samples will be submitted to a qualified ADHS-licensed laboratory for analysis.

If asbestos pipe is found at the Site, an abatement contractor will be required to perform air monitoring. This monitoring may be conducted using phase contrast microscopy methods.

All air monitoring results will be immediately documented and maintained onsite for the duration of the project. At a minimum, documentation will include equipment calibration data, background concentrations, date of monitoring, monitoring results, monitoring locations, source description, air temperature, relative humidity, and wind direction.

Lead Monitoring

A Miniram dust meter (PDM-3 or equivalent) sampler will be used to monitor dust levels during excavation at DU-1 and DU-3 where soil lead results were above the residential SRL. The average of the maximum lead concentrations at each of the borings (B-11, B-12, B-13, B-17, B-23, and B-24) within the DU-1 and DU-3 areas will be used to determine real-time dust levels. The six highest lead results had an average of 205.1 mg/kg lead in soil. Using 205.1 mg/kg of lead in soil and the NAAQS of 0.15 microgram per cubic meter of lead in soil corresponds to a dust limit of 731 micrograms per cubic meter in soil as total suspended particulates. Dust will be monitored during excavation of DU-1 and DU-3 to confirm lead is below the NAAQS.

7.4.8 Soil Segregating

This section provides a summary of waste characteristics from pre-design testing investigation sampling results, waste segregation and waste types, and a summary of soil segregation methods and field screening protocols to appropriately classify the excavated soil.

In April 2000, the U.S. Court of Appeals for the District of Columbia Circuit vacated the use of the hazardous waste toxicity characteristic for the evaluation of MGP waste. Therefore, MGP waste is not considered a hazardous waste unless it exhibits the characteristics of ignitability, corrosivity, or reactivity. This was confirmed by ADEQ in a letter to APS, dated April 16, 2001 (ADEQ, 2001) (Appendix N). Regardless of the regulatory definition, APS has elected to dispose of any soil exceeding the TCLP limits for hazardous waste of 0.5 mg/L benzene or 5 mg/L lead at a hazardous waste facility as a special waste PCS, in accordance with Arizona special waste generator and transportation requirements and using Arizona special waste manifests.

7.4.8.1 Summary of Waste Characteristics from Pre-Design Testing Investigation Sampling

Waste characterization data were collected during the pre-design testing investigation at locations anticipated to have the highest PAH results. These included samples collected at, but not limited to, the former gas holders, meter house, generator house, adjacent to the purifiers, and adjacent to previous sample location SS-5. Samples analyzed for waste characterization are presented in **Table 2-9.**

In addition to waste characterization samples, multiple soil samples were collected and analyzed for total VOCs and metals during previous site investigations and/or the pre-design testing investigation. The total concentrations of select metals were compared to the TCLP limits to evaluate the potential for waste generated from that area to exceed a TCLP limit. If the total concentration of a compound in the soil

exceeded the TCLP hazardous waste limit by 20 times or more, the soil is considered to have the potential to exceed the TCLP limit and may need to be disposed of as a hazardous waste.

Samples collected at B11-2.5-3.0 and B12-7.5-8.0 had lead results above the residential SRL of 400 mg/kg. These samples were analyzed for TCLP metals in addition to total metals to determine the leaching potential of soil of lead at the Site. The TCLP lead results for the samples above the residential SRL were 0.920 and 0.128 mg/L, below the TCLP hazardous waste toxicity characteristic of 5 mg/L for lead. All metals from the samples were below the hazardous waste toxicity characteristic. Based on TCLP lead results, no areas at the Site have been identified as requiring segregation due to a potential for exceeding the TCLP limits for lead (or other compounds). No areas at the Site have been identified as hazardous waste.

7.4.8.2 Waste Segregation and Waste Types

The goal of waste segregation is to effectively and efficiently identify and segregate excavated soil into one of the five site-specific waste classifications. In general, the majority of the excavated soil will meet the requirements to be classified as a special waste PCS and transported offsite to a licensed landfill.

For the purposes of waste classification at the Site, excavated soil will be segregated into the following five classifications:

- Non-impacted soil
- Construction debris
- ACM
- Special waste PCS
- Special waste PCS that exceeds 0.5 mg/L TCLP for benzene or 5 mg/L TCLP for lead

Non-impacted Soil

Non-impacted soil is soil that contains concentrations of indicator compounds below cleanup criteria, as described in Section 7.2. An example of non-impacted soil would be topsoil overlying impacted soil that does not contain MGP-related compounds. Soil that is classified as non-impacted may be used as backfill.

Construction Debris

Construction debris at the Site will consist of concrete slabs, abandoned pipe, steel, and possibly ACM if encountered (piping and building materials). This material, if visually free of contamination, with the exception of ACM, will be separated from the soil and disposed of, or recycled, at an approved facility. Construction debris that is not visually free of contaminants will be handled as an Arizona Special Waste and transported to an approved landfill for disposal.

Asbestos-Containing Material

Any ACM will be handled according to regulatory requirements by a licensed asbestos abatement contractor, as described in Section 7.3.2, and disposed of at an approved facility.

Special Waste PCS

Soil with concentrations of PAH compounds above non-residential SRLs will be classified as an Arizona special waste PCS. Special waste PCS will be transported offsite for disposal at a landfill licensed to receive special waste PCS. Soil with concentrations above residential SRLs, but below non-residential SRLs, can be classified as an Arizona Solid Waste PCS and transported offsite to a solid waste landfill in accordance with Arizona special waste requirements. However, because soil throughout most of the Site has exceeded non-residential SRLs, APS will likely dispose of all excavated soil exceeding residential or non-residential SRLs as special waste PCS.

7-16 BI1216180825PHX

Special Waste Soil that Exceeds 5 mg/L TCLP for Lead

Soil that exceeds 5 mg/L TCLP lead will be managed as a special waste PCS but will be segregated from the other soil and disposed of at a hazardous waste facility. Soil that has the potential to contain greater than 5 mg/L TCLP lead will be stored in roll-off containers separate from other wastes, pending analysis. Based on pre-design testing investigation sampling analytical data, including lead TCLP results from the two lead results above the residential SRL, no areas are anticipated to require segregation based on TCLP results less than 5 mg/L.

7.4.8.3 Methods of Soil Segregation

Soil segregation will occur through the use of several methods during remedial activities. To achieve the goals of the soil segregation process, the following soil segregation procedures will be used:

- Field evaluation of physical characteristics
- Direct-read field measurements
- Fixed-base laboratory prescreening
- TCLP determination for lead at a fixed-base laboratory

A flow chart for the segregation process is presented on **Figure 7-4**. The soil segregation process has been developed based on the results of previous investigations and the pre-design testing investigation results. The segregation process has been designed so that field staff will make the appropriate classification of excavated materials, while minimizing the generation of dust and odors and the addition of water to the soil.

Field Evaluation of Physical Characteristics

The APS consultant will preliminarily classify the physical characteristics of the soil using visual indicators. The presence of coal tar or lampblack and lead can be observed by a black or dark brown staining of the soil. Based on previous remediation at other MGP sites, the tar-impacted soil exhibits a very strong odor. Physical characteristic screening will be performed at a minimum sampling frequency of every 5 to 10 tons. During the pre-design testing investigation very little stained soil and/or odor was observed.

Direct-read Field Measurement

Field physical characteristics screening will be supplemented with field monitoring using direct-read instruments. Soil that is visibly stained will be tested by headspace analysis using an organic vapor analyzer or organic vapor monitor. Direct-read field measurements will be collected at a frequency of approximately every 30 to 50 tons. Headspace analysis will also be performed on a portion of the soil samples that do not appear to be visibly stained to support the identification of soil impacted by MGP-related compounds.

Fixed-Base Laboratory Prescreening

During soil remediation activities at the Site, the waste determination of excavated soil will need to be accurately and efficiently performed. The field method for waste determination of excavated soil may include the use of a fixed-base laboratory with a 24- to 48-hour turnaround time to determine the total concentrations of PAHs, and lead.

In accordance with EPA Test Method 1311, Section 1.2 for TCLP analysis, a total constituent analysis will be used to prescreen soil identified as potentially containing lead and/or benzene above TCLP limits to determine which soil will be further analyzed for TCLP lead. Composite samples will be collected from the excavated soil placed in roll-off containers and analyzed at a fixed-base laboratory for benzene and/or lead with a 24- to 48-hour turnaround-time. The total benzene and/or total lead concentration will be divided by 20 to calculate the maximum leachable concentration for unsaturated soil. Soil that has a calculated maximum leachable lead level of less than the regulatory lead level for toxicity characteristic for a hazardous waste (5 mg/L) will be classified as a special waste PCS.

Lead TCLP Confirmation at Fixed-Base Laboratory

If results from the fixed-base laboratory for total lead indicate that the soil potentially contains a concentration that may exceed the TCLP limit, a waste determination sample will be collected and submitted to a fixed-base laboratory for TCLP analysis. The TCLP analysis will be performed on a rush basis, and the results are anticipated to be received within approximately 3 to 5 days.

Based on the results of the TCLP analysis, the soil will be disposed of at a facility licensed to receive hazardous waste if concentrations exceed the TCLP level for any compounds or managed as a special waste PCS for disposal at a licensed landfill if the results do not exceed TCLP levels.

7.4.8.4 Onsite Storage and Handling

Soil will be segregated into roll-off containers or small stockpiles based on visual observations, odor, and PID readings. Stockpile volumes will coincide with the volume of material planned for offsite disposal on a daily basis. Non-impacted material will be placed outside the work area and may be used as backfill material at the completion of the excavation. Soil evaluated to be special waste PCS may be excavated and directly loaded into trucks. Excavated soil with the potential of exceeding 5 mg/L TCLP lead will be placed in lined roll-off containers. Any stockpiles, including debris, will be bermed and covered daily with 6-mil plastic sheeting to prevent air emissions and to control run-on/run-off in the storage area.

7.4.8.5 Load Out of Excavated Soil and Import of Borrow Fill

Special waste PCS will be direct loaded as the soil is excavated unless the soil has the potential to exceed a TCLP concentration for benzene or lead as described previously. The special waste PCS will be loaded in the trucks and hauled daily to a special waste landfill. The material to be disposed offsite will be weighed prior to entering the facility. The truck will then be weighed after dumping prior to leaving the facility. The gross, tare, and net weight will be recorded by the facility and submitted with the treatment/disposal invoice.

Borrow fill imported to the Site for backfill will be required to be weighed by the contractor as documentation for payment. The weight tickets from the waste and borrow fill hauling will be used to estimate the volume of material removed from the excavation.

Transportation of waste to offsite disposal facilities or transportation of imported borrow fill will be conducted on an approved haul route. Neither the disposal facilities (that is, the recycling facility, APS-approved local permitted solid waste landfill, special waste landfill, or EPA-permitted treatment, storage, and disposal facility) nor the borrow site have been determined for this project at the time of publication of this RAP. Therefore, the transportation routes for the borrow fill have not been established. Before transportation activities begin, a transportation plan that details the hauling routes for both offsite waste disposal and imported borrow fill will be submitted by APS to the City for approval. The objective of this plan is to control the transport of imported borrow fill and to control, transport, treat, and/or dispose of all materials according to the pertinent regulations and in an environmentally safe manner. All waste material will be controlled in strict compliance with federal, state, and local regulations, statutes, and ordinances.

Trucks used for the offsite transportation of contaminated soil and debris will remain outside of the excavation on clean areas at all times to minimize the need to decontaminate the truck tires. If necessary, the truck tires will be dry-decontaminated with brushes by the contractor prior to leaving the Site. During loading, dust and odor emissions will be monitored and mitigated as necessary, according to Section 7.4.7.1. The hauling truck trailers will be fully covered prior to leaving the Site. All special waste PCS will be manifested and transported to a special waste landfill, such as Waste Management Marana Regional Landfill. Material that exceeds 5 mg/L TCLP for lead will be trucked to an EPA-permitted treatment, storage, and disposal facility.

Each disposal facility will be required to submit a certified weight ticket for each load received from the Site. The facility will fax a load count to APS daily that includes the date and time the shipment arrived, the manifest number, the truck and trailer number, and weights for tracking purposes.

7-18 BI1216180825PHX

Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

In the event of an emergency or spill during waste transportation, the driver of the waste hauling truck will use the following procedures:

- Park the vehicle in the most secure area available, away from homes, traffic, waterways, and businesses.
- Stay with the vehicle until appropriate support has arrived; move a safe distance away from the vehicle or spill material if imminent danger exists.
- Notify the appropriate emergency contacts. The following information should be available to the emergency contacts:
 - Location of accident/emergency
 - Quantity and type of spill
 - Nature and extent of injuries or property damage
 - Manifest number
 - Locations of nearby receptors, such as people and water channels
 - Contact number for the driver (that is, a cell phone or radio)

All truck drivers will be required to review, adhere to, and sign a Truck Driver Policy and Orientation procedure prior to working on the Site.

7.5 Sampling and Analysis Procedures

Detailed sampling procedures for soil, water, air, and waste, along with laboratory analytical methods and QA/QC procedures, are located in the QAPP (Jacobs, 2019c).

7.5.1 Verification Sampling

DUs were established for the Site to assist with confirmation of excavation extent. A DU is an area or volume that is defined according to the environmental concerns posed by the contaminants present and the intended use of the Site. A DU is implicit in grid sampling approaches using discrete samples. Considerations in identifying DUs for the Site included the following:

- Utility locations
- Site physical characteristics that could influence the distribution of contaminant
- Sampling and analytical results from Site investigations
- Site cleanup criteria
- Planned depths of excavation throughout the Site

After DUs are selected and excavated representative sampling methods are used to determine if soil is below residential SRLs. If results are below SRLs, area-wide contaminant concentrations (referred to as EPCs) are calculated across each DU for each COC. The EPCs are compared with applicable SRLs to make decisions regarding the need for any subsequent remedial action (that is, excavation) within that particular DU. Proposed DUs are shown on **Figure 7-1**.

7.5.1.1 Decision Unit Selection and Size

DU selection for the Site was based on a consideration of the relevant Site data and is defined as an area where a decision is to be made regarding remedial activities and the extent of excavation required in that area. The DUs were designed to logically divide the known or suspected areas of PAH contamination. A preliminary DU size of no larger than 0.25 acre (10,890 square feet) was targeted. Due to unknowns such as additional soil data generated during the remediation and potential changes to Site access from utilities, DU selection and size are subject to revision based on field conditions.

The Site was divided into four primary DUs, described as follows, based on four general excavation areas. Proposed excavation areas are shown on the proposed excavation plan on **Figure 7-1** and excavation depths within each DU area are shown on **Figure 7-2**. For each of the proposed DU areas, the bottom and the sidewall of the excavation will be managed as subsets of the main DU. The bottom of

the excavated DU area will be evaluated (such as DU-1B), where "B" denotes the base of the DU area, and the sidewall of the excavated DU area will be evaluated (such as DU-1S), where "S" denotes the sidewall of the excavated DU area.

- **DU-1** is located parallel to the gas line at the former southern gas holder, meter house, small purifiers, and northern gas holder. DU-1 will be excavated between 5 feet and 22 feet bgs. The excavation will remove half the southern gas holder foundation, the meter house and small purifiers subsurface foundations and the northern gas holder foundation. DU-1 was aligned parallel to the gas line to allow efficient soil removal in the vicinity of the gas line.
- **DU-2** is located at the former generator house. DU-2 will be excavated up to 10 feet bgs at the former generator house area. The excavation will remove the remaining generator house subsurface foundation and soil near the former oil sump location where PAH concentrations above the residential SRL were detected. Soil results from soil borings B-14, B-15, and B-16 at DU-2 were below the non-residential SRLs and may be transported as an Arizona solid waste PCS.
- DU-3 will be excavated between 5 feet and 20 feet bgs at the former southern gas holder location and
 east of the small purifiers, parallel to the DU-1. The excavation will remove soil where concentrations
 of PAHs and lead were above the residential SRLs.
- **DU-4** is located along the northern border of the Site and south of the wash. Excavation of DU-4 will remove soil associated with SRL exceedances observed in borings B20 and B21 during the predesign investigation.
- **DU-5** is located between DU-2 and DU-4. Because of the lack of soil data in the area between DU-2 and DU-4, test trenching at DU-5 will determine the general extent of the excavation area.

7.5.1.2 Sampling Frequency and Excavation Rationale

Excavation Bottom

A minimum of eight discrete soil samples will be collected from the bottom of each excavation DU. The EPC for each COC will be calculated at the DU bottom and will be calculated as the 95% UCL of the arithmetic mean concentration using EPA's ProUCL Version 5.1 statistical software package (EPA, 2015). No additional excavation will be necessary if the 95% UCL for the first set of samples is below the residential SRL for each COC. If the 95% UCL calculation result is above the residential SRL for any COC, the entire DU (the base) will be excavated further, and eight additional samples will be collected. A 95% UCL will be calculated for the new samples and compared to the residential SRL. Sampling and excavation will continue until the EPC is below the residential COC SRL.

Excavation Sidewall

The minimum number of samples collected from sidewall DUs will be based on the total unexcavated perimeter of the DU and the guidance provided in the Table 2 of the Wyoming Department of Environmental Quality VRP Fact Sheet 10, *Soil Confirmation Sampling Guidelines* (WDEQ, 2016), presented as follows:

Total Linear Feet of Sidewalls	Number of Samples
X < 100	4
100 ≤ X < 200	5
200 ≤ X < 300	6
300 ≤ X < 500	7
500 ≤ X	8

A minimum of eight sidewall samples will be collected for statistical analysis. The EPC for each COC will be calculated at the DU sidewall and will be calculated as the 95% UCL of the arithmetic mean

7-20 BI1216180825PHX

concentration using EPA's ProUCL Version 5.1 statistical software package (EPA, 2015). No additional excavation will be necessary if the 95% UCL for the first set of sidewall samples is below the residential SRL for each COC. If the 95% UCL calculation result is above the residential SRL for any COC, the entire DU (the sidewalls) will be excavated further, and additional samples will be collected. A 95% UCL will be calculated for the additional set of samples and compared to the residential SRL. Sampling and excavation will continue until the EPC is below the residential SRL.

7.5.2 Soil Sampling Collection Methods

Soil samples will be collected using disposable scoops (where excavations can be accessed safely) or collected from an excavator bucket (where excavations cannot be accessed safely). The sampling method used will depend on the location of the sample, the depth of the excavation, and the type of sample required. This section describes each of the sampling methods that will be used.

7.5.2.1 Disposable Plastic or Stainless-Steel Scoop Samples

When bottom or sidewall samples are required, and safe access is available, disposable scoops will be used for sample collection into a laboratory-provided sample jar and submitted to the fixed-base laboratory. The following describes the sampling method:

- The sample with be collected using a disposable stainless-steel or plastic scoop and placed directly into a laboratory provided, certified, pre-cleaned 8-ounce (oz) jar.
- If VOC analysis is required, in-field methanol extraction will be used. The fixed-base laboratory will
 supply amber volatile organic analyte vials that contain a laboratory measured volume of methanol
 and dedicated laboratory provided sampling tee. Remove the lid from the amber vial and using the
 laboratory provided sample tee, collect the prescribed volume of soil, placing the soil in the vial using
 the sampling tee. Replace the lid and gently agitate the volatile organic analyte vial back and forth for
 approximately 10 seconds.

7.5.2.2 Backhoe Bucket and Auger Samples

During excavation activities if safe access to excavations is not possible a backhoe bucket may be used to collect verification soil samples. It also may be necessary to collect verification samples from a backhoe bucket or auger flights if the geometry of the excavation prohibits safe access of personnel. The following process describes the sampling technique to be used to collect backhoe bucket samples during the remedial activities:

- Collect soil samples from the backhoe bucket or auger flights using a disposable stainless-steel or plastic scoop. Place the soil directly into a pre-cleaned 8-oz sample jar.
- Use a laboratory provided methanol extraction kit for VOC sampling, if needed.
- Label each sample, log on a chain-of-custody form, and place on ice in a cooler or in a sample refrigerator and maintain at approximately 4 degrees Celsius (°C).

7.5.2.3 Stockpile or Roll-off Container Samples

When soil samples are to be collected from stockpile or roll-off containers, they will be collected as a composite sample. The composite sample will be composed of soil that is collected from a minimum of four separate locations in the stockpile or roll-off container.

- Collect an equal volume of soil from each of the stockpile or roll-off container sample locations using a disposable stainless-steel or plastic scoop and place directly into a pre-cleaned 8-oz jar.
- For stockpile and roll-off container samples, make a special note on the chain of custody to "thoroughly mix sample." This will notify the laboratory to homogenize the sample prior to extraction and analysis.

- When VOC analysis is required from a roll-off container sample, collect each sampling location individually. Notify the laboratory on the chain of custody to "composite all VOC samples" prior to analysis.
- Label the sample, log on a chain-of-custody form, and place on ice in a cooler or in a sample refrigerator and maintain at approximately 4°C.

7.5.3 Air Sampling Procedures

Baseline air samples will be collected from ambient air at each perimeter monitoring station prior to any excavation or remedial activities at the Site. The samples will be used to establish baseline concentrations of PAHs and dust in the ambient air. Baseline data will be obtained for PAHs using EPA Compendium Method TO-13A HPLC and dust using a Miniram dust meter. If VOC sampling is required, Compendium Method TO-15 will be used if needed.

7.5.3.1 High Volume Sampling

Continuous PAH air sampling during remedial activities will be conducted using HIVOL sampling as follows:

- If the HIVOL unit is not running (typically on Monday mornings), turn on the unit and allow it to warm up for 2 to 3 minutes before logging any information.
- If the HIVOL unit is running (Tuesday through Friday), record the final magnehelic, timer reading, and time, and then turn off the HIVOL unit.
- Remove the PUF tube and quartz filter from the HIVOL unit.
- Calibrate the airflow through the HIVOL unit per the manufacturer's specifications.
- Put on a pair of powder-free nitrile gloves.
- Decontaminate all parts up-flow of the PUF tube using pesticide-grade hexane.
- Install a virgin PUF tube and quartz filter on the HIVOL unit.
- Turn on the HIVOL unit and record the magnehelic gauge reading, time, timer reading, and location in the logbook for calculation of the total flow volume through the sampler.
- Calculate the total flow volume and enter on the chain of custody.
- Ship the PUF tubes and quartz filters to the fixed-base laboratory within 24 hours.

7.5.3.2 Dust Sampling

Continuous dust air sampling will be conducted during all excavation activities at DU-1 and DU-3. Dust air sampling will be conducted using a Miniram dust meter (PDM-3 or equivalent) sampler.

- Record dust readings in the air sampling field logbook during excavation activities at regular intervals and at times of high winds.
- Calibrate Miniram dust meter (PDM-3 or equivalent) sampler per manufacturers specification.

7.5.3.3 SUMMA Canister Sampling

Previous Site investigations and the pre-design testing investigation indicate VOCs are not present at the Site and baseline SUMMA canister sampling is not anticipated. If VOCs are suspected at the time of excavation based on odor or PID direct field readings, air sampling using SUMMA canisters will be performed when VOCs are suspected to be present in the excavation. Six-liter SUMMA canisters would be used if needed to collect the samples for TO-15 analysis. The SUMMA canisters will be filled using a regulator calibrated by the fixed-base laboratory, allowing a constant flow of air into the canister during excavation activities. Both 8-hour and 12-hour regulators are available. The regulator used will depend on the length of time needed to handle the soil. If SUMMA canisters are required, baseline VOC sampling

7-22 BI1216180825PHX

will be conducted when excavation activities are not occurring. The sampling shall be carried out as follows:

- Attach the regulator to a 6-liter SUMMA canister.
- Place one SUMMA canister at each HIVOL sampling location approximately 4 feet off the ground and note the location in the logbook.
- Open the regulator and record the initial vacuum reading and start time.
- When the sampling period is over, record the final vacuum reading, close the regulator, and record the stop time.
- Remove the regulator.
- Secure the SUMMA canister with a brass or stainless-steel nut provided by the laboratory.
- Ship the SUMMA canisters to the fixed-base laboratory within 24 hours.

7.5.3.4 Direct-Read Instruments

Direct-read instruments will be used during the remedial activities to protect workers, check for hazardous environments, and screen soil samples. The equipment will include a PID and hydrogen sulfide, oxygen, carbon monoxide, and percent-lower explosive limit sensors. Calibration of these sensors will occur once per day when in regular use. Any instrument that exhibits erratic behavior will be field calibrated. Periodic cleaning of the PID lamp and use of water traps will prolong lamp and sensor life, as well as improve the accuracy of the readings. Detailed descriptions of the procedures and methods to use for direct-read instruments are located in the site-specific HASP.

7.5.4 Quality Assurance/Quality Control Sample Collection Procedures

In accordance with the QAPP (Jacobs, 2019c), QA/QC samples will be collected in the following manner:

- Collect field or rinsate blanks using distilled or deionized laboratory provided water. Collect the sample by pouring the water into the sample containers while onsite.
- Collect equipment blanks by pouring distilled or deionized water provided by the laboratory over the
 decontaminated sampling equipment (if disposable equipment is not used) or other sampling device
 and into the appropriate bottles.
- Collect soil and water blind field duplicate samples at a frequency of 1 duplicate sample per 10 samples to assess laboratory precision. Collect the duplicate samples following the same method described for the field samples.
- Provide appropriate sample volume to the laboratory to allow matrix spike/matrix spike duplicate
 analysis to be performed on all the verification samples. Confirm with the laboratory prior to sampling
 for laboratory specific requirements.

Trip blanks will be provided by the fixed-base laboratory and will accompany shipments of samples for VOC or BTEX analysis. Temperature blanks will accompany all environmental samples submitted to the laboratory for chemical analysis.

7.5.5 Fixed-base Laboratory Analyses

7.5.5.1 Soil Screening Analyses

A local ADHS-licensed fixed-base laboratory may be used for screening. The fixed-base laboratory would screen samples using the following methods:

- PAHs using EPA Method 8270C-SIM
- BTEX using EPA Method 8021B (if needed)
- VOCs using EPA Method 8260C (if needed)

Lead using EPA Method 6020

7.5.5.2 Soil Verification Analyses

Verification analyses will be completed by an ADHS-licensed, fixed-base laboratory. The verification samples will be collected from the excavation bottom and perimeter sidewalls, as applicable, in areas that have been screened by the mobile or local fixed-base laboratory or that show no visual signs of impact from MGP-related compounds. The fixed-base laboratory would perform verification analysis using the following methods:

- PAHs using EPA Method 8270C-SIM
- Lead using EPA Method 6020 (DU-1 and DU-3 where elevated lead results were reported)

7.5.5.3 Air Sampling Analyses

Throughout the remediation activities, various air samples will be collected. The types of materials encountered will dictate the analyses performed on these samples. Air samples may be submitted to the ADHS-licensed, fixed-base laboratory for analyses of PAHs using EPA Compendium Method TO-13A.

7.5.5.4 Waste Characterization Analyses

In addition to verification sampling, soil samples will be submitted to the fixed-base laboratory for waste characterization to ensure the proper handling of waste material. Depending on the sample location and former analytical results, some or all of the following analyses will be used for waste characterization:

- PAHs using EPA 8270C-SIM
- Totals RCRA 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) using EPA Method 6010B/7170A
- Total VOCs using EPA GC Method 8021B or GC/MS Method 8260B
- TPH using ADHS Method 8015AZR1
- PCB using EPA 8082
- TCLP VOCs using EPA Method 1311/8021B or 8260B (if required)
- TCLP RCRA 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) using EPA Method 1311/6010C/7471A (if required)
- Paint filter using EPA Method 9095
- Ignitability as defined in SW-846 Chapter 7.1.2
- pH using EPA Method 9045B (soil containing free liquids)
- Total cyanide using EPA Method 9014

If the constituents analyzed for total VOCs or metals meet or exceed 20 times the RCRA characteristics levels, then TCLP VOCs or metals will be analyzed.

7.5.6 Data Verification and Data Validation

Data verification and data validation will be performed throughout the project on the analytical data reported by the laboratories. Data verification and data validation will be used to ensure, through examination and objective evidence, that data are of sufficient quality to support decisions based on data quality objectives (DQOs) presented herein and in the QAPP (Jacobs, 2019c). Data verification will be used to evaluate the data for completeness, correctness, and conformance according to the method, procedural, and/or contractual requirements between the laboratory and APS. Data validation is an analyte-specific and sample-specific data evaluation process used to confirm that particular requirements for the specific intended use of the data are met.

7-24 BI1216180825PHX

Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

The project chemist will be responsible for oversight of the data verification and validation effort. Data verification and validation will be performed in accordance with the ADEQ data verification and data validation checklists included in the QAPP and will follow the QA/QC documentation outlined in the EPA Region 9 *Laboratory Documentation Required for Data Evaluation R9QA/00*, dated August 2001 (EPA, 2001b). The use of these checklists and appropriate laboratory documentation will standardize the data verification and validation process and minimize any discrepancy that may result between different data validators. A level III data validation will be performed on soil confirmation sampling and air as described in the QAPP.

Data validation will be carried out when the data packages are received from the laboratory and will be performed per analytical batch using the summary results of calibration and laboratory QA/QC, as well as those of the associated field samples. Data validation procedures will include the following:

- Review of the data package for completeness
- Review of chain-of-custody records for discrepancies that might impact data quality
- Review for compliance with holding time and QC frequency requirements
- · Evaluation of all calibration and QC summary results against the project requirements
- Qualification of the data using appropriate qualifier flags, as necessary, to reflect data usability limitations
- Initiation of corrective actions, as necessary, based on the data review findings

DQOs will be used as a guide for data validation. The examination will focus on validating the degree to which the DQOs have been achieved, particularly the QA/QC analytical results. The DQO guidelines allow for assessment of the confidence in the soil, air, and groundwater sample data sets. The DQOs are precision, accuracy, representativeness, completeness, and comparability, and represent qualitative and quantitative objectives that ensure the data generated during this investigation meet the needs of the project. For this project, the DQOs are defined as follows:

- **Precision** is a measure of the reproducibility of concentrations reported for duplicate soil and groundwater samples collected from the same location. Precision is calculated by determining the relative percent difference (RPD) between duplicate samples. The proposed precision objective for groundwater is an RPD of 20 percent for field duplicates. The proposed precision objective for soil is an RPD of 35 percent for field duplicates.
- Accuracy is the degree to which the measurement data approaches the "true" value for each analyte.
 For soil samples, accuracy is assessed by calculating the percent recovery for a sample spiked with
 the analyte of concern (matrix spike). For soil, air, and groundwater samples, the accuracy objective
 will vary by analysis and compound. The accuracy objectives for this project are presented in
 Tables 3-4 through 3-6 in the QAPP for APS Arizona MGP sites (Jacobs, 2019c).
- Representativeness refers to the comparability of the sample collection procedures to those
 delineated in the RAP and to the degree which the analytical data represent the subsurface
 contaminant concentrations. Representativeness will be accomplished by using consistent field
 sampling and analytical procedures for soil, air, and groundwater samples.
- **Completeness** is defined as the ratio of acceptable validated laboratory measurements to the total number of planned measurements for this investigation. The completeness objective for the soil, air, and groundwater samples collected during this investigation is at least 90 percent.
- **Comparability** is an evaluation of the relative consistency of the laboratory measurement data. Because comparability cannot be measured quantitatively, professional judgment is relied upon. Internal comparability will be achieved for soil by adhering to consistent sample collection procedures and analyses methods throughout the remediation.

7.6 Site Restoration and Post-Remediation Activities

Site restoration and post-remediation activities include backfilling and restoring the Site, demobilization, post-closure monitoring, and preparation of a report documenting the remediation activities.

7.6.1 Excavation Backfilling

The contractor will be responsible for identifying an offsite source of suitable fill material that is free of contamination. Prior to beginning excavation activities, APS will review and approve the import source of clean fill. The soil proposed for use as backfill at the Site will be sampled and analyzed to confirm that it does not contain COCs associated with the Site or other likely contaminants. The potential backfill will be sampled and analyzed for the following constituents:

- PAHs using EPA Method 8270C-SIM
- PCBs using EPA Method 8082
- Pesticides using EPA Method 8081A or 8081B
- Herbicides using EPA Method 8151A
- Total VOCs using EPA GC Method 8021B or GC/MS Method 8260B
- TPH using ADHS Method 8015AZR1
- Total Metals using EPA Method 6010B/7170A

The soil will be considered acceptable for use as backfill if concentrations of the listed analytes, except for metals, are not detected above the RLs listed in the QAPP (Jacobs, 2019c). Metals concentrations must be within the ranges identified in the Evaluation of Background Metal Concentrations in Arizona Soil (ADEQ, 1991) and below the residential SRLs and GPLs.

Upon approval, the contractor will schedule delivery of the import material to the Site for backfill purposes. APS will require the contactor to periodically collect soil samples from the import source and submit samples to a fixed-base laboratory for analysis. Approximately 12 samples will be collected for the first 5,000 cubic yards of fill material and one sample for each additional 1,000 cubic yards (DTSC, 2001). The constituents analyzed and sample frequency may be adjusted based on the source of the backfill (that is, existing commercial gravel pits). The location from which the backfill originates will be documented in the Site logbook.

The contractor will backfill the excavation areas as soon as practical to limit the amount of open excavation. The excavation can be backfilled only after confirmation sampling, as described in Section 7.5.1.2, verifies that Site cleanup criteria have been met. The backfilled area will be approximately the same elevation as the existing topography in accordance with the City-approved grading plan. The Site surface will be covered with aggregate base rock to control dust and erosion.

7.6.2 Demobilization

Following the completion of remedial activities, the contractor will demobilize from the Site. The following activities will be performed as part of demobilization:

- Removal of construction trailer(s) and supporting structures (electric, communication, and similar) from the Site
- Removal of the Site security fence
- Demobilization of excavation and material processing equipment, decontamination equipment, safety equipment, sampling equipment, and monitoring equipment

Performance of a final review of the work and the Site, which will include a meeting between the contractor, Jacobs, and APS to assess the scope of work and identify and resolve any potential conflicts or questions that may remain.

7-26 BI1216180825PHX

7.6.3 Reporting

A report will be prepared to document the remedial activities conducted at the Site. The report will include, but will not be limited to, the following:

- Detailed description of the volume of soil that was excavated
- Disposition of the soil and other wastes (that is, decontamination water)
- Excavation backfilling and Site restoration activities
- Sampling location maps
- Analytical data from verification sampling
- Data validation reports
- Waste manifests, bills of lading, and certificates of destruction for wastes
- Copies of all applicable permits that were obtained
- · Copies of discharge and other reports generated during the remedial activities
- Documentation of sample collection methods, soil segregation procedures, dewatering activities, if any
- Discussion regarding the cleanup criteria, describing areas in which the criteria were not met, if any, and additional recommendations if cleanup criteria were not met
- Documentation of discussions and/or agreements with regulatory agencies including ADEQ and the City
- · Documentation of community involvement during public outreach activities

7.7 Site Remediation Schedule

The schedule for major site remediation activities is anticipated as follows:

- ADEQ Approval of RAP January/February 2020
- Preparation of Remedial Design January/February 2020
- Community Involvement and Public Comment Period February/March 2020
- Remedial Construction March through August 2020
- Closure Report October 2020

This page is intentionally left blank.

7-28 BI1216180825PHX

8. References

Arcadis/Geraghty & Miller. 1998. *Material Removal Activities, Former APS Manufactured Gas Plant Site, Douglas, Arizona*. June 5.

American Society for Testing and Materials (ASTM). 1998. ASTM Risk-Based Corrective Action Guidance.

Arizona Department of Environmental Quality (ADEQ). 1991. *Evaluation of Background Metals Concentrations in Arizona Soils*. Tempe, Arizona: Earth Technology Corporation. Source: https://repository.asu.edu/items/42095.

Arizona Department of Environmental Quality (ADEQ). 1992. Human Health-Based Guidance Levels for the Ingestion of Contaminants in Drinking Water and Soil. June.

Arizona Department of Environmental Quality (ADEQ). 1996. A Screening Method to Determine Soil Concentrations Protective of Groundwater Quality.

Arizona Department of Environmental Quality (ADEQ). 2001. Letter from Ms. Laura Malone to Ms. Barbara Lockwood. "Manufactured Gas Plant (MGP) Remediation Wastes." April.

Arizona Department of Environmental Quality (ADEQ). 2009. Notice of Proposed Rulemaking, Title 18. Environmental Quality, Chapter 7 Department of Environmental Quality. March. https://apps.azsos.gov/public_services/Title_18/18-07.pdf

Arizona Department of Environmental Quality (ADEQ). 2013. ADEQ Groundwater Protection Leaching Model. https://azdeq.gov/groundwater-protection

Arizona Department of Environmental Quality (ADEQ). 2018. Risk-based Approach to Cleanups. March. https://azdeq.gov/cleanups

Arizona Department of Health Services (ADHS). 2003. *Deterministic Risk Assessment Guidance*. *Office of Environmental Health May 16*. https://www.azdhs.gov/documents/preparedness/epidemiology-disease-control/environmental-toxicology/guidance.pdf

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Petitioned Public Health Assessment Phelps Dodge Corp Douglas Reduction Works, Douglas, Cochise County, Arizona, CERCLIS No. AZD008397143, U.S. Department of Health and Human Services, Public Health Service. September 29

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, No. 57, pp. 289-300.

California Department of Toxic Substances Control (DTSC). 2001. DTSC Information Advisory, Clean Imported Fill Material. October.

Dunn, O. J. 1964. Multiple comparisons using rank sums. Technometrics, Vol. 6, pp. 241-252.

Environmental Data Resources (EDR). 2018. Former Douglas Arizona Manufactured Gas Plant, Douglas, Arizona. Inquiry Number 5485155.2s. November.

Gas Research Institute (GRI). 1996. *Management of Manufactured Gas Plant Sites*, Amherst Scientific Publishers, Volume 1.

Geraghty & Miller. 1996a. Site Investigation, Former Manufactured Gas Plant, Douglas, Arizona. July 14.

BI1216180825PHX 8-1

Geraghty & Miller. 1996b. Composite Soil Sampling, Former Manufactured Gas Plant, Douglas, Arizona. October 29.

Jacobs. 2019a. Site History APS Former Manufactured Gas Plant Site, Douglas, Arizona. Prepared for Arizona Public Service. April.

Jacobs. 2019b. Work Plan for APS Former Manufactured Gas Plant Site, Douglas, Arizona. Prepared for Arizona Public Service. August.

Jacobs. 2019c. Quality Assurance Project Plan. Prepared for Arizona Public Service. March.

Neptune and Company Inc. 2009. Significance Levels for The Gilbert Toolbox of Background Comparison Tests. Prepared for Nevada Division of Environmental Protection, 2030 East Flamingo Road, Suite 230, Las Vegas, NV 89119, Prepared by Mark Fitzgerald and Paul Black; also available online from NDEP. June.

New Jersey Department of Environmental Protection. 2019. Chemical Properties Table. Accessed November 21, 2019. https://www.nj.gov/dep/srp/guidance/rs/chemproperties.pdf.

Rascona, S. J. 1993. *Maps Showing Groundwater Conditions in the Douglas Basin, Cochise County, Arizona – 1990*. Arizona Department of Water Resources, Hydrologic Map Series Report Number 26.

- U.S. Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Petitioned Public Health Assessment Phelps Dodge Corp Douglas Reduction Works, Douglas, Cochise County, Arizona, CERCLIS No. AZD008397143. U.S. Department of Health and Human Services, Public Health Service. September 29.
- U.S. Environmental Protection Agency (EPA). 1989. *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part A.* EPA-540-1-89-002. December.
- U.S. Environmental Protection Agency (EPA). 1991a. *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part C (Risk Evaluation of Remedial Alternatives)*. Publication 9285.7 O1C. October.
- U.S. Environmental Protection Agency (EPA). 1991b. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part B (Development of Risk-Based Preliminary Remediation Goals). EPA-540-R-92-003. December.
- U.S. Environmental Protection Agency (EPA). 1993. *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons*. EPA/600/R-93/089. July.
- U.S. Environmental Protection Agency (EPA). 2001a. EPA Requirements for Quality Assurance Project Plans for Environmental Data Operation.
- U.S. Environmental Protection Agency (EPA). 2001b. Laboratory Documentation Required for Data Evaluation R9QA/00. EPA Region 9. August.
- U.S. Environmental Protection Agency (EPA). 2004. *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part E* (Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005. July.
- U.S. Environmental Protection Agency (EPA). 2009. *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part F* (Supplemental Guidance for Inhalation Risk Assessment). EPA/540/R/070/002. January.

8-2 BI1216180825PHX

Remedial Action Plan for the APS Douglas Former Manufactured Gas Plant, Douglas, Arizona ADEQ VRP Site Code 513300-00

- U.S. Environmental Protection Agency (EPA). 2015. *ProUCL Version 5.1.002 User Guide. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations*. EPA/600/R-07/041. October.
- U.S. Environmental Protection Agency (EPA). 2016. *ProUCL, Version 5.1.002*. Prepared by Lockheed Martin Environmental Services. May.
- U.S. Environmental Protection Agency (EPA). 2017. *Toxicological Review of Benzo[a]pyrene [CASRN 50-32-8]*. EPA/635/R-17/003Fa. January.
- U.S. Environmental Protection Agency (EPA). 2019a. *Regional Screening Levels Users Guide*. November. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables.
- U.S. Environmental Protection Agency (EPA). 2019b. *EPA Regional Screening Levels*. Accessed December 2019. https://www.epa.gov/risk/regional-screening-levels-rsls
- U.S. Environmental Protection Agency (EPA). 2019c. Chemical Specific Parameters. Accessed November 27, 2019. https://semspub.epa.gov/work/HQ/199658.pdf.

Wyoming Department of Environmental Quality (WDEQ). 2016. VRP Fact Sheet 10, Soil Confirmation Sampling Guidelines.

Zar, J. H. 2010. *Biostatistical Analysis*. 5th Edition. Upper Saddle River, New Jersey: Pearson Prentice Hall.

BI1216180825PHX 8-3

This page is intentionally left blank.

8-4 BI1216180825PHX

		_		
Т	a	b	e	S

Table 1-1. Summary of Operational History

APS Douglas Former MGP Site, Douglas, Arizona

Year	Site Structure	Site Activities
1905-1908	No information available.	Manufactured gas operations began between 1905 and 1908 and continued until the 1930s ¹ .
1929	Generator house, one large purifier, two small purifiers, a meter house, a steel crude oil tank, two gas holders, and a concrete shed ² .	Manufactured gas operations continued at the site ^{1,2}
1930	Generator house, one large purifier, two small purifiers, a meter house, a steel crude oil tank, two gas holders, and a concrete shed ² .	Arizona Edison Company controlled by Peoples Light and Power Corporation. Annual Production 51.5377 million cubic feet and annual sales 43.9241 million cubic feet ⁴ .
1938	Generator house, one large purifier, two small purifiers, a meter house, a steel crude oil tank, two gas holders, and a concrete shed ² .	Arizona Edison Company (natural) Natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 115.9389 million cubic feet ⁴ . Supplies Douglas.
1940	Generator house, one large purifier, two small purifiers, a meter house, a steel crude oil tank, two gas holders, and a concrete shed ² .	Arizona Edison Company Inc. natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 135.4454 million cubic feet ⁴ . Supplies Douglas.
1944-1947	Concrete shed, large purifier, and possibly the meter house ^{1,2} . Remaining site structures are not indicated on the 1947 Sanborn map.	Manufactured gas operations were discontinued prior to 1947. Annual gas production ranged from 13.7 million cubic feet in 1910 to 51.5 million cubic feet in 1930 ^{1,4} .
1945	Concrete shed, large purifier, and possibly the meter house ^{1,2} .	Arizona Edison Company Inc. natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 215.9795 million cubic feet ⁴ . Supplies Douglas.
1950	Concrete shed, large purifier, and possibly the meter house ^{1,2} .	Arizona Edison Company Inc. natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 584.7239 million cubic feet ⁴ . Supplies Douglas.
1995	Concrete shed, large purifier, concrete foundations from the two gas holders and generator house, and a 2-foot-deep sump associated with the steel crude oil tank.	Site investigation performed from October 1995 to June 1996. The contents of the oil sump and debris from the purifier were characterized in addition to surface and subsurface soil samples ¹ .
1996	Oil sump contents and sump; purifier contents and purifier; debris pile; concrete shed; and surface soil.	Materials removed from site base on Arcadis/Geraghty & Miller, Material Removal Activities Former Manufactured Gas Plant, Douglas, Arizona (June 5, 1998) ³ .
	Concrete foundations of two gas holders, two purifiers, meter house, and generator house.	Materials remaining onsite ³ .
1998	Concrete foundations of the following: two gas holders, two purifiers, a meter house, and a generator house.	Arcadis/Geraghty & Miller, <i>Material Removal Activities Former Manufactured Gas Plant, Douglas, Arizona</i> (June 5, 1998) ³ .

Notes:

¹ Based on available site investigation report (Geraghty & Miller, *Site Investigation Former Manufactured Gas Plant, Douglas, Arizona*, July 14, 1996).

² Based on available Sanborn maps.

³ Based on available material removal activities (Arcadis/Geraghty & Miller, *Material Removal Activities Former Manufactured Gas Plant, Douglas, Arizona*, June 5, 1998).

⁴ Review of *Manufactured Gas Plant Sites in Arizona*, Draft Report for Discussion Purposes Only. Atlantic Environmental Services Inc. May 1992.

Table 1-2. Summary of Historical Analytical Data for Soil – Polynuclear Aromatic Hydrocarbons (PAHs)

						hthalas	thalen.	946		g /	hacas	ane ane	ranth,	²⁰ (g,h,j)peru.	riene	eup:	anthe	e de la comp		',2,3-cq/ _{Div-}	enene		
						VInap.	VIna _{p.}	hthyl	,hthe	seye.	a)ant	alpyn	ony(q	9.4.1)	k)mu _o	g g)(a,h)	thene	D	7,2,3	_{alene}	threr,	
			Sample	Depth	,	Meth	Meth	Jeuac	geua _c)thrac)ozu _e)ozu _ë)ozu _ë)ozu _e)ozu _t	hyse,	penza	'lorar,	,orer,	Jeno(Phtth	enar	rene
Location Residential SRL ³	Sample ID	Sample Type	Date	(ft bgs)'	Units ²	NE ⁶	\ \sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Ϋ́	/ ₹ 3,700	/ ₹ 22,000	6.9	/ ૹ <u>ૻ</u> 0.69	/ 🎳 6.9	NE	/ අ 69	/ ご 680	0.69	2,300	2,700	6.9	/ ॐ 56	/ å	2,300
Non-Residential						NE	NE NE	NE NE	29,000	240,000	21	2.1	21	NE NE	210	2,000	2.1	22,000	26,000	21	190	NE NE	29,000
SS-1	SS-1	Discrete	10/26/95	Surface	mg/kg			1.5	1.7U	1.6	17D	33D	21D	40D	11D	20D	0.75	69D	0.63	25D	1.7	28D	78D
SS-2	SS-2	Discrete	10/26/95	Surface	mg/kg			0.17U	0.1U7	0.084	1.0D	1.8D	1.5D	2.3D	0.64D	1.1D	0.13	3.9D	0.08	2.1D	0.15	2.4D	4.6D
SS-3	SS-3	Discrete	10/25/95	Surface	mg/kg			0.17U	0.1U7	0.0083U	0.038	0.071	0.052	0.094	0.044	0.017U	0.034U	0.16	0.017U	0.04	0.083U	0.085	0.15
SS-4	SS-4	Discrete	10/26/95	Surface	mg/kg			0.42	0.1U7	0.32	2.9D	4.7D	4.6D	9.8D	1.8D	3.4D	0.46	12D	0.41	8.2D	1.1	7.7D	13D
SS-5	SS-5	Discrete	10/26/95	Surface	mg/kg			32	1.3	17D	160D	230D	170D	99D	93D	150D	8.6D	630D	15D	160D	13	280D	740D
SS-6	SS-6	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.048	3.6D	3.4D	8.8D	8.8D	4.5D	11D	1.0D	27D	0.033	13D	0.095	18D	18D
SS-7	SS-7	Discrete	10/25/95	Surface	mg/kg			0.19	0.17U	0.36	4.2D	5.6D	5.2D	9.8D	2.3D	5.6D	0.65D	15D	0.18	8.6D	1	9.3D	16D
SS-8	SS-8	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.047	0.14	0.37	0.26	0.46	0.17	0.19	0.034	0.7	0.017U	0.2	0.083U	0.43	0.91D
SS-9	SS-9	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.27	0.62D	0.41	0.94D	0.3	0.37	0.063	1.1D	0.038	0.37	0.11	0.83D	1.3D
SS-10	SS-10	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.70D	1.3D	1.0D	2.0D	0.44D	0.90D	0.16	2.5D	0.034	1.8D	0.32	1.5D	2.8D
SS-11	SS-11	Discrete	10/25/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.049	0.11	0.074	0.12	0.063	0.064	0.034U	0.19	0.017U	0.048	0.083U	0.096	0.2
SS-12	SS-12	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.075	0.045	0.14	0.1	0.025	0.13	0.039	0.1	0.017U	0.026	0.083U	0.038	0.052
SS-13	SS-13	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.087	0.14	0.14	0.17	0.078	0.12	0.034U	0.19	0.017U	0.17	0.083U	0.076	0.065
SS-14	SS-14	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.046	0.38	0.76D	0.61	1.1D	0.28	0.49D	0.083	1.8D	0.024	0.92D	0.086	0.83D	2.0D
SB-1	SB-1 4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg			0.17U	0.17U	0.0083U	0.072	0.17	0.096	0.21	0.056	0.086	0.034U	0.25	0.017U	0.1	0.083U	0.11	0.31
SB-1	SB-1 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-2	SB-2 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-3	SB-3 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-4	SB-4 0-1.5	Discrete	10/25/95	0-1.5	mg/kg			0.59	0.17U	0.66	2.1D	4.5D	3.2D	5.4D	1.1D	2.4D	0.24D	13D	0.017U	4.5D	1.1	9.4D	14D
SB-4	SB-4 3-4.5	Discrete	10/25/95	3.0-4.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-4	SB-4 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-5 SB-6	SB-5 9-10.5 SB-6 9-10.5	Discrete	10/25/95 10/25/95	9.0-10.5	mg/kg			0.17U 0.17U	0.17U 0.17U	0.0083U	0.017U	0.017U	0.017U 0.017U	0.017U 0.017U	0.017U	0.017U	0.034U	0.017U 0.047	0.017U 0.017U	0.017U	0.083U	0.0083U 0.0083U	0.017U 0.03
SB-6	SB-6 15-16.5	Discrete Discrete	10/25/95	9.0-10.5 15.0-16.5	mg/kg mg/kg			0.17U	0.17U	0.0083U 0.0083U	0.017U 0.017U	0.017U 0.017U	0.017U	0.017U	0.017U 0.017U	0.017U 0.017U	0.034U 0.034U	0.047 0.017U	0.017U	0.017U 0.017U	0.083U 0.083U	0.0083U	0.03 0.017U
SB-7	SB-7 10-11.5	Discrete	10/25/95	10.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-7	SB-7-Dup-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-8	SB-8 9-10	Discrete	10/25/95	9-10.0	ma/ka			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-8	SB-8 20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-9	SB-9 3-4	Discrete	10/26/95	3.0-4.5	mg/kg			0.17U	0.17U	0.0093	0.05	0.12	0.079	0.16	0.052	0.066	0.034U	0.17	0.017U	0.093	0.083U	0.058	0.2
SB-9	SB-9 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-9	SB-9 15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-9	SB-9 Dup-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-10	SB-10 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
Debris Pile	Debris A-2	Composite	08/19/96	Surface	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.3	0.7	0.3	0.6	0.2	0.2	0.25U	0.7	0.25U	0.4	1.0U	0.3	0.9
Debris Pile	Debris B-2	Composite	08/19/96	Surface	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.3	0.6	0.3	0.5	0.1	0.2	0.25U	0.7	0.25U	0.4	1.0U	0.2	0.8
Debris Pile	Debris C-2	Composite	08/19/96	Surface	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.3	0.6	0.3	0.7	0.2	0.2	0.25U	0.7	0.25U	0.4	1.0U	0.3	0.7
Debris Pile	Debris D-2	Composite	08/19/96	Surface	mg/kg	0.2U	0.2U	0.5U	0.2U	0.02U	0.03	0.07	0.03	0.08	0.02	0.03	0.05U	0.08	0.05U	0.05	0.2U	0.03	0.09
Debris Pile	Debris E-2	Composite	08/19/96	Surface	mg/kg	0.2U	0.2U	0.5U	0.2U	0.02U	0.05	0.14	0.07	0.21	0.03	0.04	0.05U	0.17	0.05U	0.11	0.2U	0.09	0.19
SS-4/SS-7	SS4-7	Composite	08/21/96	1	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.2	0.4	0.2	0.5	0.1	0.2	0.25U	0.7	0.25U	0.3	1.0U	0.5	0.8
SS-5	SS5 Comp	Composite	08/19/96	1	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.2	0.5	0.2	0.6	0.1	0.2	0.25U	0.7	0.25U	0.3	1.0U	0.3	0.7
SS-6	SS6 PAH Comp	Composite	08/19/96	1	mg/kg	2.0U	2.0U	5.0U	2.0U	0.2	1.3	2.9	1.3	2.6	0.8	1.2	0.5U	4.7	0.5U	1.8	2.0U	2.1	3.8
PUR N	PUR N-B	Composite	08/22/96	1	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.2	0.4	0.2	0.5	0.1	0.2	0.25U	0.7	0.25U	0.2	1.0U	0.2	0.8

Table 1-2. Summary of Historical Analytical Data for Soil – Polynuclear Aromatic Hydrocarbons (PAHs)

Location Residential SRL ^{3,} /		Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	H H Thethythaphthai	M S-Methythabhthale.	M A Genaphilylene	3,700 Veenaphihene	22,000 240,000	6.9	0.69	6.9	TE Benzolg, hijbenu.	69 210	680 2,000	0.69	2,300	2,700 26,000	6.9 21	elestration en element de la company de la c	M M Phenanthrene	2,300 29,000
Purifier	SUBPUR B	Composite	08/22/96	1	mg/kg	0.2U	0.2U	0.5U	0.2U	0.02U	0.02U	0.02U	0.05U	0.05U	0.02U	0.02U	0.05U	0.05U	0.05U	0.02U	0.2U	0.02U	0.02U
SS-6 Area - E	SS6WC	Composite	11/4/96	2	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
SS-6 Area -C	SS6CC	Composite	11/4/96	2	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
SS-6 Area - E	SS6EC	Composite	11/4/96	2	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
PUR E	PURE31	Composite	11/5/96	1	mg/kg			0.1U	0.1U	0.22	0.56	0.64	0.33	1.1	0.48	0.34	0.1U	0.8	0.1U	0.64	0.1U	0.1U	1.1
PUR S	PURS31	Composite	11/5/96	1	mg/kg			1.2	0.26	9.7	6.9	6.6	4.5	5.9	3.7	3.6	0.48	12	0.93	5.4	0.33	2.08	0.1U
PUR S	PURS32	Composite	11/5/96	1	mg/kg			0.27	0.1U	0.77	1.1	1.8	0.76	1.8	0.8	0.57	0.17	1.7	0.1U	1.4	0.1U	0.12	2.1
PUR S	PURS41	Composite	11/5/96	2.5	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
PUR S	PURS42	Composite	11/5/96	2.5	mg/kg			0.45	0.1U	2.1	1.3	1.5	0.79	1.6	0.91	0.79	0.1U	2.8	0.13	1.0	0.88	0.20	3.4
West Fence	WESTFENCE	Composite	11/5/96	Surface	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U

Notos:

UJ = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

D = Sample was diluted for analysis

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³ Residential SRLs represent the value for 10⁻⁵ carcinogenic risk for compounds identified as carcinogens in Appendix A of Title 18, Chapter 7.

⁴ Cells highlighted in yellow indicate that the compound exceeded the 2007 residential soil remediation level (SRL).

⁵ Cells highlighted in **red** indicate the compound exceeded the 2007 non-residential SRL.

⁶ NE = Standard not established

⁷ -- = Sample not analyzed for this compound

U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

Table 1-3. Summary of Historical Analytical Data for Soil – TPHs and Fuel Hydrocarbons

<u> </u>	ner MGP Site, Doເ						2 /		/
						^{TRPH} (EP _A Mo	-emod 418.1)	Fuel Hydrocarbon	Fuel Hydrocart
				Sample			1yar	1yar	1 John
Location	Sample ID	Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	Agy	/ /en	/ Ien	/ /en
SB-1	SB-1 1.5-3	Discrete	10/25/95	1.5-3.0	mg/kg	780			
SB-1	SB-1 4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg	20U			
SB-1	SB-1 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20U			
SB-1	SB-1 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-2	SB-2 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	20U			
SB-3	SB-3 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	20U			
SB-4	SB-4 0-1.5	Discrete	10/25/95	0-1.5	mg/kg	4000			
SB-4	SB-4 0-1.5 SB-4 3-4.5	Discrete	10/25/95	3.0-4.5	mg/kg	24			
SB-4	SB-4 9-10.5	Discrete	10/25/95	9.0-10.5		20U			
SB-4	SB-4 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
		Discrete			mg/kg	20U			
SB-5	SB-5 9-10.5		10/25/95	9.0-10.5	mg/kg				
SB-6	SB-6 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20U			
SB-6	SB-6 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-7	SB-7 10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	20U			
· · · · · · · · · · · · · · · · · · ·	SB-7-Dup-10-11.5		10/25/95	10.0-11.5	mg/kg	20U			
SB-7	SB-7 15.0-16	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-8	SB-8 9-10	Discrete	10/25/95	9.0-10.0	mg/kg	26			
SB-8	SB-8 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-8	SB-8 20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg	20U			
SB-9	SB-9 0-1.5	Discrete	10/25/95	0-1.5	mg/kg	400U			
SB-9	SB-9 3-4	Discrete	10/26/95	3.0-4.5	mg/kg	20U			
SB-9	SB-9 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	20U			
SB-9	SB-9 15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	20U			
	SB-9-Dup-15-16.5		10/26/95	15.0-16.5	mg/kg	20U			
SB-10	SB-10 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	20U			
Oil Sump ⁴	Sludge	Discrete	12/27/95		mg/kg	477,000	7300	270000	200000
SS-1 Area ⁵	SS-1	Composite	6/1/1996	Surface	mg/kg	40			
S-4/SS-7 Area ^{5,6}	SS4-7	Composite	6/1/1996	Surface	mg/kg	270			
SS-5 Area ⁵	SS5	Composite	6/1/1996	Surface	mg/kg	480			
SS-6 Area ⁵	SS6	Composite	6/1/1996	Surface	mg/kg	780			
SS-11/SS-12 Area ^{5,7}	BACK SS11-12	Composite	6/1/1996	Surface	mg/kg	110			
Multiple ^{5,8}	COMP	Composite	6/1/1996	Surface	mg/kg	260			
Debris 1	Debris 1	Composite	08/19/96	Surface	mg/kg	20U			
Debris 2	Debris 2	Composite	08/19/96	Surface	mg/kg	23			
Debris 3	Debris 3	Composite	08/19/96	Surface	mg/kg	50			
Debris 3	Debris 3B	Composite	08/20/96		mg/kg	20U			
Debris 4	Debris 4	Composite	08/19/96	Surface	mg/kg	590			
Debris 4	Debris 4B	Composite	08/20/96	>1	mg/kg	20U			
Debris 5	Debris 5	Composite	08/19/96	Surface	mg/kg	20U			
Debris 6	Debris 6	Composite	08/19/96	Surface	mg/kg	20U			
Debris 7	Debris 7	Composite	08/19/96	Surface	mg/kg	20U			
Debris 8	Debris 8	Composite	08/19/96	Surface	mg/kg	20U			
Debris 9	Debris 6	Composite	08/19/96	Surface		73			
		· ·			mg/kg				
Debris 9	Debris 9B	Composite	08/20/96	>1	mg/kg	20U			

Table 1-3. Summary of Historical Analytical Data for Soil – TPHs and Fuel Hydrocarbons

Location	Sample ID	Sample Type	Sample Date	Sample Depth (ft bgs) ¹	Units²	ТВРН (ЕРА МО	Fuel Hydrocs	Fuel Hydrocarbon	Fuel Hydrocarbon
Debris 10	Debris 10	Composite	08/19/96	Surface	mg/kg	20U			
Debris 11	Debris 11	Composite	08/19/96	Surface	mg/kg	20U			
Debris 12	Debris 12	Composite	08/19/96	Surface	mg/kg	24			
Debris 13	Debris 13	Composite	08/19/96	Surface	mg/kg	27			
Debris 14	Debris 14	Composite	08/19/96	Surface	mg/kg	20U			
Debris 15	Debris 15	Composite	08/19/96	Surface	mg/kg	20U			
Debris 16	Debris 16	Composite	08/19/96	Surface	mg/kg	20U			
Debris 17	Debris 17	Composite	08/19/96	Surface	mg/kg	20U			
Debris 18	Debris 18	Composite	08/19/96	Surface	mg/kg	28			
Debris 19	Debris 19	Composite	08/20/96	Surface	mg/kg	60			
Debris 19	Debris 19B	Composite	08/20/96	>1	mg/kg	20U			
Debris 20	Debris 20	Composite	08/20/96	Surface	mg/kg	20U			
SS4-7	SS4-7	Composite	08/21/96	1	mg/kg	20U			
SS5	SS5 Comp	Composite	08/19/96	1	mg/kg	20U			
SS-6 Area - E	SS6E Comp	Composite	08/19/96	1	mg/kg	39			
SS-6 Area - W	SS6W Comp	Composite	08/19/96	1	mg/kg	42			
SS-6 Area - C	SS6CENT Comp	Composite	08/19/96	1	mg/kg	53			
PUR N	PUR N	Composite	08/20/96	Surface	mg/kg	71			
PUR N	PUR N	Composite	08/21/96	1	mg/kg	140			
PUR N	PUR E	Composite	08/20/96	Surface	mg/kg	520			
PUR N	PUR W	Composite	08/20/96	Surface	mg/kg	150			
PUR N	PUR S	Composite	08/20/96	Surface	mg/kg	73			
Purifier	Subpurifier	Composite	08/21/96	>1	mg/kg	57			

Notes:

UJ = The analyte was analyzed for but was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³-- = Sample not analyzed for this compound

⁴ Sludge sample was collected for waste disposal purposes. Metals reported in milligrams per liter; benzene, toluene, ethylbenzene, and xylene reported in micrograms per liter

⁵ Sampling location indicates area surrounding former October 1995 sampling Location (SS-x) where composite sample was collected.

⁶ Composite sample from areas surrounding SS-4 and SS-7

 $^{^{\}rm 7}$ Composite sample from areas surrounding SS-11 and S-S12

 $^{^{\}rm 8}\,{\rm Sample}$ COMP is a composite sample of samples collected at the Site on 6/1/1996

U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

Table 1-4. Summary of Historical Analytical Data for Soil - BTEX Compounds

						Joe Joe	Ethylbenzen	9	Xylenes, total	m/p-Xyleng	0-Xylenes	butyn-tent.
	Sample	Sample	Sample	Depth	11-24-2	Велгеле	1/9/1/9	Toluene	lene.	1 3	/ _{V/e}	1 1/2/2
Location	ID	Туре	Date	(ft bgs) ¹	Units ²	/ 8g	100	/ ½	/ ₹	<i>\ E</i>	3	N 10
Residential SF					mg/kg	0.65	400	650	270	270	270	210
Non Residenti					mg/kg	1.4	400	650	420	420	420	420
SB-1	SB1-1.5-3	Discrete	10/25/95	1.5-3.0	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-1	SB1-4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-1	SB-1-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-1	SB1-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-2	SB2-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-3	SB3-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB4-0-1.5	Discrete	10/25/95	0-1.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB-4-3-4.5	Discrete	10/25/95	3.0-4.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB-4-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB4-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-5	SB5-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-6	SB6-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-6	SB6-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-7	SB7-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-7	SB7-Dup-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-7	SB7-15.0-16	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-8	SB-8-9-10	Discrete	10/25/95	9.0-10.0	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-8	SB8-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-8	SB8-20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-0-1.5	Discrete	10/25/95	0-1.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-3-4	Discrete	10/26/95	3.0-4.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-Dup-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-10	SB10-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
Oil Sump ⁵	Sludge	Discrete	12/27/95	NA	μg/L	10U	22.5U	22.5U	180			
SS-1 Area ⁶	SS-1	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-4/SS-7 Area ^{6,7}	SS4-7	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-5 Area ⁶	SS5	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-6 Area ⁶	SS6	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-11/SS-12 Area ^{6,8}	BACK SS11-12	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
Multiple ^{6,9}	COMP	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U

Notes:

- -- = Sample not analyzed for this compound
- U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.
- UJ = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

 However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³ Cells highlighted in yellow indicate that the compound exceeded the 2007 residential soil remediation level (SRL).

 $^{^{\}rm 4}$ Cells highlighted in ${\rm red}$ indicate the compound exceeded the 2007 non-residential SRL.

⁵ Sludge sample was collected for waste disposal purposes. Benzene, toluene, ethylbenzene, and xylene reported in micrograms per liter. VOCs were analyzed for and not detected in the Sludge sample.

⁶ Sampling location indicates area surrounding former October 1995 sampling Location (SS-x) where composite sample was collected.

 $^{^{\}rm 7}$ Composite sample from areas surrounding SS-4 and SS-7

⁸ Composite sample from areas surrounding SS-11 and S-S12

⁹ Sample COMP is a composite sample of samples collected at the Site on 6/1/1996

Table 1-5. Summary of Historical Analytical Data for Soil – Metals and Reactive Sulfide APS Douglas Former MGP Site, Douglas, Arizona

711 C Boagiao i oi	mer wer site, bougi	ao, 71112011a				- /				/					
Location	Sample ID	Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	Arsenic	Barium	Садтіит	Сһготіит	r _{ead}	Mercury	Selenium	Silver	Cyanide	Reactive Sulfide
Residential SRLs	3				mg/kg	10	15000	39	120000	400	23	390	390	1200	NA
Non-Residential					ma/ka	10	170000	510	1000000	800	310	5100	5100	12000	NA
SS-1	SS-1	Discrete	10/26/95	Surface	mg/kg	14.8	71	2	13.1	75.1	0.1U	1.5U	1.0U	0.5U	
SS-2	SS-2	Discrete	10/26/95	Surface	mg/kg	13.2	268	3	9.2	81	0.1U	1.5U	1.0U	0.5U	
SS-3	SS-3	Discrete	10/25/95	Surface	mg/kg	17.9	1.7	1.8	25.6	9.6	0.1U	8U	1.0U	1.5	
SS-4	SS-4	Discrete	10/26/95	Surface	mg/kg	28.8	178	9.3	9.6	388	0.1	3U	1.1	3.3	
SS-5	SS-5	Discrete	10/26/95	Surface	mg/kg	30.2	123	2.3	7.3	280	0.1	1.5U	1.2	0.5	
SS-6	SS-6	Discrete	10/26/95	Surface	mg/kg	83.5	68	1.4	96.1	2,530	0.2	13U	1.9	22.8	
SS-7	SS-7	Discrete	10/25/95	Surface	mg/kg	33.5	82.7	2.4	12.1	2,290	0.2	4U	1.8	14.8	
SS-8	SS-8	Discrete	10/26/95	Surface	mg/kg	9.7	76.1	1.1	5.3	58.2	0.1U	2U	1.0U	0.5U	
SS-9	SS-9	Discrete	10/26/95	Surface	mg/kg	11.4	140	4.3	5.4	85.9	0.1U	1.5U	1.0U	0.5U	
SS-10	SS-10	Discrete	10/26/95	Surface	mg/kg	14.9	142	5.8	6.7	152	0.2	1.0U	1.0U	0.5	
SS-11	SS-11	Discrete	10/25/95	Surface	mg/kg	16.8	91.9	2.6	6.6	73.5	0.1U	1.0U	1.0U	0.5U	
SS-12	SS-12	Discrete	10/26/95	Surface	mg/kg	9.5	110	0.8	4.6	52.8	0.1U	1.0U	1.0U	0.5U	
SS-13	SS-13	Discrete	10/26/95	Surface	mg/kg	10.4	166	2	8.9	70.7	0.1U	1.0U	1.0U	0.5U	
SS-14	SS-14	Discrete	10/26/95	Surface	mg/kg	8.9	195	1.7	6.3	68.2	0.1U	1.0U	1.0U	0.5U	
SB-1	SB-1 4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg	34.1	29.8	0.5U	14.9	12.1	0.1U	1.0U	1.0U	0.5U	
SB-1	SB-1 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20	36.6	0.5U	4.8	10.8	0.1U	1.0U	1.0U	0.5U	
SB-2	SB-2 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	42.1	8.9	0.5U	14.9	9.5	0.1U	1.0U	1.0U	0.5U	
SB-3	SB-3 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	19.9	96.2	0.5U	4.2	10.4	0.1U	1.0U	1.0U	0.5U	
SB-4	SB-4 0-1.5	Discrete	10/25/95	0-1.5	mg/kg	18.3	68.4	1.1	6.1	80.6	0.1U	1.0U	1.0U	0.7	
SB-4	SB-4 3-4.5	Discrete	10/25/95	3.0-4.5	mg/kg	10	88.8	0.5U	4.6	5.2	0.1U	1.0U	1.0U	0.5U	
SB-4	SB-4 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	26	30.8	0.5U	7.2	15.5	0.1U	1.0U	1.0U	0.5U	
SB-5	SB-5 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	15.8	24.6	0.5U	4	7.6	0.1U	1.0U	1.0U	0.8	
SB-6	SB-6 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	22.6	23	0.5U	3.1	9	0.1U	1.0U	1.0U	22.7	
SB-6	SB-6 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	19.1	40	0.5U	42	4.5	0.1U	1.0U	1.0U	15.9	
SB-7	SB-7 10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	18.3	197	0.5U	5.6	11	0.1U	1.0U	1.0U	0.5U	
SB-7Dup	SB-7-Dup-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	16.3	100	0.5U	12.2	5.3	0.1U	1.0U	1.0U	4	
SB-8	SB-8 9-10	Discrete	10/25/95	9.0-10.0	mg/kg	27.7	37	0.5U	12	17.4	0.1U	1.0U	1.0U	0.5U	
SB-8	SB-8 20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg	8.7	26.3	0.5U	33	6.9	0.1U	1.0U	1.0U	10	
SB-9	SB-9 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	19.9	109	0.5U	9.3	10.1	0.1U	1.0U	1.0U	0.5U	
SB-9	SB-9 15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	15.1	38	0.5U	4.6	8.9	0.1U	1.0U	1.0U	0.5U	
SB-9Dup	SB-9-Dup-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	14.2	25.7	0.5U	2.6	7.5	0.1U	1.0U	1.0U	0.5U	
SB-10	SB10-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	15.3	23.4	0.5U	2.7	6.4	0.1U	1.0U	1.0U	0.5U	
Oil Sump ⁶	Sludge	Discrete	12/27/95	NA	mg/l	1.0UT	0.6T	0.5UT	0.5UT	1.7T	0.1UT	1.0UT	1.0UT		
Purifier	Purifier	Composite	3/20/96	<0.5	% sulfur										12.70
SS-1 Area ⁷	SS-1	Composite	6/1/1996	Surface	mg/kg	10U/0.10UT	120	4.4	10	410	0.08U	5.0U	2.5U		
SS-4/SS-7															$\overline{}$
Area ^{7,8}	SS4-7	Composite	6/1/1996	Surface	mg/kg	13/0.10UT	110	2.5U	8.1	140	0.08U	5.0U	2.5U		
SS-5 Area ⁷	005	0	0/4/4000	Of		4011/0 40117	0.5	0.511	0.0	00	0.0011	5.011	0.511		-
	SS5	Composite	6/1/1996	Surface	mg/kg	10U/0.10UT	85	2.5U	9.2	86	0.08U	5.0U	2.5U		
SS-6 Area ⁷	SS6	Composite	6/1/1996	Surface	mg/kg	19/0.10UT	100	3.1	20	1,100/0.10UT	0.13	5.0U	2.5U		
SS-11/SS-12 Area ^{7,9}	BACK SS11-12	Composite	6/1/1996	Surface	mg/kg	10U/0.10UT	98	2.5U	6.7	75	0.08U	5.0U	2.5U		
Multiple ^{7,10}	COMP	Composite	6/1/1996	Surface	mg/kg	12/0.10UT	92	2.5U	10	250	0.08U	5.0U	2.5U		
Debris A	Debris A	Composite	08/19/96	Surface	mg/kg	18				44					
Debris B	Debris B	Composite	08/19/96	Surface	mg/kg	14				13					
Debris C	Debris C	Composite	08/19/96	Surface	mg/kg	19				100					
Debris D	Debris D	Composite	08/19/96	Surface	mg/kg	17				12					
Debris E	Debris E	Composite	08/20/96	Surface	mg/kg	17				41					
SS-4/SS-7 Area	SS4-7	Composite	08/21/96	>1	mg/kg	15				50					
SS-5 Area7	SS5 Comp	Composite	08/19/96	>1	mg/kg	18				11					

Table 1-5. Summary of Historical Analytical Data for Soil - Metals and Reactive Sulfide

Location	Sample ID	Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	A_{rsenic}	Barium	C_{admium}	Съпотіит	, pead	Mercury	Selenium	Silver	Суапіде	Reactive Sulfide
Residential SRLs	3				mg/kg	10	15000	39	120000	400	23	390	390	1200	NA
Non-Residential S	SRLs ⁴				mg/kg	10	170000	510	1000000	800	310	5100	5100	12000	NA
SS-6 Area - E	SS6E Comp	Composite	08/19/96	>1	mg/kg	18				11					
SS-6 Area - W	SS6W Comp	Composite	08/19/96	>1	mg/kg	24				217					
SS-6 Area - C	SS6CENT Comp	Composite	08/19/96	>1	mg/kg	23				199					
PUR N	PUR N	Composite	08/21/96	Surface	mg/kg	11				91					
Purifier	Subpurifier	Composite	08/21/96	Below Pad	mg/kg	15				15					

Notes:

U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

UJ = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation

T = toxicity characteristic leaching procedure (TCLP) used

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³ Cells highlighted in yellow indicate that the compound exceeded the 2007 residential soil remediation level (SRL).

⁴ Cells highlighted in red indicate the compound exceeded the 2007 non-residential SRL.

⁵ -- = Sample not analyzed for this compound.

⁶ Sludge sample was collected for waste disposal purposes. Metals reported in milligrams per liter.

⁷ Sampling location indicates area surrounding former October 1995 sampling Location (SS-x) where composite sample was collected. Results presented as total metals/TCLP metals.

⁸ Composite sample from areas surrounding SS-4 and SS-7

⁹Composite sample from areas surrounding SS-11 and S-S12

¹⁰ Sample COMP is a composite sample of samples collected at the Site on 6/1/1996

Table 1-6. Soil Boring Locations and Sample Depths from Previous Investigations

Sample				Sample Depth	
Location	Drilling Method	Sample Date	Sample Location	(ft bgs)	Reference
SB-1	Hollow Stem Auger Boring	10/25/1995	West of generator house	4.5 to 6; 9 to 10.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-2	Hollow Stem Auger Boring	10/26/1995	North of south gas holder near meter house	9 to 10.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-3	Hollow Stem Auger Boring	10/26/1995	Southeast of the north gas holder	9 to 10.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-4	Hollow Stem Auger Boring	10/25/1995	West of the north gas holder near small purifiers	0 to 1.5; 3 to 4.5; 9 to 10.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-5	Hollow Stem Auger Boring	10/25/1995	North of the former generator house	9 to 10.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-6	Hollow Stem Auger Boring	10/25/1995	West of the oil sump	9 to 10.5; 15 to 16.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-7	Hollow Stem Auger Boring	10/25/1995	Between oil sump and large purifier	10 to 11.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-8	Hollow Stem Auger Boring	10/25/1995	South of former generator house	9 to 10; 20 to 21.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-9	Hollow Stem Auger Boring	10/26/1995	Debris and cinder pile	3 to 4; 9 to 10.5; 15 to 16.5	1996 Site Investigation (Geraghty & Miller, 1997)
SB-10	Hollow Stem Auger Boring	10/26/1995	West of debris pile	9 to 10.5	1996 Site Investigation (Geraghty & Miller, 1997)

Notes:

ft bgs = feet below ground surface

 ${\it Table 2-1. Soil Boring Locations During Pre-design Testing Investigation}$

Location ID	Drilling Method	Total Depth of Boring (feet below ground surface)	Sample Location	Lab Analyses	Purpose
B-11	Hollow Stem Auger Boring	20	Gas Holder	PAHs, Metals, VOCs	Evaluate vertical extent of contamination under a former gas holder
B-12	Hollow Stem Auger Boring	25	Gas Holder	PAHs, Metals, VOCs	Evaluate vertical extent of contamination under a former gas holder
B-13	Hollow Stem Auger Boring	20	Meter House	PAHs, Metals, VOCs	Evaluate vertical extent of contamination under former meter house
B-14	Hollow Stem Auger Boring	20	Generator House	PAHs, Metals, VOCs	Evaluate vertical extent of contamination under east end of former generator house
B-15	Hollow Stem Auger Boring	15	Generator House	PAHs, Metals, VOCs	Evaluate vertical extent of contamination under north end of former generator house
B-16	Hollow Stem Auger Boring	20	Oil Sump	PAHs, Metals, VOCs	Evaluate vertical extent of contamination under former oil sump
B-17	Hollow Stem Auger Boring	20	Purifiers and PURS32/PURS42 location	PAHs, Metals, VOCs	Evaluate vertical extent of contamination west of former purifiers
B-18	Hollow Stem Auger Boring	15.5	Off Site	PAHs, Metals	Evaluate vertical and horizontal extent of contamination northeast of the Site ¹
B-19	Hollow Stem Auger Boring	20	Debris Pile	PAHs, Metals, VOCs	Evaluate the vertical extent of contamination at the former debris pile
B-20	Hollow Stem Auger Boring	20	North of Debris Pile	PAHs, Metals	Evaluate the vertical and horizonatl extent of contamination north of the former debris pile
B-21	Hollow Stem Auger Boring	25	North of Previous Investigation SS-5 Location	PAHs, Metals, VOCs	Evaluate lateral and vertical extent of contamination north of SS-5 location
B-22	Hollow Stem Auger Boring	15.5	South of Previous Investigation SS- 10 Location	PAHs, Metals	Evaluate lateral and vertical extent of contamination south of SS-10 location
B-23	Hollow Stem Auger Boring	20	North of Gas Holders east of SS-14 location	PAHs, Metals	Evaluate vertical and lateral extent of contamination north of the former gas holders
B-24	Hollow Stem Auger Boring	20	Purifiers	PAHs, Metals	Evaluate vertical and horizontal extent of contamination east of former purifiers
B-25*	Sonic Core Barrel Boring	50	Southwest of Debris Pile	PAHs, Metals, VOCs	Evaluate the lateral extent of contamination and groundwater near the western site extent ²
B-26*	Sonic Core Barrel Boring	50	South of the Gas Holders	PAHs, Metals	Evaluate the lateral extent of contamination and groundwater near the southern site extent
B-27 [*]	Sonic Core Barrel Boring	50	Off Site Southwest of Site	PAHs, Metals	Evaluate background metals and groundwater southwest of the Site
B-28	Hollow Stem Auger Boring	20	Off Site Southwest of Site	PAHs, Metals, VOCs	Evaluate background metals southwest of the Site
B-29	Hollow Stem Auger Boring	21	Off Site South of Site	PAHs, Metals, VOCs	Evaluate the lateral extent of contamination and background metals south of the Site
B-30	Hollow Stem Auger Boring	20	Off Site Northeast of Site	PAHs, Metals, VOCs	Evaluate background metals northeast of the Site
B-31	Hollow Stem Auger Boring	21	Off Site North of Site	PAHs, Metals	Evaluate background metals north of the Site
B-32	Hollow Stem Auger Boring	21	Off Site North of Site	PAHs, Metals	Evaluate background metals north of the Site
B-33	Hollow Stem Auger Boring	21	Off Site North of Site	PAHs, Metals	Evaluate background metals north of the Site
B-34	Hollow Stem Auger Boring	21	Off Site Northwest of Site	PAHs, Metals	Evaluate background metals northwest of the Site
B-35	Hollow Stem Auger Boring	21	Off Site West of Site	PAHs, Metals, VOCs	Evaluate background metals west of the Site ³

Notes:

 $^{^{\}rm 1}$ This location was moved in the field due to overhead power lines.

 $^{^{\}rm 2}$ This location was moved in the field off private property onto City of Douglas property.

³ This location was moved in the field to prevent drilling in the wash.

^{*} Borings B-25, B-26, and B-27 also included water analyses for PAHs, metals, and VOCs Lab Anaylses listed in this table do not include waste characterization.

Table 2-2. Summary of Geotechnical Results

Boring	Sample Depth	Dry Density	Moisture Content	Specific	Percent Passing No. 200		Atterberg Limits		Undrained	Shear Strength	USCS Classification	FOC (D2974)
	(ft bgs)	(pcf)	(%)	Gravity	(%)	Plastic Limit	Liquid Limit	Plasticity Index	Phi (degrees)	Cohesion (psi)		
	5-5.5	-	10.2	-	55	15	39	24			CL	-
B11	10-10.5	99.6	6.5	-	34	15	31	16	T=18.2, E=35.9	0	SC	-
	7.5-8	95.0	10.3	-	-	-	-	-	,		-	-
B12	15-15.5	98.6	9.6	-	22	24	55	31			SC	-
B13	2.5-3	_	8.4	-	41	_	_	-			_	_
	5-5.5	91.1	8.5	-	34	24	58	34			SC	-
B14	10-10.5	65.4	10.5	_	67	19	42	23			CL	_
B15	7.5-8	101.6	5.1	-	26	17	31	14			SC	_
	2.5-3	-	8.8	-	40	17	50	33			SC	_
B19	7.5-8	96.6	11.1	-	67	19	57	38			CH	-
	5-5.5	98.7	9.1	-	37	17	36	19			SC	-
B21	19.5-20	94.8	8.3		41	16	37	21			SC	
	2.5-3	-	7.0		51	17	38	21			CL	
B22	5-5.5	-	7.0	-	71	16	43	27		1	CL	<u> </u>
DZZ	10-10.5	-	5.8	-	28	16	32	16		1	SC	-
	5-5.5	92.3	13.6	-	43	18	44	26		1	SC	
B24		92.3	13.6	-	22	NP	NV	NP		 		
	19.5-20			-							SM	
	5-5.5	77.2	8.2		40	21	46	25			SC SC	
	7.5-8	-	-	2.622	41	15	24	9			-	2.5
B25	10-10.5	108.1	6.0	2.654	34	-	-	-			-	1.3
	20-20.5	104.3	7.2	2.637	25	22	37	15			SC	1.2
	30-30.5	-	-	2.624	-	-	-	-			-	5.8
	40-40.5	80.9	39.1	-	68	-	-	-			-	
	5-5.5	88.2	8.1	2.641	37	-	-	-			-	1.5
	7.5-8	-	-	2.686	-	-	-	-			-	1.7
B26	10-10.5	-	-	2.600	-	-	-	-			-	1.0
	15-15.5	97.1	6.1	-	14	20	34	14			SC	-
	20-20.5	103.6	5.8	2.684	8.5	-	-	-			-	3.6
	30-30.5	88.2	23.2	2.636	75	22	87	65			CH	1.6
	7.5-8	106.2	13.6	-	55	17	47	30			CL	-
	10-10.5	-	-	2.646	-	-	-	-			-	1.5
B27	15-15.5	102.2	12.9	-	73	17	42	25			CL	-
	20-20.5	-	-	2.641	-	-	-	-			-	0.8
	30-30.5	-	-	-	-	-	-	-			-	0.5
B28	5-5.5	-	7.5	-	30	16	37	21			SC	-
	5-5.5	-	4.7	-	42	14	25	11			SC	-
B29	10-10.5	-	9.1	-	56	15	41	26			CL	-
	15-15.5	-	10.5	-	60	17	39	22			CL	-
	10-10.5	-	12.1	-	32	21	46	25			SC	-
B30	15-15.5	-	11.0	-	26	19	45	26		1	SC	-
	19.5-20	-	12.4	-	23	20	39	19			SC	-
B31	5-5.5	-	11.5	-	52	19	41	22			CL	-
B32	5-5.5	-	19.7	•	68	20	44	24			CL	-
B33	5-5.5	-	21.4	-	79	21	45	24			CL	-
	5-5.5	•	13.5	-	50	16	30	14			CL	-
B34	10-10.5	-	8.4	1	17	14	30	16			SC	-
	15-15.5	-	8.2	-	27	14	27	13			SC	-
	5-5.5	-	10.3	-	42	17	45	28			SC	-
B35	10-10.5	-	10.1	-	57	17	40	23			CL	-
	20-20.5	-	13.6	-	34	17	39	22			SC	-

Notes:

USCS Classification Codes

foc = fraction of organic carbon; analyzed by Xenco Laboratories

CL = lean, sandy, or silty clays

SC = sandy clays

SM = sandy silt

- = test not analyzed

For Shear Strength: T= Total, E= Effective

ft bgs = feet below ground surface pcf = pounds per cubic foot

APS Dougla	as Former MGP Site, Dougl	as, Arizona																		
														,ne			<u> </u>	<i>b</i> /		
								ene		ther	len _e	,he _n) 			لِمُ الْمُ			
						ene)rac) ue	Tanı) gery	Jan 1		If Pi			, ç, <i>a</i> ,			
					ther	thy.		- Ithus	⁹ // ₁₀	0000	h,i) _K	ony		hild	Jene Jene		2,3,	ene	lre _n	
					l lude	lyd _E	e ge)(a),)(a) _l	(9)	/ b)c)(k) ₁	, ene	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	antl,	ene) (1,	thal,	antt	
		Sample Depth			, u _e		/ Ith) Zu _e	Zug)ZU ₆	Zue	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ly skin	, per	/ မို	/ o _n	/ Jegu	- ψα _ε	hen	//rer
Location	Sample ID Soil Remediation Level	(ft bgs)	Sample Date	MG/KG	3700	NE NE	22000	6.0	0.69	6.9	/ Ø	60	680	0.69	2300	2700	6.9	56	NE NE	2300
	ential Soil Remediation Lev	rel		MG/KG	29000	NE NE	240000	6.9	2.1	21	NE NE	69 210	2000	2.1	22000	26000	21	190	NE NE	29000
	ter Protection Level			MG/KG	90300	29100	7.96E+08	4.85E+25	6.58E+84	2.44E+84	NE NE	9.87E+82	8.46E+58	1.23E+251	6.67E+12	2.82E+06	NE NE	113	NE	6.93E+19
	D-B11-1.0-1.5	1.0-1.5	30-Oct-19	MG/KG	0.00833 U	0.212	0.0609	0.232	0.39	0.575	0.39	0.168	0.37	0.00833 U	0.759	0.0223	0.317	0.0833 U	0.497	0.759
	D-B11-2.5-3.0	2.5-3.0	30-Oct-19	MG/KG	0.0266	1.14	0.275	1.1	1.66	2.9	1.59	0.729	1.79	0.0167 U	3.32	0.127	1.37	0.421	2.41	3.2
B11 B11	D-B11-5.0-5.5 D-B11-7.5-8.0	5.0-5.5 7.5-8.0	30-Oct-19 30-Oct-19	MG/KG MG/KG	0.0167 U 0.00834 U	0.189 0.202	0.0337 0.0472	0.132 0.175	0.215 0.28	0.388 0.465	0.303 0.309	0.0912 0.103	0.23 0.302	0.0167 U 0.00834 U	0.435 0.625	0.0167 U 0.0232	0.234 0.252	0.167 U 0.0834 U	0.261 0.446	0.436 0.606
B11	D-B11-10.0-10.5	10.0-10.5	30-Oct-19	MG/KG	0.00832 U	0.104	0.027	0.105	0.161	0.258	0.174	0.0642	0.167	0.00832 U	0.347	0.0135	0.142	0.0832 U	0.242	0.344
B11	D-B11-15.0-15.5	15.0-15.5	30-Oct-19	MG/KG	0.00166 U	0.0106	0.00256	0.0082	0.0126	0.0192	0.0129	0.00639	0.012	0.00166 U	0.0273	0.00166 U	0.0105	0.0166 U	0.0217	0.0284
B11 B12	D-B11-19.5-20.0 D-B12-1.0-1.5	19.5-20.0 1.0-1.5	30-Oct-19 31-Oct-19	MG/KG MG/KG	0.00167 U 0.0666 U	0.0104 0.471	0.00327 0.246	0.00982 0.811	0.0154 1.68	0.0205 1.75	0.0141 2.12	0.00677 0.52	0.0134 1.04	0.00167 U 0.0666 U	0.0343 3.68	0.00231 0.0716	0.0114 1.44	0.0167 U 0.666 U	0.0288 2.37	0.0378 4.4
	D-B12-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.00166 U	0.0049	0.0022	0.00481	0.00724	0.00736	0.00718	0.00198	0.00503	0.00166 U	0.0181	0.00212	0.00503	0.0166 U	0.0194	0.0216
	D-B12-5.0-5.5	5.0-5.5	31-Oct-19	MG/KG	0.0553 J	0.847 J	0.427 J	1.24 J	2.65 J	2.58 J	3.17 J	0.777 J	1.61 J	0.0334 U	5.61 J	0.134 J	2.16 J	0.775 J	3.83 J	6.53 J
B12 B12	D-FD02-103119 D-B12-7.5-8.0	5.0-5.5 7.5-8.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.0166 UJ 0.669 U	0.107 J 1.84 J	0.047 J 0.826 J	0.175 J 2.79 J	0.386 J 5.93 J	0.418 J 6.16 J	0.468 J 7.41 J	0.0903 J 2.26 J	0.228 J 3.59 J	0.0166 U 0.669 U	0.633 J 11.5 J	0.0166 UJ 0.669 U	0.317 J 5.01 J	0.166 UJ 6.69 U	0.367 J 7.2 J	0.777 J 14.2 J
B12	D-B12-10.0-10.5	10.0-10.5	31-Oct-19	MG/KG	0.0167 U	0.0512	0.0258	0.0968	0.18	0.193	0.216	0.0597	0.12	0.0167 U	0.368	0.0167 U	0.149	0.167 U	0.277	0.45
	D-B12-15.0-15.5	15.0-15.5	31-Oct-19	MG/KG	0.0167 U	0.0552	0.0225	0.091	0.148	0.172	0.175	0.0507	0.111	0.0167 U	0.338	0.0167 U	0.123	0.167 U	0.285	0.4
	D-B12-19.5-20 D-B12-24.5-25.0	19.5-20.0 24.5-25.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.0333 U 0.00187	0.398 0.0199	0.177 0.00743	0.693 0.0318	1.38 0.0675	1.49 0.0709	1.68 0.0806	0.453 0.0187	0.899 0.0416	0.165 0.00167 U	2.68 0.119	0.0597 0.00213	1.16 0.0541	0.333 U 0.0167 U	1.73 0.0593	3.18 0.15
B13	D-B13-1.0-1.5	1.0-1.5	31-Oct-19	MG/KG	0.544 J	14.2 J	6.63 J	17.5 J	28.9 J	26.4 J	30.3 J	7.09 J	20.7 J	0.0667 U	71 J	4.49 J	21.5 J	35.9 J	70.8 J	83.6 J
	D-B13-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.955	10.9	4.88 0.927	7.25 2.13	9.99 3.21	10	8.37	2.73	7.71	0.333 U	28.3	5.82	6.18	21	40.1	33.8
B13 B13	D-B13-5.0-5.5 D-B13-7.5-8.0	5.0-5.5 7.5-8.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.116 0.58	1.89 9.61	4.41	7.72	3.21 11.1	3.49 10.3	2.58 11	1.05 3.68	2.69 8.48	0.0666 U 1.26	7.83 33.8	0.669 4.75	2.04 7.63	2.6 25.1	8.36 41.3	8.76 39.3
B13	D-B13-10.0-10.5	10.0-10.5	31-Oct-19	MG/KG	0.0786	1.74	0.706	1.57	2.44	2.39	2.47	0.825	1.86	0.0334 U	5.87	0.643	1.78	3.23	6.56	7.21
	D-B13-15.0-15.5	15.0-15.5	31-Oct-19	MG/KG	0.00366	0.0655	0.0267 J	0.055 J	0.0817 J	0.0832 J	0.0836 J	0.0268 J	0.0607 J	0.00962 J	0.206 J	0.0284 J	0.0589 J	0.116	0.246 J	0.243 J
	D-FD01-103119 D-B13-19.5-20.0	15.0-15.5 19.5-20.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.00607 0.00265	0.106 0.0343	0.0495 J 0.0189	0.124 J 0.0355	0.184 J 0.0488	0.196 J 0.0504	0.173 J 0.0455	0.0654 J 0.0149	0.161 J 0.038	0.025 J 0.00166 U	0.491 J 0.128	0.0474 J 0.019	0.131 J 0.0329	0.168 0.0518	0.529 J 0.159	0.524 J 0.152
	D-B14-1.0-1.5	1.0-1.5	29-Oct-19	MG/KG	0.00167 U	0.00704	0.0102	0.017	0.0157	0.044	0.00841	0.0109	0.0228	0.00167 U	0.0393	0.00167 U	0.0081	0.0167 U	0.00637	0.0451
B14	D-B14-2.5-3.0	2.5-3.0 5.0-5.5	29-Oct-19	MG/KG	0.00832 U	0.00943 0.00422	0.00853	0.0144	0.0165 0.0162	0.0212	0.143 0.045	0.00832 U 0.00539	0.0129 0.00966	0.00832 U	0.0318 0.0213	0.00832 U	0.0209	0.0832 U	0.0201 0.0131	0.0343 0.0293
B14 B14	D-B14-5.0-5.5 D-B14-7.5-8.0	7.5-8.0	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.00167 U 0.00833 U	0.0694	0.00234 0.0886	0.00726 0.274	0.0162	0.0181 0.382	0.045	0.00539	0.00966	0.00167 U 0.00833 U	0.639	0.00167 U 0.00833 U	0.0191 0.219	0.0167 U 0.0833 U	0.0131	0.0293
B14	D-B14-10.0-10.5	10.0-10.5	29-Oct-19	MG/KG	0.00167 U	0.102	0.0437	0.131	0.159	0.223	0.157	0.0745	0.138	0.00167 U	0.292	0.00366	0.0959	0.0167 U	0.148	0.293
B14 B14	D-B14-15.0-15.5 D-B14-19.5-20.0	15.0-15.5 19.5-20.0	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.00166 U 0.00166 U	0.0475 0.0137	0.00412 0.00306	0.0104 0.00723	0.0123 0.0107	0.0181 0.0146	0.0135 0.0184	0.0048 0.00468	0.0101 0.00799	0.00166 U 0.00166 U	0.026 0.019	0.00166 U 0.00166 U	0.0074 0.00855	0.0166 U 0.0166 U	0.016 0.0114	0.0237 0.0218
	D-B15-1.0-1.5	1.0-1.5	01-Nov-19	MG/KG	0.00833 U	0.00833 U	0.00833 U	0.00723 0.00833 U	0.0107	0.0148	0.0193	0.00833 U	0.00799	0.00100 U	0.0147	0.00100 U	0.0102	0.0833 U	0.0114	0.0218
B15	D-B15-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.00833 U	0.00936 J	0.00878 J	0.0242 J	0.0329 J	0.0454 J	0.0228 J	0.00917 J	0.0341 J	0.00833 U	0.0644 J	0.00833 U	0.0149 J	0.0833 U	0.0504 J	0.0776 J
B15 B15	D-B15-5.0-5.5 D-FD03-110119	5.0-5.5 5.0-5.5	01-Nov-19 01-Nov-19	MG/KG MG/KG	0.0333 U 0.0333 U	0.051 0.128	0.0341 0.0837	0.131 0.286	0.201 0.467	0.227 0.519	0.149 0.365	0.0709 0.163	0.151 0.339	0.0333 U 0.0333 U	0.42 0.93	0.0333 U 0.0333 U	0.116 0.28	0.333 U 0.333 U	0.298 0.701	0.533 1.17
B15	D-B15-7.5-8.0	7.5-8.0	01-Nov-19	MG/KG	0.0334 U	0.327	0.221	0.658	1.07	1.27	0.778	0.324	0.777	0.0334 U	2.04	0.0844	0.611	0.334 U	1.54	2.57
	D-B15-10.0-10.5	10.0-10.5	01-Nov-19	MG/KG	0.0167 U	0.0489	0.03	0.0935	0.144	0.162	0.108	0.0546	0.106	0.0167 U	0.319	0.0167 U	0.0862	0.167 U	0.269	0.39
	D-FD04-110119 D-B15-14.5-15.0	10.0-10.5 14.5-15.0	01-Nov-19 01-Nov-19	MG/KG MG/KG	0.0333 U 0.00198	0.132 0.0326	0.0786 0.0242	0.275 0.0731	0.487 0.112	0.588 0.125	0.391 0.0892	0.148 0.0398	0.358 0.0856	0.0333 U 0.00166 U	1.12 0.217	0.0375 0.0105	0.301 0.0688	0.333 U 0.021	0.972 0.174	1.41 0.255
	D-B16-0-102719	0-0	27-Oct-19	MG/KG		0.011	0.0147	0.0245	0.0376	0.0742	0.0242	0.0169	0.0341	0.00333 U	0.0572	0.00333 U	0.0188	0.0333 U	0.0287	0.0642
	D-B16-2.5-3.0	2.5-3.0	29-Oct-19	MG/KG	0.0167 U	0.112	0.0737	0.238	0.433	0.486	0.377	0.146	0.326	0.00167 U	0.743	0.0249 J	0.263	0.167 UJ	0.526	0.917
	D-FD01-102919 D-B16-5.0-5.5	5.0-5.5 5.0-5.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.00833 U 0.00334 U	0.184 0.049	0.121 0.0309	0.338 0.092	0.641 0.174	0.766 0.202	0.468 0.123	0.178 0.0625	0.434 0.112	0.00833 U 0.00334 U	1.04 0.276	0.0441 J 0.00932	0.329 0.0892	0.136 J 0.0357	0.745 0.177	1.27 0.338
B16	D-B16-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	0.0167 U	0.39	0.257	0.83	1.31	1.41	1.39	0.363	0.975	0.171	2.54	0.102	0.944	0.321	1.67	3.16
	D-B16-10.0-10.5	10.0-10.5	29-Oct-19	MG/KG	0.00831 U	0.0573	0.0388	0.103	0.169	0.184	0.189	0.0487	0.116	0.00831 U	0.344	0.019	0.126	0.0831 U	0.303	0.418
	D-B16-15.0-15.5 D-FD02-102919	15.0-15.5 15.0-15.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.00167 U 0.00167 U	0.0368 J 0.0175 J	0.0245 J 0.013 J	0.0722 J 0.0406 J	0.13 J 0.0676 J	0.136 J 0.0674 J	0.113 J 0.056 J	0.0417 0.0269	0.0877 J 0.046 J	0.00167 U 0.00167 U	0.221 J 0.127 J	0.00932 J 0.00482 J	0.0802 J 0.0401 J	0.0279 J 0.0167 UJ	0.152 J 0.0837 J	0.281 J 0.155 J
B16	D-B16-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	0.00166 U	0.0241	0.0168	0.0505	0.0851	0.1	0.0731	0.0245	0.0589	0.00166 U	0.157	0.00625	0.0509	0.0188	0.113	0.191
	D-B17-0-102719	0-0 2.5-3.0	27-Oct-19	MG/KG	0.00834 U	0.0166	0.0217	0.0583 2.71	0.0835	0.135 4.89	0.05 6.71	0.0474 1.37	0.0819 3.29	0.00834 U	0.162 8.61	0.00834 U 0.21	0.0362 4.31	0.0834 U 0.405	0.105 4.56	0.181
	D-B17-2.5-3.0 D-B17-5.0-5.5	2.5-3.0 5.0-5.5	30-Oct-19 30-Oct-19	MG/KG MG/KG	0.0413 0.0668 U	0.808 0.414	0.61 0.0833	0.295	5.31 0.544	4.89 0.576	0.636	0.177	0.351	0.0167 U 0.0668 U	1.09	0.21 0.0668 U	0.451	0.405 0.668 U	0.808	10.6 1.32
B17	D-B17-7.5-8.0	7.5-8.0	30-Oct-19	MG/KG	0.027	0.689	0.316	1.27	2.33	2.37	1.84	0.799	1.6	0.21	4.63	0.159	1.35	0.967	3.16	5.8
	D-B17-10.0-10.5 D-B17-15.0-15.5	10.0-10.5 15.0-15.5	30-Oct-19 30-Oct-19	MG/KG MG/KG	0.00836 U 0.00167 U	0.204 0.00837	0.0934 0.00471	0.409 0.0191	0.747 0.0318	0.714 0.033	0.964 0.0285	0.246 0.0109	0.503 0.022	0.00836 U 0.00167 U	1.48 0.0671	0.0533 0.00211	0.633 0.0209	0.294 0.0167 U	1.1 0.0485	1.77 0.0815
	D-B17-19.5-20.0	19.5-20.0	30-Oct-19	MG/KG	0.00167 U	0.00837	0.00471 0.00167 U	0.00405	0.00705	0.033	0.0265	0.0109	0.022	0.00167 U	0.0671	0.00211 0.00167 U	0.0209	0.0167 U	0.0465	0.0161
B18	D-B18-0-102719	0-0	27-Oct-19	MG/KG	0.00834 U	0.00834 U	0.0096	0.0425	0.0583	0.0912	0.0386	0.0261	0.0591	0.00834 U	0.112	0.00834 U	0.0326	0.0834 U	0.057	0.1
	D-B18-2.0-2.5 D-B18-5.0-5.5	2.5-3.0 5.0-5.5	28-Oct-19 28-Oct-19	MG/KG MG/KG	0.00334 U 0.00333 U	0.00979 0.0179 J	0.00752 0.0165 J	0.0276 0.0643 J	0.0474 0.115 J	0.0698 0.179 J	0.0267 0.0661 J	0.019 0.0389 J	0.0356 0.0865 J	0.00334 U 0.00333 U	0.0757 0.181 J	0.00334 U 0.00333 U	0.0218 0.0541 J	0.0334 U 0.0333 U	0.0394 0.0744 J	0.105 0.25 J
	D-FD03-102819	5.0-5.5	28-Oct-19 28-Oct-19	MG/KG	0.00333 U 0.00166 U	0.0179 J 0.00166 U	0.0165 J 0.00166 U	0.0643 J 0.00597 J	0.115 J 0.0106 J	0.179 J 0.0149 J	0.0661 J 0.00603 J	0.0389 J 0.00427 J	0.0865 J 0.00728 J	0.00333 U 0.00166 U	0.181 J 0.0151 J	0.00333 U 0.00166 U	0.0541 J 0.00495 J	0.0333 U 0.0166 U	0.0744 J 0.00538 J	0.25 J 0.0224 J
B18	D-B18-7.0-7.5	7.0-7.5	28-Oct-19	MG/KG	0.00167 U	0.00688	0.00478	0.0195	0.0353	0.0528	0.021	0.0151	0.025	0.00167 U	0.0595	0.00167 U	0.0169	0.0167 U	0.026	0.0872
	D-B18-10.0-10.5 D-B18-15.0-15.5	10.0-10.5 15.0-15.5	05-Nov-19 05-Nov-19	MG/KG MG/KG	0.00166 U 0.00166 U	0.00166 U 0.00422	0.00166 U 0.00382	0.00166 U 0.0139	0.00166 U 0.0247	0.00166 U 0.0324	0.00166 U 0.0211	0.00166 U 0.0106	0.00166 U 0.0188	0.00166 U 0.00166 U	0.00166 U 0.0418	0.00166 U 0.00166 U	0.00166 U 0.0163	0.0166 U 0.0166 U	0.00166 U 0.0221	0.00166 U 0.0508
	D-B19-0-102719	0-0	27-Oct-19	MG/KG	0.00166 U 0.00334 U	0.00422	0.00382	0.0139	0.0322	0.0594	0.0211	0.0106	0.0100	0.00166 U	0.0418	0.00166 U	0.0163	0.0334 U	0.0221	0.0598
	D-B19-2.5-3.0	2.5-3.0	01-Nov-19		0.00166 U	0.00681	0.00472	0.0224	0.045	0.0611	0.0377	0.0185	0.0319	0.00166 U	0.0556	0.00166 U	0.0284	0.0166 U	0.0195	0.0644

APS Dougl	as Former MGP Site, Dougl	as, Arizona																		
					еле	Viene		1thracene	Тепе	^J oranthene	⁽⁾ perylene	Ioranthene		^{JA} nthracene	ne ne		3-c, d)Pyren.		97.6	
					Phth	phth	J. Cen	(a)ar,	(d/e)	Ψ(q),	(g,h,	(K)fl	ene	ζ(a,h,	Inthe	, ue	2(1,2,	haleı	Inthra	
Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	lcen _a	lcen _a	lnthra	ienzc	lenzc	^{genzc} c	^{Je} nzc	ienzc	hrys)iben	'luora	luore	тдел	laph _t	hena	yren
	Soil Remediation Level	(It bys)	Sample Date	MG/KG	3700	NE	22000	6.9	0.69	6.9	NE	69	680	0.69	2300	2700	6.9	56	NE NE	2300
	ential Soil Remediation Lev	rel		MG/KG	29000	NE	240000	21	2.1	21	NE	210	2000	2.1	22000	26000	21	190	NE	29000
	ter Protection Level	5.0-5.5	01-Nov-19	MG/KG	90300	29100 0.00167 U	7.96E+08	4.85E+25 0.00263	6.58E+84 0.00269	2.44E+84 0.00365	NE 0.00175	9.87E+82 0.00167 U	8.46E+58 0.00286	1.23E+251	6.67E+12 0.00517	2.82E+06	NE	113	NE 0.00287	6.93E+19 0.00536
B19 B19	D-B19-5.0-5.5 D-B19-7.5-8.0	7.5-8.0	01-Nov-19	MG/KG MG/KG	0.00167 U 0.00166 U	0.00167 0	0.00167 U 0.00564	0.00263	0.00269	0.0504	0.0375	0.00167 0	0.00284	0.00167 U 0.00166 U	0.0694	0.00167 U 0.00166 U	0.00167 U 0.0277	0.0167 U 0.0166 U	0.0369	0.0825
B19	D-B19-10.0-10.5	10.0-10.5	02-Nov-19	MG/KG	0.00167 U	0.0208	0.0149	0.0583	0.108	0.126	0.0928	0.032	0.072	0.00167 U	0.184	0.00526	0.0684	0.0167 U	0.107	0.226
B19 B19	D-B19-15.0-15.5 D-B19-19.5-20.0	15.0-15.5 19.5-20.0	02-Nov-19 02-Nov-19	MG/KG MG/KG	0.00303 0.00167 U	0.0549 0.0243	0.0236 0.0151	0.0643 0.055	0.0937 0.0947	0.11 0.104	0.0719 0.0802	0.0322 0.0357	0.0725 0.0666	0.00167 U 0.00167 U	0.213 0.178	0.0247 0.00782	0.0547 0.0594	0.0167 U 0.0167 U	0.253 0.131	0.257 0.225
B20	D-B20-0-102719	0-0	27-Oct-19	MG/KG	0.00167 U	0.0391	0.0281	0.129	0.23	0.286	0.19	0.0737	0.17	0.00167 U	0.419	0.00455	0.146	0.0238 J	0.17	0.516
B20 B20	D-FD01-102719 D-B20-2.5-3.0	0-0 2.5-3.0	27-Oct-19 30-Oct-19	MG/KG MG/KG	0.00166 U 0.0167 U	0.0484 0.0167 U	0.0397 0.0167 U	0.176 0.0502 J	0.309 0.0716 J	0.4 0.0991 J	0.229 0.0538 J	0.105 0.0371	0.233 0.0711 J	0.00166 U 0.0167 U	0.539 0.119 J	0.00524 0.0167 U	0.181 0.0454 J	0.0166 UJ 0.167 U	0.183 0.0505 J	0.681 0.111 J
B20	D-B20-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	0.00833 U	0.142	0.0822	0.66	1.34	1.34	1.57	0.398	0.833	0.175	1.62	0.0148	1.08	0.0833 U	0.559	2.2
B20 B20	D-B20-7.5-8.0 D-B20-9.5-10.0	7.5-8.0 9.5-10.0	02-Nov-19 02-Nov-19	MG/KG MG/KG	0.00167 U 0.00167 U	0.0043 0.00419	0.00636 0.00441	0.0261 0.0151	0.0401 0.0227	0.076 0.0347	0.0245 0.0171	0.0181 0.0107	0.037 0.0203	0.00541 0.00167 U	0.0599 0.039	0.00167 U 0.00167 U	0.0218 0.0142	0.0167 U 0.0167 U	0.019 0.0243	0.0552 0.0413
B20	D-B20-14.5-15.0	14.5-15.0	02-Nov-19	MG/KG	0.00167 U	0.00419 0.00167 U	0.00441 0.00167 U	0.00539	0.00886	0.0347	0.0066	0.00348	0.0203	0.00167 U	0.0136	0.00167 U	0.00549	0.0167 U	0.0243	0.0141
B20	D-B20-19.5-20.0	19.5-20.0	02-Nov-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00227	0.00367	0.00577	0.00299	0.00167 U	0.00286	0.00167 U	0.00609	0.00167 U	0.00233	0.0167 U	0.00245	0.00665
B21 B21	D-B21-0-102719 D-B21-2.5-3.0	0-0 2.5-3.0	27-Oct-19 01-Nov-19	MG/KG MG/KG	0.00832 U 0.0521	0.00832 U 1.89	0.00832 U 1.38	0.00832 U 6.24	0.00832 U 11.8	0.0135 12.3	0.00832 U 9.7	0.00832 U 3.69	0.00832 U 8.25	0.00832 U 0.0334 U	0.0126 20.3	0.00832 U 0.366	0.00832 U 7.56	0.0832 U 1.65	0.0104 8.9	0.0112 25.7
B21	D-FD02-110119	2.5-3.0	01-Nov-19	MG/KG	0.0796	2.37	1.27	4.91	9.38	9.84	8.54	2.44	6.3	0.0333 U	18.1	0.604	5.88	2.41	12.3	22
B21 B21	D-B21-5.0-5.5 D-B21-7.5-8.0	5.0-5.5 7.5-8.0	01-Nov-19 01-Nov-19	MG/KG MG/KG	0.0333 U 0.0332 U	0.0333 U 0.56	0.0333 U 0.346	0.0863 1.51	0.154 2.84	0.164 3.16	0.138 2.67	0.051 0.78	0.101 1.91	0.0333 U 0.0332 U	0.226 4.9	0.0333 U 0.14	0.101 1.95	0.333 U 0.688	0.109 3.03	0.297 6.58
B21	D-B21-10.0-10.5	10.0-10.5	01-Nov-19	MG/KG	0.0332 U	0.525	0.358	1.5	2.78	3.04	2.59	0.792	1.87	0.0332 U	4.62	0.138	1.88	0.361	2.71	6.25
B21	D-B21-15.0-15.5	15.0-15.5	01-Nov-19	MG/KG	0.0333 U	0.538	0.347	1.52	2.73	3.04	2.6	0.698	1.89	0.0333 U	4.96	0.141	1.88	0.514	3.12	6.63
B21 B21	D-B21-19.5-20.0 D-B21-24.5-25.0	19.5-20.0 24.5-25.0	01-Nov-19 01-Nov-19	MG/KG MG/KG	0.0167 U 0.00167 U	0.0541 0.00934	0.0325 0.006	0.156 0.0293	0.301 0.0544	0.327 0.0596	0.295 0.0453	0.0947 0.0209	0.193 0.0357	0.0167 U 0.00167 U	0.512 0.0957	0.0167 U 0.00235	0.213 0.0342	0.167 U 0.0167 U	0.267 0.0523	0.703 0.128
B22	D-B22-0-102719	0-0	27-Oct-19	MG/KG	0.00832 U	0.0239	0.0228	0.0688	0.101	0.154	0.0664	0.0454	0.0859	0.00832 U	0.169	0.00832 U	0.0522	0.0832 U	0.0945	0.18
B22 B22	D-B22-2.5-3.0 D-B22-5.0-5.5	2.5-3.0 5.0-5.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.00167 U 0.0166 U	0.00167 U 0.0325	0.00167 U 0.0276	0.00167 U 0.0907	0.00167 U 0.113	0.00167 U 0.164	0.00167 U 0.101	0.00167 U 0.0368	0.00167 U 0.106	0.00167 U 0.0166 U	0.00167 U 0.244	0.00167 U 0.0166 U	0.00167 U 0.0811	0.0167 U 0.166 U	0.00167 U 0.162	0.00167 U 0.252
B22	D-B22-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	0.00167 U	0.0103	0.00711	0.0199	0.0248	0.0379	0.0167	0.0122	0.0253	0.00167 U	0.0625	0.00167 U	0.0143	0.0167 U	0.0539	0.064
B22	D-B22-10.0-10.5	10.0-10.5 15.0-15.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.00835 U 0.00166 U	0.00835 U 0.00408	0.00835 U 0.00166 U	0.0247 0.00361	0.0282 0.00418	0.0419	0.0237 0.00283	0.00974 0.00222	0.0288 0.00456	0.00835 U 0.00166 U	0.0597 0.0104	0.00835 U	0.0189 0.00238	0.0835 U 0.0166 U	0.0395 0.00921	0.0591 0.0109
B22 B23	D-B22-15.0-15.5 D-B23-0-102719	0-0	27-Oct-19	MG/KG	0.00100 U	0.046	0.0506	0.00361	0.00418	0.00699 0.273	0.00263	0.00222	0.00456	0.00166 U	0.386	0.00166 U 0.0141	0.00238	0.0833 U	0.00921	0.438
B23	D-B23-25-3.0	2.5-3.0	31-Oct-19	MG/KG	0.0334 U	0.0449	0.0334 U	0.117 J	0.213	0.237	0.259	0.0722	0.143 J	0.0334 U	0.423	0.0334 U	0.177	0.334 U	0.262	0.504
B23 B23	D-FD03-103119 D-B23-5.0-5.5	2.5-3.0 5.0-5.5	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.0333 U 0.00167 U	0.0699 0.00264	0.0455 0.00167 U	0.206 J 0.00635 J	0.322 0.0133 J	0.39 0.0148 J	0.337 0.0194 J	0.0828 0.00424	0.243 J 0.00828 J	0.0333 U 0.00167 U	0.608 0.0251 J	0.0333 U 0.00167 U	0.244 0.0125 J	0.333 U 0.0167 U	0.323 0.0149 J	0.724 0.0293 J
B23	D-B23-7.5-8.0	7.5-8.0	31-Oct-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00222	0.00248	0.0029	0.00167 U	0.00167 U	0.00167 U	0.00377	0.00167 U	0.00187	0.0167 U	0.00226	0.00469
B23 B23	D-B23-9.5-10.0 D-B23-14.5-15.0	9.5-10.0 14.5-15.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.00166 U 0.00167 U	0.00183 0.00167 U	0.00166 U 0.00167 U	0.00314 0.00167 U	0.00579 0.00296	0.00713 0.00327	0.00787 0.00448	0.00175 0.00167 U	0.00392 0.00179	0.00166 U 0.00167 U	0.0101 0.00499	0.00166 U 0.00167 U	0.00523 0.00286	0.0166 U 0.0167 U	0.00603 0.0027	0.0122 0.00633
B23	D-B23-19.5-20.0	19.5-20.0	31-Oct-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00292	0.00319	0.00461	0.00167 U	0.00175	0.00167 U	0.00495	0.00167 U	0.00285	0.0167 U	0.0027	0.00624
B24	D-B24-0-102719	0-0	28-Oct-19	MG/KG	0.0138 U	0.211	0.113	0.394	0.814	0.898	0.473	0.274	0.523	0.00333 U	1.49	0.0332	0.369	0.14	0.891	1.78
B24 B24	D-B24-2.5-3.0 D-B24-5.0-5.5	2.5-3.0 5.0-5.5	30-Oct-19 30-Oct-19	MG/KG MG/KG	0.00166 U 0.00243	0.0057 0.0434	0.00289 0.0211	0.0102 0.063	0.0233 0.15	0.0232 0.147	0.0306 0.163	0.00672 0.0434	0.0134 0.0875	0.00166 U 0.00167 U	0.0416 0.278	0.00166 U 0.00674	0.0178 0.108	0.0166 U 0.0302	0.027 0.187	0.0514 0.362
B24	D-B24-7.5-8.0	7.5-8.0	30-Oct-19	MG/KG	0.0281	0.407	0.172	0.491	1.18	1.24	1.16	0.308	0.707	0.0167 U	2.3	0.0514	0.801	0.321	1.47	2.78
B24 B24	D-B24-10.0-10.5 D-B24-15.0-15.5	10.0-10.5 15.0-15.5	30-Oct-19 30-Oct-19	MG/KG MG/KG	0.0334 U 0.0167 U	0.363 0.196	0.162 0.149	0.538 0.386	1.22 0.877	1.24 0.858	1.44 0.746	0.341 0.247	0.73 0.521	0.0334 U 0.0167 U	2.23 1.72	0.0503 0.0535	0.958 0.538	0.334 U 0.257	1.38 1.3	2.75 2.08
	D-B24-19.5-20.0	19.5-20.0	30-Oct-19	MG/KG	0.00198 J	0.0382 J	0.018 J	0.0411 J	0.0818 J	0.0813 J	0.104 J	0.0239 J	0.0506 J	0.00167 U	0.181 J	0.00825 J	0.0649 J	0.0215 J	0.145 J	0.215 J
B24 B25	D-FD01-103019 D-B25-0-102719	19.5-20.0 0-0	30-Oct-19 27-Oct-19	MG/KG MG/KG	0.00167 U 0.00832 U	0.0103 J 0.102	0.00347 J 0.0934	0.00975 J 0.372	0.0232 J 0.626	0.0237 J 0.84	0.0322 J 0.449	0.00611 J 0.223	0.0131 J 0.469	0.00167 U 0.00832 U	0.0471 J 1.01	0.00167 UJ 0.0145	0.0202 J 0.346	0.0167 UJ 0.0832 U	0.0327 J 0.493	0.0615 J 1.23
B25	D-B25-2.5-3.0	2.5-3.0	30-Oct-19	MG/KG	0.00632 U	0.00167 U	0.0934 0.00167 U	0.00274	0.025	0.00531	0.00299	0.223 0.00167 U	0.469	0.00632 U 0.00167 U	0.00662	0.0145 0.00167 U	0.0025	0.0632 U 0.0167 U	0.00288	0.00658
B25	D-B25-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00294	0.00501	0.0068	0.00672	0.00167 U	0.00407	0.00167 U	0.0119	0.00167 U	0.00452	0.0167 U	0.00425	0.0125
B25 B25	D-B25-7.5-8.0 D-B25-10.0-10.5	7.5-8.0 10.0-10.5	30-Oct-19 31-Oct-19	MG/KG MG/KG	0.00166 U 0.00167 U	0.00166 U 0.00167 U	0.00166 U 0.00167 U	0.00205 0.00167 U	0.00301 0.00167 U	0.00432 0.00167 U	0.00412 0.00167 U	0.00166 U 0.00167 U	0.00258 0.00167 U	0.00166 U 0.00167 U	0.00518 0.00167 U	0.00166 U 0.00167 U	0.00286 0.00167 U	0.0166 U 0.0167 U	0.00243 0.00167 U	0.00549 0.00167 U
B25	D-B25-15.0-15.5	15.0-15.5	31-Oct-19	MG/KG	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.0166 U	0.00166 U	0.00166 U
B25 B25	D-B25-20.0-20.5 D-B25-25.0-25.5	20.0-20.5 25.0-25.5	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.00167 U 0.00166 U	0.00167 U 0.00166 U	0.00167 U 0.00166 U	0.00258 0.00166 U	0.00369 0.00166 U	0.00466 0.00166 U	0.00446 0.00166 U	0.00167 U 0.00166 U	0.00303 0.00166 U	0.00167 U 0.00166 U	0.00704 0.00166 U	0.00167 U 0.00166 U	0.00309 0.00166 U	0.0167 U 0.0166 U	0.00568 0.00166 U	0.00828 0.00166 U
B25	D-B25-30.0-30.5	30.0-30.5	31-Oct-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00166 U	0.00166 U	0.00167 U	0.00167 U	0.00167 U	0.00160 U	0.00167 U	0.00167 U	0.00166 U	0.00167 U	0.0167 U	0.00160 U	0.00167 U
B25 B25	D-B25-40.0-40.5	40.0-40.5 40.0-40.5	31-Oct-19	MG/KG	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.0166 U	0.00166 U	0.00166 U
B25 B26	D-FD04-103119 D-B26-0-102719	40.0-40.5 0-0	31-Oct-19 28-Oct-19	MG/KG MG/KG	0.00167 U 0.00803 U	0.00167 U 0.0588	0.00167 U 0.0124	0.00167 U 0.036	0.00167 U 0.0755	0.00167 U 0.106	0.00167 U 0.0552	0.00167 U 0.0289	0.00167 U 0.0479	0.00167 U 0.00334 U	0.00167 U 0.14	0.00167 U 0.00334 U	0.00167 U 0.0417	0.0167 U 0.0334 U	0.00167 U 0.0679	0.00167 U 0.201
B26	D-B26-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00264	0.00395	0.00455	0.00507	0.00167 U	0.00307	0.00167 U	0.0086	0.00167 U	0.0035	0.0167 U	0.00604	0.0101
B26 B26	D-FD05-110119 D-B26-5.0-5.5	2.5-3.0 5.0-5.5	01-Nov-19 01-Nov-19	MG/KG MG/KG	0.00167 U 0.00167 U	0.00167 U 0.00167 U	0.00167 U 0.00167 U	0.00167 U 0.00177	0.00167 U 0.00299	0.00167 U 0.004	0.00167 U 0.00464	0.00167 U 0.00167 U	0.00167 U 0.00231	0.00167 U 0.00167 U	0.00167 U 0.00726	0.00167 U 0.00167 U	0.00167 U 0.00299	0.0167 U 0.0167 U	0.00167 U 0.00574	0.0041 0.00841
B26	D-B26-7.5-8.0	7.5-8.0	02-Nov-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.0167 U	0.00167 U	0.00167 U
B26 B26	D-B26-10.0-10.5 D-B26-15.0-15.5	10.0-10.5 15.0-15.5	02-Nov-19 02-Nov-19	MG/KG MG/KG	0.00834 U 0.00166 U	0.00834 U 0.00166 U	0.00834 U 0.00166 U	0.00834 U 0.00166 U	0.0107 0.00166 U	0.0163 0.00166 U	0.0157 0.00166 U	0.00834 U 0.00166 U	0.00933 0.00166 U	0.00834 U 0.00166 U	0.0194 J 0.00166 U	0.00834 U 0.00166 U	0.0102 0.00166 U	0.0834 U 0.0166 U	0.00888 J 0.00166 U	0.0238 J 0.00166 U
	D-B26-20.0-20.5	20.0-20.5	02-Nov-19 02-Nov-19	MG/KG	0.00166 U	0.00166 U	0.00166 U	0.00166 U	0.00166 0	0.00166 0	0.00166 0	0.00166 U	0.00100 0	0.00166 U	0.00166 0	0.00166 U	0.00166	0.0166 U	0.00166 0	0.00657
B26	D-B26-25.0-25.5	25.0-25.5	02-Nov-19	MG/KG	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.00167 U	0.0167 U	0.00167 U	0.00167 U

Table 2-3. Summary of Analytical Data for Soil PAHs APS Douglas Former MGP Site, Douglas, Arizona

More	
Excitation Sample D	
Consideration Consideratio	
Consideration Consideratio	
Consideration Consideratio	ø
March Marc	/ren
Month Mont	2300
Colore C	29000
B26	6.93E+19
B27 O-B272-6-109 O-D	0.00166 U
B27 D-E971-10319	0.00167 U 0.00275
B27 D-827-55-55 S.D-5.5 O.5Nov-19 MGKG O.00167 U O.0	0.00167 U
B27 D827-103-015 D3-Nov-19 MGKG O.00167 U	0.00166 U 0.00167 U
B27 B27-15.0-15.5 33-Nov-19 MGKG 0.00167 U	0.00187
B27 D827-200-20.5 2020.5 03-Nov-19 MGKG 0.00168 U	0.00167 U
B27 D-F002-110319 25.0-25.5 G3-Nov-19 MG/KG 0.00167 U	0.00167 U 0.00166 U
B27 D-B27-300-30.5 30.0-30.5 04-Nov-19 MGKG 0.00167 U	0.00167 U
B27 D-FD01-110219 300-30.5 02-Nov-19 MG/KG 0.00167 U 0.0016 U	0.0025 0.00167 U
B28 D-B28-D-505 D-B28-D-	0.00167 U
B28 D-B28-50-5.5 29-Oct-19 MG/KG 0.00167 U 0.00168 U	0.00167 U 0.179
B28 D-B28-10.0-10.5 10.0-10.5 29-Oct-19 MG/KG 0.00165 U 0.00284 0.00165 U 0.00166 U	0.179
B28 D-B28-15.0-15.5 15.0-15.5 29-Oct-19 MG/KG 0.00166 U 0.00166	0.0131
B28 D-B28-19.5-20.0 19.5-20.0 29-Oct-19 MG/KG 0.00166 U 0.00167	0.00246 0.00257
B29 D-B29-5.0-5.5 5.0-5.5 07-Nov-19 MG/KG 0.00167 U 0.0026 0.00167 U 0.00661 0.00983 0.0122 J 0.0102 0.00358 0.00777 0.00167 U 0.0157 0.00167 U 0.00727 0.0167 U 0.00167 U	0.00166 U
B29 D-B29-10.0-10.5 10.0-10.5 07-Nov-19 MG/KG 0.00166 U 0.00166 U 0.00166 U 0.00596 J 0.00735 J 0.0102 J 0.00666 J 0.00267 J 0.00635 J 0.00166 U 0.00866 J 0.00166 U 0.00507 J 0.0166 U 0.00384 J 0.0046 J 0.00167 U 0.0087 J 0.00167 U 0.0087 J 0.00167 U 0.0025 J 0.	0.75 0.0211 J
B29 D-B29-20.0-20.5 20.0-20.5 07-Nov-19 MG/KG 0.00167 U 0.0021 J 0.012 J 0.025 J 0.0165 J 0.0165 J 0.0167 U 0.0167 U 0.0128 J 0.0167 U 0.00921 J 0.0167 U 0.00921 J 0.00921 J 0.0167 U 0.028 J 0.0167 U 0.0183 J 0.0167 U 0.00921 J 0.00921 J 0.0167 U 0.028 J 0.0167 U 0.0183 J 0.0167 U 0.00921 J 0.00921 J 0.0167 U 0.028 J 0.0167 U 0.0183 J 0.0167 U 0.00921 J 0.009	0.02113 0.0107 J
B30 D-B30-0-102719 0-0 28-Oct-19 MG/KG 0.00334 U 0.00356 0.035 0.035 0.0644 0.021 0.0192 0.0335 0.00334 U 0.0624 0.00334 U 0.0175 0.0334 U 0.0281 0 B30 D-B30-5.0-5.5 5.0-5.5 01-Nov-19 MG/KG 0.00833 U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484 0.00833 U 0.14 0.00833 U 0.0536 0.0833 U 0.1 B30 D-FD01-110119 5.0-5.5 01-Nov-19 MG/KG 0.00832 U 0.0155 0.0439 0.0719 0.116 0.0533 0.0307 0.0631 0.00832 U 0.0441 0.0832 U 0.0498 B30 D-B30-10.0-10.5 01-Nov-19 MG/KG 0.00835 U 0.036 0.0219 0.0705 0.115 0.147 0.105 0.0405 0.00835 U 0.026 0.0156 0.0498	0.138 J
B30 D-B30-5.0-5.5 5.0-5.5 01-Nov-19 MG/KG 0.00833 U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484 0.00833 U 0.14 0.00833 U 0.0536 0.0833 U 0.1 B30 D-FD01-110119 5.0-5.5 01-Nov-19 MG/KG 0.00832 U 0.015 0.0439 0.0719 0.116 0.0533 0.0307 0.0631 0.00832 U 0.0441 0.0832 U 0.0498 B30 D-B30-10.0-10.5 01-Nov-19 MG/KG 0.00835 U 0.036 0.0219 0.0705 0.115 0.147 0.105 0.0867 0.00835 U 0.26 0.0105 0.0835 U 0.0498	0.0409 J 0.0736
B30 D-B30-10.0-10.5 10.0-10.5 01-Nov-19 MG/KG 0.00835 U 0.0336 0.0219 0.0705 0.115 0.147 0.105 0.0405 0.0867 0.00835 U 0.226 0.0105 0.0795 0.0835 U 0.156	0.172
	0.133 0.266
B30 D-B30-15.0-15.5 15.0-15.5 01-Nov-19 MG/KG 0.00166 U 0.00576 0.00379 0.0168 0.029 0.0372 0.0292 0.0109 0.0218 0.00166 U 0.0526 0.00166 U 0.0217 0.0166 U 0.025 0	0.266
	0.0845
	0.0366 0.439
B31 D-B31-10.0-10.5 10.0-10.5 06-Nov-19 MG/KG 0.00167 U	0.00167 U
	0.00314 0.00166 U
	0.0515
	0.0123 J
B32 D-B32-15.0-15.5 15.0-15.5 06-Nov-19 MG/KG 0.00167 U	0.0358 J 0.0272
	0.0272 0.00167 U
	0.0272 0.00167 U 0.00167 U
	0.0272 0.00167 U
	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191
B34 D-B34-0-102719 0-0 27-Oct-19 MG/KG 0.0167 U 0.0167 U 0.0167 U 0.0167 U 0.0167 U 0.0335 J 0.0467 J 0.0888 J 0.0371 J 0.0221 J 0.0504 J 0.0167 U 0.0847 J 0.0167 U 0.0323 J 0.167 U 0.0273 J 0.0273 J 0.0167 U 0	0.0272 0.00167 U 0.00167 U 0.0175 0.244
	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191 0.00226 0.0075 0.0729 J
	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191 0.00226 0.0075 0.0729 J 0.00575 J
	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191 0.00226 0.0075 0.0729 J
	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191 0.00226 0.0075 0.0729 J 0.00575 J 0.00388 J 0.014 0.0196
B35 D-B35-5.0-5.5 5.0-5.5 28-Oct-19 MG/KG 0.0167 U 0.0167 U 0.0167 U 0.0167 U 0.0225 0.0385 0.0501 J 0.0521 0.0167 U 0.0343 J 0.0167 U 0.0622 J 0.0167 U 0.0346 0.167 U 0.0182 0.0167 U 0.0182	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191 0.00226 0.0075 0.0729 J 0.00575 J 0.00388 J 0.014
	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191 0.00226 0.0075 0.0729 J 0.00575 J 0.00388 J 0.014 0.0196 0.00167 U 0.0442 0.0733 J
B35 D-B35-20.0-20.5	0.0272 0.00167 U 0.00167 U 0.0175 0.244 0.0191 0.00226 0.0075 0.0729 J 0.00575 J 0.00388 J 0.014 0.0196 0.00167 U

Notes:
Cells highlighted in red indicate that the compound exceeded the Residential Soil Remediation Level and Non-Residential Soil Remediation Level Cells highlighted in yellow indicate that the compound exceeded the Residential Soil Remediation Level only.

Detected results are shown in **Bold**.

J = Analyte is present but the reported value might not be accurate or precise (estimate).

Table 2-3. Summary of Analytical Data for Soil PAHs APS Douglas Former MGP Site, Douglas, Arizona

Location	Sample ID	Sample Depth (ft bgs)	Sample Date		Асепарлипепе	Асепарлинујеве	Anthracene	Benzo(a)antinacene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	$c_{hr_{\!J}s_{\!su_0}}$	Dibenz(a,h)Anthracene	Fluoranthene	Fluorene	haeno(1,2,3-c,d)byrene	Naphthalene	Рћепапитепе	Ругеле
Residentia	Soil Remediation Level			MG/KG	3700	NE	22000	6.9	0.69	6.9	NE	69	680	0.69	2300	2700	6.9	56	NE	2300
Non-Resido	ential Soil Remediation Lev	el		MG/KG	29000	NE	240000	21	2.1	21	NE	210	2000	2.1	22000	26000	21	190	NE	29000
Groundwa	ndwater Protection Level			MG/KG	90300	29100	7.96E+08	4.85E+25	6.58E+84	2.44E+84	NE	9.87E+82	8.46E+58	1.23E+251	6.67E+12	2.82E+06	NE	113	NE	6.93E+19

mg/kg = milligram(s) per kilogram
Groundwater protection levels are site specific (see text Section 4)

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estimated. It bgs = foot (feet) below ground surface

ID = identification number

Table 2-4. Summary of Analytical Data for Soil Metals
APS Douglas Former MGP Site. Douglas. Arizona

APS Douglas	Former MGP Site, Douglas,	Arizona			_		,		/			/
		Sample Depth			Arsenic	Barium	Cadmium	Сһготіит	þ	Mercury	Selenium	Silver
Location	Sample ID	(ft bgs)	Sample Date	Units			င်နှင		Lead		Sel	
	Soil Remediation Level			MG/KG MG/KG	10	15,000	39	120,000	400	23	390	390
	rtial Soil Remediation Level			MG/KG	10 290	170,000 12,000	510 29	1,000,000 590	800 290	310 12	5,100 290	5,100 NE
B11	D-B11-1.0-1.5	1.0-1.5	30-Oct-19	MG/KG	12.9	125	1.89 U	11.2	93.2	0.0312	1.89 U	1.89 U
B11	D-B11-2.5-3.0	2.5-3.0	30-Oct-19	MG/KG	18.9	83.3	1.85 U	16.1	420	0.0478	1.85 U	1.85 U
B11	D-B11-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	19.5	300	2.00 U	17.8	141	0.0182 U	2.00 U	2.00 U
B11 B11	D-B11-7.5-8.0 D-B11-10.0-10.5	7.5-8.0 10.0-10.5	30-Oct-19 30-Oct-19	MG/KG MG/KG	20.7 23.5	225 126	1.69 U 1.79 U	19.7 30.2	158 63.7	0.0216 0.0182 U	1.69 U 1.79 U	1.69 U 1.79 U
B11	D-B11-15.0-15.5	15.0-15.5	30-Oct-19	MG/KG	21.1	120	1.82 U	8.53	17.8	0.0175 U	1.82 U	1.82 U
B11	D-B11-19.5-20.0	19.5-20.0	30-Oct-19	MG/KG	16.4	76.4	1.96 U	11.8	16.4	0.0175 U	1.96 U	1.96 U
B12 B12	D-B12-1.0-1.5 D-B12-2.5-3.0	1.0-1.5 2.5-3.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	18 14.1	111 136	1.96 U 1.69 U	10 9.32	166 8.74	0.0302 0.0175 U	1.96 U 1.69 U	1.96 U 1.69 U
B12	D-B12-5.0-5.5	5.0-5.5	31-Oct-19	MG/KG	17.2	96	1.89 U	10.6	169	0.0387	1.89 U	1.89 U
B12	D-FD02-103119	5.0-5.5	31-Oct-19	MG/KG	16.9	109	1.75 U	12.5	113	0.0584	1.75 U	1.75 U
B12 B12	D-B12-7.5-8.0 D-B12-10.0-10.5	7.5-8.0 10.0-10.5	31-Oct-19 31-Oct-19	MG/KG MG/KG	15.7 20.6	122 207	1.75 U 1.92 U	10.8 43.2	531 30.8	0.127 0.0182 U	1.75 U 1.92 U	1.75 U 1.92 U
B12	D-B12-15.0-15.5	15.0-15.5	31-Oct-19	MG/KG	23.1	225	1.75 U	38.9	21.1	0.0185 U	1.75 U	1.75 U
B12	D-B12-19.5-20	19.5-20.0	31-Oct-19	MG/KG	18.1	376	1.92 U	49.2	62.8	0.0182 U	1.92 U	1.92 U
B12 B13	D-B12-24.5-25.0 D-B13-1.0-1.5	24.5-25.0 1.0-1.5	31-Oct-19 31-Oct-19	MG/KG MG/KG	4.16 14.5	44.2 68.4	1.69 U 1.67 U	23.1 7.85	8.74 89.4	0.0172 U 0.0427	1.69 U 1.67 U	1.69 U 1.67 U
B13	D-B13-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	18.9	540	2.00 U	12.9	17.9	0.0196 U	2.00 U	2.00 U
B13	D-B13-5.0-5.5	5.0-5.5	31-Oct-19	MG/KG	12	95.8	1.89 U	9.46	43.7	0.0239	1.89 U	1.89 U
B13 B13	D-B13-7.5-8.0 D-B13-10.0-10.5	7.5-8.0 10.0-10.5	31-Oct-19 31-Oct-19	MG/KG MG/KG	24.5 22.7	247 135	1.96 U 1.85 U	19.1 11.2	49.8 20.5	0.0267 0.0196 U	1.96 U 1.85 U	1.96 U 1.85 U
B13	D-B13-15.0-15.5	15.0-15.5	31-Oct-19	MG/KG	21	76	1.79 U	6.13	10.6	0.0190 U	1.79 U	1.79 U
B13	D-FD01-103119	15.0-15.5	31-Oct-19	MG/KG	17.1	75.5	1.75 U	8.37	11.8	0.0185 U	1.75 U	1.75 U
B13 B14	D-B13-19.5-20.0	19.5-20.0	31-Oct-19	MG/KG MG/KG	12.1 10.9	70.5 200	1.75 U 1.85 U	18.7	6.7 48.7	0.0185 U 0.0238	1.75 U	1.75 U 1.85 U
B14	D-B14-1.0-1.5 D-B14-2.5-3.0	1.0-1.5 2.5-3.0	29-Oct-19 29-Oct-19	MG/KG	17.9	93.5	1.96 U	9.32 9.83	9.49	0.0236 0.0169 U	1.85 U 1.96 U	1.96 U
B14	D-B14-5.0-5.5	5.0-5.5	29-Oct-19	MG/KG	25.5	321	1.75 U	16.8	13.1	0.0189 U	1.75 U	1.75 U
B14 B14	D-B14-7.5-8.0 D-B14-10.0-10.5	7.5-8.0 10.0-10.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	21.3 24.8	247	1.89 U 2.00 U	16	23.2	0.0174 0.0172 U	1.89 U 2.00 U	1.89 U 2.00 U
B14	D-B14-10.0-10.5 D-B14-15.0-15.5	15.0-15.5	29-Oct-19 29-Oct-19	MG/KG	24.8	160 185	1.67 U	16.4 23.5	20.7 14	0.0172 U	1.67 U	1.67 U
B14	D-B14-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	17.8	209	1.75 U	32.2	10.6	0.0167 U	1.75 U	1.75 U
B15	D-B15-1.0-1.5	1.0-1.5	01-Nov-19	MG/KG	9.77	144	2.00 U	7.42	56.2	0.0445	2.00 U	2.00 U
B15 B15	D-B15-2.5-3.0 D-B15-5.0-5.5	2.5-3.0 5.0-5.5	01-Nov-19 01-Nov-19	MG/KG MG/KG	10.8 J 13.8	141 160	1.75 U 1.89 U	11.1 J 13.2	30.5 J 44.7	0.045 0.0391	1.75 U 1.89 U	1.75 U 1.89 U
B15	D-FD03-110119	5.0-5.5	01-Nov-19	MG/KG	15.2	98	1.69 U	15.1	30.5	0.0247	1.69 U	1.69 U
B15	D-B15-7.5-8.0	7.5-8.0	01-Nov-19	MG/KG	12.4	125	1.82 U	15.9	32.8	0.0212	1.82 U	1.82 U
B15 B15	D-B15-10.0-10.5 D-FD04-110119	10.0-10.5 10.0-10.5	01-Nov-19 01-Nov-19	MG/KG MG/KG	21.6 24	254 302	1.89 U 1.82 U	14.6 21.7	12.6 15.5	0.020 U 0.0175 U	1.89 U 1.82 U	1.89 U 1.82 U
B15	D-B15-14.5-15.0	14.5-15.0	01-Nov-19	MG/KG	20.8	226	1.85 U	19.1	13	0.0185 U	1.85 U	1.85 U
B16	D-B16-0-102719	0-0	27-Oct-19	MG/KG	10.3	124	1.67 U	9.62	60.8	0.0625 U	1.67 U	1.67 U
B16 B16	D-B16-2.5-3.0 D-FD01-102919	2.5-3.0 2.5-3.0	29-Oct-19 29-Oct-19	MG/KG MG/KG	11.5 9.24	117 101	1.67 U 1.96 U	11.1 11.6	42.5 31.6	0.0416 0.032	1.67 U 1.96 U	1.67 U 1.96 U
B16	D-B16-5.0-5.5	5.0-5.5	29-Oct-19	MG/KG	14.2	171	1.75 U	14.9	23.7	0.0225	1.75 U	1.75 U
B16	D-B16-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	13.4	123	1.85 U	19.9	28.7	0.0277	1.85 U	1.85 U
B16 B16	D-B16-10.0-10.5 D-B16-15.0-15.5	10.0-10.5 15.0-15.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	20.1	203 284	1.92 U 1.96 U	37 129	14.7 15.4	0.0179 U 0.0182 U	1.92 U 1.96 U	1.92 U 1.96 U
B16	D-FD02-102919	15.0-15.5	29-Oct-19	MG/KG	20.9	180	1.79 U	48.8	10.4	0.0162 U	1.79 U	1.79 U
B16	D-B16-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	17.7	181	1.89 U	37.5	9.81	0.020 U	1.89 U	1.89 U
B16 B17	D-B17-0-102719 D-B17-2.5-3.0	0-0 2.5-3.0	27-Oct-19 30-Oct-19	MG/KG MG/KG	8.71 12.6	98 86.3	1.75 U 1.72 U	8.1 10.1	42.7 43.6	0.0415 0.0282	1.75 U 1.72 U	1.75 U 1.72 U
B17	D-B17-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	7.44	86.1	1.72 U	5.51	20.3	0.0262	1.72 U	1.72 U
B17	D-B17-7.5-8.0	7.5-8.0	30-Oct-19	MG/KG	17.3	96.3	1.79 U	12.1	37.7	0.0224	1.79 U	1.79 U
B17	D-B17-10.0-10.5	10.0-10.5	30-Oct-19 30-Oct-19	MG/KG	19.4	237	1.92 U	11.4	15.7	0.0179 U	1.92 U	1.92 U
B17 B17	D-B17-15.0-15.5 D-B17-19.5-20.0	15.0-15.5 19.5-20.0	30-Oct-19	MG/KG MG/KG	16.7 17.1	250 131	1.67 U 2.00 U	7.87 23.3	10.8 7.38	0.0169 U 0.0172 U	1.67 U 2.00 U	1.67 U 2.00 U
B18	D-B18-0-102719	0-0	27-Oct-19	MG/KG	8.7	148	1.89 U	10	25.5	0.0202	1.89 U	1.89 U
B18	D-B18-2.0-2.5	2.0-2.5	28-Oct-19	MG/KG	16.4	65.7	1.67 U	8.37	25.2	0.0219	1.67 U	1.67 U
B18 B18	D-B18-5.0-5.5 D-FD03-102819	5.0-5.5 5.0-5.5	28-Oct-19 28-Oct-19	MG/KG MG/KG	9.69 J 20.7 J	190 215	2.00 U 2.00 U	8.67 J 16.6 J	38.1 J 15.6 J	0.0237 U 0.0172 UJ	2.00 U 2.00 U	2.00 U 2.00 U
B18	D-B18-7.0-7.5	7.0-7.5	28-Oct-19	MG/KG	21.8	138	1.89 U	11.5	17.5	0.0179 U	1.89 U	1.89 U
B18	D-B18-10.0-10.5	10.0-10.5	05-Nov-19	MG/KG	16.3	39.5	1.89 U	8.93	13.3	0.0196 U	1.89 U	1.89 U
B18 B19	D-B18-15.0-15.5 D-B19-0-102719	15.0-15.5 0-0	05-Nov-19 27-Oct-19	MG/KG MG/KG	18.3 7.73	98.3 181	1.79 U 1.92 U	12.3 9.16	23 29.7	0.0382 0.019	1.79 U 1.92 U	1.79 U 1.92 U
B19	D-B19-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	13.7	116	1.85 U	9.86	26.1	0.0169 U	1.85 U	1.85 U
B19	D-B19-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	20.6	937	1.69 U	12	11.6	0.0196 U	1.69 U	1.69 U
B19 B19	D-B19-7.5-8.0 D-B19-10.0-10.5	7.5-8.0 10.0-10.5	01-Nov-19 02-Nov-19	MG/KG MG/KG	11.1 14.2	121 138	1.92 U 1.92 U	9.72 16.9	19.9 12.3	0.0179 U 0.0169 U	1.92 U 1.92 U	1.92 U 1.92 U
B19	D-B19-10.0-10.5 D-B19-15.0-15.5	15.0-15.5	02-Nov-19	MG/KG	16.4	130	1.75 U	20.1	9.79	0.189 U	1.75 U	1.75 U
B19	D-B19-19.5-20.0	19.5-20.0	02-Nov-19	MG/KG	9.25	246	1.69 U	27.7	4.67	0.0192 U	1.69 U	1.69 U
B20	D-B20-0-102719 D-FD01-102719	0-0 0-0	27-Oct-19	MG/KG	11.4 14.7	166	1.85 U	7.89	29.7	0.0391	1.85 U	1.85 U 1.89 U
B20 B20	D-B20-2.5-3.0	2.5-3.0	27-Oct-19 30-Oct-19	MG/KG MG/KG	14.7 11.7 J	218 180	1.89 U 2.2	12 13.1 J	42.5 107	0.0357 0.0707	1.89 U 1.72 U	1.89 U
B20	D-B20-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	21	96.3	1.79 U	12.4	112	0.0811	1.79 U	1.79 U
B20	D-B20-7.5-8.0	7.5-8.0	02-Nov-19	MG/KG	9.99	318	1.82 U	11.2	29.9	0.0304 J	1.82 U	1.82 U
B20 B20	D-B20-9.5-10.0 D-B20-14.5-15.0	9.5-10.0 14.5-15.0	02-Nov-19 02-Nov-19	MG/KG MG/KG	15.4 12.7	273 93.6	1.92 U 1.82 U	9.77 10.6	19.9 9.25	0.0189 UJ 0.0196 U	1.92 U 1.82 U	1.92 U 1.82 U
B20	D-B20-14.5-15.0 D-B20-19.5-20.0	19.5-20.0	02-Nov-19	MG/KG	8.99	36.9	1.92 U	18.7	5.25	0.0167 U	1.92 U	1.92 U
B21	D-B21-0-102719	0-0	27-Oct-19	MG/KG	7.38	97.5	1.89 U	7.94	33.8	0.0309	1.89 U	1.89 U
B21 B21	D-B21-2.5-3.0 D-FD02-110119	2.5-3.0 2.5-3.0	01-Nov-19 01-Nov-19	MG/KG MG/KG	12.2 9.37	120 95.2	1.67 U 1.92 U	9.99 8.56	72.8 55.3	0.0532 0.0782	1.67 U 1.92 U	1.67 U 1.92 U
B21	D-FD02-110119 D-B21-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	9.37	660	1.92 U	10.4	40.9	0.0782	1.92 U	1.92 U
B21	D-B21-7.5-8.0	7.5-8.0	01-Nov-19	MG/KG	19.7	144	1.92 U	14.7	54	0.0463	1.92 U	1.92 U
B21	D-B21-10.0-10.5	10.0-10.5	01-Nov-19	MG/KG	19.1	87.9	1.75 U	12.1	18.5	0.0192 U	1.75 U	1.75 U
B21 B21	D-B21-15.0-15.5 D-B21-19.5-20.0	15.0-15.5 19.5-20.0	01-Nov-19 01-Nov-19	MG/KG MG/KG	19.6 12.4	232 64.3	1.69 U 1.89 U	17.8 38.9	53.8 10.7	0.0235 0.0192 U	1.69 U 1.89 U	1.69 U 1.89 U
B21	D-B21-19.5-20.0 D-B21-24.5-25.0	24.5-25.0	01-Nov-19	MG/KG	7.08	89.3	1.85 U	28.5	8.11	0.0192 U	1.85 U	1.85 U

Table 2-4. Summary of Analytical Data for Soil Metals

APS Douglas	Former	MGP	Site,	Douglas,	Arizona

							/ E	/			/ =	
		Sample Depth			Arsenic	Barium	Cadmium	Сһтотіит	ا ا	Mercury	Selenium	Silver
Location	Sample ID	(ft bgs)	Sample Date	Units			Ça	ď	Lead		Se/	
	oil Remediation Level			MG/KG MG/KG	10	15,000 170,000	39 510	120,000 1,000,000	400 800	23 310	390 5,100	390 5,100
	r Protection Level			MG/KG	290	12,000	29	590	290	12	290	NE
B22	D-B22-0-102719	0-0	27-Oct-19	MG/KG	9.18	111	1.92 U	9.8	50.1	0.0734	1.92 U	1.92 U
B22 B22	D-B22-2.5-3.0	2.5-3.0	29-Oct-19	MG/KG	15.4	127	1.96 U	13.1	11.2	0.0189 U	1.96 U	1.96 U
B22	D-B22-5.0-5.5 D-B22-7.5-8.0	5.0-5.5 7.5-8.0	29-Oct-19 29-Oct-19	MG/KG MG/KG	25.8 16.7	245 150	1.92 U 2.00 U	9.75 13.6	117 25.7	0.0263 0.0172 U	1.92 U 2.00 U	1.92 U 2.00 U
B22	D-B22-10.0-10.5	10.0-10.5	29-Oct-19	MG/KG	22 25	146	2.00 U	22.6	32.3	0.0189 U	2.00 U	2.00 U
B22 B23	D-B22-15.0-15.5 D-B23-0-102719	15.0-15.5 0-0	29-Oct-19 27-Oct-19	MG/KG MG/KG	9.68	212 146	1.85 U 2.00 U	63 8.28	21.6 25.8	0.0192 U 0.022	1.85 U 2.00 U	1.85 U 2.00 U
B23	D-B23-25-3.0	2.5-3.0	31-Oct-19	MG/KG	14.8	477	1.75 U	12.1	69	0.0269	1.75 U	1.75 U
B23 B23	D-FD03-103119 D-B23-5.0-5.5	2.5-3.0	31-Oct-19	MG/KG	17.3 26	319 764	1.85 U 1.89 U	14 20.7	46.4 18.7	0.0332 0.0175 U	1.85 U 1.89 U	1.85 U 1.89 U
B23	D-B23-7.5-8.0	5.0-5.5 7.5-8.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	23.9	91.8	1.85 U	14.6	9.97	0.0173 U	1.85 U	1.85 U
B23	D-B23-9.5-10.0	9.5-10.0	31-Oct-19	MG/KG	15.3	84.6	1.69 U	7	10.3	0.0189 U	1.69 U	1.69 U
B23 B23	D-B23-14.5-15.0 D-B23-19.5-20.0	14.5-15.0 19.5-20.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	42.5 12.6	53.3 88.8	1.85 U 1.67 U	11.3 9.66	10.6 12.7	0.0196 U 0.0172 U	1.85 U 1.67 U	1.85 U 1.67 U
B24	D-B24-0-102719	0-0	28-Oct-19	MG/KG	10.3	160	1.92 U	11.6	66.9	0.0453	1.92 U	1.92 U
B24 B24	D-B24-2.5-3.0 D-B24-5.0-5.5	2.5-3.0 5.0-5.5	30-Oct-19 30-Oct-19	MG/KG MG/KG	12.3 41.6	110 174	1.85 U 1.72 U	8.67 12.4	9.28 13.2	0.020 U 0.0196 U	1.85 U 1.72 U	1.85 U 1.72 U
B24	D-B24-7.5-8.0	7.5-8.0	30-Oct-19	MG/KG	11.1	87.8	1.72 U	7.56	22.9	0.0196 U	1.72 U	1.72 U
B24	D-B24-10.0-10.5	10.0-10.5	30-Oct-19	MG/KG	20.6	80	1.72 U	9.03	77.3	0.0189 U	1.72 U	1.72 U
B24 B24	D-B24-15.0-15.5 D-B24-19.5-20.0	15.0-15.5 19.5-20.0	30-Oct-19 30-Oct-19	MG/KG MG/KG	16.4 7.55	290 43.7	1.96 U 1.85 U	5 19.5	11.7 10.5	0.0172 U 0.0179 U	1.96 U 1.85 U	1.96 U 1.85 U
B24	D-FD01-103019	19.5-20.0	30-Oct-19	MG/KG	8.2	46.1	1.69 U	17.4	22.3	0.0175 U	1.69 U	1.69 U
B25 B25	D-B25-0-102719 D-B25-2.5-3.0	0-0 2.5-3.0	27-Oct-19 30-Oct-19	MG/KG MG/KG	10.9 14.8	175 174	1.92 U 1.85 U	9.85 11.9	57.5 9.12	0.0461 0.0192 U	1.92 U 1.85 U	1.92 U 1.85 U
B25	D-B25-2.3-3.0 D-B25-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	50.3	126	1.67 U	14	13.8	0.0192 U	1.67 U	1.67 U
B25	D-B25-7.5-8.0	7.5-8.0	30-Oct-19	MG/KG	22.2	89.3	1.67 U	12.1	15.2	0.0185 U	1.67 U	1.67 U
B25 B25	D-B25-10.0-10.5 D-B25-25.0-25.5	10.0-10.5 25.0-25.5	31-Oct-19 31-Oct-19	MG/KG MG/KG	23.7 5.23	165 35.2	1.92 U 1.96 U	14.7 21	11.9 10.9	0.0185 U 0.0192 U	1.92 U 1.96 U	1.92 U 1.96 U
B25	D-B25-40.0-40.5	40.0-40.5	31-Oct-19	MG/KG	7.22	55.4	1.85 U	11	10.1	0.0192 U	1.85 U	1.85 U
B25 B26	D-FD04-103119 D-B26-0-102719	40.0-40.5	31-Oct-19	MG/KG	8.13	68.3	1.85 U	14.4	15.9 41.4	0.0192 U	1.85 U	1.85 U
B26	D-B26-2.5-3.0	0-0 2.5-3.0	28-Oct-19 01-Nov-19	MG/KG MG/KG	8.55 11.7	103 112	1.72 U 1.79 U	6.67 11.8	9.72	0.0182 U 0.0189 UJ	1.72 U 1.79 U	1.72 U 1.79 U
B26	D-FD05-110119	2.5-3.0	01-Nov-19	MG/KG	13.4	130	1.69 U	11.7	11.2	0.0192 UJ	1.69 U	1.69 U
B26 B26	D-B26-5.0-5.5 D-B26-7.5-8.0	5.0-5.5 7.5-8.0	01-Nov-19 02-Nov-19	MG/KG MG/KG	21.2 J 21.6	81.2 96.3	1.67 U 1.82 U	9.13 7.89	9.02 14.1	0.0175 U 0.0192 UJ	1.67 U 1.82 U	1.67 U 1.82 U
B26	D-B26-10.0-10.5	10.0-10.5	02-Nov-19	MG/KG	17.3	241	1.62 U	7.89 8.54	17.4	0.0192 UJ	1.62 U	1.02 U
B26	D-B26-15.0-15.5	15.0-15.5	02-Nov-19	MG/KG	16.9	134	1.67 U	3.78	9.47	0.0185 UJ	1.67 U	1.67 U
B26 B26	D-B26-20.0-20.5 D-B26-25.0-25.5	20.0-20.5 25.0-25.5	02-Nov-19 02-Nov-19	MG/KG MG/KG	18.2 8.17	906 54.5	1.96 U 1.67 U	16.1 9.34	11.6 4.13	0.0189 UJ 0.0192 UJ	1.96 U 1.67 U	1.96 U 1.67 U
B27	D-B20-23.0-23.3 D-B27-0-102719	0-0	27-Oct-19	MG/KG	13.9	70.5	2.00 U	8.01	16.1	0.0192 03	2.00 U	2.00 U
B27	D-B27-2.5-3.0	2.5-3.0	03-Nov-19	MG/KG	15.4	426 J	2.00 U	8.79	11.8	0.0182 U	2.00 U	2.00 U
B27 B27	D-FD01-110319 D-B27-5.0-5.5	2.5-3.0 5.0-5.5	03-Nov-19 03-Nov-19	MG/KG MG/KG	13.8 24.1	142 J 151	1.79 U 1.67 U	9.14 11.8	12.2 12	0.0185 U 0.0172 U	1.79 U 1.67 U	1.79 U 1.67 U
B27	D-B27-7.5-8.0	7.5-8.0	03-Nov-19	MG/KG	21.2	171	1.69 U	10.3	12.3	0.0196 U	1.69 U	1.69 U
B27	D-B27-10.0-10.5	10.0-10.5	03-Nov-19	MG/KG	20.7	84.7 J	1.75 U	16.5	11.1	0.0185 U	1.75 U	1.75 U
B27 B27	D-B27-15.0-15.5 D-B27-20.0-20.5	15.0-15.5 20.0-20.5	03-Nov-19 03-Nov-19	MG/KG MG/KG	20.6 15.2	149 202	1.92 U 1.92 U	14 5.12	13 17	0.0189 U 0.0172 U	1.92 U 1.92 U	1.92 U 1.92 U
B27	D-B27-25.0-25.5	25.0-25.5	03-Nov-19	MG/KG	12.1	41.6	1.72 U	6.93	12.2	0.0172 UJ	1.72 U	1.72 U
B27 B27	D-FD02-110319 D-FD01-110219	25.0-25.5 30.0-30.5	03-Nov-19 02-Nov-19	MG/KG MG/KG	13.1 12.1	42.7 18.9	1.89 U 1.85 U	7.93 5.26	11.9 8.24	0.0179 UJ 0.0172 UJ	1.89 U 1.85 U	1.89 U 1.85 U
B28	D-B28-0-102719	0-0	27-Oct-19	MG/KG	9.02	93.7	1.96 U	6.96	45.9	0.0172 03	1.85 U	1.05 U
B28	D-B28-5.0-5.5	5.0-5.5	29-Oct-19	MG/KG	16.1	84.3	1.89 U	9.3	10.9	0.0185 U	1.89 U	1.89 U
B28 B28	D-FD03-102919 D-B28-10.0-10.5	5.0-5.5 10.0-10.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	9.21	110 94.4	1.72 U 2.00 U	11.6 10.3	18.2 9.89	0.0167 U 0.0185 U	1.72 U 2.00 U	1.72 U 2.00 U
B28	D-B28-15.0-15.5	15.0-15.5	29-Oct-19	MG/KG	14.2	82.8 J	1.67 U	12	11.2	0.0169 U	1.67 U	1.67 U
B28	D-B28-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	15.1	129	1.75 U	20.7	17.7	0.020 U	1.75 U	1.75 U
B29 B29	D-B29-0-102719 D-B29-5.0-5.5	0-0 5.0-5.5	27-Oct-19 07-Nov-19	MG/KG MG/KG	7.22 15.9 J	62.9 178	1.82 U 1.85 U	6.16 18.1 J	22.2 32.8 J	0.0574 0.0494	1.82 U 1.85 U	1.82 U 1.85 UJ
B29	D-B29-10.0-10.5	10.0-10.5	07-Nov-19	MG/KG	15.1	607	1.92 U	12.6	12.6	0.0192 U	1.92 U	1.92 U
B29 B29	D-B29-15.0-15.5 D-B29-20.0-20.5	15.0-15.5 20.0-20.5	07-Nov-19 07-Nov-19	MG/KG MG/KG	20.4 22.5	413 275	1.96 U 1.75 U	15 12.4	20.3 14.1	0.020 U 0.0189 U	1.96 U 1.75 U	1.96 U 1.75 U
B30	D-B30-0-102719	0-0	28-Oct-19	MG/KG	9.51	139	1.75 U	10.4	40.1	0.0189 0	1.75 U	1.75 U
B30	D-B30-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	12.6	133	1.85 U	10.2	26.8 J	0.0182 UJ	1.85 U	1.85 U
B30 B30	D-FD01-110119 D-B30-10.0-10.5	5.0-5.5 10.0-10.5	01-Nov-19 01-Nov-19	MG/KG MG/KG	11.5 9.78	162 112	1.89 U 1.85 U	11.5 8.93	52.3 J 36.8	0.0208 J 0.025	1.89 U 1.85 U	1.89 U 1.85 U
B30	D-B30-15.0-15.5	15.0-15.5	01-Nov-19	MG/KG	15.4	130	1.69 U	14	14.1	0.0192 U	1.69 U	1.69 U
B30	D-B30-19.5-20.0	19.5-20.0	01-Nov-19	MG/KG	16	142	1.82 U	21.8	15.9	0.0189 U	1.82 U	1.82 U
B31 B31	D-B31-0-102719 D-B31-5.0-5.5	0-0 5.0-5.5	27-Oct-19 28-Oct-19	MG/KG MG/KG	9.08	186 143	1.92 U 1.96 U	10.3 11.4	34.8 98.2	0.0211 0.228	1.92 U 1.96 U	1.92 U 1.96 U
B31	D-B31-10.0-10.5	10.0-10.5	06-Nov-19	MG/KG	12.8	211	1.82 U	8.25	6.48	0.0185 U	1.82 U	1.82 U
B31 B31	D-B31-15.0-15.5 D-B31-20.0-20.5	15.0-15.5 20.0-20.5	06-Nov-19 06-Nov-19	MG/KG MG/KG	18.4 12.6	114 767	1.85 U 1.75 U	13.4 10.6	6.87 7.26	0.0169 U 0.0182 U	1.85 U 1.75 U	1.85 U 1.75 U
B31 B32	D-B31-20.0-20.5 D-B32-0-102719	0-0	27-Oct-19	MG/KG MG/KG	8.73	176	2.00 U	9.26	48.3	0.0182 0	2.00 U	2.00 U
B32	D-B32-5.0-5.5	5.0-5.5	28-Oct-19	MG/KG	7.13	107	1.85 U	8.2 J	62.5	0.0492 J	1.85 U	1.85 U
B32 B32	B-FD02-102819 D-B32-10.0-10.5	5.0-5.5 10.0-10.5	28-Oct-19 06-Nov-19	MG/KG MG/KG	10.3 8.49	114 156	1.67 U 1.67 U	4.01 J 7.09	40.5 27.7	0.0192 UJ 0.0336	1.67 U 1.67 U	1.67 U 1.67 U
B32	D-B32-10.0-10.5 D-B32-15.0-15.5	15.0-15.5	06-Nov-19	MG/KG MG/KG	10.3	241	1.67 U	10.5	3.86	0.0336 0.0169 U	1.67 U	1.67 U
B32	D-B32-20.0-20.5	20.0-20.5	06-Nov-19	MG/KG	9.75	236	1.72 U	14	5.19	0.0192 U	1.72 U	1.72 U
B33 B33	D-B33-0-102719	0-0 5.0-5.5	27-Oct-19 28-Oct-19	MG/KG MG/KG	7.47 20.6	149 158	1.85 U 2.78	8.64 14	29.7 222	0.0289	1.85 U 1.89 U	1.85 U 1.89 U
B33	D-B33-5.0-5.5 D-B33-10.0-10.5	10.0-10.5	28-Oct-19 06-Nov-19	MG/KG MG/KG	9.04	158 65.1	1.67 U	9.26	11.7	0.242 0.0196 U	1.89 U 1.67 U	1.89 U 1.67 U
B33	D-B33-15.0-15.5	15.0-15.5	06-Nov-19	MG/KG	32.6	201	1.89 U	16.7	9.69	0.0167 U	1.89 U	1.89 U
B33 B34	D-B33-20.0-20.5 D-B34-0-102719	20.0-20.5 0-0	06-Nov-19 27-Oct-19	MG/KG MG/KG	10 11.3	212 208 J	1.75 U 1.92 U	9.87 11	9.34 41.3 J	0.0172 U 0.0288 J	1.75 U 1.92 U	1.75 U 1.92 U
B34	D-FD01-102819	0-0	28-Oct-19	MG/KG	14.8	76.4 J	1.92 U	10.5	12.6 J	0.0286 J 0.0185 UJ	1.92 U	1.92 U
B34	D-B34-5.0-5.5-102819	5.0-5.5	28-Oct-19	MG/KG	9.45	104	1.92 U	10.6	14.1	0.0196 U	1.92 U	1.92 U

Table 2-4. Summary of Analytical Data for Soil Metals APS Douglas Former MGP Site, Douglas, Arizona

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	Arsenic	Barium	Cadmium	Сһготіит	Lead	Mercury	Selenium	Silver
Residential So	oil Remediation Level			MG/KG	10	15,000	39	120,000	400	23	390	390
Non-Resident	tial Soil Remediation Level			MG/KG	10	170,000	510	1,000,000	800	310	5,100	5,100
Groundwater	Protection Level			MG/KG	290	12,000	29	590	290	12	290	NE
B34	D-B34-10.0-10.5	10.0-10.5	06-Nov-19	MG/KG	15.7	195	2.00 U	6.74	7.7	0.0175 U	2.00 U	2.00 U
B34	D-B34-15.0-15.5	15.0-15.5	06-Nov-19	MG/KG	8.59	84.2	1.82 U	6.19	10.1	0.0315	1.82 U	1.82 U
B34	D-B34-20.0-20.5	20.0-20.5	06-Nov-19	MG/KG	9.21	99.1	1.67 U	11.8	10.8	0.0196 U	1.67 U	1.67 U
B35	D-B35-0-102719	0-0	27-Oct-19	MG/KG	7.69	181	1.89 U	10.1	30.3	0.0268	1.89 U	1.89 U
B35	D-B35-5.0-5.5	5.0-5.5	28-Oct-19	MG/KG	13	174	1.89 U	14.1	29.9 J	0.000228	1.89 U	1.89 U
B35	D-B35-10.0-10.5	10.0-10.5	05-Nov-19	MG/KG	14.6	132	1.85 U	11.6	24.1	0.0196 U	1.85 U	1.85 U
B35	D-B35-15.0-15.5	15.0-15.5	05-Nov-19	MG/KG	13.8	170	1.85 U	12.8	13.8	0.0172 U	1.85 U	1.85 UJ
B35	D-B35-20.0-20.5	20.0-20.5	05-Nov-19	MG/KG	14.2	34.7	1.85 U	12.7	12.6	0.0261	1.85 U	1.85 U

Cells highlighted in red indicate that the compound exceeded the Residential Soil Remediation Level and Non-Residential Soil Remediation Level.

Cells highlighted in yellow indicate that the compound exceeded the Residential Soil Remediation Level only.

Cells highlighted in blue indicate that the compound exceeded the minimum Groundwater ProtectionLevel and Residential Soil Remediation Level.

Cells highlighted in blue indicate that the compound exceeded the minimum Groundwater ProtectionLevel and Residential Soil Remediation Level.

Detected results are shown in **Bold**.

Groundwater Protection Levels are the minimum values from Table 4 of ADEQ (1996). A site-specific groundwater protection level was calculated for lead (refer to Section 4).

J = Analyte is present but the reported value might not be accurate or precise (estimate).

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estimated.

It bgs = foot (feet) below ground surface

ID = identification number

mg/kg = milligram(s) per kilogram

Table 2-5. Summary of Analytical Data for Soil VOCs *APS Douglas Former MGP Site, Douglas, Arizona*

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-Chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene
	Soil Remediation L			MG/KG	3.2	1200	0.42	0.74	510	120	NE	NE	0.005	62	52	0.53	0.029	600	0.28	0.34	21
	ential Soil Remediat			MG/KG	73	1200	9.3	16	1700	410	NE	NE	0.11	220	170	6.5	0.63	600	6	7.4	70
	ter Protection Level		00.0.140	MG/KG	NE	0.94	NE	NE	NE	0.85	NE	NE	NE	NE	NE	NE	NE	116	0.23	0.36	NE
B11	D-B11-1.0-1.5	1.0-1.5	30-Oct-19	MG/KG	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U
B11 B12	D-B11-2.5-3.0 D-B12-1.0-1.5	2.5-3.0 1.0-1.5	30-Oct-19 31-Oct-19	MG/KG MG/KG	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U	0.265 U 0.253 U
B12	D-B12-1.0-1.3 D-B12-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.233 U	0.23 U	0.23 U	0.233 U	0.233 U	0.233 U	0.233 U	0.233 U	0.233 U	0.233 U	0.23 U	0.23 U
B12	D-B12-5.0-5.5	5.0-5.5	31-Oct-19	MG/KG	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
B12	D-FD02-103119	5.0-5.5	31-Oct-19	MG/KG	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U
B13	D-B13-1.0-1.5	1.0-1.5	31-Oct-19	MG/KG	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U
B13	D-B13-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U
B14	D-B14-1.0-1.5	1.0-1.5	29-Oct-19	MG/KG	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U
B15	D-B15-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U
B15	D-FD03-110119	5.0-5.5	01-Nov-19	MG/KG	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U
B16	D-B16-2.5-3.0	2.5-3.0	29-Oct-19	MG/KG	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U
B16 B16	D-FD01-102919 D-B16-5.0-5.5	2.5-3.0 5.0-5.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U	0.249 U 0.296 U
B16	D-B16-3.0-3.5 D-B16-10.0-10.5	10.0-10.5	29-Oct-19	MG/KG	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U
B16	D-B16-15.0-15.5	15.0-15.5	29-Oct-19	MG/KG	0.267 U	0.290 U	0.290 U	0.267 U	0.267 U	0.267 U	0.267 U	0.290 U	0.290 U	0.290 U	0.290 U	0.290 U	0.290 U	0.290 U	0.290 U	0.290 U	0.267 U
B16	D-FD02-102919	15.0-15.5	29-Oct-19	MG/KG	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
B16	D-B16-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U
B16	D-B16-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U
B17	D-B17-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
B19	D-B19-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U
B21	D-B21-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U
B21	D-FD02-110119	2.5-3.0	01-Nov-19	MG/KG	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U
B25	D-B25-0-102719	0-0	27-Oct-19	MG/KG	0.314 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U	0.314 U	0.314 U 0.225 U
B25 B28	D-B25-2.5-3.0 D-B28-5.0-5.5	2.5-3.0 5.0-5.5	30-Oct-19 29-Oct-19	MG/KG MG/KG	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U	0.225 U 0.259 U
B28	D-FD03-102919	5.0-5.5	29-Oct-19	MG/KG	0.239 U	0.239 U	0.239 U	0.239 U 0.226 U	0.239 U 0.226 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U	0.239 U
B29	D-B29-5.0-5.5	5.0-5.5	07-Nov-19	MG/KG	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U
B30	D-B30-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U
B30	D-FD01-110119	5.0-5.5	01-Nov-19	MG/KG	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U
B35	D-B35-5.0-5.5	5.0-5.5	28-Oct-19	MG/KG	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U
TAR	D-TAR-01		02-Nov-19	MG/KG	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U

Table 2-5. Summary of Analytical Data for Soil VOCs *APS Douglas Former MGP Site, Douglas, Arizona*

Commonweal Provider MoSKC Ne	Location Residential	Sample ID Soil Remediation Le	Sample Depth (ft bgs) evel	Sample Date	Units MG/KG	0.0 8 1,3-Butadiene	230 1,3-Dichlorobenzene	001 1,3-Dichloropropane	ក្នុ 1,4-Dichlorobenzene	표 2,2-Dichloropropane	37 2-Butanone	091 2-Chlorotoluene	R 2-Hexanone	A-Chlorotoluene	R 4-Ethyltoluene	000 4-Methyl-2-Pentanone	4cetone 44000	Benzene	Bromobenzene	금 Bromochloromethane	88.0 Bromodichloromethane	Bromoform
B11 DB111-DB11	Non-Reside	ential Soil Remediati	ion Level		MG/KG	1.2	600	360	79	NE	NE	510	NE	NE	NE	17000	54000	1.4	92	NE	18	2200
Section Control Cont	Groundwa	ter Protection Level			MG/KG	NE	NE	NE	27	NE	NE	NE	NE	NE	NE	NE	NE	0.70	NE	NE	NE	NE
B12 D-B12-7-5.5 1.0-1.5 31-O-1.19 MGKG 0.253 U 0.253	B11																					
B12 OB12-58-55 5.0-55																						
B12 D-B12-5.0-5.5 S-0-5.5 S-1-0-6.19 MS/KG D-21 U D-																						
B12 D-FD02-103119 5.0-5.5 31-Oct-19 MG/KG 0.294 U 0.294 U 0.294 U 0.295 U 0.289 U 0.																						
B13 DeB13-10-15 10-15 31-0c-19 MG/MG 0289 U																						
B13																						
B14 D-B14-10-15 10-15 29-Oct-19 MGKG 0.288 U 0.289 U 0.247 U 0.249 U																						
B15																						
B15 D-FD03-110119 5.0-5.5 0.1-Nov-19 MG/KG 0.249 U 0																						
B16 D-B16-25-36																						
B16 D-FD0-1102919 2.5-3.0 29-Oct.19 MG/KG 0.249 U 0.244 U 0.																						
B16 D-B16-5.0-5.5 5.0-5.5 29-Oct-19 MG/KG 0.296 U 0.																						
B16 DB16-10.0-10.5 10.0-10.5 29-Oct-19 MG/KG 0.296 U 0.297 U 0.267 U 0.275 U																						
B16 D-B16-15.0-15.5 15.0-15.5 29-Oct-19 MG/KG 0.267 U																						
B16 D-B16-19.5-20.0 19.5-20.0 29-Oct-19 MG/KG 0.275 U																						
B16 D-B16-7.5-8.0 7.5-8.0 29-Oct-19 MG/KG 0.291 U 0.	B16	D-FD02-102919	15.0-15.5	29-Oct-19	MG/KG	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	1.04 U	0.26 U	2.6 U	0.26 U	0.26 U	2.6 U	5.2 U	0.052 U	0.26 U	0.26 U	0.26 U	0.26 U
B17 D-B17-5.0-5.5 S.0-5.5 S.	B16	D-B16-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	1.1 U	0.275 U	2.75 U	0.275 U	0.275 U	2.75 U	5.49 U	0.0549 U	0.275 U	0.275 U	0.275 U	0.275 U
B19 D-B19-2.5-3.0 2.5-3.0 01-Nov-19 MG/KG 0.262 U 0.	B16	D-B16-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	1.17 U	0.291 U	2.91 U	0.291 U	0.291 U	2.91 U	5.83 U	0.0583 U	0.291 U	0.291 U	0.291 U	0.291 U
B21 D-B21-2.5-3.0 2.5-3.0 01-Nov-19 MG/KG 0.234 U 0.	B17	D-B17-5.0-5.5		30-Oct-19	MG/KG		0.27 U	0.27 U	0.27 U	0.27 U	1.08 U	0.27 U	2.7 U	0.27 U	0.27 U	2.7 U	5.4 U	0.054 U	0.27 U	0.27 U	0.27 U	0.27 U
B21 D-FD02-110119 2.5-3.0 01-Nov-19 MG/KG 0.219 U	B19			01-Nov-19			0.262 U	0.262 U	0.262 U	0.262 U	1.05 U	0.262 U	2.62 U	0.262 U	0.262 U	2.62 U	5.24 U	0.0524 U	0.262 U	0.262 U		
B25 D-B25-0-102719 0-0 27-Oct-19 MG/KG 0.314 U 0.325 U 0.225 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
B25 D-B25-2.5-3.0 2.5-3.0 30-Oct-19 MG/KG 0.225 U																						
B28 D-B28-5.0-5.5 5.0-5.5 29-Oct-19 MG/KG 0.259 U																						
B28 D-FD03-102919 5.0-5.5 29-Oct-19 MG/KG 0.226 U																						
B29 D-B29-5.0-5.5 5.0-5.5 07-Nov-19 MG/KG 0.245 U																						
B30 D-B30-5.0-5.5 5.0-5.5 01-Nov-19 MG/KG 0.213 U																						
B30 D-FD01-110119 5.0-5.5 01-Nov-19 MG/KG 0.266 U																						
B35 D-B35-5.0-5.5 5.0-5.5 28-Oct-19 MG/KG 0.324 U 0.32																						
	TAR	D-TAR-01	3.0-3.3 	02-Nov-19	MG/KG	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	2.01 U	0.502 U	5.02 U	0.502 U	0.502 U	5.02 U	10 U	0.0040 U	0.502 U	0.502 U	0.502 U	0.502 U

Table 2-5. Summary of Analytical Data for Soil VOCs *APS Douglas Former MGP Site, Douglas, Arizona*

Location Residential	Sample ID Soil Remediation L	Sample Depth (ft bgs) evel	Sample Date	Units MG/KG	6. Bromomethane	096 Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	ε Chloroethane	Chloroform 0.94	8 Chloromethane	없 cis-1,2-Dichloroethene	금 cis-1,3-Dichloropropene	Cyclohexane	T. Dibromochloromethane	29 Dibromomethane	Dichlorodifluoromethane	Dicyclopentadiene	00 Ethylbenzene	2 Hexachlorobutadiene	Iodomethane (Methyl Iodide)
Non-Reside	ntial Soil Remediat	ion Level		MG/KG	13	720	5.5	530	65	20	160	150	NE	140	26	230	310	1.8	400	180	NE
	er Protection Level			MG/KG	NE	NE	0.95	16.5	NE	NE	NE	5.30	NE	NE	NE	NE	NE	NE	82	NE	NE
	D-B11-1.0-1.5	1.0-1.5	30-Oct-19	MG/KG	0.263 U	0.263 U	0.263 U	0.263 U	0.526 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.0526 U	0.263 U	1.05 U
	D-B11-2.5-3.0	2.5-3.0	30-Oct-19	MG/KG	0.265 U	0.265 U	0.265 U	0.265 U	0.531 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U	0.0531 U	0.265 U	1.06 U
B12 B12	D-B12-1.0-1.5 D-B12-2.5-3.0	1.0-1.5 2.5-3.0	31-Oct-19 31-Oct-19	MG/KG MG/KG	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.506 U 0.441 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.253 U 0.22 U	0.0506 U 0.0441 U	0.253 U 0.22 U	1.01 U 0.882 U
	D-B12-5.0-5.5	5.0-5.5	31-Oct-19	MG/KG	0.22 U	0.22 U	0.22 U	0.22 U	0.441 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.0441 U	0.22 U	0.839 U
B12	D-FD02-103119	5.0-5.5	31-Oct-19	MG/KG	0.214 U	0.21 U	0.214 U	0.214 U	0.419 U	0.214 U	0.214 U	0.21 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.0419 U	0.214 U	0.856 U
	D-B13-1.0-1.5	1.0-1.5	31-Oct-19	MG/KG	0.289 U	0.289 U	0.289 U	0.289 U	0.577 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.0577 U	0.289 U	1.15 U
	D-B13-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.243 UJ	0.243 U	0.243 U	0.243 U	0.485 UJ	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.0485 U	0.243 U	0.971 U
B14	D-B14-1.0-1.5	1.0-1.5	29-Oct-19	MG/KG	0.268 U	0.268 U	0.268 U	0.268 U	0.535 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.0535 U	0.268 U	1.07 U
B15	D-B15-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.247 U	0.247 U	0.247 U	0.247 U	0.494 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.0494 U	0.247 U	0.988 U
B15	D-FD03-110119	5.0-5.5	01-Nov-19	MG/KG	0.249 U	0.249 U	0.249 U	0.249 U	0.498 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.0498 U	0.249 U	0.996 U
B16	D-B16-2.5-3.0	2.5-3.0	29-Oct-19	MG/KG	0.268 U	0.268 U	0.268 U	0.268 U	0.535 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.0535 U	0.268 U	1.07 U
B16	D-FD01-102919	2.5-3.0	29-Oct-19	MG/KG	0.249 U	0.249 U	0.249 U	0.249 U	0.498 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.0498 U	0.249 U	0.996 U
B16	D-B16-5.0-5.5	5.0-5.5	29-Oct-19	MG/KG	0.296 U	0.296 U	0.296 U	0.296 U	0.591 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.0591 U	0.296 U	1.18 U
B16 B16	D-B16-10.0-10.5 D-B16-15.0-15.5	10.0-10.5 15.0-15.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.592 U 0.534 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.0592 U 0.0534 U	0.296 U 0.267 U	1.18 U 1.07 U
B16	D-FD02-102919	15.0-15.5	29-Oct-19	MG/KG	0.26 U	0.26 U	0.26 U	0.26 U	0.534 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.267 U	0.207 U	0.207 U	0.26 U	0.052 U	0.26 U	1.07 U
B16	D-B16-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	0.275 U	0.275 U	0.275 U	0.275 U	0.549 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.0549 U	0.275 U	1.1 U
B16	D-B16-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	0.291 U	0.291 U	0.291 U	0.291 U	0.583 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.0583 U	0.291 U	1.17 U
B17	D-B17-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	0.27 U	0.27 U	0.27 U	0.27 U	0.54 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.054 U	0.27 U	1.08 U
B19	D-B19-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.262 U	0.262 U	0.262 U	0.262 U	0.524 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.0524 U	0.262 U	1.05 U
B21	D-B21-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.234 U	0.234 U	0.234 U	0.234 U	0.468 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.0468 U	0.234 U	0.936 U
B21	D-FD02-110119	2.5-3.0	01-Nov-19	MG/KG	0.219 U	0.219 U	0.219 U	0.219 U	0.439 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.0439 U	0.219 U	0.877 U
	D-B25-0-102719	0-0	27-Oct-19	MG/KG	0.314 U	0.314 U	0.314 U	0.314 U	0.628 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.314 U	0.0628 U	0.314 U	1.26 U
	D-B25-2.5-3.0 D-B28-5.0-5.5	2.5-3.0	30-Oct-19	MG/KG MG/KG	0.225 U	0.225 U	0.225 U	0.225 U	0.45 U	0.225 U	0.225 U	0.225 U	0.225 U	0.225 U	0.225 U	0.225 U	0.225 U	0.225 U	0.045 U	0.225 U	0.901 U
B28 B28	D-B28-5.0-5.5 D-FD03-102919	5.0-5.5 5.0-5.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.518 U 0.453 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.259 U 0.226 U	0.0518 U 0.0453 U	0.259 U 0.226 U	1.04 U 0.906 U
B28 B29	D-B29-5.0-5.5	5.0-5.5	07-Nov-19	MG/KG	0.245 UJ	0.245 U	0.226 U	0.226 U	0.453 U 0.489 UJ	0.226 U	0.226 U	0.245 U	0.226 U	0.226 U 0.245 UJ	0.226 U	0.226 U	0.226 U	0.226 U	0.0453 U 0.0489 U	0.245 U	0.906 U 0.978 UJ
B30	D-B30-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.243 U	0.243 U	0.243 U	0.243 U	0.409 U3 0.427 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.0409 U 0.0427 U	0.243 U	0.853 U
B30	D-FD01-110119	5.0-5.5	01-Nov-19	MG/KG	0.266 U	0.266 U	0.266 U	0.266 U	0.532 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.0532 U	0.266 U	1.06 U
B35	D-B35-5.0-5.5	5.0-5.5	28-Oct-19	MG/KG	0.324 UJ	0.324 U	0.324 U	0.324 U	0.648 UJ	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.0648 U	0.324 U	1.3 U
TAR	D-TAR-01	-	02-Nov-19	MG/KG	0.502 U	0.502 U	0.502 U	0.502 U	1 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.1 U	0.502 U	2.01 U

Table 2-5. Summary of Analytical Data for Soil VOCs *APS Douglas Former MGP Site, Douglas, Arizona*

	Sample ID Soil Remediation Lo		Sample Date	Units MG/KG MG/KG	Sopropylbenzene	M m,p-Xylenes	Methyl cyclohexane	Wethylene Chloride	₩ ₩ 32 710	Naphthalene	u-Butylbenzene	110 110	n-Propylbenzene	N O-Xylene	ж к р-Сутепе (p-lsopropyltoluene)	NE Propene	Sec-Butylbenzene	1500 1500	068 068 068 068 068 068 068	Tetrachloroethylene	9000 650 650
	ter Protection Level	ion Level		MG/KG	NE	NE NE	NE	NE NE	NE	NE NE	NE	NE NE	NE	NE NE	NE	NE NE	NE	45	NE	0.80	159
B11	D-B11-1.0-1.5	1.0-1.5	30-Oct-19	MG/KG	0.263 U	0.105 U	0.526 U	1.05 U	0.263 U	0.526 U	0.263 U	0.526 U	0.263 U	0.0526 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U
B11	D-B11-2.5-3.0	2.5-3.0	30-Oct-19	MG/KG	0.265 U	0.106 U	0.531 U	1.06 U	0.265 U	0.531 U	0.265 U	0.531 U	0.265 U	0.0531 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U	0.265 U
B12	D-B12-1.0-1.5	1.0-1.5	31-Oct-19	MG/KG	0.253 U	0.101 U	0.506 U	1.01 U	0.253 U	0.506 U	0.253 U	0.506 U	0.253 U	0.0506 U	0.253 U	0.253 U	0.253 U	0.253 U	0.253 U	0.253 U	0.253 U
B12	D-B12-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.22 U	0.0882 U	0.441 U	0.882 U	0.22 U	0.441 U	0.22 U	0.441 U	0.22 U	0.0441 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
B12	D-B12-5.0-5.5	5.0-5.5	31-Oct-19	MG/KG	0.21 U	0.0839 U	0.419 U	0.839 U	0.21 U	0.419 U	0.21 U	0.419 U	0.21 U	0.0419 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
B12	D-FD02-103119	5.0-5.5	31-Oct-19	MG/KG	0.214 U	0.0856 U	0.428 U	0.856 U	0.214 U	0.428 U	0.214 U	0.428 U	0.214 U	0.0428 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U	0.214 U
B13	D-B13-1.0-1.5	1.0-1.5	31-Oct-19	MG/KG	0.289 U	0.197	0.577 U	1.15 U	0.289 U	28.3	0.289 U	0.577 U	0.289 U	0.133	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.289 U	0.38
B13	D-B13-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.243 U	0.0971 U	0.485 U	0.971 U	0.243 U	10.5	0.243 U	0.485 U	0.243 U	0.0485 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U	0.243 U
B14	D-B14-1.0-1.5	1.0-1.5	29-Oct-19	MG/KG	0.268 U	0.107 U	0.535 U	1.07 U	0.268 U	0.535 U	0.268 U	0.535 U	0.268 U	0.0535 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U	0.268 U
B15	D-B15-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.247 U	0.0988 U	0.494 U	0.988 U	0.247 U	0.494 U	0.247 U	0.494 U	0.247 U	0.0494 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U	0.247 U
B15	D-FD03-110119 D-B16-2.5-3.0	5.0-5.5 2.5-3.0	01-Nov-19 29-Oct-19	MG/KG MG/KG	0.249 U 0.268 U	0.0996 U 0.107 U	0.498 U 0.535 U	0.996 U 1.07 U	0.249 U 0.268 U	0.498 U 0.535 U	0.249 U 0.268 U	0.498 U 0.535 U	0.249 U 0.268 U	0.0498 U 0.0535 U	0.249 U 0.268 U	0.249 U 0.268 U	0.249 U 0.268 U	0.249 U 0.268 U	0.249 U 0.268 U	0.249 U 0.268 U	0.249 U 0.268 U
B16 B16	D-FD01-102919	2.5-3.0	29-Oct-19	MG/KG	0.249 U	0.107 U	0.333 U 0.498 U	0.996 U	0.249 U	0.333 U 0.498 U	0.200 U	0.333 U 0.498 U	0.249 U	0.0333 U 0.0498 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U	0.249 U
B16	D-B16-5.0-5.5	5.0-5.5	29-Oct-19	MG/KG	0.249 U	0.118 U	0.490 U	1.18 U	0.249 U	0.490 U	0.249 U	0.490 U	0.249 U	0.0490 U	0.249 U	0.249 U	0.249 U	0.249 U	0.243 U	0.249 U	0.296 U
B16	D-B16-10.0-10.5	10.0-10.5	29-Oct-19	MG/KG	0.296 U	0.118 U	0.592 U	1.18 U	0.296 U	0.592 U	0.296 U	0.592 U	0.296 U	0.0592 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U	0.296 U
B16	D-B16-15.0-15.5	15.0-15.5	29-Oct-19	MG/KG	0.267 U	0.107 U	0.534 U	1.07 U	0.267 U	0.534 U	0.267 U	0.534 U	0.267 U	0.0534 U	0.267 U	0.267 U	0.267 U	0.267 U	0.267 U	0.267 U	0.267 U
B16	D-FD02-102919	15.0-15.5	29-Oct-19	MG/KG	0.26 U	0.104 U	0.52 U	1.04 U	0.26 U	0.52 U	0.26 U	0.52 U	0.26 U	0.052 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
B16	D-B16-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	0.275 U	0.11 U	0.549 U	1.1 U	0.275 U	0.549 U	0.275 U	0.549 U	0.275 U	0.0549 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U	0.275 U
B16	D-B16-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	0.291 U	0.117 U	0.583 U	1.17 U	0.291 U	0.583 U	0.291 U	0.583 U	0.291 U	0.0583 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U	0.291 U
B17	D-B17-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	0.27 U	0.108 U	0.54 U	1.08 U	0.27 U	0.54 U	0.27 U	0.54 U	0.27 U	0.054 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
B19	D-B19-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.262 U	0.105 U	0.524 U	1.05 U	0.262 U	0.524 U	0.262 U	0.524 U	0.262 U	0.0524 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U	0.262 U
B21	D-B21-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.234 U	0.0936 U	0.468 U	0.936 U	0.234 U	0.468 U	0.234 U	0.468 U	0.234 U	0.0468 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U	0.234 U
B21 B25	D-FD02-110119	2.5-3.0	01-Nov-19	MG/KG	0.219 U	0.0877 U	0.439 U	0.877 U	0.219 U	0.439 U	0.219 U	0.439 U	0.219 U	0.0439 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U	0.219 U
B25 B25	D-B25-0-102719 D-B25-2.5-3.0	0-0 2.5-3.0	27-Oct-19 30-Oct-19	MG/KG MG/KG	0.314 U 0.225 U	0.126 U 0.0901 U	0.628 U 0.45 U	1.26 U 0.901 U	0.314 U 0.225 U	0.628 U 0.45 U	0.314 U 0.225 U	0.628 U 0.45 U	0.314 U 0.225 U	0.0628 U 0.045 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U 0.225 U	0.314 U 0.225 U
B28	D-B28-5.0-5.5	5.0-5.5	29-Oct-19	MG/KG	0.259 U	0.0901 U	0.43 U	1.04 U	0.259 U	0.43 U	0.223 U	0.43 U	0.259 U	0.043 U	0.259 U	0.259 U	0.259 U	0.223 U	0.259 U	0.259 U	0.259 U
B28	D-FD03-102919	5.0-5.5	29-Oct-19	MG/KG	0.239 U	0.104 U	0.453 U	0.906 U	0.239 U	0.453 U	0.239 U	0.453 U	0.239 U	0.0318 U	0.239 U	0.239 U 0.226 U	0.239 U	0.239 U	0.239 U 0.226 U	0.239 U	0.239 U
B29	D-B29-5.0-5.5	5.0-5.5	07-Nov-19	MG/KG	0.245 U	0.0978 U	0.489 U	0.978 U	0.245 U	0.489 U	0.245 U	0.489 UJ	0.245 U	0.0489 U	0.245 U	0.245 UJ	0.245 U	0.245 U	0.245 U	0.245 U	0.245 U
B30	D-B30-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.213 U	0.0853 U	0.427 U	0.853 U	0.213 U	0.427 U	0.213 U	0.427 U	0.213 U	0.0427 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U	0.213 U
B30	D-FD01-110119	5.0-5.5	01-Nov-19	MG/KG	0.266 U	0.106 U	0.532 U	1.06 U	0.266 U	0.532 U	0.266 U	0.532 U	0.266 U	0.0532 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U	0.266 U
B35	D-B35-5.0-5.5	5.0-5.5	28-Oct-19	MG/KG	0.324 U	0.13 U	0.648 U	1.3 U	0.324 U	0.648 U	0.324 U	0.648 U	0.324 U	0.0648 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U	0.324 U
TAR	D-TAR-01	-	02-Nov-19	MG/KG	0.502 U	0.201 U	1 U	2.01 U	0.502 U	1 U	0.502 U	1 U	0.502 U	0.1 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U	0.502 U

Table 2-5. Summary of Analytical Data for Soil VOCs

Location Residentia	Sample ID	Sample Depth (ft bgs)	Sample Date	Units MG/KG	Total Xylenes	8 trans-1,2-dichloroethene	Krans-1,3-dichloropropene	м Trichloroethene	06 Trichlorofluoromethane	저 Vinyl Acetate	Vinyl Chloride
	ential Soil Remediat			MG/KG	420	230	NE	65	1300	NE	0.75
Groundwa	ter Protection Level			MG/KG	31	9.20	NE	0.76	NE	NE	NE
B11	D-B11-1.0-1.5	1.0-1.5	30-Oct-19	MG/KG	0.0526 U	0.263 U	0.263 U	0.263 U	0.263 U	0.0526 U	0.263 U
B11	D-B11-2.5-3.0	2.5-3.0	30-Oct-19	MG/KG	0.0531 U	0.265 U	0.265 U	0.265 U	0.265 U	0.0531 U	0.265 U
B12	D-B12-1.0-1.5	1.0-1.5	31-Oct-19	MG/KG	0.0506 U	0.253 U	0.253 U	0.253 U	0.253 U	0.0506 U	0.253 U
B12	D-B12-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.0441 U	0.22 U	0.22 U	0.22 U	0.22 U	0.0441 U	0.22 U
B12	D-B12-5.0-5.5	5.0-5.5	31-Oct-19	MG/KG	0.0419 U	0.21 U	0.21 U	0.21 U	0.21 U	0.0419 U	0.21 U
B12	D-FD02-103119	5.0-5.5	31-Oct-19	MG/KG	0.0428 U	0.214 U	0.214 U	0.214 U	0.214 U	0.0428 U	0.214 U
B13	D-B13-1.0-1.5	1.0-1.5	31-Oct-19	MG/KG	0.33	0.289 U	0.289 U	0.289 U	0.289 U	0.577 U	0.289 U
B13	D-B13-2.5-3.0	2.5-3.0	31-Oct-19	MG/KG	0.0485 U	0.243 U	0.243 U	0.243 U	0.243 U	0.0485 U	0.243 U
B14	D-B14-1.0-1.5	1.0-1.5	29-Oct-19	MG/KG	0.0535 U	0.268 U	0.268 U	0.268 U	0.268 U	0.535 U	0.268 U
B15	D-B15-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.0494 U	0.247 U	0.247 U	0.247 U	0.247 U	0.0494 U	0.247 U
B15	D-FD03-110119	5.0-5.5	01-Nov-19	MG/KG	0.0498 U	0.249 U	0.249 U	0.249 U	0.249 U	0.0498 U	0.249 U
B16	D-B16-2.5-3.0	2.5-3.0	29-Oct-19	MG/KG	0.0535 U	0.268 U	0.268 U	0.268 U	0.268 U	0.535 U	0.268 U
B16	D-FD01-102919 D-B16-5.0-5.5	2.5-3.0 5.0-5.5	29-Oct-19	MG/KG	0.0498 U	0.249 U 0.296 U	0.249 U	0.249 U 0.296 U	0.249 U 0.296 U	0.498 U 0.591 U	0.249 U 0.296 U
B16 B16	D-B16-5.0-5.5 D-B16-10.0-10.5	10.0-10.5	29-Oct-19 29-Oct-19	MG/KG MG/KG	0.0591 U 0.0592 U	0.296 U	0.296 U 0.296 U	0.296 U	0.296 U	0.591 U 0.0592 U	0.296 U
B16	D-B16-10.0-10.5	15.0-15.5	29-Oct-19	MG/KG	0.0592 U 0.0534 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.296 U 0.267 U	0.0592 U 0.0534 U	0.296 U 0.267 U
B16	D-FD02-102919	15.0-15.5	29-Oct-19	MG/KG	0.0534 U	0.26 U	0.26 U	0.26 U	0.26 U	0.0534 U	0.26 U
B16	D-B16-19.5-20.0	19.5-20.0	29-Oct-19	MG/KG	0.0549 U	0.275 U	0.275 U	0.275 U	0.275 U	0.052 U	0.275 U
B16	D-B16-7.5-8.0	7.5-8.0	29-Oct-19	MG/KG	0.0543 U	0.273 U	0.273 U	0.291 U	0.291 U	0.0583 U	0.291 U
B17	D-B17-5.0-5.5	5.0-5.5	30-Oct-19	MG/KG	0.054 U	0.27 U	0.27 U	0.27 U	0.27 U	0.054 U	0.27 U
B19	D-B19-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.0524 U	0.262 U	0.262 U	0.262 U	0.262 U	0.0524 U	0.262 U
B21	D-B21-2.5-3.0	2.5-3.0	01-Nov-19	MG/KG	0.0468 U	0.234 U	0.234 U	0.234 U	0.234 U	0.0468 U	0.234 U
B21	D-FD02-110119	2.5-3.0	01-Nov-19	MG/KG	0.0439 U	0.219 U	0.219 U	0.219 U	0.219 U	0.0439 U	0.219 U
B25	D-B25-0-102719	0-0	27-Oct-19	MG/KG	0.0628 U	0.314 U	0.314 U	0.314 U	0.314 U	0.628 U	0.314 U
B25	D-B25-2.5-3.0	2.5-3.0	30-Oct-19	MG/KG	0.045 U	0.225 U	0.225 U	0.225 U	0.225 U	0.045 U	0.225 U
B28	D-B28-5.0-5.5	5.0-5.5	29-Oct-19	MG/KG	0.0518 U	0.259 U	0.259 U	0.259 U	0.259 U	0.0518 U	0.259 U
B28	D-FD03-102919	5.0-5.5	29-Oct-19	MG/KG	0.0453 U	0.226 U	0.226 U	0.226 U	0.226 U	0.0453 U	0.226 U
B29	D-B29-5.0-5.5	5.0-5.5	07-Nov-19	MG/KG	0.0489 U	0.245 U	0.245 U	0.245 U	0.245 UJ	0.0489 U	0.245 U
B30	D-B30-5.0-5.5	5.0-5.5	01-Nov-19	MG/KG	0.0427 U	0.213 U	0.213 U	0.213 U	0.213 U	0.0427 U	0.213 U
B30	D-FD01-110119	5.0-5.5	01-Nov-19	MG/KG	0.0532 U	0.266 U	0.266 U	0.266 U	0.266 U	0.0532 U	0.266 U
B35	D-B35-5.0-5.5	5.0-5.5	28-Oct-19	MG/KG	0.0648 U	0.324 U	0.324 U	0.324 U	0.324 U	0.648 U	0.324 U
TAR	D-TAR-01		02-Nov-19	MG/KG	0.1 U	0.502 U	0.502 U	0.502 U	0.502 U	0.1 U	0.502 U

Notes:

Cells highlighted in red indicate the compound exceeded the Residential and Non-Residential Soil Remediation Level.
Cells highlighted in yellow indicate that the compound exceeded the Residential Soil Remediation Level only.
Detected results are shown in **Bold**.

mg/kg = milligram(s) per kilogram

Groundwater Protection Levels are the minimum values from ADEQ (2013)

J = Analyte is present but the reported value might not be accurate or precise (estimate).

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estimated.

ft bgs = foot (feet) below ground surface

ID = identification number

Table 2-6. Summary of Analytical Data for Groundwater PAHs APS Douglas Former MGP Site, Douglas, Arizona

	or officer their one, Body																					
Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	1-Methylnaphthalos	2-Methyhaphthalene	Acenaphthene	Асепарлітунепе	Anthracene	Benzo(a)anthracen	Benzo(a)pyrene	Benzo(b)Auoranthen.	$B^{enzo(g,h,j)}$ per $_{Vens}$	Benzo(k)fluoranthen.	Сhrysene	Diben≳(a,h)anthraœn.	Fluoranthene	$F_{l_{ m l}Oren_{ m g}}$	Indeno(1,2,3-c,d)Pw.	vene Naphthalene	Рћепапингена	Ругеле
Aquifer Wat	er Quality Standard			mg/L	NE	NE	NE	NE	NE	NE	0.0002	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
D-MW25	D-MW25	26-27	07-Nov-19	mg/L	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000388 U	0.000194 U	0.000194 U
D-MW26	D-MW26	28-29	07-Nov-19	mg/L	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000187 U	0.000373 U	0.000187 U	0.000187 U
D-MW27	D-MW27	29-30	07-Nov-19	mg/L	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000196 U	0.000391 U	0.000196 U	0.000196 U
D-MW27	D-FD01-110719	29-30	07-Nov-19	mg/L	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000194 U	0.000388 U	0.000194 U	0.000194 U

Detected results are shown in **Bold**.

U = Analyte was not detected at the specified detection limit.

ft bgs = foot (feet) below ground surface ID = identification number

Table 2-7. Summary of Analytical Data for Groundwater Metals

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	Antimony	Arsenic	Barium	Beryllium	Cacmium	Сһготіит	Cobalt	$c_{opp_{f er}}$	read	Manganese	Мегсигу	Molybdenum	Nickel	Selenium	Silver	Th aliium
Aquifer Wat	er Quality Standard			mg/L	0.006	0.05	2	0.004	0.005	0.1	NE	NE	0.05	NE	0.002	NE	0.1	0.05	NE	0.002
D-MW25	D-MW25	26-27	07-Nov-19	mg/L	0.002 U	0.00466	0.0435	0.002 U	0.002 U	0.004 U	0.002 U	0.004 U	0.002 U	0.0536	0.0000263 U	0.00275	0.002 U	0.00498	0.002 U	0.002 U
D-MW26	D-MW26	28-29	07-Nov-19	mg/L	0.002 U	0.0068	0.0431	0.002 U	0.002 U	0.004 U	0.002 U	0.004 U	0.002 U	0.0569	0.0000263 U	0.002 U	0.002 U	0.00867	0.002 U	0.002 U
D-MW27	D-MW27	29-30	07-Nov-19	mg/L	0.002 U	0.00496	0.051	0.002 U	0.002 U	0.004 U	0.002 U	0.00409	0.002 U	0.361	0.0000263 U	0.00293	0.00317	0.0112	0.002 U	0.002 U
D-MW27	D-FD01-110719	29-30	07-Nov-19	mg/L	0.002 U	0.00574	0.0557	0.002 U	0.002 U	0.004 U	0.002 U	0.00488	0.002 U	0.367	0.0000263 U	0.00311	0.00367	0.0115	0.002 U	0.002 U

Notes:

Detected results are shown in **Bold**.

U = Analyte was not detected at the specified detection limit.

ft bgs = foot (feet) below ground surface

ID = identification number mg/L = milligram(s) per liter NE = not established

Table 2-8. Summary of Analytical Data for Groundwater VOCs

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	1,1,1,2-Tetrachloroethans	1,1,1-Trichloroethane	^{1,} 1,2,2-Tetrachloroethan	1,1,2-Trichloroethane	1, 1.Dichloroethane	1,1-Dichloroethas	1,1-Dichloropropen	1,2,3-Trichloroben	^{7,} 2,3.Trichloroprona.	¹ ,2,4.Trichlorobenzene	1,2,4.Trimethylbenzen.	7,2-Dibromo-3-Chlore	⁷ ,2-Dibromoethane	¹ ,2-Dichlorobenzene	¹ ,2-Dichloroethane
Aquifer Wate	er Quality Standard			mg/L	NE	0.2	NE	0.005	NE	0.007	NE	NE	NE	0.07	NE	0.0002	0.00005	0.6	0.005
D-MW25	D-MW25	26-27	07-Nov-19	mg/L	0.001 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.005 U	0.005 U	0.001 U	0.005 U	0.001 U	0.001 U	0.005 U	0.001 U	0.001 U
D-MW26	D-MW26	28-29	07-Nov-19	mg/L	0.001 U	0.005 U	0.001 U	0.001 U	0.001 U	0.00402	0.005 U	0.005 U	0.001 U	0.005 U	0.001 U	0.001 U	0.005 U	0.001 U	0.001 U
D-MW27	D-MW27	29-30	07-Nov-19	mg/L	0.001 U	0.005 U	0.001 U	0.001 U	0.001 U	0.00401	0.005 U	0.005 U	0.001 U	0.005 U	0.001 U	0.001 U	0.005 U	0.001 U	0.001 U
D-MW27	D-FD01-110719	29-30	07-Nov-19	mg/L	0.001 U	0.005 U	0.001 U	0.001 U	0.001 U	0.00437	0.005 U	0.005 U	0.001 U	0.005 U	0.001 U	0.001 U	0.005 U	0.001 U	0.001 U

Notes:

Cells highlighted in yellow indicate that the compound exceeded the aquifer water quality standard.

Detected results are shown in **Bold**.

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estimated. ft bgs = foot (feet) below ground surface

ID = identification number

Table 2-8. Summary of Analytical Data for Groundwater VOCs

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	¹ ,2-Dichloropropane	1,3,5.Trimethylbenzene	1,3-Butadiene	^{1,3} -Dichlorobenzene	¹ ,3.Dichloropropa _{ne}	1,4-Dichlorobenzen.	1-Chlorohexane	2,2-Dichloropropane	²-Chlorotoluene	2-H _{exanone}	4-Chlorotoluene	4-Methyl.2-Pentanone	$A_{Ceton_{f e}}$	Велгеле	Bromobenzene
Aquifer Wate	er Quality Standard			mg/L	0.005	NE	NE	NE	NE	0.075	NE	NE	NE	NE	NE	NE	NE	0.005	NE
D-MW25	D-MW25	26-27	07-Nov-19	mg/L	0.005 U	0.001 U	0.001 U	0.001 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.05 U	0.001 U	0.05 U	0.1 U	0.001 U	0.001 U
D-MW26	D-MW26	28-29	07-Nov-19	mg/L	0.005 U	0.001 U	0.001 U	0.001 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.05 U	0.001 U	0.05 U	0.1 U	0.001 U	0.001 U
D-MW27	D-MW27	29-30	07-Nov-19	mg/L	0.005 U	0.001 U	0.001 U	0.001 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.05 U	0.001 U	0.05 U	0.1 UJ	0.001 U	0.001 U
D-MW27	D-FD01-110719	29-30	07-Nov-19	mg/L	0.005 U	0.001 U	0.001 U	0.001 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.05 U	0.001 U	0.05 U	0.1 U	0.001 U	0.001 U

Notes:

Cells highlighted in yellow indicate that the compound exceeded the aquifer water qu

Detected results are shown in **Bold**.

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estir ft bgs = foot (feet) below ground surface

ID = identification number

Table 2-8. Summary of Analytical Data for Groundwater VOCs

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	Вготостюготеthаne	Bromodichloromethans	$B_{romoform}$	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chioroethane	Chloroform	cis-1,2-Dichloroethur.	cis-1,3-Dichloroproper	Cyclohexane	Dibromochlorometha	Dichlorodifiuoromen.	Dicyclopentadiene	Ethylbenzene
Aquifer Wate	er Quality Standard			mg/L	NE	NE	NE	NE	0.005	0.1	NE	NE	0.07	NE	NE	NE	NE	NE	0.7
	D-MW25	26-27	07-Nov-19	mg/L	0.001 U	0.001 U	0.005 U	0.005 U	0.005 U	0.001 U	0.01 U	0.001 U	0.001 U	0.005 U	0.005 UJ	0.005 U	0.001 U	0.005 U	0.001 U
D-MW26	D-MW26	28-29	07-Nov-19	mg/L	0.001 U	0.001 U	0.005 U	0.005 U	0.005 U	0.001 U	0.01 U	0.001 U	0.001 U	0.005 U	0.005 UJ	0.005 U	0.001 U	0.005 U	0.001 U
D-MW27	D-MW27	29-30	07-Nov-19	mg/L	0.001 U	0.001 U	0.005 U	0.005 U	0.005 U	0.001 U	0.01 U	0.001 U	0.001 U	0.005 U	0.005 UJ	0.005 U	0.001 U	0.005 U	0.001 U
D-MW27	D-FD01-110719	29-30	07-Nov-19	mg/L	0.001 U	0.001 U	0.005 U	0.005 U	0.005 U	0.001 U	0.01 U	0.001 U	0.001 U	0.005 U	0.005 UJ	0.005 U	0.001 U	0.005 U	0.001 U

Notes:

Cells highlighted in yellow indicate that the compound exceeded the aquifer water qu

Detected results are shown in **Bold**.

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estir ft bgs = foot (feet) below ground surface

ID = identification number

Table 2-8. Summary of Analytical Data for Groundwater VOCs

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	Hexachlorobutadiene	Воргору/Вепгепе	т,р-Хуиепе _в	Methyl bromide	Methyl Chloride	Methyl ethyl ketone	Methyl iodiae	Methylcyclohexane	Methylene Bromide	Methylene Chloride	MTBE	Naphthalene	n-Buty/benzene	п-Нехапе	п-Ргору <i>l</i> bеnzе _{ne}
Aquifer Wate	er Quality Standard			mg/L	NE	NE	10	NE	NE	NE	NE	NE	NE	0.005	NE	NE	NE	NE	NE
D-MW25	D-MW25	26-27	07-Nov-19	mg/L	0.005 U	0.001 U	0.01 U	0.005 U	0.01 U	0.05 U	0.02 U	0.01 U	0.001 U	0.01 U	0.005 U	0.01 U	0.001 U	0.005 U	0.001 U
D-MW26	D-MW26	28-29	07-Nov-19	mg/L	0.005 U	0.001 U	0.01 U	0.005 U	0.01 U	0.05 U	0.02 U	0.01 U	0.001 U	0.01 U	0.005 U	0.01 U	0.001 U	0.005 U	0.001 U
D-MW27	D-MW27	29-30	07-Nov-19	mg/L	0.005 U	0.001 U	0.01 U	0.005 U	0.01 U	0.05 U	0.02 U	0.01 U	0.001 U	0.01 U	0.005 U	0.01 U	0.001 U	0.005 U	0.001 U
D-MW27	D-FD01-110719	29-30	07-Nov-19	mg/L	0.005 U	0.001 U	0.01 U	0.005 U	0.01 U	0.05 U	0.02 U	0.01 U	0.001 U	0.01 U	0.005 U	0.01 U	0.001 U	0.005 U	0.001 U

Notes:

Cells highlighted in yellow indicate that the compound exceeded the aquifer water qu

Detected results are shown in **Bold**.

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estir ft bgs = foot (feet) below ground surface

ID = identification number

Table 2-8. Summary of Analytical Data for Groundwater VOCs

Location	Sample ID	Sample Depth (ft bgs)	Sample Date	Units	о-Хувпе	P-Cymene (p-lsopropuu	Sec-Butylbenzene	$S_{tyren_{f e}}$	^{tert} -Butylbenzene	⁷ etrachloroethe _{ne}	$ au_{ m Oluen_{ m e}}$	^T otal Trihalomethans	⁷ otal Xylenes	trans-1,2-dichloroethvio.	trans-1,3-dichloropron.	rene Trichloroethylene	^Т гіснюгоя шого те ш	Vinyı Acetate	Viny! Chloride
Aquifer Wate	er Quality Standard			mg/L	10	NE	NE	0.1	NE	0.005	1	NE	10	0.1	NE	0.005	NE	NE	0.002
D-MW25	D-MW25	26-27	07-Nov-19	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00591	0.001 U	0.001 U	0.001 U	0.005 U	0.0129	0.001 U	0.05 U	0.002 U
D-MW26	D-MW26	28-29	07-Nov-19	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00224	0.001 U	0.001 U	0.001 U	0.005 U	0.078	0.001 U	0.05 U	0.002 U
D-MW27	D-MW27	29-30	07-Nov-19	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0077	0.001 U	0.001 U	0.001 U	0.005 U	0.0688	0.001 U	0.05 U	0.002 U
D-MW27	D-FD01-110719	29-30	07-Nov-19	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00792	0.001 U	0.001 U	0.001 U	0.005 U	0.0712	0.001 U	0.05 U	0.002 U

Notes:

Cells highlighted in yellow indicate that the compound exceeded the aquifer water qu

Detected results are shown in **Bold**.

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estir ft bgs = foot (feet) below ground surface

ID = identification number

Table 2-9. Summary of Soil Waste Characterization Results – Pre-design Testing Investigation

and the second s	P Site, Douglas, Ariz																				
	Sample ID	D-BIN-110719	D-TAR-01	D-B11-1.0-1.5	D-B11-2.5-3.0*	D-B12-1.0-1.5	D-B12-5.0-5.5	D-B12-7.5-8.0*	D-B13-2.5-3.0	D-B14-1.0-1.5	D-B15-5.0-5.5	D-B16-2.5-3.0	D-B17-5.0-5.5	D-B19-2.5-3.0	D-B21-2.5-3.0	D-B25-0-102719	D-B25-2.5-3.0	D-B28-5.0-5.5	D-B29-5.0-5.5	D-B30-5.0-5.5	D-B35-5.0-5.5
	Sample Depth (ft bgs)			1.0-1.5	2.5-3.0	1.0-1.5	5.0-5.5	7.5-8.0	2.5-3.0	1.0-1.5	5.0-5.5	2.5-3.0	5.0-5.5	2.5-3.0	2.5-3.0	0-0.25	2.5-3.0	5.0-5.5	5.0-5.5	5.0-5.5	5.0-5.5
	Sample Date	07-Nov-19	02-Nov-19	30-Oct-19	30-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	29-Oct-19	01-Nov-19	29-Oct-19	30-Oct-19	01-Nov-19	01-Nov-19	27-Oct-19	30-Oct-19	29-Oct-19	07-Nov-19	01-Nov-19	28-Oct-19
Analyte	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
General Waste Analyses (SW-	1010/9012/9045/9095)																				
pН	SU	8.02		7.72		8.3	8.13		8.84	8.03	7.91	8.56	8.48	8.32	7.95	8.38	8.44	8.31	8.42	7.91	8.12
Flash Point	DEG F	180>		180		180	180		180	180	180	180	180	180	180	180	180	180	180	180	180
Temperature	DEG C	25.1		25.7		25.1	24.3		24.9	22.6	25.6	22.9	25.8	25	25.1	21.6	25	25.9	23	25.3	23.3
Paint Filter	Pass/Fail	Pass		Pass		Pass	Pass		Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
	MG/KG	0.0582U		0.65					0.0668J	0.0554U	0.0601U	0.144		0.065U		0.0635	0.0286U		0.0545UJ	0.0565U	
Cyanide, Total	MG/KG	0.05820		0.65		0.0588U	0.19		0.06683	0.05540	0.06010	0.144	0.204	0.0000	0.0715	0.0635	0.02860	0.0286U	0.0545UJ	0.05650	0.0588U
PCB (SW8082)					1	1	1	1	1		1		1			ſ			1		1
PCB-1016	MG/KG	0.0333U		0.0333U		0.0333U	0.0833U		0.0333U	0.0167U	0.00395UJ	0.0166U	0.0833U	0.00396UJ	0.00394UJ	0.0167	0.0167U	0.0166U	0.0249	0.00395	0.0167
PCB-1221	MG/KG	0.0333U		0.0333U		0.0333U	0.0833U		0.0333U	0.0167U	0.00395UJ	0.0166U	0.0833U	0.00396UJ	0.00394UJ	0.0167	0.0167U	0.0166U	0.0166U	0.00395	0.0167
PCB-1232	MG/KG	0.0333U		0.0333U		0.0333U	0.0833U		0.0333U	0.0167U	0.00395UJ	0.0166U	0.0833U	0.00396UJ	0.00394UJ	0.0167	0.0167U	0.0166U	0.0166U	0.00395	0.0167
PCB-1242	MG/KG	0.0333U		0.0333U		0.0333U	0.0833U		0.0333U	0.0167U	0.00395UJ	0.0166U	0.0833U	0.00396UJ	0.00394UJ	0.0167	0.0167U	0.0166U	0.0166U	0.00395	0.0167
PCB-1248	MG/KG	0.0333U		0.0333U		0.0333U	0.0833U		0.0333U	0.0167U	0.00395UJ	0.0284	0.0833U	0.00396UJ	0.00394UJ	0.0167	0.0167U	0.0166U	0.0166U	0.00395	0.0167
PCB-1254	MG/KG	0.0333U		0.0333U	-	0.0333U	0.0833U		0.0333U	0.0167U	0.00261UJ	0.0166U	0.0833U	0.00261UJ	0.0026UJ	0.0167	0.0167U	0.0166U	0.0166U	0.00261	0.0167
PCB-1260	MG/KG	0.0333U		0.0333U	+	0.0333U	0.0833U		0.0333U	0.0167U	0.00261UJ	0.0166U	0.0833U	0.00261UJ	0.0026UJ	0.0167	0.0167U	0.0166U	0.0166U	0.00261	0.0167
	MG/KG	0.03330		0.03330		0.03330	0.08330		0.03330	0.01670	0.0026103	0.01000	0.08330	0.002610J	0.0026UJ	0.0167	0.01670	0.01000	0.01000	0.00261	0.0167
Total Metals (SW-6020/7471B)					1			1	1		1										,
Arsenic	MG/KG	11.1		12.9	18.9	18	17.2	15.7	18.9	10.9	13.8	11.5	7.44	13.7	12.2	10.9	14.8	16.1	15.9J	12.6	13
Barium	MG/KG	129		125	83.3	111	96	122	540	200	160	117	86.1	116	120	175	174	84.3	178	133	174
Cadmium	MG/KG	1.92U		1.89U	1.85U	1.96U	1.89U	1.75U	2U	1.85U	1.89U	1.67U	1.96U	1.85U	1.67U	1.92U	1.85U	1.89U	1.85U	1.85U	1.89U
Chromium	MG/KG	22.4		11.2	16.1	10	10.6	10.8	12.9	9.32	13.2	11.1	5.51	9.86	9.99	9.85	11.9	9.3	18.1J	10.2	14.1
Lead	MG/KG	27		93.2	420	166	169	531	17.9	48.7	44.7	42.5	20.3	26.1	72.8	57.5	9.12	10.9	32.8J	26.8	29.9J
Selenium	MG/KG	1.92U		1.89U	1.85U	1.96U	1.89U	1.75U	2U	1.85U	1.89U	1.67U	1.96U	1.85U	1.67U	1.92U	1.85U	1.89U	1.85U	1.85U	1.89U
	MG/KG																				
Silver		1.92U		1.89U	1.85U	1.96U	1.89U	1.75U	2U	1.85U	1.89U	1.67U	1.96U	1.85U	1.67U	1.92U	1.85U	1.89U	1.85UJ	1.85U	1.89U
Mercury	MG/KG	0.0196U		0.0312	0.0478	0.0302	0.0387	0.127	0.0196U	0.0238	0.0391	0.0416	0.0475	0.0169U	0.0532	0.0461	0.0192U	0.0185U	0.0494	0.0182UJ	0.000228
TCLP Metals (SW6020/7470A_	TCLP)																				
Arsenic	MG/L		0.02U		0.0275U			0.0275U													
Barium	MG/L		1.35		0.594			1.17													
Cadmium	MG/L		0.01U		0.0122U			0.0122U													
Chromium	MG/L		0.02U		0.00405U			0.00405U							-						<u>-</u>
				_		+								-				-			
Lead	MG/L		0.01U		0.128			0.92							-						
Selenium	MG/L		0.01U	-	0.456			0.393				-			-		-				
Silver	MG/L		0.01U		0.0279U			0.0279U													
Mercury	MG/L		0.0002U		0.0000263U			0.0000263U							-						
TCLP VOCs (SW8260C_TCLP))																				
1,1-Dichloroethene	MG/L		0.05U																		
1,2-Dichloroethane	MG/L		0.05U		_										-						
1,4-Dichlorobenzene	MG/L		0.05U																		
				-	+	_							†								+
Benzene	MG/L		0.05U																		
Carbon Tetrachloride	MG/L		0.25U	-											-						
Chlorobenzene	MG/L		0.05U																		
Chloroform	MG/L		0.05U																		
Methyl ethyl ketone	MG/L		2.5U		-	-									-						
Tetrachloroethylene	MG/L		0.0511			1	1														+
			0.05U										-								
Trichloroethylene														-							
Trichloroethylene	MG/L		0.25U			+												†			
Vinyl Chloride						+												†			
	MG/L MG/L		0.25U																		
Vinyl Chloride	MG/L MG/L MG/KG	0.00167U	0.25U	 0.00833U	 0.0266	 0.0666U	 0.0553J	 0.669U	 0.955	 0.00167U	 0.0333U	 0.0167U	 0.0668U	 0.00166U	0.0521	 0.00832U	 0.00167U	 0.00167U	 0.00167U	 0.00833U	 0.0167U
Vinyl Chloride PAHs (SW8270SIM)	MG/L MG/L		0.25U																		
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene	MG/L MG/L MG/KG	0.00167U	0.25U 0.1U	 0.00833U	 0.0266	 0.0666U	 0.0553J	 0.669U	 0.955	 0.00167U	 0.0333U	 0.0167U	 0.0668U	 0.00166U	0.0521	 0.00832U	 0.00167U	 0.00167U	 0.00167U	 0.00833U	 0.0167U
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene	MG/L MG/L MG/KG MG/KG	0.00167U 0.00729	0.25U 0.1U	 0.00833U 0.212	 0.0266 1.14	0.0666U 0.471	0.0553J 0.847J	0.669U 1.84J	 0.955 10.9	 0.00167U 0.00704	 0.0333U 0.051	0.0167U 0.112	 0.0668U 0.414	 0.00166U 0.00681	 0.0521 1.89	 0.00832U 0.102	 0.00167U 0.00167U	 0.00167U 0.00167U	 0.00167U 0.00226	 0.00833U 0.0154	 0.0167U 0.0167U
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene	MG/L MG/KG MG/KG MG/KG MG/KG MG/KG	0.00167U 0.00729 0.00602 0.021	0.25U 0.1U	0.00833U 0.212 0.0609 0.232	0.0266 1.14 0.275	0.0666U 0.471 0.246 0.811	 0.0553J 0.847J 0.427J 1.24J	 0.669U 1.84J 0.826J 2.79J	 0.955 10.9 4.88 7.25	0.00167U 0.00704 0.0102 0.017	0.0333U 0.051 0.0341 0.131	0.0167U 0.112 0.0737 0.238	0.0668U 0.414 0.0833 0.295	0.00166U 0.00681 0.00472 0.0224	 0.0521 1.89 1.38 6.24	0.00832U 0.102 0.0934 0.372	 0.00167U 0.00167U 0.00167U 0.00274	0.00167U 0.00167U 0.00167U 0.00206J 0.0104J	 0.00167U 0.00226 0.00167U 0.00661	0.00833U 0.0154 0.00931 0.0376	0.0167U 0.0167U 0.0167U 0.0167U 0.0225
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	MG/L MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39	0.0266 1.14 0.275 1.1 1.66	0.0666U 0.471 0.246 0.811 1.68	0.0553J 0.847J 0.427J 1.24J 2.65J	0.669U 1.84J 0.826J 2.79J 5.93J	 0.955 10.9 4.88 7.25	0.00167U 0.00704 0.0102 0.017 0.0157	 0.0333U 0.051 0.0341 0.131 0.201	 0.0167U 0.112 0.0737 0.238 0.433	 0.0668U 0.414 0.0833 0.295 0.544	 0.00166U 0.00681 0.00472 0.0224 0.045	0.0521 1.89 1.38 6.24	0.00832U 0.102 0.0934 0.372 0.626	 0.00167U 0.00167U 0.00167U 0.00274 0.00357	0.00167U 0.00167U 0.00206J 0.0104J 0.0177J	 0.00167U 0.00226 0.00167U 0.00661 0.00983	0.00833U 0.0154 0.00931 0.0376 0.0672	0.0167U 0.0167U 0.0167U 0.0167U 0.0225 0.0385
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	MG/L MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575	0.0266 1.14 0.275 1.1 1.66 2.9	0.0666U 0.471 0.246 0.811 1.68 1.75	0.0553J 0.847J 0.427J 1.24J 2.65J 2.58J	0.669U 1.84J 0.826J 2.79J 5.93J 6.16J	 0.955 10.9 4.88 7.25 9.99	0.00167U 0.00704 0.0102 0.017 0.0157	0.0333U 0.051 0.0341 0.131 0.201 0.227	 0.0167U 0.112 0.0737 0.238 0.433 0.486		 0.00166U 0.00681 0.00472 0.0224 0.045 0.0611	0.0521 1.89 1.38 6.24 11.8 12.3	0.00832U 0.102 0.0934 0.372 0.626 0.84	 0.00167U 0.00167U 0.00167U 0.00274 0.00357 0.00531	 0.00167U 0.00167U 0.00206J 0.0104J 0.0177J 0.0291J	0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J	0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795	 0.0167U 0.0167U 0.0167U 0.0225 0.0385 0.0501J
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	MG/L MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39	0.0266 1.14 0.275 1.1 1.66 2.9	0.0666U 0.471 0.246 0.811 1.68 1.75 2.12	 0.0553J 0.847J 0.427J 1.24J 2.65J 2.58J 3.17J	0.669U 1.84J 0.826J 2.79J 5.93J 6.16J 7.41J		0.00167U 0.00704 0.0102 0.017 0.0157 0.044 0.00841		 0.0167U 0.112 0.0737 0.238 0.433 0.486 0.377		 0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377	 0.0521 1.89 1.38 6.24 11.8 12.3 9.7	0.00832U 0.102 0.0934 0.372 0.626 0.84 0.449		 0.00167U 0.00167U 0.00206J 0.0104J 0.0177J 0.0291J 0.0201J	 0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102	0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795	 0.0167U 0.0167U 0.0167U 0.0225 0.0385 0.0501J 0.0521
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168	0.0266 1.14 0.275 1.1 1.66 2.9 1.59	0.0666U 0.471 0.246 0.811 1.68 1.75 2.12 0.52	 0.0553J 0.847J 0.427J 1.24J 2.65J 2.58J 3.17J 0.777J	0.669U 1.84J 0.826J 2.79J 5.93J 6.16J 7.41J 2.26J		0.00167U 0.00704 0.0102 0.0107 0.0157 0.044 0.00841 0.0109				 0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185	0.0521 1.89 1.38 6.24 11.8 12.3 9.7 3.69	0.00832U 0.102 0.0934 0.372 0.626 0.84 0.449			 0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358	0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148 0.0288	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168 0.37	0.0266 1.14 0.275 1.1 1.66 2.9 1.59 0.729 1.79		 0.0553J 0.847J 0.427J 1.24J 2.65J 2.65J 2.58J 3.17J 0.777J 1.61J	 0.669U 1.84J 0.826J 2.79J 5.93J 6.16J 7.41J 2.26J 3.59J						 0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185 0.0319			0.00167U 0.00167U 0.00167U 0.00274 0.00357 0.00531 0.00299 0.00167U 0.0032		 0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358 0.00777	 0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168	0.0266 1.14 0.275 1.1 1.66 2.9 1.59	0.0666U 0.471 0.246 0.811 1.68 1.75 2.12 0.52	 0.0553J 0.847J 0.427J 1.24J 2.65J 2.58J 3.17J 0.777J	0.669U 1.84J 0.826J 2.79J 5.93J 6.16J 7.41J 2.26J		0.00167U 0.00704 0.0102 0.0107 0.0157 0.044 0.00841 0.0109				 0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185	0.0521 1.89 1.38 6.24 11.8 12.3 9.7 3.69	0.00832U 0.102 0.0934 0.372 0.626 0.84 0.449			 0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358	0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148 0.0288	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168 0.37	0.0266 1.14 0.275 1.1 1.66 2.9 1.59 0.729 1.79		 0.0553J 0.847J 0.427J 1.24J 2.65J 2.65J 2.58J 3.17J 0.777J 1.61J	 0.669U 1.84J 0.826J 2.79J 5.93J 6.16J 7.41J 2.26J 3.59J						 0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185 0.0319			0.00167U 0.00167U 0.00167U 0.00274 0.00357 0.00531 0.00299 0.00167U 0.0032		 0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358 0.00777	 0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)Anthracene	MG/L MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148 0.0288	0.25U 0.1U				 0.0553J 0.847J 0.427J 1.24J 2.65J 2.58J 3.17J 0.777J 1.61J 0.0334U	 0.669U 1.84J 0.826J 2.79J 5.93J 6.16J 7.41J 2.26J 3.59J 0.669U		0.00167U 0.00704 0.0102 0.017 0.0157 0.044 0.00841 0.0109 0.0228				 0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185 0.0319					0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358 0.00777 0.00167U	 0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484 0.00833U	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)Anthracene Fluoranthene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148 0.0288 0.00167U 0.0597	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168 0.37 0.00833U 0.759	0.0266 1.14 0.275 1.1 1.66 2.9 1.59 0.729 1.79 0.0167U 3.32 0.127	0.0666U 0.471 0.246 0.811 1.68 1.75 2.12 0.52 1.04 0.0666U 3.68 0.0716	0.0553J 0.847J 0.427J 1.24J 2.65J 2.58J 3.17J 0.777J 1.61J 0.0334U 5.61J 0.134J			0.00167U 0.00704 0.0102 0.0157 0.044 0.00841 0.0109 0.0228 0.00167U 0.0393 0.00167U									0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358 0.00777 0.00167U 0.0157	0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484 0.00833U 0.14	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)Anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)Pyrene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148 0.0288 0.00167U 0.0597 0.00186	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168 0.37 0.00833U 0.759	0.0266 1.14 0.275 1.1 1.66 2.9 1.59 0.729 1.79 0.0167U 3.32 0.127	0.0666U 0.471 0.246 0.811 1.68 1.75 2.12 0.52 1.04 0.0666U 3.68 0.0716				0.00167U 0.00704 0.0102 0.017 0.0157 0.044 0.00841 0.0109 0.0228 0.00167U 0.0393 0.00167U 0.0081				0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185 0.0319 0.00166U 0.0556 0.00166U 0.0284		0.00832U 0.102 0.0934 0.372 0.626 0.84 0.449 0.223 0.469 0.00832U 1.01 0.0145 0.346			0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358 0.00777 0.00167U 0.0157 0.00167U 0.00727	0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484 0.00833U 0.14	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)Anthracene Fluoranthene Fluoranthene Indeno(1,2,3-c,d)Pyrene Naphthalene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148 0.0288 0.00167U 0.0597 0.00186 0.0184	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168 0.37 0.00833U 0.759 0.0223	0.0266 1.14 0.275 1.1 1.66 2.9 1.59 0.729 1.79 0.0167U 3.32 0.127 1.37 0.421					0.00167U 0.00704 0.0102 0.0157 0.0157 0.044 0.00841 0.0109 0.0228 0.00167U 0.0393 0.00167U 0.0081				0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185 0.0319 0.00166U 0.0556 0.00166U 0.0284 0.0166U						0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484 0.00833U 0.14 0.00833U 0.0536 0.0833U	
Vinyl Chloride PAHs (SW8270SIM) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)Anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)Pyrene	MG/L MG/KG	0.00167U 0.00729 0.00602 0.021 0.0337 0.0497 0.0225 0.0148 0.0288 0.00167U 0.0597 0.00186	0.25U 0.1U	0.00833U 0.212 0.0609 0.232 0.39 0.575 0.39 0.168 0.37 0.00833U 0.759	0.0266 1.14 0.275 1.1 1.66 2.9 1.59 0.729 1.79 0.0167U 3.32 0.127	0.0666U 0.471 0.246 0.811 1.68 1.75 2.12 0.52 1.04 0.0666U 3.68 0.0716				0.00167U 0.00704 0.0102 0.017 0.0157 0.044 0.00841 0.0109 0.0228 0.00167U 0.0393 0.00167U 0.0081				0.00166U 0.00681 0.00472 0.0224 0.045 0.0611 0.0377 0.0185 0.0319 0.00166U 0.0556 0.00166U 0.0284		0.00832U 0.102 0.0934 0.372 0.626 0.84 0.449 0.223 0.469 0.00832U 1.01 0.0145 0.346			0.00167U 0.00226 0.00167U 0.00661 0.00983 0.0122J 0.0102 0.00358 0.00777 0.00167U 0.0157 0.00167U 0.00727	0.00833U 0.0154 0.00931 0.0376 0.0672 0.0795 0.0744 0.0232 0.0484 0.00833U 0.14	

Table 2-9. Summary of Soil Waste Characterization Results – Pre-design Testing Investigation

APS Douglas Former MGP Sig	_		5.715.04			B B (0 / 0 / 5	D D () E O E E			B B 4 4 6 4 5				D D 40 0 F 0 0	D D04 0 5 0 0	B B05 0 400540					
		D-BIN-110719	D-TAR-01			D-B12-1.0-1.5		D-B12-7.5-8.0*	D-B13-2.5-3.0	D-B14-1.0-1.5	D-B15-5.0-5.5	D-B16-2.5-3.0	D-B17-5.0-5.5	D-B19-2.5-3.0	D-B21-2.5-3.0		D-B25-2.5-3.0	D-B28-5.0-5.5	D-B29-5.0-5.5	D-B30-5.0-5.5	D-B35-5.0-5.5
Sam	ple Depth (ft bgs)	-		1.0-1.5	2.5-3.0	1.0-1.5	5.0-5.5	7.5-8.0	2.5-3.0	1.0-1.5	5.0-5.5	2.5-3.0	5.0-5.5	2.5-3.0	2.5-3.0	0-0.25	2.5-3.0	5.0-5.5	5.0-5.5	5.0-5.5	5.0-5.5
	Sample Date	07-Nov-19	02-Nov-19	30-Oct-19	30-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	29-Oct-19	01-Nov-19	29-Oct-19	30-Oct-19	01-Nov-19	01-Nov-19	27-Oct-19	30-Oct-19	29-Oct-19	07-Nov-19	01-Nov-19	28-Oct-19
Analyte	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOCs (SW8260C)																					
1,1,1,2-Tetrachloroethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,1,1-Trichloroethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245UJ	0.213U	0.324U
1,1,2,2-Tetrachloroethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,1,2-Trichloroethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,1-Dichloroethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,1-Dichloroethene	MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,1-Dichloropropene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,2,3-Trichlorobenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,2,3-Trichloropropane	MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,2,4-Trichlorobenzene	MG/KG MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	MG/KG MG/KG	0.265U 0.265U		0.263U 0.263U	0.265U 0.265U	0.253U 0.253U	0.21U 0.21U		0.243U 0.243U	0.268U 0.268U	0.247U 0.247U	0.268U 0.268U	0.27U 0.27U	0.262U 0.262U	0.234U 0.234U	0.314U 0.314U	0.225U 0.225U	0.259U 0.259U	0.245U 0.245U	0.213U 0.213U	0.324U 0.324U
1,2-Dibromoethane	MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U 0.324U
1,2-Dichlorobenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,2-Dichloroethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,2-Dichloropropane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,3,5-Trimethylbenzene	MG/KG	0.265U	+	0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1,3-Butadiene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U 0.324U
1,3-Dichlorobenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U 0.324U
1,3-Dichloropropane	MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
1.4-Dichlorobenzene	MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
2,2-Dichloropropane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
2-Butanone	MG/KG	1.06U		1.05U	1.06U	1.01U	0.839U		0.971UJ	1.07U	0.988U	1.07U	1.08U	1.05U	0.936U	1.26U	0.901U	1.04U	0.978UJ	0.853U	1.3U
2-Chlorotoluene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
2-Hexanone	MG/KG	2.65U		2.63U	2.65U	2.53U	2.1U	_	2.43U	2.68U	2.47U	2.68U	2.7U	2.62U	2.34U	3.14U	2.25U	2.59U	2.45U	2.13U	3.24U
4-Chlorotoluene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
4-Ethyltoluene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
4-Methyl-2-Pentanone	MG/KG	2.65U		2.63U	2.65U	2.53U	2.1U		2.43U	2.68U	2.47U	2.68U	2.7U	2.62U	2.34U	3.14U	2.25U	2.59U	2.45U	2.13U	3.24U
Acetone	MG/KG	5.3U		5.26U	5.31U	5.06U	4.19U	-	4.85U	5.35U	4.94U	5.35U	5.4U	5.24U	4.68U	6.28U	4.5U	5.18U	4.89UJ	4.27U	6.48U
Benzene	MG/KG	0.053U		0.0526U	0.0531U	0.0506U	0.0419U		0.0485U	0.0535U	0.0494U	0.0535U	0.054U	0.0524U	0.0468U	0.0628U	0.045U	0.0518U	0.0489U	0.0427U	0.0648U
Bromobenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Bromochloromethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Bromodichloromethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Bromoform	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324UJ
Bromomethane	MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U		0.243UJ	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245UJ	0.213U	0.324UJ
Carbon Disulfide	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Carbon Tetrachloride	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Chlorobenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Chloroethane	MG/KG	0.53U		0.526U	0.531U	0.506U	0.419U		0.485UJ	0.535U	0.494U	0.535U	0.54U	0.524U	0.468U	0.628U	0.45U	0.518U	0.489UJ	0.427U	0.648UJ
Chloroform	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Chloromethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
cis-1,2-Dichloroethene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
cis-1,3-Dichloropropene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Cyclohexane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245UJ	0.213U	0.324U
Dibromochloromethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Dibromomethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Dichlorodifluoromethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Dicyclopentadiene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Ethylbenzene Hexachlorobutadiene	MG/KG MG/KG	0.053U 0.265U		0.0526U 0.263U	0.0531U 0.265U	0.0506U 0.253U	0.0419U 0.21U		0.0485U 0.243U	0.0535U 0.268U	0.0494U 0.247U	0.0535U 0.268U	0.054U 0.27U	0.0524U 0.262U	0.0468U 0.234U	0.0628U 0.314U	0.045U 0.225U	0.0518U 0.259U	0.0489U 0.245U	0.0427U 0.213U	0.0648U 0.324U
lodomethane (Methyl lodide)	MG/KG MG/KG	1.06U		1.05U	1.06U	1.01U	0.21U 0.839U		0.243U 0.971U	0.268U 1.07U	0.247U 0.988U	1.07U	1.08U	1.05U	0.234U 0.936U	0.314U 1.26U	0.225U 0.901U	0.2590 1.04U	0.245U 0.978UJ	0.213U 0.853U	0.324U 1.3U
Isopropylbenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.639U 0.21U		0.9710 0.243U	0.268U	0.986U 0.247U	0.268U	0.27U	0.262U	0.936U 0.234U	0.314U	0.9010 0.225U	0.259U	0.976UJ 0.245U	0.653U 0.213U	0.324U
m,p-Xylenes	MG/KG	0.203U		0.203U	0.106U	0.101U	0.0839U		0.2430 0.0971U	0.107U	0.0988U	0.107U	0.108U	0.202U	0.0936U	0.126U	0.0901U	0.2390 0.104U	0.2430 0.0978U	0.0853U	0.13U
Methylcyclohexane	MG/KG	0.53U		0.526U	0.531U	0.506U	0.419U		0.485U	0.535U	0.494U	0.535U	0.54U	0.524U	0.468U	0.628U	0.45U	0.518U	0.489U	0.427U	0.648U
Methylene Chloride	MG/KG	1.06U		1.05U	1.06U	1.01U	0.839U		0.971U	1.07U	0.988U	1.07U	1.08U	1.05U	0.936U	1.26U	0.901U	1.04U	0.978U	0.853U	1.3U
MTBE	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	_	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Naphthalene	MG/KG	0.53U		0.526U	0.531U	0.506U	0.419U		10.5	0.535U	0.494U	0.535U	0.54U	0.524U	0.468U	0.628U	0.45U	0.518U	0.489U	0.427U	0.648U
n-Butylbenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
n-Hexane	MG/KG	0.53U		0.526U	0.531U	0.506U	0.419U		0.485U	0.535U	0.494U	0.535U	0.54U	0.524U	0.468U	0.628U	0.45U	0.518U	0.489UJ	0.427U	0.648U
n-Propylbenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
o-Xylene	MG/KG	0.053U		0.0526U	0.0531U	0.0506U	0.0419U		0.0485U	0.0535U	0.0494U	0.0535U	0.054U	0.0524U	0.0468U	0.0628U	0.045U	0.0518U	0.0489U	0.0427U	0.0648U
p-Cymene (p-Isopropyltoluene)	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Propene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245UJ	0.213U	0.324U
Sec-Butylbenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Styrene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
tert-Butylbenzene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	_	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Tetrachloroethylene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Toluene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Total Xylenes	MG/KG	0.053U		0.0526U	0.0531U	0.0506U	0.0419U	-	0.0485U	0.0535U	0.0494U	0.0535U	0.054U	0.0524U	0.0468U	0.0628U	0.045U	0.0518U	0.0489U	0.0427U	0.0648U
trans-1,2-dichloroethene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
trans-1,3-dichloropropene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Trichloroethene	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U
Trichlorofluoromethane	MG/KG	0.265U		0.263U	0.265U	0.253U	0.21U		0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245UJ	0.213U	0.324U
	· · · · · · · · · · · · · · · · · · ·	·			·	·		·				·			·						

Table 2-9. Summary of Soil Waste Characterization Results – Pre-design Testing Investigation

	Sample ID	D-BIN-110719	D-TAR-01	D-B11-1.0-1.5	D-B11-2.5-3.0*	D-B12-1.0-1.5	D-B12-5.0-5.5	D-B12-7.5-8.0*	D-B13-2.5-3.0	D-B14-1.0-1.5	D-B15-5.0-5.5	D-B16-2.5-3.0	D-B17-5.0-5.5	D-B19-2.5-3.0	D-B21-2.5-3.0	D-B25-0-102719	D-B25-2.5-3.0	D-B28-5.0-5.5	D-B29-5.0-5.5	D-B30-5.0-5.5	D-B35-5.0-5.5
S	ample Depth (ft bgs)			1.0-1.5	2.5-3.0	1.0-1.5	5.0-5.5	7.5-8.0	2.5-3.0	1.0-1.5	5.0-5.5	2.5-3.0	5.0-5.5	2.5-3.0	2.5-3.0	0-0.25	2.5-3.0	5.0-5.5	5.0-5.5	5.0-5.5	5.0-5.5
	Sample Date	07-Nov-19	02-Nov-19	30-Oct-19	30-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	29-Oct-19	01-Nov-19	29-Oct-19	30-Oct-19	01-Nov-19	01-Nov-19	27-Oct-19	30-Oct-19	29-Oct-19	07-Nov-19	01-Nov-19	28-Oct-19
Analyte	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Vinyl Acetate	MG/KG	0.53U	-	0.526U	0.531U	0.506U	0.419U		0.485U	0.535U	0.494U	0.535U	0.54U	0.524U	0.468U	0.628U	0.45U	0.518U	0.489U	0.427U	0.648U
Vinyl Chloride	MG/KG	0.265U	-	0.263U	0.265U	0.253U	0.21U	-	0.243U	0.268U	0.247U	0.268U	0.27U	0.262U	0.234U	0.314U	0.225U	0.259U	0.245U	0.213U	0.324U

Notes:

Detected results are shown in **Bold**.

Cells highlighted in yellow indicate that the compound exceeded the Residential Soil Remediation Level only.

Cells highlighted in red indicate that the compound exceeded the Non-residential Soil Remediation Level only.

J = Analyte is present but the reported value might not be accurate or precise (estimate).

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estimated.

ft bgs = foot (feet) below ground surface

ID = identification number

mg/kg = milligram(s) per kilogram

mg/L = milligram(s) per liter

* = Locations added to waste characterization results due to total lead results above the residential SRL of 400 mg/kg; all TCLP results were below the toxicity characteristics.

PCB = polychlorinated biphenyl

TCLP = toxicity characteristic leaching procedure

VOC = volatile organic hydrocarbon

PAH = polynuclear aromatic hydrocarbon

Table 2-10. Summary of Water Waste Characterization Results – Pre-design Testing Investigation APS Douglas Former MGP Site, Douglas, Arizona

	Sample ID	D-TOTE-110719				
	07-Nov-19					
Analyte	Units	Result				
General Waste Analyses (SW-1010/9012/9045/9095)						
рН	SU	7.94				
Flash Point	DEG F	180>				
Temperature	DEG C	23.6				
Cyanide, Total	MG/L	0.005U				
PCB (SW8082)						
PCB-1016	MG/L	0.0005U				
PCB-1221	MG/L	0.0005U				
PCB-1232	MG/L	0.0005U				
PCB-1242	MG/L	0.0005U				
PCB-1248	MG/L	0.0005U				
PCB-1254	MG/L	0.0005U				
PCB-1260	MG/L	0.0005U				
Total Metals (E200.8/SW7470A)	•					
Antimony	MG/L	0.002U				
Arsenic	MG/L	0.00547				
Barium	MG/L	0.0434				
Beryllium	MG/L	0.002U				
Cadmium	MG/L	0.002U				
Chromium	MG/L	0.002U				
Cobalt	MG/L	0.002U				
Copper	MG/L	0.002U				
Lead	MG/L	0.002U				
Manganese	MG/L	0.0655				
Molybdenum	MG/L	0.00428				
Nickel	MG/L	0.00255				
Selenium	MG/L	0.0105				
Silver	MG/L	0.002U				
Thallium	MG/L	0.002U				
Mercury	MG/L	0.0002U				
PAHs (SW8270D)	<u>'</u>					
1-Methylnaphthalene	MG/L	0.000189U				
2-Methylnaphthalene	MG/L	0.000189U				
Acenaphthene	MG/L	0.000189U				
Acenaphthylene	MG/L	0.000189U				
Anthracene	MG/L	0.000189U				
Benzo(a)anthracene	MG/L	0.000189U				
Benzo(a)pyrene	MG/L	0.000189U				
Benzo(b)fluoranthene	MG/L	0.000189U				
Benzo(g,h,i)perylene	MG/L	0.000189U				
Benzo(k)fluoranthene	MG/L	0.000189U				
Chrysene	MG/L	0.000189U				
Dibenz(a,h)anthracene	MG/L	0.000189U				
Fluoranthene	MG/L	0.000189U				
Fluorene	MG/L	0.000189U				
Indeno(1,2,3-c,d)Pyrene	MG/L	0.000189U				
Naphthalene	MG/L	0.000379U				
. tap.tationio	3,2					

Table 2-10. Summary of Water Waste Characterization Results – Pre-design Testing Investigation APS Douglas Former MGP Site, Douglas, Arizona

Analyte Phenanthrene	Sample Date Units	07-Nov-19
	Units	
Phenanthrene		Result
	MG/L	0.000189U
Pyrene	MG/L	0.000189U
1,1,1,2-Tetrachloroethane	MG/L	0.001U
1,1,1-1 richloroethane	MG/L	0.005U
VOCs (SW8260C)	•	
Tetrachloroethane	MG/L	0.001U
1,1,2-Trichloroethane	MG/L	0.001U
1,1-Dichloroethane	MG/L	0.001U
1,1-Dichloroethene	MG/L	0.00173
1,1-Dichloropropene	MG/L	0.005U
1,2,3-Trichlorobenzene	MG/L	0.005U
1,2,3-Trichloropropane	MG/L	0.001U
1,2,4-Trichlorobenzene	MG/L	0.005U
1,2,4-Trimethylbenzene	MG/L	0.001U
1,2-Dibromo-3-Chloropropane	MG/L	0.001U
1,2-Dibromoethane	MG/L	0.005U
1,2-Dichlorobenzene	MG/L	0.001U
1,2-Dichloroethane	MG/L	0.001U
1,2-Dichloropropane	MG/L	0.005U
1,3,5-Trimethylbenzene	MG/L	0.001U
1,3-Butadiene	MG/L	0.001U
1,3-Dichlorobenzene	MG/L	0.001U
1,3-Dichloropropane	MG/L	0.005U
1,4-Dichlorobenzene	MG/L	0.001U
1-Chlorohexane	MG/L	0.005U
2,2-Dichloropropane	MG/L	0.005U
2-Chlorotoluene	MG/L	0.001U
2-Hexanone	MG/L	0.05U
4-Chlorotoluene	MG/L	0.001U
4-Methyl-2-Pentanone	MG/L	0.05U
Acetone	MG/L	0.1U
Benzene	MG/L	0.001U
Bromobenzene	MG/L	0.001U
Bromochloromethane	MG/L	0.001U
Bromodichloromethane	MG/L	0.001U
Bromoform	MG/L	0.005U
Carbon Disulfide	MG/L	0.005U
Carbon Tetrachloride	MG/L	0.005U
Chlorobenzene	MG/L	0.001U
Chloroethane	MG/L	0.01U
Chloroform	MG/L	0.001U
cis-1,2-Dichloroethylene	MG/L	0.001U
cis-1,3-Dichloropropene	MG/L	0.005U
Cyclohexane	MG/L	0.005U
Dibromochloromethane	MG/L	0.005U
Dichlorodifluoromethane	MG/L	0.001U
Dicyclopentadiene	MG/L	0.005U

Table 2-10. Summary of Water Waste Characterization Results – Pre-design Testing Investigation

	D-TOTE-110719	
Sample Date		07-Nov-19
Analyte	Units	Result
Ethylbenzene	MG/L	0.001U
Hexachlorobutadiene	MG/L	0.005U
Isopropylbenzene	MG/L	0.001U
m,p-Xylenes	MG/L	0.01U
Methyl bromide	MG/L	0.005U
Methyl Chloride	MG/L	0.01U
Methyl ethyl ketone	MG/L	0.05U
Methyl iodide	MG/L	0.02U
Methylcyclohexane	MG/L	0.01U
Methylene Bromide	MG/L	0.001U
Methylene Chloride	MG/L	0.01U
MTBE	MG/L	0.005U
Naphthalene	MG/L	0.01U
n-Butylbenzene	MG/L	0.001U
n-Hexane	MG/L	0.005U
n-Propylbenzene	MG/L	0.001U
o-Xylene	MG/L	0.001U
p-Cymene (p-Isopropyltoluene)	MG/L	0.001U
Sec-Butylbenzene	MG/L	0.001U
Styrene	MG/L	0.001U
tert-Butylbenzene	MG/L	0.001U
Tetrachloroethene	MG/L	0.001U
Toluene	MG/L	0.00262
Total Trihalomethanes	MG/L	0.001U
Total Xylenes	MG/L	0.001U
trans-1,2-dichloroethylene	MG/L	0.001U
trans-1,3-dichloropropene	MG/L	0.005U
Trichloroethylene	MG/L	0.0302
Trichlorofluoromethane	MG/L	0.001U
Vinyl Acetate	MG/L	0.05U
Vinyl Chloride	MG/L	0.002U

Notes:

Cells highlighted in yellow indicate that the compound exceeded the Residential Soil Remediation Level only.

Detected results are shown in Bold.

U = Analyte was not detected at the specified detection limit.

* = Locations added to waste characterization results due to total lead results above the residential SRL of 400 mg/kg; all TCLP results were below the toxicity characteristics.

ft bgs = foot (feet) below ground surface

ID = identification number

mg/L = milligram(s) per liter

PCB = polychlorinated biphenyl

PAH = polynuclear aromatic hydrocarbon

TCLP = toxicity characteristic leaching procedure

VOC = volatile organic compound

Table 5-1. Groundwater Protection Modeling Results for PAHs

Analyte	Calculated GPL (mg/kg)
Acenaphthene	9.03E+04
Acenaphthylene	2.91E+04
Anthracene	7.96E+08
Benzo(a)anthracene	4.85E+25
Benzo(a)pyrene	6.58E+84
Benzo(b)fluoranthene	2.44E+84
Benzo(k)fluoranthene	9.87E+82
Chrysene	8.46E+58
Dibenz(a,h)anthracene	1.23E+251
Fluoranthene	6.67E+12
Fluorene	2.82E+06
Indeno(1,2,3-c,d)pyrene	Not Calculated
Naphthalene	1.13E+02
Pyrene	6.93E+19

Notes:

The minimum GPL for indeno(1,2,3-c,d)pyrene could not be calculated because the estimated maximum soil concentration was too low

Calculated GPLs are based on the 2013 ADEQ GPL model spreadsheet. Calculation Spreadsheets are provided in Appendix K

GPL = groundwater protection level

mg/kg = milligram(s) per kilogram

Table 6-1. MGP Site Remediation: Feasibility Screening Matrix for Soil Remediation Options

APS Douglas Former MGP Site, Douglas, Arizona

Remediation Options	Method Description	Applicability to Douglas MGP Site	Advantages	Limitations
1. No Action	No active remediation activities. Relies on continues existing biological activities	Naturally degrade or degrade very slowly. Will not meet Soil Remediation Levels (SRLs). Does not reduce onsite risk. Does not prevent the potential pathway of contamination from soil to groundwater.	Low cost	 Would likely require institutional controls that would limit future use of the site. Would require significant future soil sampling Would not likely meet regulatory requirements
2. Institutional Controls (ICs)	Administrative land use controls (LUCs), Site access restrictions, and other restrictions to minimize potential exposure from Site contaminants	No – It does not meet SRLs and is not applicable due to 3 rd party ownership objection to DEUR.	Low cost	 Continued monitoring of ICs would be required to verify their continued effectiveness and ensure that the exposure pathways are being controlled. Difficult to implemented as APS does not control site. ICs would limit the Cities use of the site.
Excavation and Off-Site Removal	Remove and treat excavated impacted soils on site. Treat or dispose of soils on or offsite.	Yes – impacted soil can be removed by excavating a portion of the site.	Protective of human health and then environment.	Soils that are not feasible for removal (i.e., under structures) will remain in place require future action
			Proven technology to address soil contamination	Existing onsite utilities need to be maintained during remediation increasing risk from excavation
			Will meet cleanup objectives, regulatory support	Excavated soil treatment options are limited to offsite disposal
			Few limitations on future site use	Very high cost – requires significant excavation system to protect buildings and utilities. Significant disposal and site restoration cost.
Containment by Capping and Institutional Controls	Use physical barrier, (i.e. surface cap) to limit exposure to contaminated soils. Capping materials can include geotextiles, soil, asphalt, or other materials. Includes administrative land use controls (LUCs), Site access restrictions, and other restrictions to minimize potential exposure from Site contaminants	No – It does not meet SRLs and is not applicable due to 3 rd party ownership objection to DEUR.	Protective of human health and environment.	 Does not remove the contamination, so that contamination will remain, and potential to be a continuing liability. Continued monitoring of ICs would be required to verify their continued effectiveness and ensure that the exposure pathways are being controlled.
				 Difficult to implemented as APS does not control site. Limits on use of the site would likely not be acceptable to the City
In Situ Chemical Oxidization (ISCO)	Mineralizes contaminants in place through the addition of a chemical oxidant such as hydrogen peroxide or sodium persulfate.	Limited – applicable with standard chemical delivery systems since the target soils are unsaturated. Will not be able to Meet SRL's. Will likely not be effective on shallow lampblack materials.	Should result in destruction of some of the contamination although not effective on near surface lampblack materials.	Will not meet residential SRLs and RAOs. Laboratory testing required to determine the required dose and extent of destruction that can be achieved.
				 Ozone highly corrosive to existing utilities. Soil vapor extraction required to control and monitor system. Additional permitting required.
				Mixing approach is relatively messy.
				 Cost may be relatively high. Highly disruptive to site use for an extended period of time.
6. Bioventing	Biological activity would be enhanced through the introduction of atmospheric oxygen.	Limited to the lighter molecular weight poly aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons	Easy to implement.	Will not meet residential SRLs and RAOs.
	or authospheric oxygen.	(TPH).	Relatively low cost.	Not applicable for soils with lampblack
			Minimal disturbance to site during operation	Limited biodegradability of the high molecular weight PAHs.
				May take a number of years to complete and would limit Cities use of site during that time

Table 6-2. MGP Site Remediation: Feasibility Screening Matrix for Treatment Options

APS Douglas Former MGP Site, Douglas, Arizona

Treatment options	Method description	Applicability to APS Douglas MGP	Advantages	Limitations
1. Landfill	Haul excavated soil to landfill for disposal, backfill with imported clean soil	Yes – can landfill special waste at local landfill, high transportation cost	Can be cost effective if appropriate landfill can be identified	Non hazardous soil only
				Liability tied to landfill
				Backfill soil costs
2. Enhanced Bioremediation	Introduce biological nutrients to aid in biological breakdown and treatment of excavated soil	No – not useful for treating lamp black affected soil, and does not work with project timeline and site working area	Inexpensive treatment	Little control of schedule and endpoint
		requirements	Long history of success with petroleum wastes	Requires large off-site area
				Produces off-gas odors
				Still requires soil disposal and backfill to continue on-site operations
3. On-site Thermal Desorption	Use on-site thermal desorption to treat excavated soil prior to backfill	No – requires mobile source air permit for on-site unit, and large working area for soil handling	Treatment of soils to Soil Remediation Levels (SRLs) or Groundwater Protection Levels (GPLs)	Difficult to permit in residential areas
			Proven Technology	Hazardous waste need to be sent to appropriate landfill for disposal
			No off-site trucking of soils	Large on Site space requirement; public acceptance
			Can use treated soil for backfill	
Off-Site Thermal Desorption Fixed Location	Use off-site thermal desorption to treat excavated soil prior to backfill	No – requires mobile source air permit for either unit at a near-site location or fixed location; no near-site location	Treatment of soils to SRLs or GPLs	Requires trucking to and from location
		has been identified at this time, fixed unit in California. The presence of lead in the soil prevents the effectiveness of thermal desorption.	Proven Technology	More costly than landfill disposal because of costs
			Can use treated soil for backfill	Hazardous waste needs to be sent to appropriate facility for treatment

Table 7-1. Compounds Evaluated Against Screening Criteria

APS Former Douglas MGP Site, Douglas, Arizona

	SRI	SRLs ^{1,2}		HHRA ^{3,4}			
Evaluated Compounds ¹	Residential SRL COC	Non-residential SRL COC	HHRA COPC	HHRA COC	GPL⁵	Site COCs ⁶	
PAHs							
Acenaphthene			V		V		
Acenaphthylene			$\sqrt{}$		\checkmark		
Anthracene			$\sqrt{}$		\checkmark		
Benzo(a)anthracene	$\sqrt{}$	\checkmark	$\sqrt{}$		\checkmark	√	
Benzo(a)pyrene	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	√	
Benzo(b)fluoranthene	$\sqrt{}$	\checkmark	\checkmark		\checkmark	√	
Benzo(k)fluoranthene	$\sqrt{}$		\checkmark		\checkmark	√	
Benzo(g,h,i)perylene			\checkmark				
Chrysene			\checkmark		\checkmark	√	
Dibenz(a,h)anthracene	$\sqrt{}$	\checkmark	\checkmark		\checkmark	√	
Fluoranthene			\checkmark		\checkmark		
Fluorene			\checkmark		\checkmark		
Indeno(1,2,3-c,d)pyrene	\checkmark	\checkmark	\checkmark		\checkmark	√	
Phenanthrene			\checkmark				
Pyrene			\checkmark		\checkmark		
Naphthalene			\checkmark	\checkmark	\checkmark	√	
VOCs/SVOCs	•						
Benzene			V				
Toluene			\checkmark				
Xylenes			\checkmark				
Naphthalene			$\sqrt{}$				
Metals and Cyanide	•		•				
Arsenic	√ 7	V	√				
Barium			\checkmark				
Cadmium			\checkmark				
Chromium			\checkmark				
Cyanide			$\sqrt{}$				
Lead	√ 8		1		V	V	
Mercury	,		1		v	,	
wicioury			٧				

Notes:

HHRA COPC - Compounds selected for quantitative risk estimate calculations based on the available sampling results obtained from the current site investigation. All detected compounds were considered to be COPCs and were further evaluated.

HHRA COC - The HHRA COPCs that were determined to contribute to the majority of the risk and hazard estimates or result in individual cancer risk estimates above 1 x 10-5 or an hazard estimate greater than 1

¹ Residential SRL COC - A compound that exceeded the residential SRL. Source: https://apps.azsos.gov/public_services/Title_18/18-07.pdf

² Non-residential SRL COC - A compound that exceeded the non-residential SRL. Source: https://apps.azsos.gov/public_services/Title_18/18-07.pdf

³ Human Health Risk Assessment:

⁴ Benzo(a)pyrene toxicity equivalanet (BAP-TEQ) was also identified as an HHRA COC. Residential SRLs for individual compounds included in the BAP-TEQ were identified as individual COCs, so BAP-TEQ is not listed in the table.

⁵ GPL development was conducted using the ADEQ GPL model spreadsheet (ADEQ, 2013).

 $^{^{6}\,}$ Site COCs are compounds that are MGP-related compounds identified as an SRL or a HHRA COC.

⁷ Arsenic is not considered a COC based on results of the background arsenic concentration analysis.

⁸ Lead is a COC in the excavation areas (DU-1 and DU-3) located at the former gas holders

Table 7-2. Applicable Site Cleanup Criteria for COCs

		Residential SRL (mo			
	Carc	inogen			
Compound	10E-6 Risk ¹ 10E-5 Risk		Non-Carcinogen	Non-Residential SRL (mg/kg)	
PAH					
Benzo(a)anthracene	0.69	6.9		21	
Benzo(a)pyrene	0.069	0.69		2.1	
Benzo(b)fluoranthene	0.69	6.9		21	
Benzo(k)fluoranthene	6.9	69		210	
Chrysene	68	680		2,000	
Dibenz(a,h)anthracene	0.069	0.69		2.1	
Indeno(1,2,3-c,d)pyrene	0.69	6.9		21	
Naphthalene			56	190	
Metals					
Lead			400	800	

Notes:

mg/kg = milligram(s) per kilogram

EPA = U.S. Environmental Protection Agency

SRL = Soil Remediation Level. Source: https://apps.azsos.gov/public_services/Title_18/18-07.pdf

RSL = EPA Regional Screening Level. Source: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

¹ If the current or currently intended future use of the contaminated site is a child care facility or school where children below the age of 18 are reasonably expected to be in frequent, repeated contact with the soil, the person conducting remediation shall remediate to a 1 x 10⁻⁶ excess lifetime cancer risk.

² Site-specific Human Health Risk Assessment values were not calculated for the Site as residential SRLs are conservative risk-based values and will be used as cleanup criteria.

³ Site-specific groundwater protection levels were not caluclated for the Site as described in Section 3.

^{--- =} Not Applicable

Table 7-3. Ambient Air Action Levels and Maximum Allowable Ambient Air Concentrations

APS Former Douglas MGP Site, Douglas, Arizona

Constituent	Ambient Air Action Level Regional Screening Levels (RSL) ¹ Residential Air (ng/m³)	Rolling 3-Month Average National Ambient Air Quality Standards (ng/m³)	4-month Maximum Allowable Ambient Air Concentrations Site Specific ² (ng/m ³)	6-month Maximum Allowable Ambient Air Concentrations Site Specific ² (ng/m ³)	1 Year Maximum Allowable Ambient Air Concentrations Site Specific ³ (ng/m ³)			
Metal								
Lead⁴	150	150 ⁴	NA	NA	NA			
Polynuclear Aromatic Hydrocarbons (PA	Hs)							
Acenaphthene	NA	NA	NA	NA	NA			
Acenaphthylene	NA	NA	NA	NA	NA			
Anthracene	NA	NA	NA	NA	NA			
Benzo(a)anthracene	1.7	NA	133	88	44			
Benzo(a)pyrene	0.17	NA	13	9	4			
Benzo(b fluoranthene	1.7	NA	133	88	44			
Benzo(g,h,i)perylene	NA	NA	NA	NA	NA			
Benzo(k)fluoranthene	17	NA	1,326	884	442			
Chrysene	170	NA	13,260	8,840	4,420			
Dibenz(a,h)anthracene	0.17	NA	13	9	4			
Fluoranthene	NA	NA	NA	NA	NA			
Fluorene	NA	NA	NA	NA	NA			
Indeno(1,2,3-cd)pyrene	1.7	NA	133	88	44			
Naphthalene	8.3	NA	647	432	216			
Phenathrene	NA	NA	NA	NA	NA			
Pyrene	NA	NA	NA	NA	NA			

Notes:

https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

The 4-month Maximum Allowable Concentration assumes 1/78th exposure so the RSL is multiplied by 78. The 6-month Maximum Allowable Concentration assumes 1/52nd exposure so the RSL is multiplied by 52.

The 1-year Maximum Allowable Concentration assumes 1/26th exposure so the RSL is multiplied by 26.

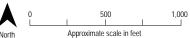
DU = decision unit

NA = not applicable, no RSL listed for constituent

ng/m³ = nanogram per cubic meter

TSP = total suspended particulates


¹ U.S. Environmental Protection Agency Residential Air Regional Screening Levels (November 2019). Assume 10% of RSL as action level.


² Site-Specific Maximum Allowable Concentrations based on the RSLs assuming an exposure duration of 4 and 6 months for offsite residential receptors based on 26 year exposure duration.

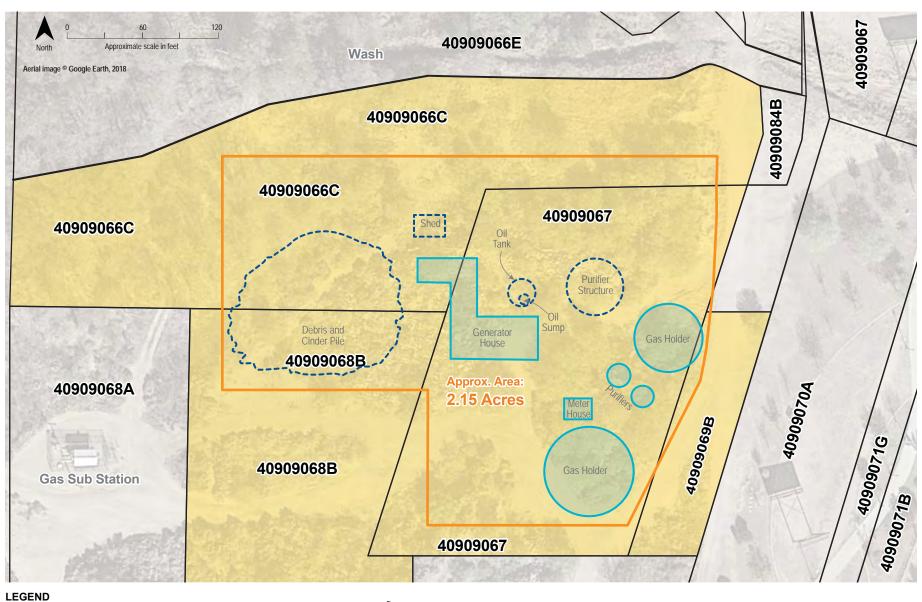
³ Site-Specific Maximum Allowable Concentrations based on the RSLs assuming an exposure duration of 1 year for offsite residential receptors based on 26 year exposure duration.

⁴ A lead concentration of 150 lead ng/m3 corresponds to a dust limit of 731 ug/Soil/m3 as TSP based on the average of the six maximum lead results (maximum lead result from each boring) in DU areas 1 and 3. ug/m³ = microgram per cubic meter

Figures

Figure 1-1. Site Location MapAPS Former MGP Plant Site
Douglas, Arizona

LEGEND



Former MGP-related structures/features - existing pad/foundation remaining

Former MGP-related structures/features - removed

Figure 1-2. Site Plan and Former Structures Map APS Former MGP Plant Site Douglas, Arizona

Site Extent

Former MGP-related structures/features - existing pad/foundation remaining

Former MGP-related structures/features - removed

Note: Site location is approximate and based on available historical documents.

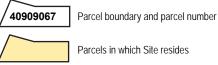
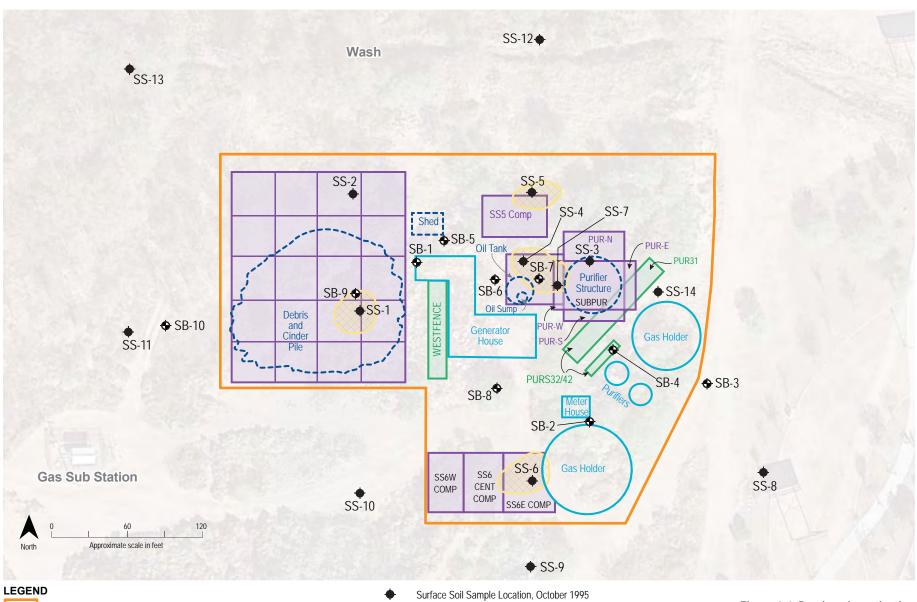
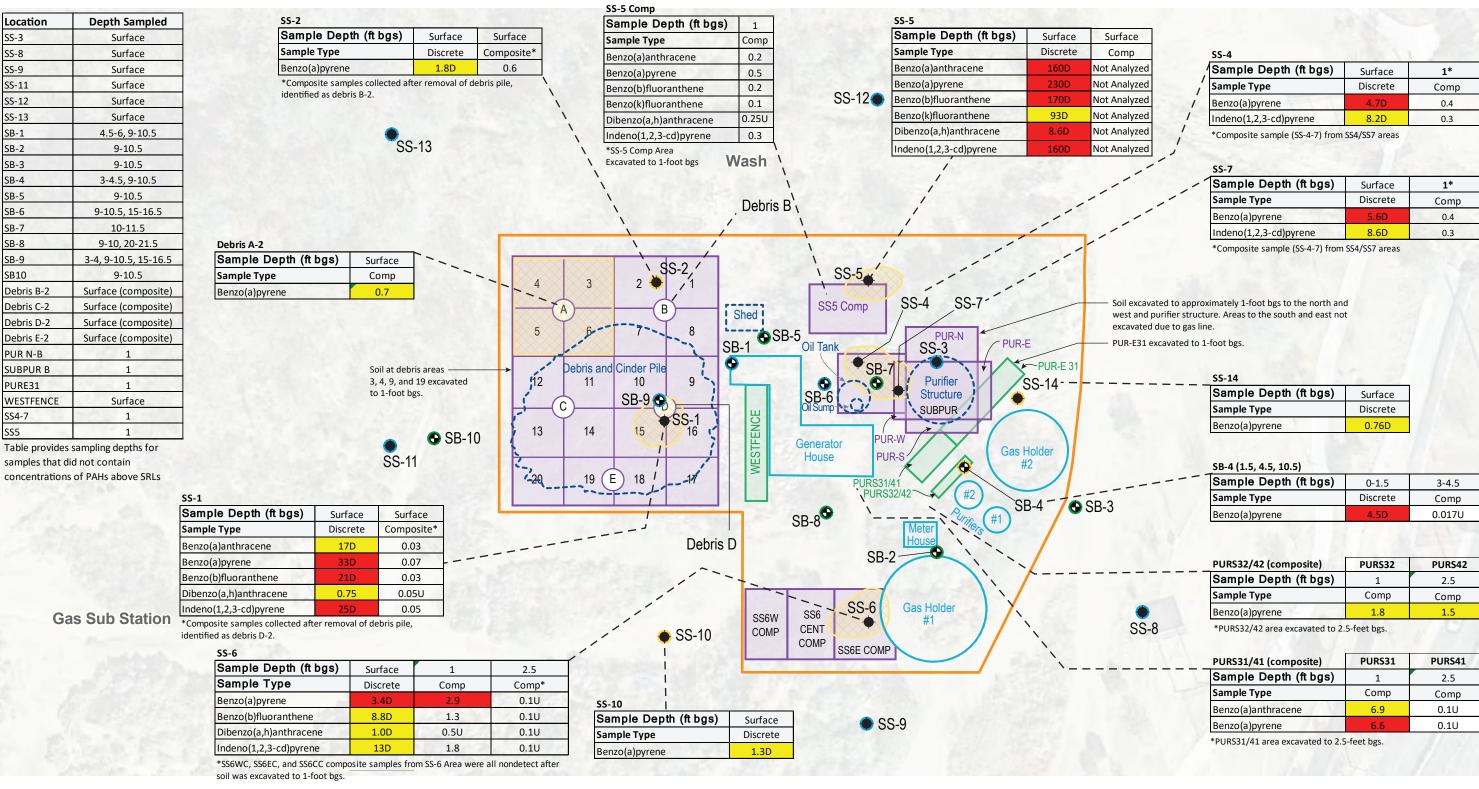



Figure 1-3. Parcel Map APS Former MGP Plant Site Douglas, Arizona

- Soil Boring Sample Location, October 1995


 Composite surface soil sampling conducted June 1996 (before excavation activities)
- Phase I composite surface soil sampling conducted August 1996 (after Phase I excavation activities)

 Phase II composite subsurface soil sampling conducted

Phase II composite subsurface soil sampling conducted November 1996 (after Phase II excavation activities)

Figure 1-4. Previous Investigation Sampling Locations APS Former MGP Plant Site Douglas, Arizona

LEGEND

Site Extent

Former MGP-related structures/features - existing pad/foundation remaining

Former MGP-related structures/features - removed

Composite surface soil sampling conducted June, 1996.

> Phase I composite surface soil sampling conducted August, 1996.

Phase II composite subsurface soil sampling conducted November, 1996

Surface Soil Sample Location, October 1995

Soil Boring Sample Location, October 1995

At least one sample from sampling locations was analyzed for PAH. No PAH were detected.

At least one sample from sampling locations was analyzed for PAH. PAH were detected, but were below residential and non-residential SRLs.

At least one sample from sampling locations was analyzed for PAH. PAH were detected above residential SRLs.

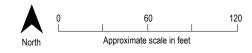
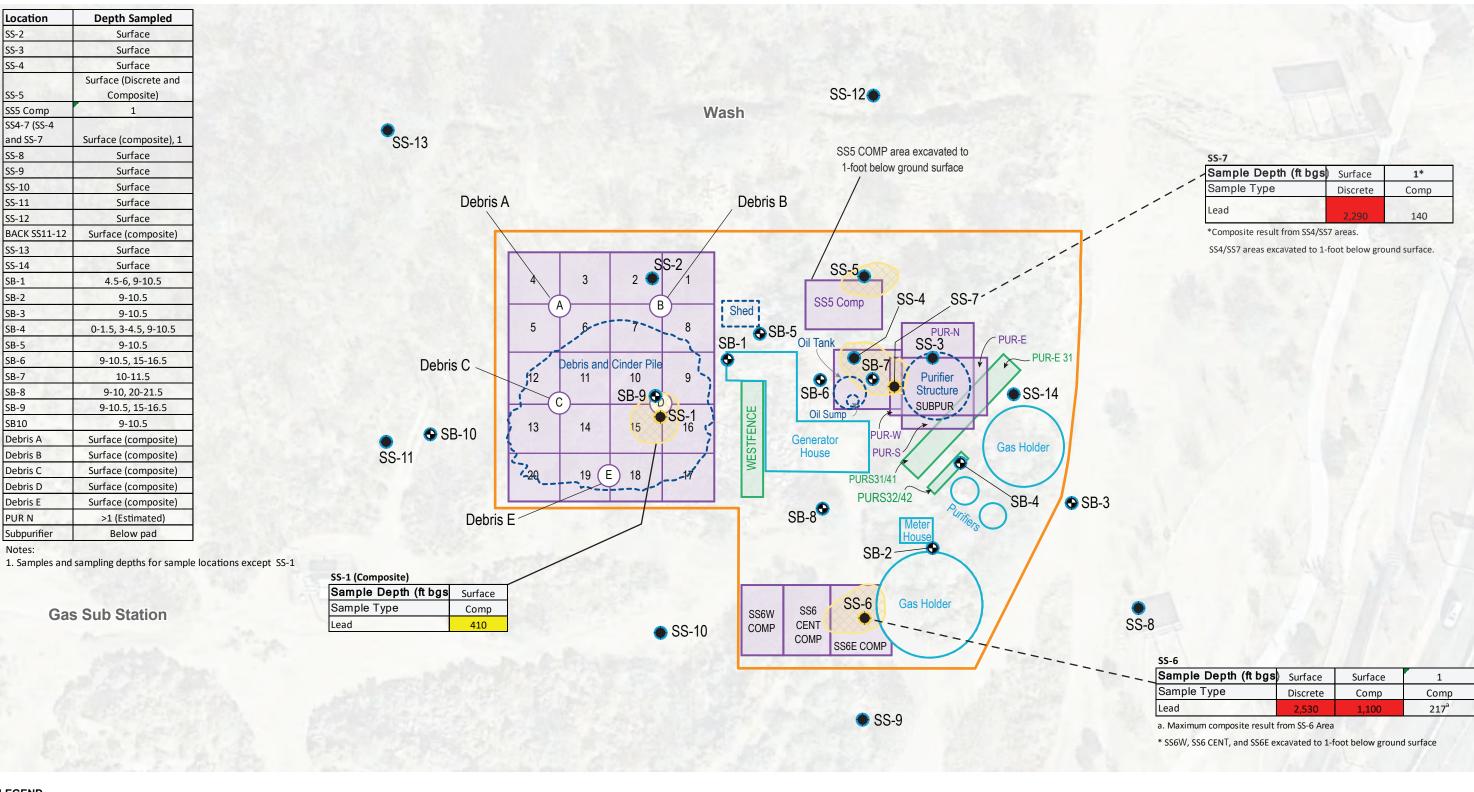



Figure 1-5. Previous Investigation Polynuclear Aromatic Hydrocarbons (PAHs) in Soil APS Former MGP Plant Site Douglas, Arizona

Site Extent

Former MGP-related structures/features - existing pad/foundation remaining
Former MGP-related structures/features - removed

Composite surface soil sampling conducted June, 1996.

Phase I composite surface soil sampling conducted August, 1996.

Phase II composite subsurface soil sampling

conducted November, 1996

 At least one sample from sampling locations was analyzed for lead. Lead was detected, but was below residential and non-residential SRLs.

Surface Soil Sample Location, October 1995

Soil Boring Sample Location, October 1995

 At least one sample from sampling locations was analyzed for lead. Lead was detected above residential SRL

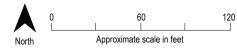
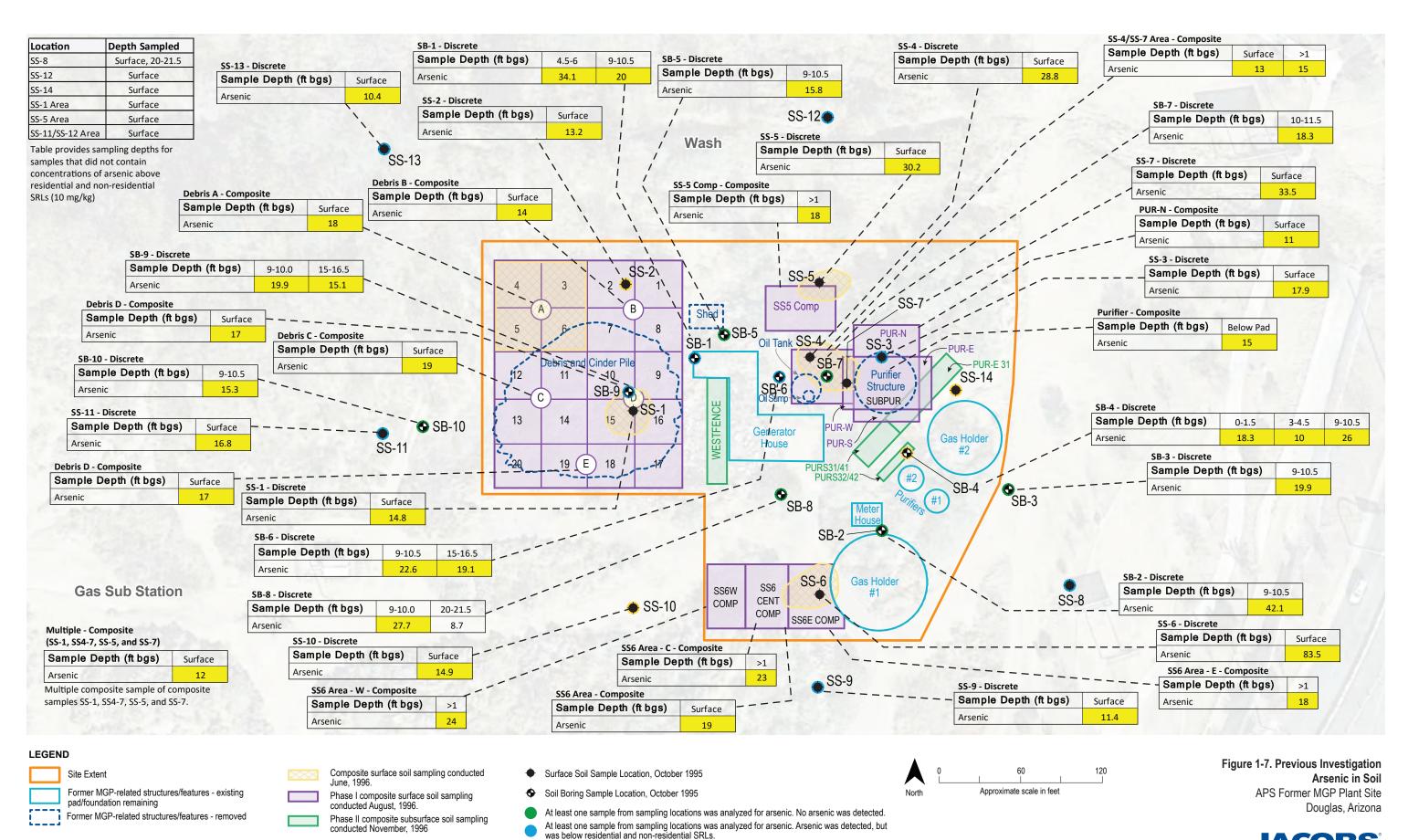



Figure 1-6. Previous Investigation Lead in Soil

APS Former MGP Plant Site

Douglas, Arizona

At least one sample from sampling locations was analyzed for arsenic. Arsenic was detected

above residential SRL.

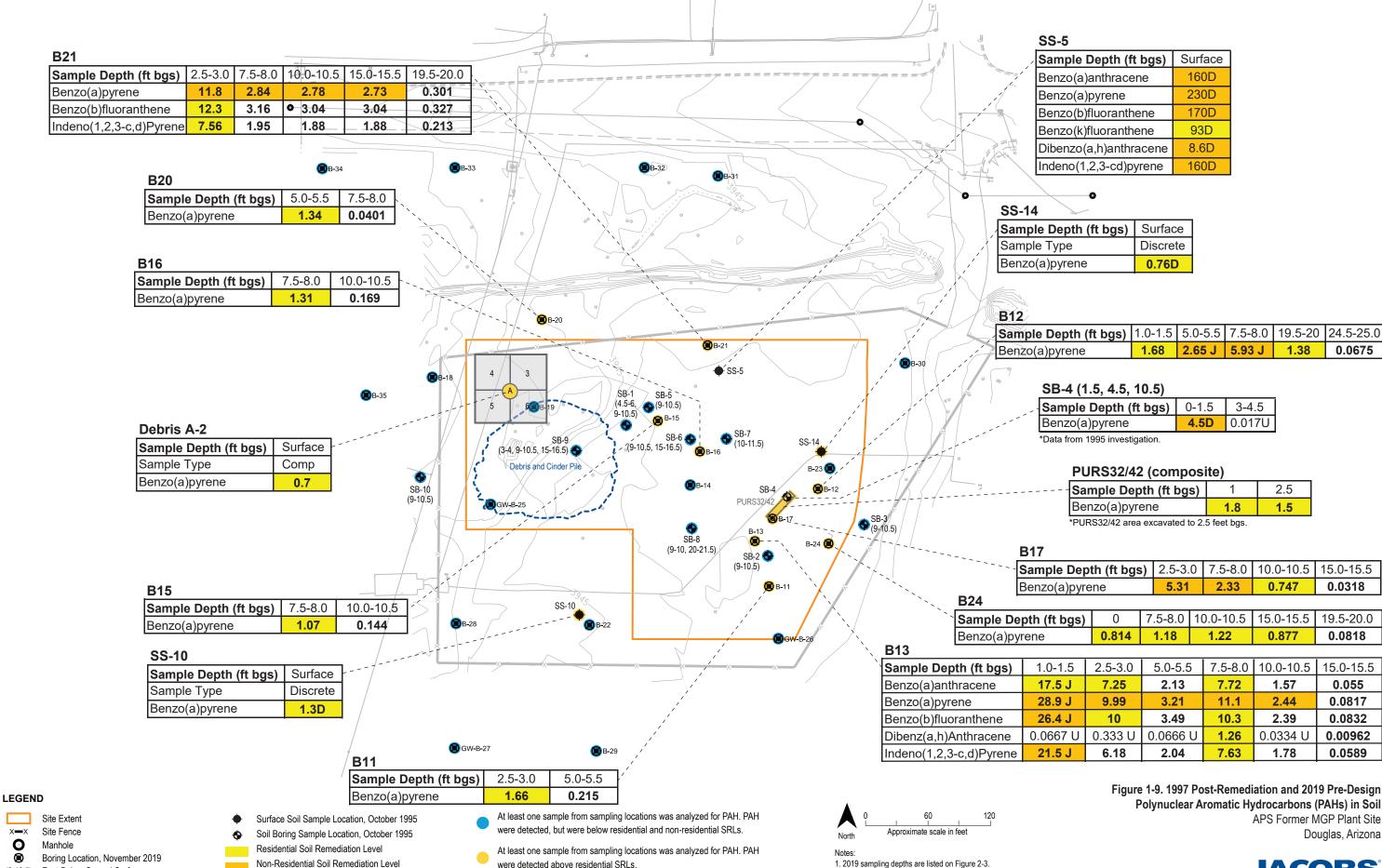
JACOBS

110 270 Location Depth Sampled Debris 3 (Surface, 1) - Composite Debris 2 - Composite SS5 - Composite Debris 9 (Surface, 1) - Composite SB-1 4.5-6, 9-10.5, 15-16.5 Sample Depth (ft bgs) Sample Depth (ft bgs) Sample Depth (ft bgs) Surface Surface Surface Sample Depth (ft bgs) Surface 1 SB-2 9-10.5 480 50 20U TPH 23 73 20U SB-3 9-10.5 PUR N - (Surface, 1) - Composite SB-5 9-10.5 Sample Depth (ft bgs) Surface 1 SS-12 9-10.5, 15-16.5 SB-6 140 71 Wash SB-7 10-11.5, 15-16 SB-9 0-1.5, 3-4, 9-10.5, 15-16.5 SS-13 SB-1 (3, 6, 10.5, 16.5) Subpurifier - Composite SB10 9-10.5 Sample Depth (ft bgs) 1.5-3 Sample Depth (ft bgs) Surface Surface (composite) Debris 1 TPH 780 Debris 5 Surface (composite) 57 Debris 4 (Surface, 1) - Composite Debris 6 Surface (composite) Sample Depth (ft bgs) Surface 1 Debris 7 Surface (composite) 590 20U Debris 8 Surface (composite) Debris 10 Surface (composite) Debris 11 Surface (composite) SS-5 Debris 14 Surface (composite) Debris 12 - Composite Debris 15 Surface (composite) SS-7 Sample Depth (ft bgs) Surface SS5 Comp Surface (composite) Debris 16 **PUR E - Composite** TPH 24 Debris 17 Surface (composite) Sample Depth (ft bgs) Surface SB-5 PUR-N Debris 20 Surface (composite) TPH 520 SB-1 SS4-7 **PUR-E 31** SS5 Comp Debris and Cinder Pile Debris 13 - Composite **PUR W - Composite** 12 Purifier 11 10 9 SB-6 This table represents depths of TPH analyses Sample Depth (ft bgs) Surface Sample Depth (ft bgs) Surface Structure/ **♦** SS-14 that were below the laboratory reporting SB-9 27 TPH 150 SUBPUR limit Oil Sump ◆ SB-10 Generator Gas Holder House SS-11 **PURS - Composite** 19 (E) 18 Sample Depth (ft bgs) Surface PURS31/41 73 PURS32/42 Debris 19 (Surface, 1) - Composite SB-4 SB-3 _ SB-8◆ Sample Depth (ft bgs) Surface TPH 60 20U SB-4 (1.5, 4.5, 10.5, 16.5) SB-2 Debris 18 - Composite SS-1 - Composite Sample Depth (ft bgs) 3-4.5 0-1.5 Sample Depth (ft bgs) Surface Sample Depth (ft bgs) Surface 4,000 24 TPH 28 SS-6 Gas Holder TPH 40 SS6 Gas Sub SS6W SS-8 CENT COMP **♦** SS-10 **Station** COMP SS6E COMP SS6 - Composite Sample Depth (ft bgs) Surface 780 **SS-9** SS6E Comp - Composite SB-8 (10, 16.5, 21.5) SS6CENT Comp - Composite SS6W Comp - Composite Sample Depth (ft bgs) 1 Sample Depth (ft bgs) Sample Depth (ft bgs) Sample Depth (ft bgs) 9-10 1 39 26 42 53 **LEGEND** Figure 1-8. Previous Investigation Total 120 Composite Surface soil sampling conducted Site Extent Surface Soil Sample Location, October 1995 Petroleum Hydrocarbons in Soil June, 1996. Former MGP-related structures/features - existing Soil Boring Sample Location, October 1995 Approximate scale in feet APS Former MGP Plant Site Phase I composite Surface soil sampling pad/foundation remaining conducted August, 1996. Douglas, Arizona Former MGP-related structures/features - removed Phase II composite subSurface soil sampling

BACK SS11-12 - Composite

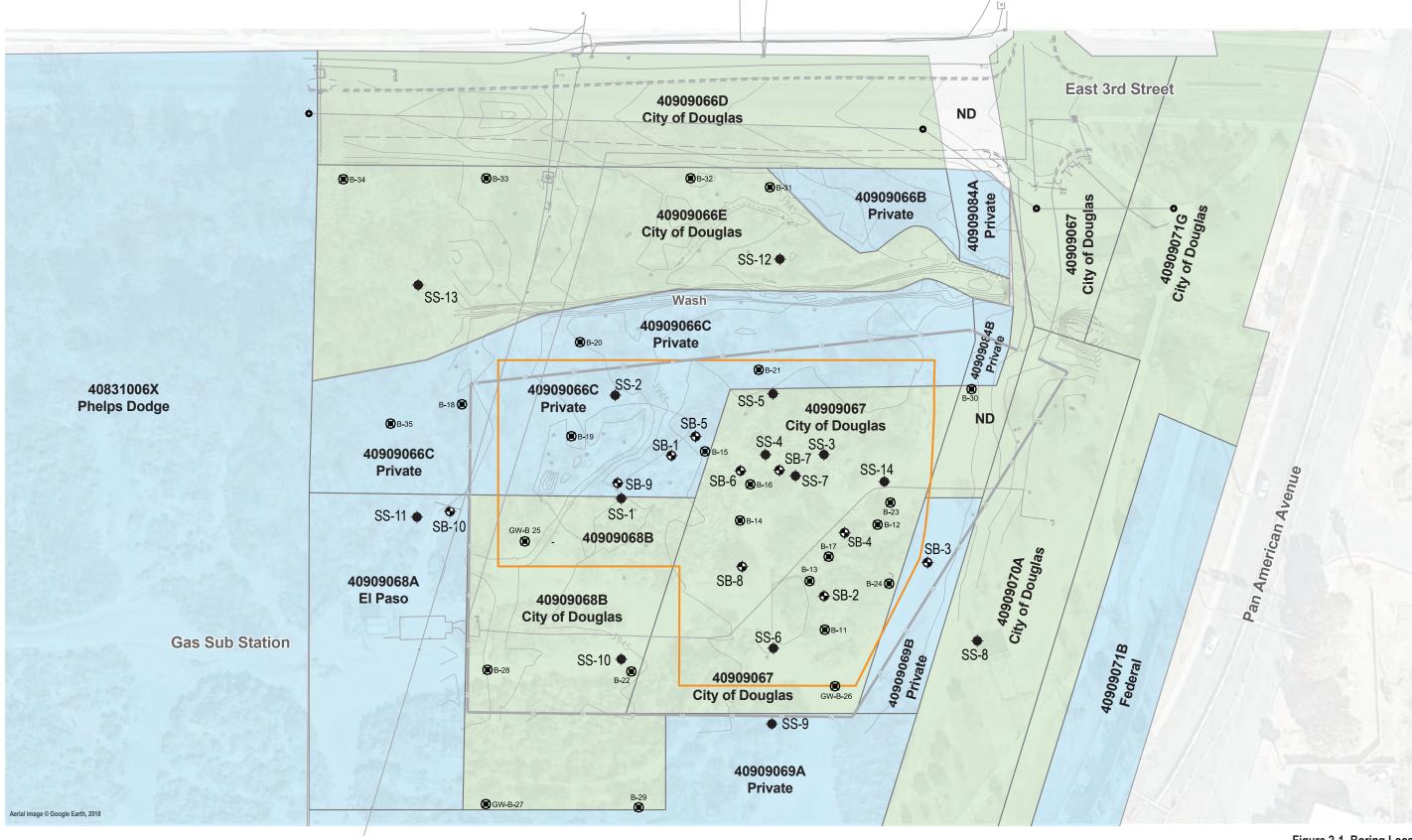
Sample Depth (ft bgs)

SS4-7 - Composite


Sample Depth (ft bgs)

Surface

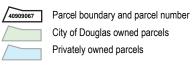
Surface


conducted November, 1996

JACOBS

(9-10.5) Feet Below Ground Surface

0



LEGEND

Site Extent Site Fence

0 Manhole **Boring Location** Surface Soil Sample Location, October 1995

Soil Boring Sample Location, October 1995

ND = No Data

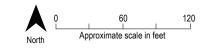


Figure 2-1. Boring Locations During **Pre-Design Testing Investigation** APS Former MGP Plant Site Douglas, Arizona

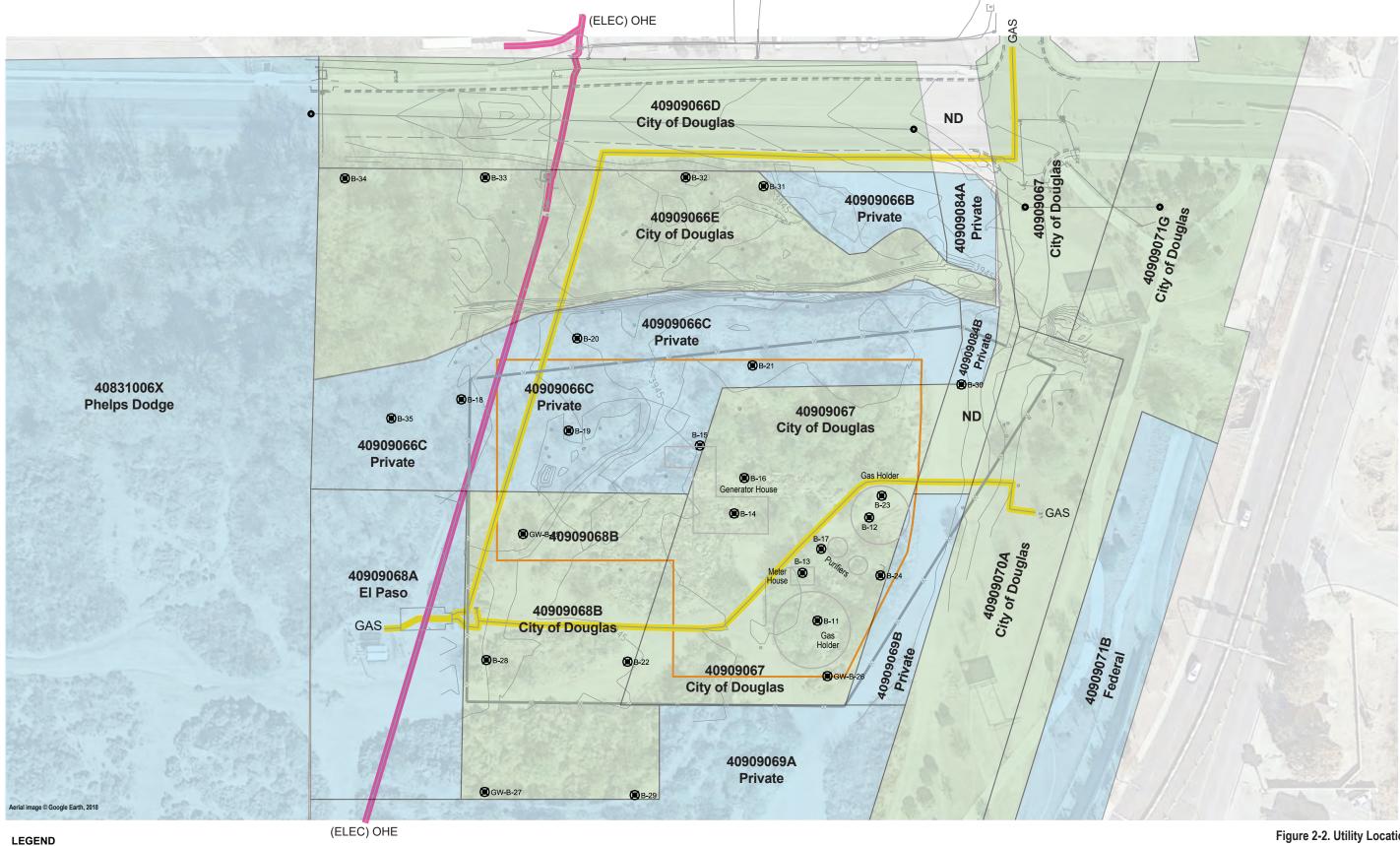
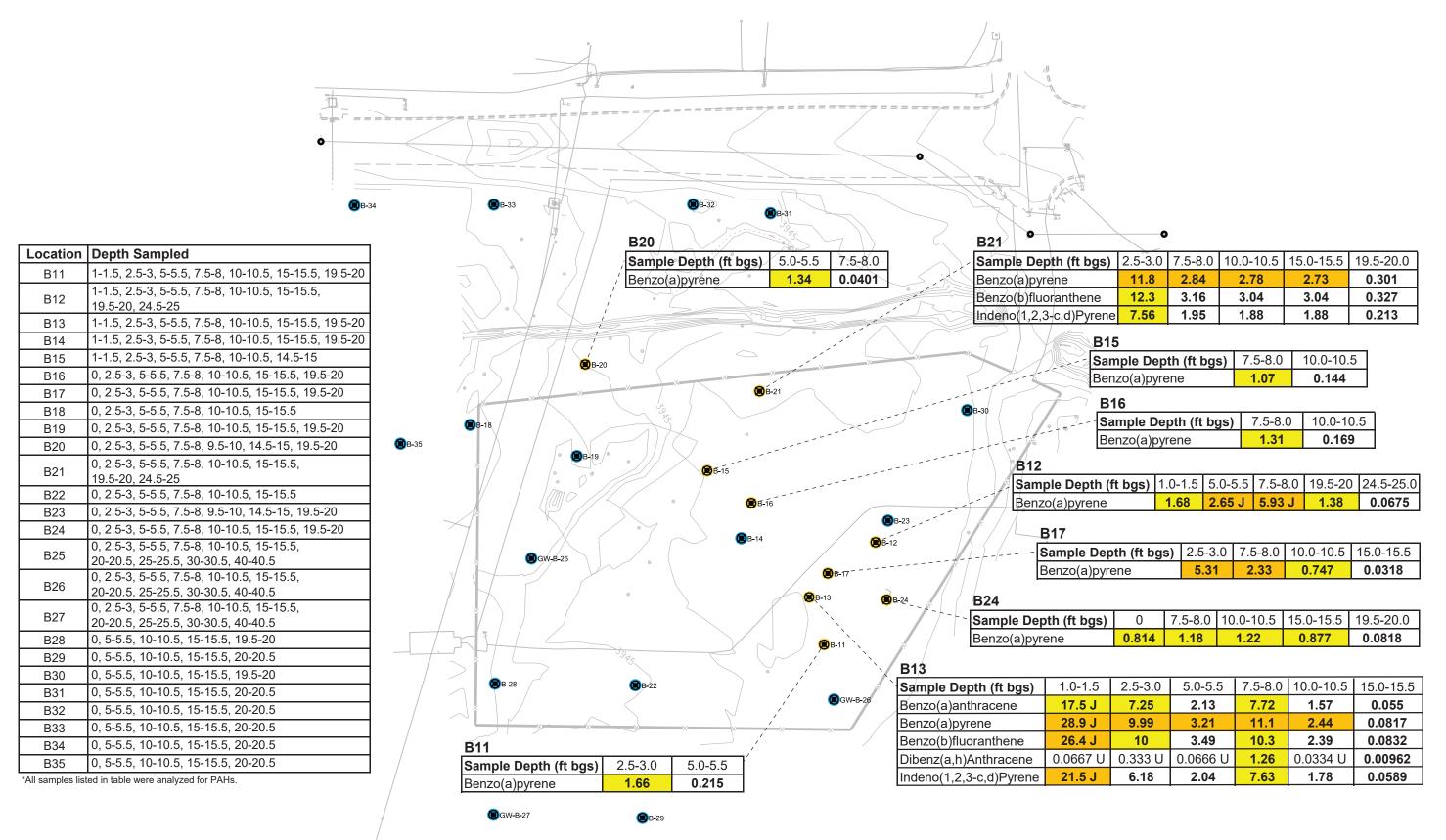


Figure 2-2. Utility Locations, Existing
Subsurface Structures and Property Map
APS Former MGP Plant Site
Douglas, Arizona


Site Extent

×-× Site Fence

Manhole

Soil Boring
Overhead Electric (OHE)
Gas

Parcel boundary and parcel number
City of Douglas owned parcels
Privately owned parcels

LEGEND

Residential Soil Remediation Level

Non-Residential Soil Remediation Level

Manhole

Soil Boring

At least one sample from sampling locations was analyzed for PAH. PAH were detected, but were below residential and non-residential SRLs.

At least one sample from sampling locations was analyzed for PAH. PAH were detected above residential SRLs.

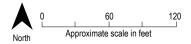
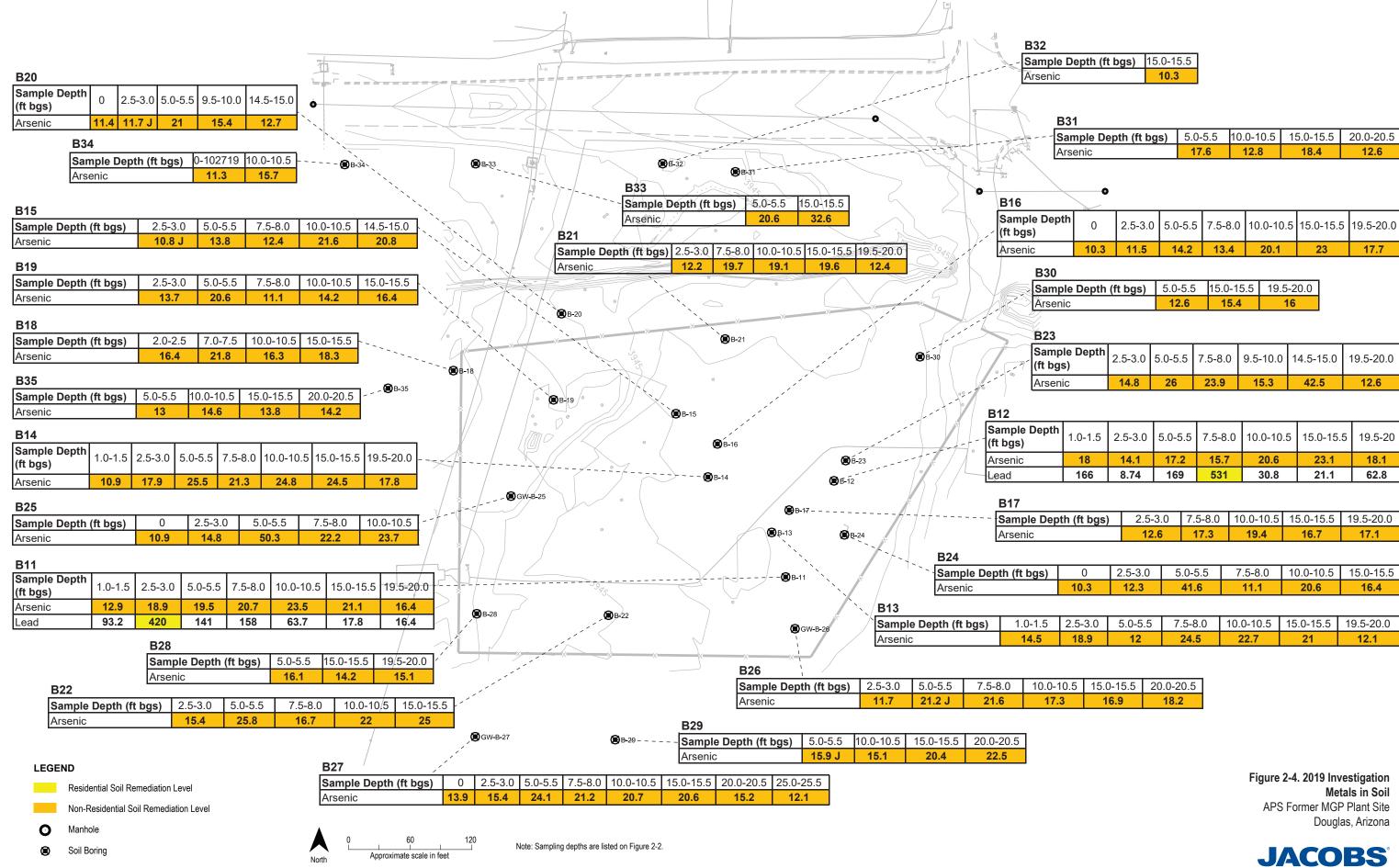
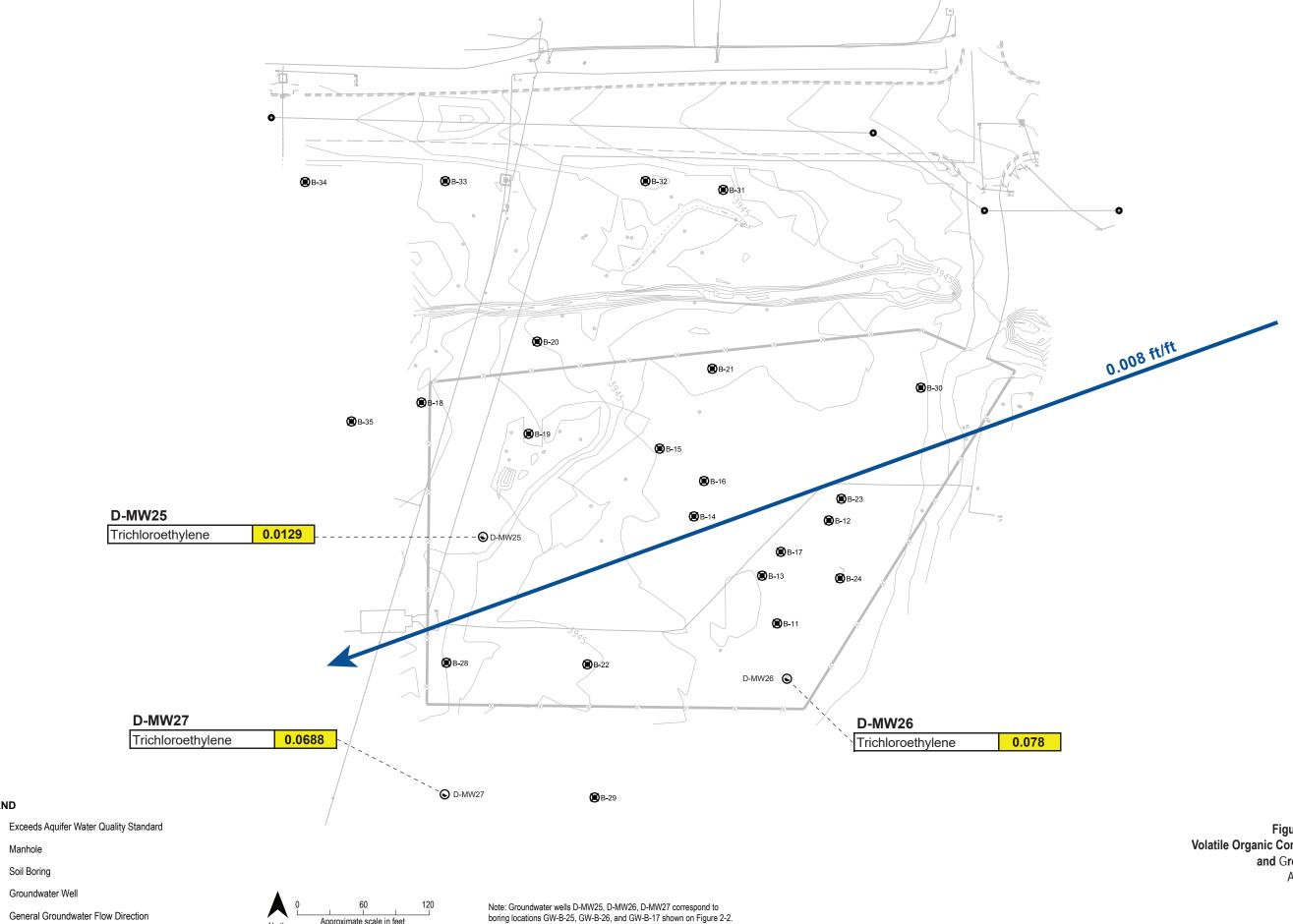
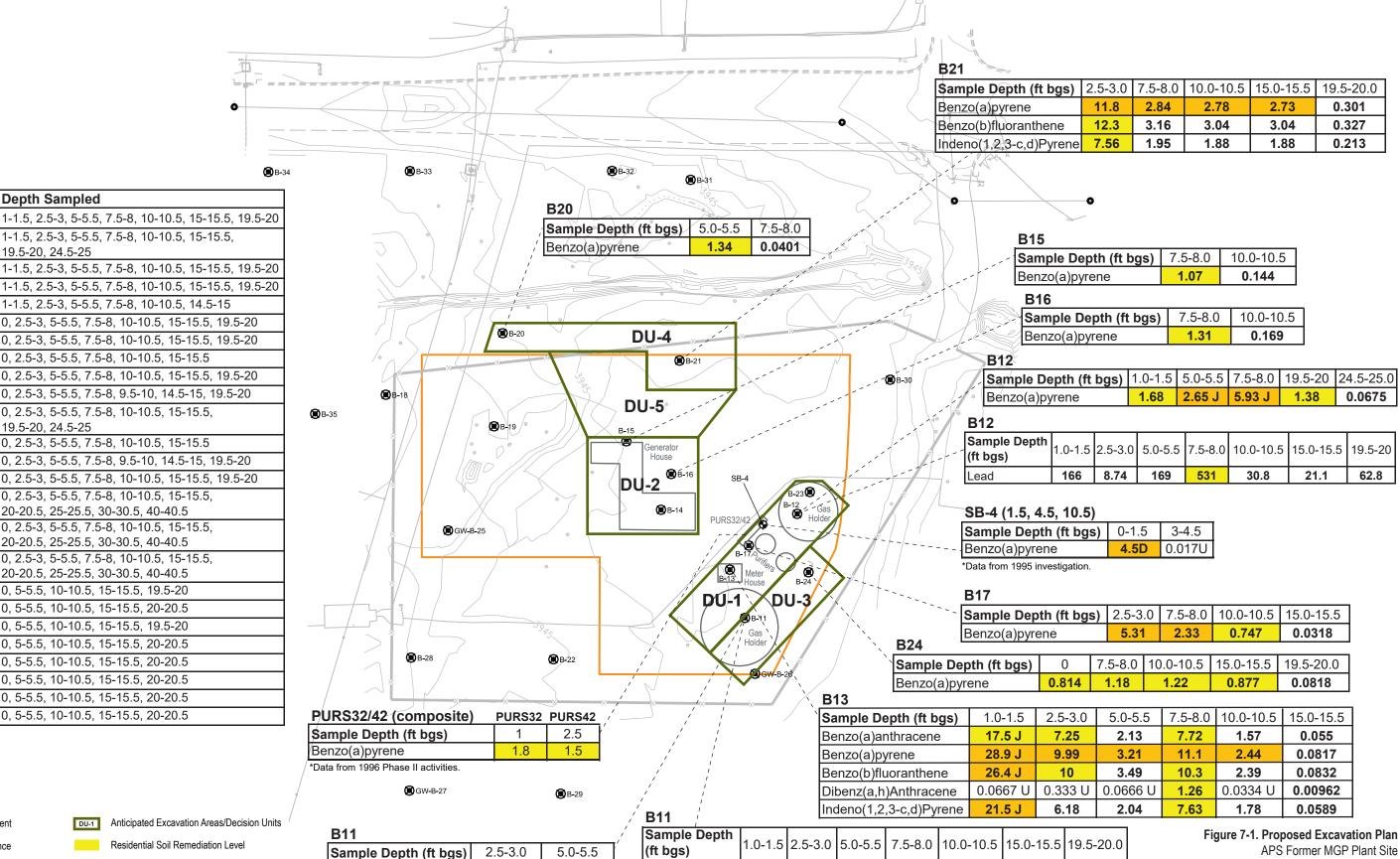



Figure 2-3. 2019 Investigation
Polynuclear Aromatic Hydrocarbons (PAHs) in Soil

APS Former MGP Plant Site

Douglas, Arizona




Figure 2-5. 2019 Investigation Volatile Organic Compounds (VOCs) in Water and Groundwater Flow Direction APS Former MGP Plant Site Douglas, Arizona

Approximate scale in feet

LEGEND

0

LEGEND

Site Extent Site Fence

Manhole Soil Boring

Location Depth Sampled

19.5-20, 24.5-25

19.5-20, 24.5-25

20-20.5, 25-25.5, 30-30.5, 40-40.5

20-20.5, 25-25.5, 30-30.5, 40-40.5

20-20.5, 25-25.5, 30-30.5, 40-40.5

0, 5-5.5, 10-10.5, 15-15.5, 19.5-20

0, 5-5.5, 10-10.5, 15-15.5, 20-20.5

0, 5-5.5, 10-10.5, 15-15.5, 19.5-20

0, 5-5.5, 10-10.5, 15-15.5, 20-20.5

0, 5-5.5, 10-10.5, 15-15.5, 20-20.5

0, 5-5.5, 10-10.5, 15-15.5, 20-20.5

0, 5-5.5, 10-10.5, 15-15.5, 20-20.5

0, 5-5.5, 10-10.5, 15-15.5, 20-20.5

B12

B13

B14

B15

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32

B33

B34

B35

Anticipated Excavation Areas/Decision Units Residential Soil Remediation Level Non-Residential Soil Remediation Level Soil Boring Sample Location, October 1995

Benzo(a)pyrene 1.66

> 120 Approximate scale in feet

Lead

0.215

1. Actual excavation areas will be based on test pit trenching and confirmation sampling results.

420

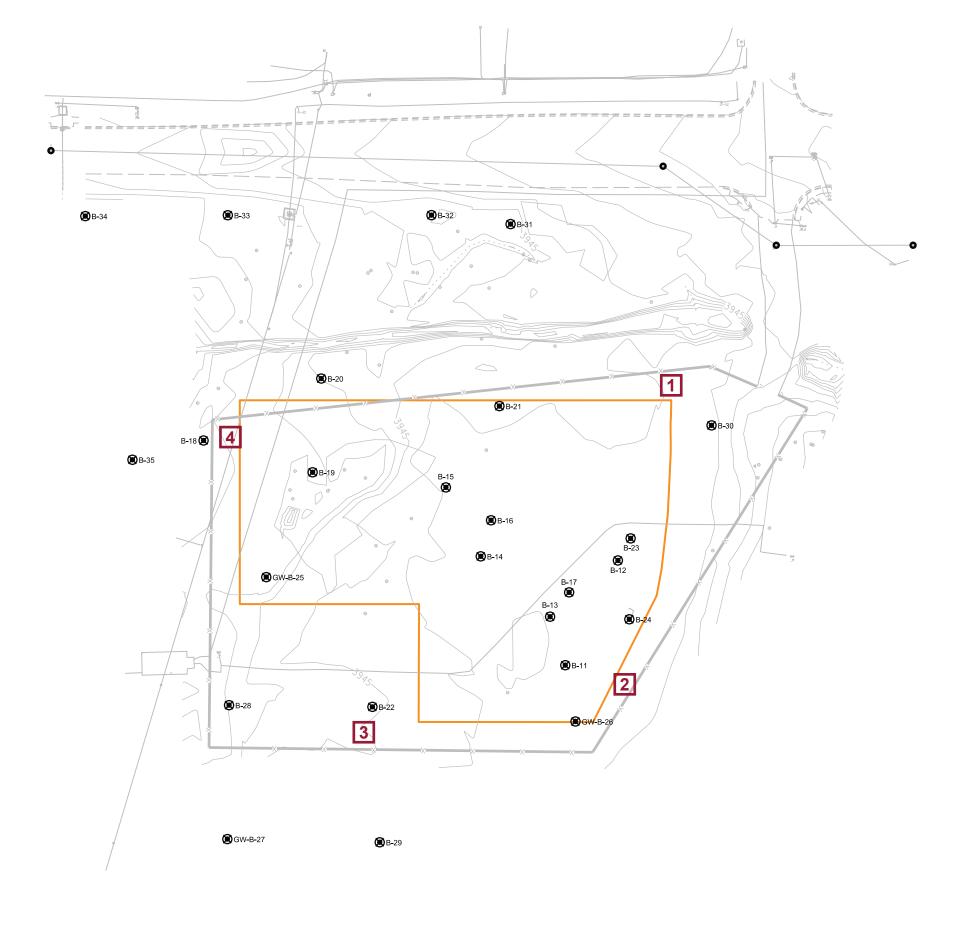
141

158

63.7

17.8

16.4


93.2

2. Results are from 2019 investigation unless otherwise noted.

Douglas, Arizona

LEGEND

Site Extent

X=X Site Fence

Proposed Air Monitoring Locations

Manhole

Soil Boring

lorth 0 60 120
Approximate scale in feet

Figure 7-3. Proposed Air Monitoring Locations

APS Former MGP Plant Site

Douglas, Arizona

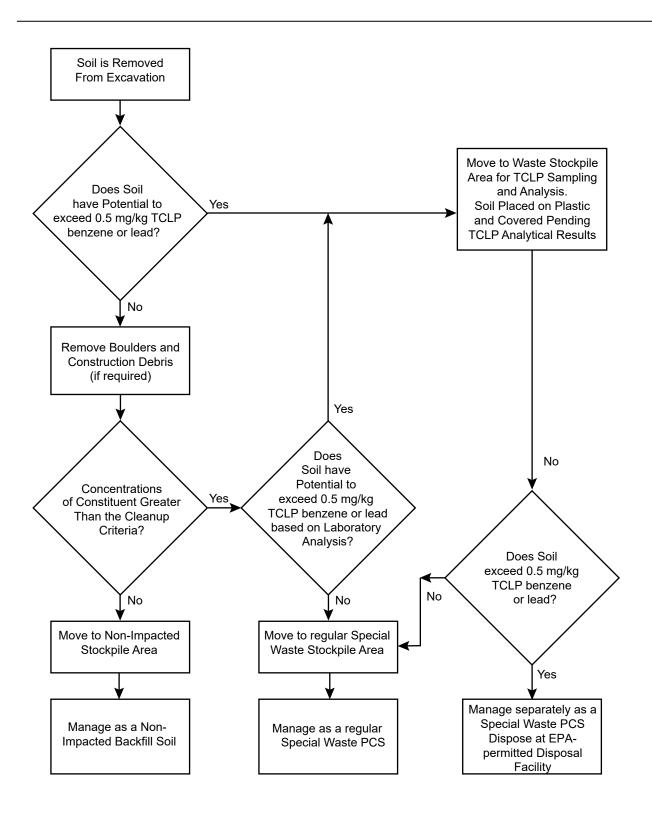


FIGURE 7-4
Waste Segregation Flow Chart
APS Douglas Former MGP Site
Douglas, Arizona

Appendix A Executive Summary of Environmental Data Resources Report, November 2018

D3118600

Former Douglas Arizona Manufactured Gas Plant Douglas, AZ 85607

Inquiry Number: 5485155.2s

November 14, 2018

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

FORMER DOUGLAS ARIZONA MANUFACTURED GAS PLANT DOUGLAS, AZ 85607

COORDINATES

Latitude (North): 31.3357170 - 31° 20' 8.58" Longitude (West): 109.5620580 - 109° 33' 43.40"

Universal Tranverse Mercator: Zone 12 UTM X (Meters): 636800.9 UTM Y (Meters): 3467516.5

Elevation: 3946 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 6719529 DOUGLAS, AZ

Version Date: 2014

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20150621 Source: USDA

MAPPED SITES SUMMARY

Target Property Address: FORMER DOUGLAS ARIZONA MANUFACTURED GAS PLANT DOUGLAS, AZ 85607

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
1	DOUGLAS GAS CORPORAT		EDR MGP	Lower	1 ft.
A2	USDHS USC&BP - DOUGL	5 N PAN AMERICAN AVE	UST	Higher	524, 0.099, SE
A3	DOUGLAS PORT OF ENTR	1 PAN AMERICAN AVE	VCP	Higher	532, 0.101, SE
B4	BORDER MART SHELL	100 E 3RD ST	UST, EMAP, Enforcement, Financial Assurance	Higher	586, 0.111, NE
B5	BORDER EXPRESS	305 N PAN AMERICAN A	LUST, UST, EMAP, Enforcement	Higher	659, 0.125, NE
B6	BORDER EXPRESS INC	305 N PAN AMERICAN A	EDR Hist Auto	Higher	659, 0.125, NE
7	DOUGLAS CHEVRON	461 N PAN AMERICAN A	UST, EMAP, Enforcement, Financial Assurance	Higher	982, 0.186, NE
8	WHITE KNIGHT HEALTHC	300 S 1ST ST	RCRA-CESQG, FINDS, ECHO	Higher	1029, 0.195, East
9	HAMLIN INC	230 INTERNATIONAL AV	RCRA NonGen / NLR, FINDS, ECHO	Higher	1057, 0.200, ESE
C10	WAL-MART SUPERCENTER	199 WEST 5TH STREET	AST	Lower	1295, 0.245, NW
C11	WALMART SUPERCENTER	199 W 5TH ST	RCRA-CESQG, EMAP, MANIFEST	Lower	1295, 0.245, NW
12	DOUGLAS, CITY OF - M	101 E 7TH ST	LUST, UST, EMAP	Higher	1502, 0.284, North
D13	TEXACO - BULK PLANT	7TH ST PAN AMERICAN	LUST, UST, EMAP	Higher	1714, 0.325, NNE
D14	PARK WEST PARTNERS W		AZURITE, AUL, EMAP	Higher	1983, 0.376, NNE
15	PARK WEST PARTNERS E		AZURITE, AUL, EMAP	Higher	2096, 0.397, NNE
16	SENOR BARRATO	560 N G AVE	LUST, UST, EMAP, Financial Assurance	Higher	2224, 0.421, NE
17	DOUGLAS DEVELOPMENT	SEC W. 9TH STREET &	VCP	Lower	2541, 0.481, NNW

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list	
NPL	National Priority Liet
	Proposed National Priority List Sites
NPL LIENS	
Federal Delisted NPL site lis	st
Delisted NPL	National Priority List Deletions
Federal CERCLIS list	
	Federal Facility Site Information listing
SEMS	Superfund Enterprise Management System
Federal CERCLIS NFRAP si	ita liat
SEMS-ARCHIVE	Superfund Enterprise Management System Archive
Federal RCRA CORRACTS	facilities list
CORRACTS	. Corrective Action Report
Federal RCRA non-CORRA	CTS TSD facilities list
RCRA-TSDF	RCRA - Treatment, Storage and Disposal
	, ,
Federal RCRA generators li	ist
RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
	ls / engineering controls registries
LUCIS	Land Use Control Information System
	Engineering Controls Sites List Sites with Institutional Controls
33 1131 3011110L	- Ottoo with inditational Controls

Federal L	ERNS	list
-----------	------	------

ERNS..... Emergency Response Notification System

State- and tribal - equivalent NPL

AZ NPL NPL Detail Listing

AZ WQARF...... Water Quality Assurance Revolving Fund Sites

State- and tribal - equivalent CERCLIS

SPL..... Superfund Program List

SHWS.....ZipAcids List

State and tribal landfill and/or solid waste disposal site lists

SWF/LF..... Directory of Solid Waste Facilities

State and tribal leaking storage tank lists

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists

FEMA UST..... Underground Storage Tank Listing

INDIAN UST...... Underground Storage Tanks on Indian Land

State and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing

State and tribal Brownfields sites

BROWNFIELDS..... Brownfields Tracking System

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWTIRE...... Solid Waste Tire Facilities

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands

ODI...... Open Dump Inventory

DEBRIS REGION 9...... Torres Martinez Reservation Illegal Dump Site Locations

IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

CDL..... Clandestine Drug Labs

US CDL...... National Clandestine Laboratory Register

Local Land Records

LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS_____ Hazardous Materials Information Reporting System

SPILLS..... Hazardous Material Logbook SPILLS 90...... SPILLS 90 data from FirstSearch

Other Ascertainable Records

FUDS..... Formerly Used Defense Sites DOD..... Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR______ Financial Assurance Information EPA WATCH LIST_____ EPA WATCH LIST

2020 COR ACTION........... 2020 Corrective Action Program List TSCA...... Toxic Substances Control Act

TRIS...... Toxic Chemical Release Inventory System

SSTS..... Section 7 Tracking Systems ROD...... Records Of Decision RMP..... Risk Management Plans

RAATS...... RCRA Administrative Action Tracking System

PRP..... Potentially Responsible Parties

ICIS...... Integrated Compliance Information System

Act)/TSCA (Toxic Substances Control Act)

..... Material Licensing Tracking System COAL ASH DOE Steam-Electric Plant Operation Data

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER_____PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS...... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS..... Incident and Accident Data

CONSENT..... Superfund (CERCLA) Consent Decrees

INDIAN RESERV..... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS..... Lead Smelter Sites

US AIRS..... Aerometric Information Retrieval System Facility Subsystem

US MINES..... Mines Master Index File ABANDONED MINES..... Abandoned Mines

FINDS..... Facility Index System/Facility Registry System

UXO...... Unexploded Ordnance Sites

DOCKET HWC..... Hazardous Waste Compliance Docket Listing ECHO..... Enforcement & Compliance History Information

FUELS PROGRAM..... EPA Fuels Program Registered Listing

AIRS..... Arizona Airs Database

Aquifer..... Waste Water Treatment Facilities AZ DOD..... Department of Defense Sites

Dry Wells...... Drywell Registration

SPDES......NPDES

WWFAC...... Waste Water Treatment Facilities

EDD LUCU DIOX LUCTODIO AL DECODO

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR Hist Cleaner EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS	Recovered Government Archive State Hazardous Waste Facilities List
RGA LF	Recovered Government Archive Solid Waste Facilities List
RGA LUST	Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in bold italics are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Federal RCRA generators list

RCRA-CESQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

A review of the RCRA-CESQG list, as provided by EDR, and dated 03/01/2018 has revealed that there are 2 RCRA-CESQG sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WHITE KNIGHT HEALTHC	300 S 1ST ST	E 1/8 - 1/4 (0.195 mi.)	8	15

EPA ID:: AZD982344350

Lower Elevation	Address	Direction / Distance	Map ID	Page
WALMART SUPERCENTER	199 W 5TH ST	NW 1/8 - 1/4 (0.245 mi.)	C11	19
FPA ID.: AZR000047662				

State and tribal leaking storage tank lists

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Department of Environmental Quality's LUST File Listing by Zip Code.

A review of the LUST list, as provided by EDR, and dated 09/07/2018 has revealed that there are 4 LUST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
BORDER EXPRESS Date Closed: 01/02/13 Facility Id: 0-009658 Facility Status: CLOSED	305 N PAN AMERICAN A	NE 0 - 1/8 (0.125 mi.)	B5	11
DOUGLAS, CITY OF - M Date Closed: 02/20/96 Facility Id: 0-006774 Facility Status: CLOSED	101 E 7TH ST	N 1/4 - 1/2 (0.284 mi.)	12	41
TEXACO - BULK PLANT Date Closed: 08/18/98 Facility Id: 0-004251 Facility Status: CLOSED	7TH ST PAN AMERICAN	NNE 1/4 - 1/2 (0.325 mi.)	D13	43
SENOR BARRATO Facility Id: 0-006668 Facility Status: Confirmed	560 N G AVE	NE 1/4 - 1/2 (0.421 mi.)	16	45

State and tribal registered storage tank lists

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Environmental Quality's Arizona UST-DMS Facility and Tank Data Listing by City database.

A review of the UST list, as provided by EDR, and dated 09/07/2018 has revealed that there are 4 UST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
USDHS USC&BP - DOUGL Closure Type: Removal Facility Id: 0-006810 Date Closed: 12/06/1990	5 N PAN AMERICAN AVE	SE 0 - 1/8 (0.099 mi.)	A2	8
BORDER MART SHELL	100 E 3RD ST	NE 0 - 1/8 (0.111 mi.)	B4	9

Facility Id: 0-009318				
BORDER EXPRESS	305 N PAN AMERICAN A	NE 0 - 1/8 (0.125 mi.)	B5	11
Closure Type: Removal				
Facility Id: 0-009658				
Date Closed: 08/30/2012				
DOUGLAS CHEVRON	461 N PAN AMERICAN A	NE 1/8 - 1/4 (0.186 mi.)	7	13
Facility Id: 0-010052		, ,		

AST: The Aboveground Storage Tank database contains registered ASTs. The data come from the Department of Environmental Quality's Arizona UST-DMS Facility and Tank Data Listing by City database.

A review of the AST list, as provided by EDR, has revealed that there is 1 AST site within approximately 0.25 miles of the target property.

Address	Direction / Distance	Map ID	Page
199 WEST 5TH STREET	NW 1/8 - 1/4 (0.245 mi.)	C10	19
ent Version: 08/15/2018			
		199 WEST 5TH STREET NW 1/8 - 1/4 (0.245 mi.)	199 WEST 5TH STREET NW 1/8 - 1/4 (0.245 mi.) C10

State and tribal institutional control / engineering control registries

AZURITE: ADEQ maintains a repository listing sites remediated under programs administered by the department.

A review of the AZURITE list, as provided by EDR, and dated 08/07/2018 has revealed that there are 2 AZURITE sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
PARK WEST PARTNERS W PARK WEST PARTNERS E		NNE 1/4 - 1/2 (0.376 mi.) NNE 1/4 - 1/2 (0.397 mi.)		44 45

AUL: DEUR and VEMUR sites. DEUR: Declaration of Environmental Use Restriction. A restrictive land use covenant that is required when a property owner elects to use an institutional (i.e., administrative) control or engineering (i.e., physical) control as a means to meet remediation goals. The DEUR runs with and burdens the land, and requires maintenance of any institutional or engineering controls. VEMUR: Voluntary Environmental Mitigation Use Restriction. A restrictive land use covenant that, prior to July 18, 2000, was required when a property owner elected to remediate the property to non-residential uses. Effective July 18, 2000, the DEUR replaced the VEMUR as a restrictive use covenant.

A review of the AUL list, as provided by EDR, and dated 08/07/2018 has revealed that there are 2 AUL sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
PARK WEST PARTNERS W Remediation ID: 31409		NNE 1/4 - 1/2 (0.376 mi.)	D14	44
PARK WEST PARTNERS E Remediation ID: 31404		NNE 1/4 - 1/2 (0.397 mi.)	15	45

State and tribal voluntary cleanup sites

VCP: Sites involved in the Voluntary Remediation Program..

A review of the VCP list, as provided by EDR, and dated 05/14/2018 has revealed that there are 2 VCP sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
DOUGLAS PORT OF ENTR	1 PAN AMERICAN AVE	SE 0 - 1/8 (0.101 mi.)	A3	8
Date Closed: 06/28/2002				
Date Closed: 08/03/2007				
Facility Status: Transferred to Site	Assessment Program			

Facility Status, Classed

Facility Status: Closed

Lower Elevation	Address	Direction / Distance	Map ID	Page
DOUGLAS DEVELOPMENT Date Closed: 09/04/2014	SEC W. 9TH STREET &	NNW 1/4 - 1/2 (0.481 mi.)	17	47
Facility Status: Closed				

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

RCRA NonGen / NLR: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

A review of the RCRA NonGen / NLR list, as provided by EDR, and dated 03/01/2018 has revealed that there is 1 RCRA NonGen / NLR site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
HAMLIN INC	230 INTERNATIONAL AV	ESE 1/8 - 1/4 (0.200 mi.)	9	17
EPA ID:: AZD982429086				

MANIFEST: Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

A review of the MANIFEST list, as provided by EDR, and dated 12/31/2017 has revealed that there is 1 MANIFEST site within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
WALMART SUPERCENTER	199 W 5TH ST	NW 1/8 - 1/4 (0.245 mi.)	C11	19
EPA Id: AZR000047662				

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

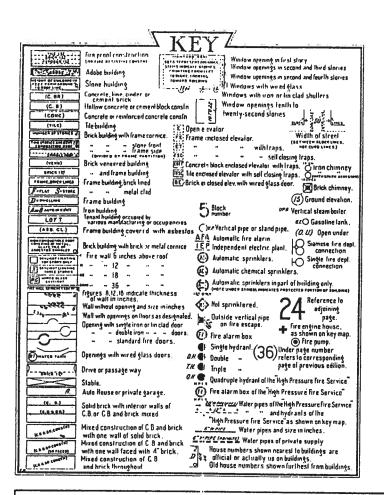
A review of the EDR MGP list, as provided by EDR, has revealed that there is 1 EDR MGP site within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
DOUGLAS GAS CORPORAT	PAN AMERICAN AVE	0 - 1/8 (0.000 mi.)	1	8

EDR Hist Auto: EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

A review of the EDR Hist Auto list, as provided by EDR, has revealed that there is 1 EDR Hist Auto site within approximately 0.125 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
BORDER EXPRESS INC	305 N PAN AMERICAN A	NE 0 - 1/8 (0.125 mi.)	B6	13


Due to poor or inadequate address information, the following sites were not mapp	ed. Count: 1 records.
Site Name	Database(s)
DOUGLAS AIRFIELD	SHWS

Appendix B Historical Sanborn Maps and Aerial Photographs

SANBORN MAP LEGEND . CORING OF FIRE-RESISTIVE STRUCTURAL UNITS FOR FIREPROOF AND NON-COMBUSTIBLE BUILDINGS GLOSSARY A. ILLINES An artifrary boundary between educations where. A. Private garage. A. Private garage. A. Private garage. A. P. Above. A. A. A. Couloped with fire detecting deviates which automatically signal accentral fire department. A. ILL. Coulomb figure. A. ILL. A. Insurancy will extending devia through figure. A. ILL. A. Insurancy will extending March fire MALL. A insurancy will extending System. A. ILL. M. M. I. A. Insurancy will extend the March M. A. I. A. I RCEOF CODE STRUCTURAL BRIT CODE STRUCTURAL UNIT CODE STRUCTURAL UNIT The coding to left, for framing, floor and roof structural units is used in describing the construction of fire-resistive buildings, in addition, reports for five-resistive buildings will show the date built, wall construction other than brick, and ceilings. Reinforced Concrete, Heinforced Concrete with Masonry Units. Pre-cast Concrete or Gypsum Slabs or Planks. Heinforced Concrets. Reinforced Concrete with Masoury Units. Reinforced Gypsinn Concrete, Pre-cast Concrete or Gypsinn Slabs or Planks, Reinforced Concrete Frame. ١. ٠. Heinforced Concrete Joists, Columns, Hesma, Trussee, Arches, Masonry Piers, c. Protected Steel Frame. Concrete on Metal Lath, Incombustible Form Boards, Paper-backel Wite Fabric, Steel Deck, or Cethular, Ribbed or Corrugated Steel Units. A fireproof building built in 1963 with concrete walls and reinforced concrete frame, floors and roof. Concrete or Gypsum on Metal Lath, Incombustible Form Huards, Paper-back Wire Fabric, Steel Deck, or Cellular, Ribbed or Corrugated Steel Units, FP - 1962 Individually Protected Steel Joints, Columns, Heams, Trusses, Arches. (CONG.) Đ, À - I - a HASEMENT A story leaving the floor below ground & its ceiling at least it shows grown, the state of the collection of the state of the collection of the state of the collection of the state of the sta Indirectly Protected Steel Ε. FPX - DE A fireproof building built in 1962 with metal panel walls, reinforced concrete columns and beams, concrete floors on metal lath and gypsum slab roof; non-combustible ceilings. (METAL PAMES) B-2-3 (METAL PAMES) Open Steel Deck or Grating. Incombustible Composition Buards with ar without Insulation, Indirectly Protected Steel Joists, Columns, Beams, Trusses, Arches, revisition. Insumry or Metal Tites. Unprotected Steel Frame. Steel Deck, Corrugated Metal or Asbestos Protected Metal with or without Insulation, A noncombustible building built in 1962 with concrete block walls; unprotected steel cul-umns, beams and juists; concrete floors on metal lath and steel deck roof. N C - 1962 Unprotected Steel Juists, Culumna, Beams, Frusses, Arrhes. н. Masonry Bearing Walls only. CONSTRUCTION RESIDENTIAL OCCUPANCY SYMBOLS D. Single family unit or as qualified by Single island, and a summer is managed, and a summer is multi-family residential building corresponding with tocal Rating Hursau definition in family units per floor, story height, is separation of managed. Important interior and all exterior mesonry walls of all non-residential buildings of four dwelling units or less are buildings and residential buildings of five or more dwelling units are shown with a standard line and the construction is noted on all buildings shown with a standard line and the construction is noted on all buildings dispersion of the construction is noted on all buildings and after July, 1953, WALLS EMOUTITRAN per thor, story height, & separation of entrance. RESMIG. A residential building normally occupied by a single family but with 10 or more rooms resided for lodging purposes. EXCHIONS: 6 rooms in Arizons. California, Nevada, Utah & Mostans; 5 rooms in tregot & Washington; 6 rooms in Idaho & Sassington; 6 OPENINGS (Intertor) (Exterior) 3" Brick Mixed Construction of Concrete Blocks, Brick Faced Wall with No Openings Ist Ploor CBMI Frame D Wall with Double Standard Fire Doors lat Floor (tong) 12" ('oncrete ist & 2nd Floors Mixed Construction of Concrete Blocks & Brick Wall with Standard Fire Door Hasement Tile from Foundation to Top Ceiling only PINE REASTIVE CONSTRUCTION SYMBOLS F.P. Approved masonry walls, floors & F.O., interior supports of approved masonry, concrete, and/or protected steel. 570 4 18" & 20" Stone 3rd Floor Wall with Substandard Fire Doors let & 3rd Floors Concrete 1st Floor only TILE) Wall Thicknesses Placed Relative to Respective Places lat & 4th Fl. with Metal Shutter Lat. Masonry Walls, Metal Wall with Metal & Wired Class Fire Doors all Floors Hollow Cinder or Con-crete Block 1st Floor only F. P. Z. F. P. qualifications except in-ferior or sub-standard walls. HOURY Adobe Wall with Substandard Fire Doors 1st, 2nd & 3rd Floors & Unprotected Opening 4th 10th & 22nd only ferior or sub-standard walls. N.C. Fire resistive with unprotected structural stool units. History WALL A bounded manner; wat heart was a sub-standard manner; wat heart was a sub-standard manner; wat heart was a sub-standard wall between the condition of terrain. LEXIVED WALL A manner; bearing wall with attended ledges to support floors. LOT Trensited by industrial uccupancies. M. S. & G. Metal usui & glass. M. S. & G. Metal usui & glass. M. S. & C. Metal usui & glass. Hotlow Cinder or Con-crete Block Interior Wall Basement to Roof (C SR) Cinder, Concrete or Cement 1b tok 10th to 22nd P1. St. 240 Brick 2nd Floor only Wall with Small Unprotected Openings only (C B) Hollow Cimier or Con-crete Blocks, Pilan-tered Tile Interior Wall MC/28 Tile lat 6 3rd Floors Wired Glass in Metal Sush 2nd & 3rd Fi, Wall with Unprotected Open-ings all Floors C AR Cement Brick End Watt NON-MASONRY CONSTRUCTION Non-masonry waits are shown with fine (_____) lines, (Wall construction other than wood and stucco o Wood & Sturro & Cement Plaster, Etc. on Wood Frame the curresponding flour of an adjoining building. Q.L. Chen between ground and first floor. PIASTID. Mesonry reinforcing columns in walls. Strike Str fron Building with Wood Boof, (Location of Exten-sive Wood Areas Specif-ically noted) Aspnalt and/or Asbestos Protected Metal on Steel Prame Woud Sauh & Glass Apron Wally With Wood Sash and Glass TELFR Brick Veneered on Wood Frame (Other Types of Veneered on Wood Frame Specifically Noted) GLASS Metal Sash & Glass ري معوا on diagram. Stissivi), Suspended ceilings below floor sad/or roof beams. SYST. System. TRANSE. Transformer. W(I), Wood. Stucco, Cement Plaster. Etc. on Steel Frame Ashestos Clad on Wood Frame, Noted in Nos-Residential Structures only. Asphalt and/or Asbestos Protected Metal on Wood Prame Metal Clad on Wood (IR CL) Mixed Musuary & Non-Massary (Type of Massary Massary (Noted) Mixed Wall--0' of CB 1 800 500 Craw appraises to mitte as - Vt | 1 Parent. (NOW) | Iron BullJing POST IN THE (diass Gines Panels VE SULEY 28 Paul C U MILLIPIE TO Wood, Brick Lined, Sr. Filled or Heick Nogged Metal Panels 7 ******** FIRE PROTECTION -8 Fire Department Connection Single Hydrant 2 Stories & Basement 1st Floor Gecupied by Stor 2 Residential Units above 1 Auto in Basement Drive or Passageway Wood Shingle Hoof, esc Frame Enclosed Elevator with Self Closing Traps \$ 28 2-D. A w d -W-JU-, OH . Double Hydrant **(3)** Automatic Sprinklers throughout contiguous sections of single risk Concrete Block Enclosed Elevator with Traps TH, Triple Hydrani Automatic Sprinklers all floors of building **(3)** QH . Quadruple Hydrant of the High Pressure Service Tile Enclosed Elevator with Self Closing Traps O. TSC, Iron Chimney Brick Chimney Autumatic Sprinklers in part of hulding only (Note under Symbol Indicates protected portion of building) **(1)** Water Pipes of the High Pressure Iron Chimney (with Spark Arrestor) 670 Gasoline Tank DE 7 Brick Enclosed Elevator with Wired Glass Door IR.CH. SA IST ONLY (A) ● UP B Vertical Steam Boiler ### Water Pipes of the High Pressure Service as Shown on Key Map Open Hoist @ Fire Pump € Not Sprinklered [VT]Horizontal Steam Boiler Hoist with Traps 1'ublic Water Service STORE **69** Automatic Chemical Sprinklers (A) Width of Street between Black Lines, not Curb Lines Chemical Sprinklers in part of building unly (Note under Symbol indicates protected portion of building) Open Hoist Basement to 1st EMACALY) Private Water Service \$ 03 **(2)** 9 Stairs Ground Elevation SAN LINE MISCELLANEOUS House numbers nearest to Hulldings are Official or Actually up on Build-ings. Old House Numbers are Farthest from Hulldings VERTICAL OPENINGS 35 D ő ő Number of Stories Height in Feet Composition Hoof Covering Vertical Pipe or Stand Pice Skylight lighting top story only 1000 AFA Automatic Pire Alarm Skylight lighting 3 stories 3 Parapet 5" above Roof € Water Tank Skylight with Wired Glaus in Metal Sash WO Frame Cornice Parapet 12" above Roof Reference to Adjoining Page Outside Vertical Pipe on fire escape Parapet 24" above Roof tecupled by Warehouse Metal, Slate, Tile or Ashestos Stringle Roof Covering l'arapet 48" ahnve Roof Open Elevator (E) Pire Department as shown on Key Map Fire Alarm Hox Noted "HPFS" on High Pressure Fire Service W. HO. $[\tilde{F}\tilde{E}]$ Prame Enclosed Elevator **(** ET Frame Enclosed Elevator with Traps Vac. & Op. or V.-O. - Vacent & Open

GARAGE CAPCY. 20 CARS CONC. FL WOOD RAMPTO ZND REP. 2ND.

> PRIVATE GARAGE CAPCY. 10 CARS CONC. FL.

CODING OF STRUCTURAL UNITS FOR FIREPROOF AND NON-COMBUSTIBLE BUILDINGS

FRAMING

CODE STRUCTURAL UNIT

- Reinforced Concrete Α. Frame.
- в. Reinforced Concrete Joists, Columns, Beams, Trusses, Arches, Masonry Piers.
- c. Protected Steel Frame.
- Individually Protected Steel Joists, Columns, Beams, Trusses, Arches.
- Indirectly Protected Steel Frame.
- Indirectly Protected Steel Joists, Columns, Bearis, Trusses, Arches.
- G. Unprotected Steel Frame.
- Unprotected Steel Joists, H. Columns, Beams, Trusses, Arches.
- O. Masonry Bearing Walls.

FLOORS

CODE STRUCTURAL UNIT

- Reinforced Concrete. Reinforced Concrete with Masonry Units. Pre-cast Concrete or Gypsum Slabs or Planks.
- Concrete on Metal Lath. Incombustible Form Boards, Paper-backed Wire Fabric, Steel Deck, and Cellular, Ribbed or Corrugated Steel Units.
- Open Steel Deals

AND USE (ODE APPLICABLE TO C	HANGES DIA	GRAMMED AFTER 3/6
R	RESIDENTIAL.	М	MANUFAC IT HING
RT	RESIDENTIAL .	Ρ	PUBLIC OR INSTITUTIONAL
С	COMMERCIAL	U	UTILITY
W	WAREHUNISE	7	TRANSPORTATION

ROOF

CODE STRUCTURAL UNIT

Reinforced Concrete. Reinforced Concrete with Masonry Units. Reinforced Gypsum Concrete. Pre-cast Concrete or Cypsum Slabs or Planks.

Ĕ.

- Concrete or Gypsum on Metal Lath, Incombustible Form Boards, Paper-backed Wire Fabric, Steel Deck, and Cellular, Ribbed or Corrugated Steel Units.
- Incombustible Composition Boards with or without Insulation. Masonry or Metal Tiles.
- Steel Deck, Corrugated Metal or Asbestos Protected Metal with or without Insulation.

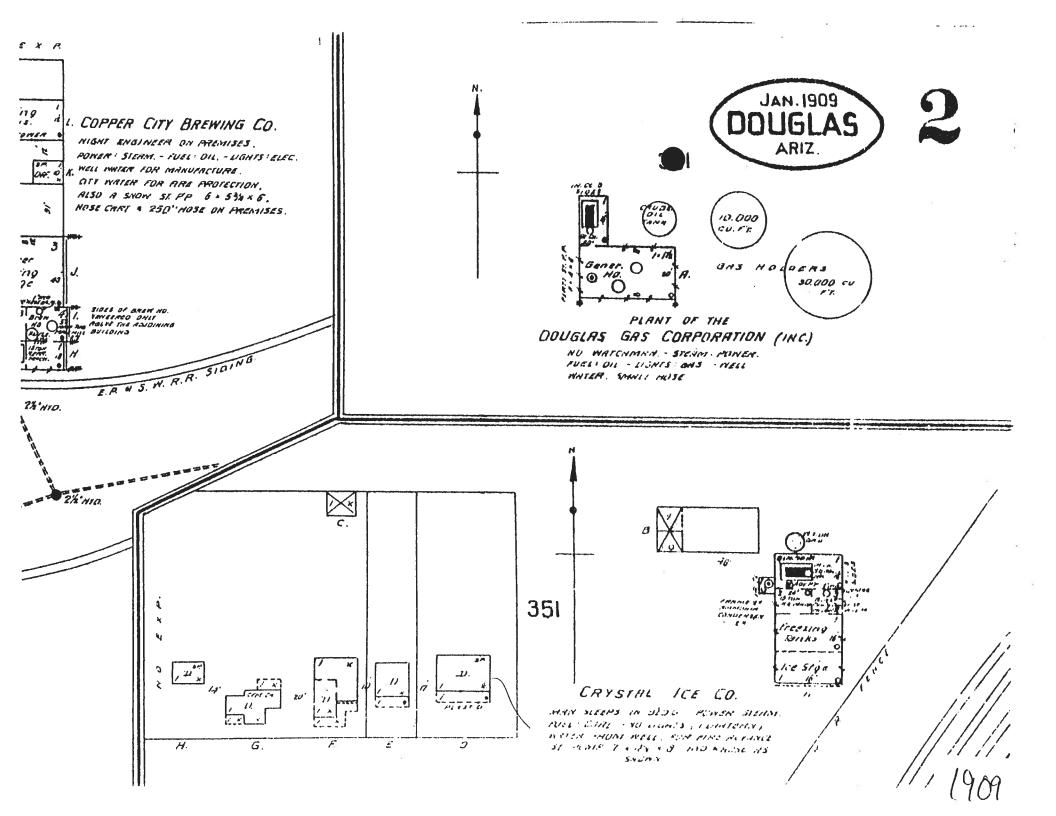
The coding for framing, floor and roof structural units as shown above is used in describing the construction of fire-resistive buildings. In addition, reports for fire-resistive buildings will show the date built and wall construction when other tian brick.

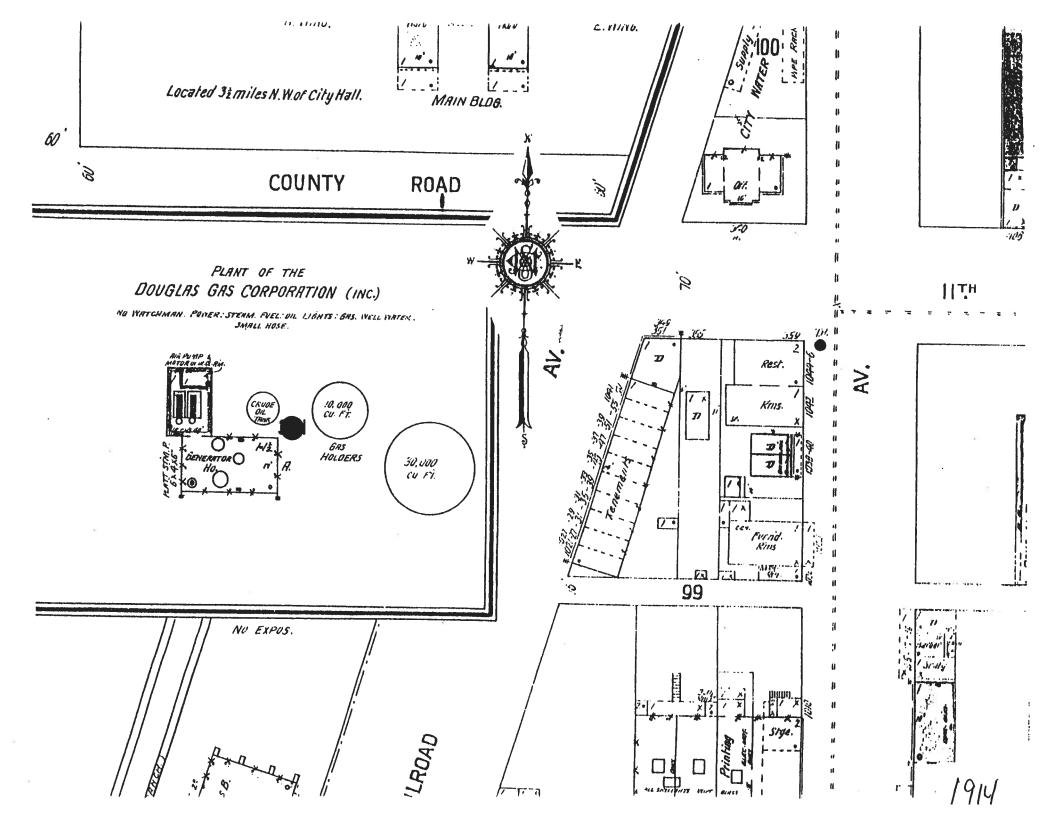
F P buildings have masonry floors and roof; concrete and/or directly or indirectly protected steel framing;

and clay brick, stone or poured concrete walls.

FPX buildings are FP buildings with inferior walls such as concrete block, cement brick, metal or glass panels, etc.

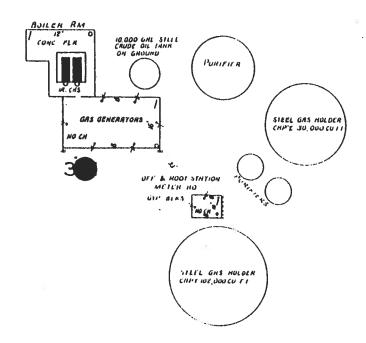
N C buildings have unprotected steel framing and fireresistive but non-masonry floors and roof.


A fire-resistive building built in 1962 with concrete walls and reinforced concrete frame, floors and roof.

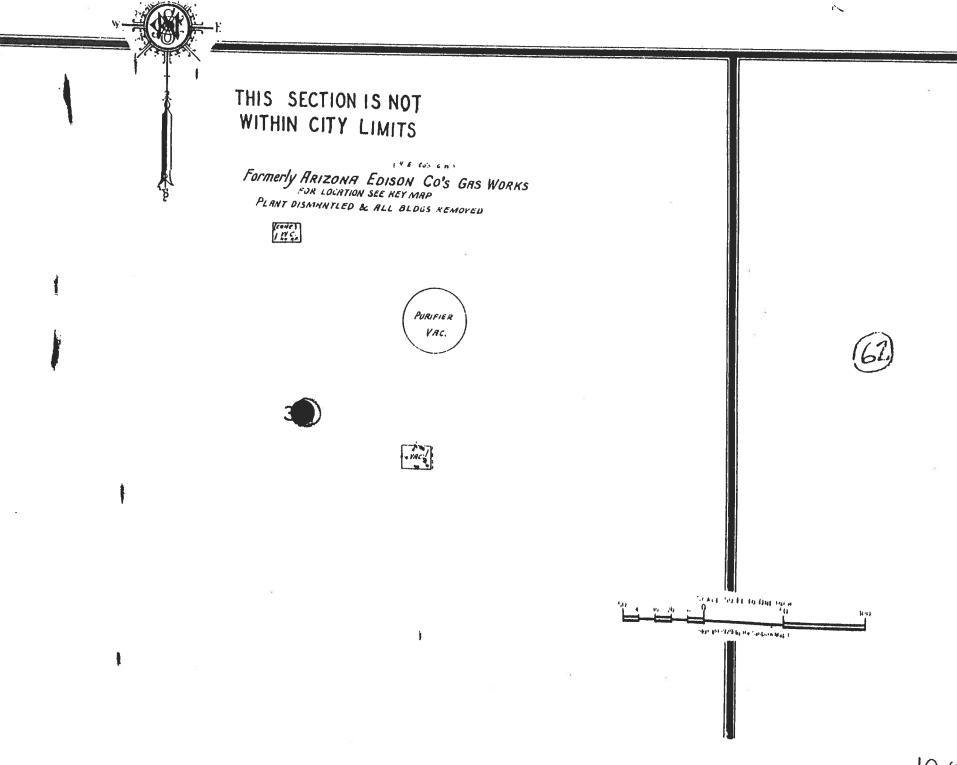


A fire-resistive building built in 1962 with metal panel walls, indirectly protected steel frame, concrete floors and roof on metal lath, noncombustible ceilings.

A noncombustible building built in 1962 with concrete block walls; unprotected steel columns and beams; concrete floors on metal lath and steel deck roof.



THIS SECTION IS NOT WITHIN CITY LIMITS


ARIZONA EDISON CO'S GAS WORKS FOR LOCATION SEE KEY MAP

IN OPERATION DAY & NIGHT - POWER STEAM FUEL:
OIL - LIGHTS: ELEC. GRS GENERATOR FROM CRUDE
OIL . NO FIRE APPARATUS

Appendix C
Work Plan for Pre-design Testing
Investigation

Work Plan for APS Former Manufactured Gas Plant Site, Douglas Arizona

Final

August 2019

Arizona Public Service

	Voluntary Remediation Program Work Plan Check Complete Shaded Areas and Submit with Work Plan		Page 1 of 3
Site Name:	VRP Site Code:		
Volunteer/Applica	ant Name:		
	ant Email Address and Phone:		
Authorized Agen	t (AA)/Consulting Company:		
AA/Consultant E	mail Address and Phone:		
Reference	Summary of Statutory Requirement	Page(s) Where Addressed in Work Plan	VRP Use
	(please review all statutes in their entirety to ensure compliance)	(write N/A if not applicable)	Only
<u>§49-175A.1</u>	Summary of existing site characterization and assessment information; information regarding any remediation previously conducted; copies of referenced reports not previously submitted;		
<u>§49-175A.2</u>	If the site has not been characterized, a plan to conduct site characterization and a schedule for completion.		
<u>§49-175A.3.a</u>	If site characterization is completed, a description of how the remediation will comply with §49-175B ("Work Plans") and how the completion of remediation will be verified. A schedule for completion must be included.		
<u>§49-175A.3.b</u>	If site characterization is completed, the work plan may provide for the remediation to be conducted in phases or tasks. A schedule for completion must be included.		
<u>§49-175A.4</u>	Schedule for submission of progress reports.		
<u>§49-175A.5</u>	A proposal for community involvement as prescribed by §49-176 ("Community Involvement Requirements")		
<u>§49-175A.6</u>	If known, a list of institutional or engineering controls necessary during remediation and after completion of the proposed remediation to control exposure to contaminants.		
<u>§49-175A.7</u>	A proposal for monitoring during remediation and after the remediation if necessary to verify whether the approved remediation levels or controls have been attained and will be maintained.		
§49-175A.8	A list of any permits or legal requirements known to apply to the work or already performed by the applicant.		
§49-175A.9	If requested by the department, information regarding the financial capability of the applicant to conduct the work identified in the application. (IF APPLICABLE)		

application. (IF APPLICABLE)

	Voluntary Remediation Program Work Plan Chec Complete Shaded Areas and Submit with Work P		Page 2 of 3				
Site Name:	VRP Site Code:						
Reference	Summary of Statutory Requirement	Page(s) Where Addressed in Work Plan	VRP Use Only				
	(please review all statutes in their entirety to ensure compliance)	(write N/A if not applicable)					
<u>§49-175B</u>	Remediation levels or controls for remediation conducted pursuant to this article shall be established in accordance with rules adopted pursuant to §49-282.06 unless one or more of the following applies: see §49-175B.1 through §49-175B.4, below.						
§49-175B.1	The applicant demonstrates that remediation levels, institutional controls, or engineering controls for remediation of contaminated soil comply with §49-152 and the rules adopted.						
§49-175B.2	The applicant demonstrates that remediation levels, institutional controls, or engineering controls for remediation of landfills or other facilities that contain materials that are not subject to §49-152 (i.e.: asbestos) do not exceed a cumulative excess lifetime cancer risk between 1X10 ⁻⁴ to 1X10 ⁻⁶ , and a hazard index of no greater than 1.						
§49-175B.3	The applicant demonstrates that on achieving remediation levels or controls for a source or potential source of contamination to a navigable water, the source of contamination will not cause or contribute to an exceedance of surface water quality standards, or if a permit is required pursuant to 33 United States Code §1342 for any discharge from the source, that any discharges from the source will comply with the permit.						
<u>§49-175B.4</u>	The applicant demonstrates that, on achieving remediation levels or controls for a source of contamination to an aquifer, the source will not cause or contribute to an exceedance of aquifer water quality standards (AWQS) beyond the boundary of the facility where the source is located.						
<u>§49-175C</u>	The VRP may waive any work plan requirement under this section that it determines to be unnecessary to make any of the determinations required under §49-177. If any waivers are requested in the Work Plan or have been previously requested and approved by the VRP, cite them in the Work Plan, including a citation of the statute for which the waiver applies.						

		<i>tary Remedic</i> plete Shaded		•			dist	Page 3 of 3
Site Name:				\	/RP Site Code	:		
	Plan. Th	•	vides a lis	t of attach	ments/exhib	its wh	nich are recommended	
Work Plan Informatio	n	_	uested Info	tachment/E rmation is (xhibit Where Cited		Figure/Table/ Attachment or Report Page Number	VRP Use Only
Site Location Map							(write N/A if not applicable)	
(topographic or aerial)								. 🗆
Site Map (to scale)								
Historical Sampling Data	Table							
Historical Sample Locatio (to scale)	on Map							
Proposed Sample Location (to scale)	on Map							
Sampling and Analysis (includes Field Sampling Plan & Assurance Plan)								
Proposed Remediation S Location Map	System							
Proposed Remediation S Layout (Design Drawings)	System							
Schedule for Implementa Project Activities* (Gantt Style Chart)	ition of							
*Project Activities are defined in A	A.R.S. §§49	9-175A.2 through 49-	175A.4, and 4	19-176A.2 (Co	ommunity Involve	ement).		
Proposed Language for Notification of Remedia (i.e.: example signag	ation							
Plan for Investigative De Waste (IDW)	erived							
Evaluation of Remed Alternatives (i.e: for Feasibility Study Work								
DOES THE V	WORK P	LAN PROPOSE	IMPLEMEN	NTING SIT	E-SPECIFIC I	REME	DIATION LEVELS?	-
		Yes		lo				
DOES	S THE W	ORK PLAN PRO Yes	_	ALUATION lo	OF BACKGF	ROUN	D LEVELS?	
		Ш	L					
NOTE: When reports are ADEQ's <i>Groundwater Data</i>						subm	ittal of Electronic Data p	er

Contents

1.	Intro	oduction	1-1					
	1.1	Objectives	1-1					
	1.2	Organization	1-1					
2.	Site I	Description, Background, and Data Gaps	2-1					
	2.1	Site Description						
		2.1.1 Geology	2-1					
		2.1.2 Hydrogeology	2-1					
		2.1.3 Surrounding Environmental Issues	2-1					
	2.2	Douglas MGP Site History	2-3					
		2.2.1 Site Ownership and Operational History	2-3					
		2.2.2 Description of MGP Processes	2-5					
		2.2.3 Description of MGP Waste						
	2.3	Previous Site Investigations	2-6					
		2.3.1 Soil Investigations						
		2.3.2 Remedial Activities – Interim Removal Actions						
	2.4	Preliminary Estimate of Impacts and Data Gaps						
		2.4.1 Impacted Soil						
		2.4.2 Uncharacterized Soil						
		2.4.3 Uncharacterized Potential Impact to Groundwater						
	2.5	Background Metals and Surrounding Environmental Issues	2-15					
3.	Prop	oosed Investigation Activities						
	3.1	Sampling						
		3.1.1 Soil Borings						
		3.1.2 Chemical Analysis						
		3.1.3 Geotechnical Analysis						
	3.2	Groundwater Evaluation3						
	3.3	Background Metals Evaluation						
		3.3.1 Statistical Analysis of Offsite Samples						
	3.4	Utility and Subsurface Structure Evaluation						
4.	Samı	pling and Analysis Plan						
	4.1	Field Sampling Procedures						
		4.1.1 Soil Boring Drilling	4-1					
		4.1.2 Groundwater Sample Collection						
		4.1.3 Decontamination Procedures						
		4.1.4 Investigation-derived Waste						
	4.2	Laboratory Analysis						
		4.2.1 Field Samples						
		4.2.2 Field Quality Control Samples						
		4.2.3 Quality Control Data Packages						
	4.3	Sample Packaging and Shipment						
	4.4	Sample Documentation						
		4.4.1 Regular Field Sample ID						
	4.5	4.4.2 Quality Assurance/Quality Control Samples						
	4.5	Field Documentation						
		4.5.1 Field Log Books	4-6					

	4.5.2 Chain-of-Custody Records					
_	4.5.3 Photographs					
5.	Public Notice and Public Participation5-1					
6.	References6-1					
Appe	ndixes					
Α	Sanborn Maps and Aerial Photographs					
В	Executive Summary of EDR Report					
С	Soil Boring Logs from Previous Investigations					
Table	es					
1-1	Summary of Operational History					
2-1	Summary of Historical Analytical Data for Soil – Polynuclear Aromatic Hydrocarbons (PAHs)					
2-2	Summary of Historical Analytical Data for Soil – TPHs and Fuel Hydrocarbons					
2-3	Summary of Historical Analytical Data for Soil – BTEX Compounds					
2-4	Summary of Historical Analytical Data for Soil – Metals and Reactive Sulfide					
2-5	ATSDR Historical Contaminant Concentrations in Offsite Residential Soil (Phelps Dodge Site)					
2-6	ATSDR Historical Groundwater Concentrations					
3-1	Proposed Sampling Locations and Analysis					
4-1	Summary of Sample Handling Requirements					
4-2	Quality Control Sample Type Abbreviations					
Figur	es					
1-1	Site Location Map					
1-2	Former Structures Map					
1-3	Parcel Map					
2-1	Previous Investigation Sampling Locations					
2-2	Polynuclear Aromatic Hydrocarbons (PAHs) in Soil					
2-3	Lead in Soil					
2-4	Arsenic in Soil					
2-5	Total Petroleum Hydrocarbons in Soil					
3-1	Proposed Boring Locations					
3-2	Project Schedule					

iv BI0304191343PHX

Acronyms and Abbreviations

°C degrees Celsius

A.R.S. Arizona Revised Statute

ADEQ Arizona Department of Environmental Quality

ADWR Arizona Department of Water Resources

APS Arizona Public Service Company

AST aboveground storage tank

ATSDR Agency for Toxic Substances and Disease Registry

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes CESQG conditionally exempt small quantity generator

CWG carbureted water gas

ECHO enforcement and compliance history information

EDR Environmental Data Resources

EMAP all places of interest

EPA U.S. Environmental Protection Agency

ERI Environmental Response, Inc.

FINDS facility index system/facility registry system

ft³ cubic foot (feet)

GPL groundwater protection level

ID identification

IDW investigation-derived waste

IRA interim removal action

LUST leaking underground storage tank

mg/kg milligram(s) per kilogram
mg/L milligram(s) per liter

MGP manufactured gas plant

MS matrix spike

MSD matrix spike duplicate

PAH polynuclear aromatic hydrocarbon

PCS petroleum-contaminated soil

PID photoionization detector

QA/QC quality assurance/quality control
QAPP Quality Assurance Project Plan

RAP remedial action plan

RCRA Resource Conservation and Recovery Act of 1976

SRL soil remediation level

VOC

SVOC semivolatile organic compound

TCLP Toxicity Characteristic Leaching Procedure

volatile organic compound

TPH total petroleum hydrocarbon
UST underground storage tank
UTL95-95 95/95 upper tolerance limit
VCP Voluntary Cleanup Priorities

vi BI0304191343PHX

1. Introduction

The Arizona Public Service Company (APS) is proposing to conduct remediation activities at the former manufactured gas plant (MGP) site (the Site) in the City of Douglas, Arizona, under the Arizona Department of Environmental Quality's (ADEQ's) Voluntary Remediation Program in support of future development of the Site. As an initial step, APS completed an assessment of historical site data, which is summarized in the site history report (Jacobs, 2019a), and describes the Site and its history, including former operations and industrial activities, environmental issues, and previous site investigations.

The Site is located near the intersection of East 3rd Street and Pan American Avenue in the City of Douglas (Figure 1-1), in Cochise County, Section 13, Township 24 South, Range 27 East, Douglas, Arizona U.S. Geological Survey 7.5-Minute Topographic Quadrangle. The Site is approximately 200 yards north of the international border between the United States and Mexico.

The properties adjacent to the western Site boundary are owned by El Paso Natural Gas and a private landowner. The land adjacent to the northern, eastern, and southern Site boundaries are owned by private landowners. The area to the north of the Site is characterized by trees and a small wash. The area to the east of the Site contains a walkway from the United States-Mexico border to East 3rd Street, which is used by approximately 3,000 pedestrians per day. The area to the south of the Site is undeveloped land primarily used by the U.S. Border Patrol. The area to the west of the Site is largely undeveloped except for an El Paso natural gas metering station and a buried natural gas line.

The Site was formerly owned by Arizona Edison Company Gas Works, APS's predecessor company (EDR, 2018). The MGP was at the Site from approximately 1905 through 1947 and operated until at least the early 1930s. The Site is owned by the City of Douglas and is crossed by an El Paso Natural Gas easement. The City of Douglas uses the property to store construction debris consisting of soil, gravel, asphalt, and concrete. An operational history of the site is provided in Table 1-1.

A map showing the approximate locations of structures and other features associated with the former MGP that were identified based on Sanborn fire insurance maps and previous site investigation reports is shown on Figure 1-2. Figure 1-3 shows the property parcels in relation to former MGP operations based on historical reports.

According to the findings of the previous investigations, as summarized in this Site Investigation Work Plan, six subsurface MGP-related structures remain at the Site, and compounds related to the former MGP operations have impacted the subsurface soil. As a result, the Site requires additional investigation and remedial activities prior to future property development.

1.1 Objectives

According to the findings of the previous investigations, compounds related to former MGP operations remain above Arizona soil remediation levels. As a result, the Site requires additional investigation to further define the extent of impacts and guide remedial activities. The objectives of the site investigation described in this Work Plan are as follows:

- Complete the characterization of the vertical and lateral extents of soil impacts.
- Evaluate potential groundwater impacts.
- Determine the locations of the remaining subsurface structures.
- Collect data to develop a remedial action plan (RAP) consistent with Arizona soil remediation levels (SRLs) and groundwater protection levels (GPLs).

1.2 Organization

This Site Investigation Work Plan has been prepared in accordance with the ADEQ *Voluntary Remediation Program Work Plan Checklist*. The Work Plan includes the following sections:

- Section 2, Site Description, Background, and Data Gaps, includes the Site history, including a description of MGP operations; summaries of previous site investigations; description of the Site geology, hydrogeology, and hydrology; and a discussion of the remaining data gaps that have been identified at the Site.
- **Section 3, Proposed Investigation Activities**, describes the proposed soil sampling locations and analyses. This section also includes a proposed project schedule for investigation activities.
- Section 4, Sampling and Analysis Plan, describes the field sampling procedures and laboratory analysis and procedures for sample management, chain of custody, and record keeping.
- **Section 5, Public Notice and Public Participation**, describes the procedures APS will use to implement the community relations and ongoing public involvement program during investigative activities.
- Section 6, References, includes the references that were used to prepare this Work Plan.

1-2 BI0304191343PHX

2. Site Description, Background, and Data Gaps

This section presents the history of the Site, a site description, surrounding environmental issues, a summary of the MGP process and wastes, and a summary of previous investigations and data gaps.

2.1 Site Description

The geology and hydrogeology of the Site is described in this section (Geraghty and Miller, 1996a).

2.1.1 Geology

The Site is situated in the Douglas Basin of southeastern Arizona at an elevation of approximately 3,950 feet above mean sea level and lies within the Basin and Range Province in the Sulphur Springs valley. Soils from the ground surface to 5 feet below ground surface (bgs) are generally classified as coarse grained with gravels, gravels with fines, and clayey gravel (EDR, 2018). Based on the most recent site investigation, soils were classified from the center of the Site (SB-4) as silt and sand from ground surface to 3 feet bgs, clay with silt and sand from 3 to 7.5 feet bgs, a mix of clayey silt, silt, sand, and clay from 7.5 to 15 feet bgs, and medium coarse sand from 15 to 16.5 feet bgs (Geraghty and Miller, 1996a).

2.1.2 Hydrogeology

In 1990, groundwater levels within a 2-mile radius of the Site ranged from 46 to 284 feet bgs (Rascona, 1993). Small perched water zones occur locally in the upper alluvial deposits and likely account for the large variation of water levels. According to the Arizona Department of Water Resources, groundwater below the Site may be perched and is likely to be encountered at a depth of approximately 50 feet, with the direction of groundwater flow below the Site unknown because of limited data (Rascona, 1993).

2.1.3 Surrounding Environmental Issues

2.1.3.1 Local Smelting Operations

The Calumet & Arizona Company and Phelps-Dodge Corporation Reduction Works operated two copper smelters approximately 1 mile west of the Site from 1904 to 1931 and 1931 to 1987, respectively (ATSDR, 1995). During the smelting process, metal ores were heated, producing molten metals and releasing sulfur dioxide and particulate matter through two 600-foot stacks. ADEQ initiated comprehensive air monitoring in 1967 and found elevated levels of sulfates, arsenic, and lead particulates in outdoor air in Douglas. Prevailing winds generally blew toward the south and north-northeast. The smelter had a history of exceeding the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards allowable stack emission rates for particulate matter and sulfur dioxide gas, which led to closure of the smelter in 1987.

In 1985 the Arizona Department of Health Services collected 52 offsite (off the reduction works property) surface samples from a widespread area in Douglas to determine background lead concentrations in Douglas. Lead concentrations in Douglas ranged from 50 to 1,170 milligrams per kilogram (mg/kg), with an average lead concentration in Douglas of 254 mg/kg. The Agency for Toxic Substances and Disease Registry (ATSDR) also reported offsite maximum and mean background arsenic concentrations of 35.8 and 15 mg/kg, respectively, for surface samples located from 1 to 6 miles from the smelter site. Section 2.5 provides a detailed background metals discussion based on the ATSDR report (ATSDR, 1995).

2.3.1.2 EDR Search

Environmental Data Resources (EDR) completed a search of available environmental databases for the Site and the surrounding area. The executive summary for the EDR report (EDR, 2018), including a listing of databases searched, is presented in Appendix B.

The Site was identified on the EDR proprietary database for former MGP sites. EDR included 13 additional findings within 1/4 mile of the Site. The findings were included on the following environmental database lists:

- AST—Aboveground Storage Tank Listing
- AUL—Activity and Use Limitations list, also known as Declaration of Environmental Use Restriction
- AZURITE—ADEQ-maintained repository of sites remediated under ADEQ programs
- ECHO—Enforcement and Compliance History Information
- EMAP—All Places of Interest Listing
- FINDS—Facility Index System/Facility Registry System
- LUST—Leaking Underground Storage Tank Listing
- MANIFEST—Hazardous waste manifest information
- RCRA-CESQG— Resource Conservation and Recovery Act Conditionally Exempt Small Quantity Generator
- UST—Underground Storage Tank Listing
- VCP—Voluntary Cleanup Priorities Listing (i.e., voluntary remediation sites)

Seven of the findings were located within 1/8 mile of the Site, with four of the associated facilities having reported releases and/or violations. The companies and/or generators associated with the listings are presented below, along with a summary of the key findings:

Releases or Enforcement Actions

• Border Express, 305 Pan American Avenue – LUST, UST, EMAP, Enforcement

Border Express is a commercial fueling station approximately 0.1 mile northeast (upgradient) of the Site. The station had an 18,000-gallon single-walled fiberglass UST that was installed in 2000 and reported as a LUST in 2012. The UST was removed, the soil was remediated to Tier 1 standards, and the incident was closed in 2013.

• Douglas Port of Entry, 1 Pan American Avenue – VCP

Douglas Port of Entry is the Border Port of Entry for Mexico, located approximately 0.1 mile southeast (upgradient) of the Site. The facility was included on the VCP list for potential heating oil groundwater contamination from a former UST. A Groundwater No Further Action was issued by ADEQ in 2007 based on benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbon (TPH)-diesel concentrations achieving remediation levels.

U.S. Station Department Homeland Security Border, 5 N. Pan American Avenue – UST

The Border Station is located approximately 0.1 mile southeast (upgradient) of the Site. It had a UST installed in 1934 and removed in 1990. No impacts to groundwater have been identified.

Border Mart Shell, 100 E. 3rd Street – UST, EMAP, Enforcement, Financial Assurance

Border Mart Shell is a commercial fueling station approximately 0.1 mile northeast (upgradient) of the Site. The facility has two double-walled 12,000-gallon petroleum USTs that were installed in 1997. The facility received enforcement notices for violations in 2008 and 2013; the notices have been closed. No environmental releases have been reported.

• Douglas Chevron, 46 N. Pan American Avenue – UST, EMAP, Enforcement, Financial Assurance

Douglas Chevron is a commercial fueling station on the corner of U.S. Highway 191 and 5th Street, approximately 0.2 mile northeast (hydrologically upgradient) of the Site. The station has two 15,000-

2-2 BI0304191343PHX

gallon USTs installed in 2004 for gasoline and diesel. The facility had reported violations in 2006, 2008, 2013 and 2016. All cases were closed and none resulted in further investigation. Other Environmental Database Findings

White Knight Healthcare, Inc., 300 S. 1st Street – RCRA-CESQG, FINDS, ECHO

White Knight Healthcare is a commercial disposable healthcare equipment manufacturing company located upgradient of the Site, approximately 0.2 mile east (upgradient). It is a CESQG. No violations or releases have been reported.

Hamlin, Inc., 230 International Ave. – RCRA Nongen, FINDS, ECHO

Hamlin Inc. registered with the FINDS database in 1990 and is a RCRA non-generator. No violations or release have been reported.

• Walmart, 199 West 5th Street – AST, RCRA-CESQG, EMAP, MANIFEST

Walmart is located approximately 0.25 mile north of the Site (hydrologically downgradient). It is a CESQG with an AST installed in 2004. No violations or releases have been reported.

2.2 Douglas MGP Site History

The history of the Site, a description of MGP processes and waste, and the environmental issues are presented in this section and summarized in Table 1-1. Historical information about the Site was obtained from the following documents:

- Site Investigation, Former Manufactured Gas Plant, Douglas, Arizona (Geraghty & Miller, 1996a)
- Composite Soil Sampling, Former Manufactured Gas Plant, Douglas, Arizona (Geraghty and Miller, 1996b)
- Material Removal Activities, Former APS Manufactured Gas Plant Site, Douglas, Arizona (Arcadis/Geraghty & Miller, 1998)

Additionally, copies of the following Sanborn fire insurance maps and EDR report were reviewed:

- Sanborn Fire Insurance Maps 1909, 1914, 1929, and 1947 (Appendix A; Geraghty & Miller, 1996a)
- Aerial Photographs 1958, 1970, 1979, 1984, 1992, 2003, 2007, 2010, and 2017 (EDR, 2018)

2.2.1 Site Ownership and Operational History

Geraghty & Miller Inc. reviewed Sanborn Insurance Maps from 1909, 1914, 1929, and 1947 and gas production statistics from the Brown's Directory of American Gas Companies (Brown's Directory) for select years from 1906 through 1932 to develop an operational history of the Site. Historical information in this section was obtained from aerial photographs provided by EDR (EDR, 2018) and from the investigation reports listed previously, including the historical Sanborn maps. A summary of the operational history of the Site is presented in Table 1-1.

The Site began operation as a municipal MGP between 1903 and 1908 and continued until the early 1930s, primarily using oil as the feedstock. The Douglas Gas Corporation operated the MGP until 1925. Sanborn maps indicate that the MGP was operated by Arizona Edison Company, a corporate predecessor of APS, from 1925 until it ceased production around 1932. APS sold the property to a private landowner in 1966. The City of Douglas acquired the property in 1987. The 1929 Sanborn map shows the relative locations of the former MGP structures. The 1947 Sanborn map shows the Site as mostly vacant, with the former concrete storage shed, purifier, and the concrete meter house still present. Based on information from the *Brown's Directory of American Gas Companies* (Brown's Directory), 13,700,000 cubic feet (ft³) of gas was manufactured in 1910 and 51,500,000 ft³ of gas was manufactured in 1930 (Geraghty & Miller, 1996a).

The 1958 aerial photograph in the EDR report has limited resolution; however, the former gas holders and/or concrete pads, purifier structure, and possibly the concrete shed are somewhat visible. The wash to the north of the Site is visible and is located approximately 150 feet north of the purifier structure. The large concrete purifier, small concrete shed, concrete foundations for two gas holders, a generator house, and a steel manhole cover bolted to a crude oil sump were present at the Site in 1996 (Geraghty and Miller, 1996b). Two concrete gas holder pads, two concrete small purifier pads, concrete foundations of the meter house, a portion of the generator house foundation, and possibly the small concrete storage shed foundation remained on the Site in 1996 after removal actions were complete (Arcadis/Geraghty & Miller, 1998). There is conflicting information in the Arcadis/Geraghty & Miller report regarding whether the storage shed foundation was removed or not.

The City of Douglas property parcel and surrounding property parcels near the Site contain bulk construction debris piles, including soil, concrete, asphalt, and gravel. A vegetative cover can be seen over the construction debris in a 2017 aerial photograph from the EDR report.

The following list provides a summary of the Site structures shown on Figure 1-2 and operations based on previous investigation reports (Geraghty & Miller, 1996a; Arcadis/Geraghty & Miller, 1998):

- **Generator House**. The generator house was used to manufacture oil gas, with an annual production ranging from approximately 13,700,000 ft³ in 1910 to approximately 51,500,000 ft³ in 1930. A portion of the generator house foundation remains on the Site.
- Oil Sump/Tank. An oil sump, approximately 2.5 feet in diameter and 3.5 feet tall and associated with
 a suspected aboveground oil tank of unknown capacity, was located west of the large purifier. The oil
 sump/tank was removed in August 1996.

Gas Holders.

- One large gas holder, approximately 102,000 ft³ in capacity, was located east and southeast of the generator house. The concrete gas holder pad remains on the Site. The approximate location of the large gas holder is shown on Figure 2-2 as Gas Holder 1 for investigation identification purposes.
- One medium gas holder, approximately 30,000 ft³ in capacity, was located east of the generator house. The concrete gas holder pad remains on the Site. The approximate location is shown on Figure 2-2 as Gas Holder 2 for investigation identification purposes.

Purifiers.

- One large purifier structure, approximately 40 feet in diameter and 15 feet high, was located northeast of the generator house. The large concrete purifier pad was removed in August 1996.
- Two small purifiers of unknown capacity were located east of the generator house. The two small concrete purifier pads remain on the Site. The approximate locations of the small purifiers are shown on Figure 2-2 as Purifier 1 and Purifier 2 for investigation identification purposes.
- Meter House. A meter house of unknown size was located southeast of the generator house. The foundation of the meter house remains on the Site.
- **Debris Pile**. One debris pile, 250 feet long (north-south direction) by 130 feet wide, was located west of the generator house. The debris pile was removed in August 1996.
- Storage Shed. One small concrete storage shed, 10 feet long by 10 feet wide, was located north of the generator house. The concrete shed was removed in August 1996. The text of the Arcadis/Geraghty & Miller historical report indicates the concrete foundation of the shed remains on the Site; however, the figures in the report indicate the foundation does not exist (Arcadis/Geraghty & Miller, 1998).

2-4 BI0304191343PHX

2.2.2 Description of MGP Processes

In the United States, the first uses of manufactured gas for lighting were reported in Philadelphia in 1796 and in Richmond, Virginia, in 1803. Manufactured gas was produced by the following three primary processes:

- Coal carbonization (coal gas)
- Carbureted water gas (CWG)
- Oil gas

Based on historical records, only the oil gas process was used at the Site (Geraghty & Miller, 1996a). However, the coal gas and CWG processes are described in this section for comparison to the oil gas process.

2.2.2.1 Coal Carbonization

The earliest MGPs used coal carbonization to produce gas. Coal gas was used exclusively from 1816 to 1875, when the CWG process was developed. Coal was used as a feedstock to produce gas in various types of retorts, with coke generated as a byproduct. Based on historical records, coal gas was not used at the Site.

2.2.2.2 Carbureted Water Gas

CWG involves the enhancement of water gas (blue gas) by spraying oil into a hot vessel that contains the water gas, thereby increasing the calorific value of the water gas. Blue gas was an abundant byproduct of the petroleum industry, which made CWG the most important manufactured gas process in the United States at the time.

The CWG process is intermittent, with alternating "blows" or blast periods and "runs" or gas-making periods. The typical CWG-generating equipment consisted of three brick-lined cylindrical steel vessels: the generator, the carburetor, and the superheater. During a blow, a producer gas that is high in carbon dioxide is formed in the generator by passing air through an incandescent mass of coke or anthracite. This gas is burned by secondary air. The hot products of combustion heat the carburetor checkbrick and then pass from the top of the superheater to the stack. During a run, water gas is made in the generator and then passed into the top of the carburetor, where the oil is sprayed. This mixture is passed down through the carburetor and up through the superheater. As the mixture passes the hot checkbrick, the mixture is thermally cracked and fixed into gases. The CWG, a mixture of blue and oil gas, is passed from the top of the superheater through a water-sealed wash box, where the gas is initially cooled and some of the heavy tars are condensed and removed.

The gas is passed through additional condensers to cool the gas to ambient temperatures. Direct contact with water cools and scrubs the gas. The gas is then sent to a relief holder, which provides constant pressure for gas outflow to the purifying systems during blows and runs. Larger plants featured tar extractors, naphthalene scrubbers, and liquid purification systems to remove the bulk of the hydrogen sulfide prior to passing the gas through the dry purification systems. After hydrogen sulfide removal at these larger plants, the gas was metered and sent to the storage holders pending distribution to the customers.

2.2.2.3 Oil Gas

The oil gas process consists of thermocracking oil in a steam atmosphere. The generating equipment is similar to that used by CWG production. The generator was replaced by a vaporizer similar to the carburetor, filled with checkbrick, and equipped with an oil spray. The carburetor was replaced by a vaporizer followed by a superheater, similar to the CWG process.

The process is cyclical and consists of blows and runs. During a blow, oil is combusted in the vaporizers, and the products of combustion heat the checkbrick of the vaporizers and superheater and pass from the

top of the superheater to the stack. During a run, oil is sprayed into the vaporizer in the absence of air and in the presence of steam. As the mixture passes the hot checkbrick, it is thermally cracked and fixed into gases.

During the run, the stack valve is closed and the oil gas passes to the washbox. The remainder of the process is the same as the CWG process.

2.2.3 Description of MGP Waste

The information in this section was obtained from the historical information regarding MGP processes and previous reports.

Byproducts formed during the manufacture of oil gas were iron oxide purifier waste, light oils, tar, and lampblack. The light oils and tars were generally recovered during condensing or scrubbing operations. Each waste is described as follows:

- Lampblack The formation of a large amount of lampblack was unique to the oil-gas processes. Lampblack resulted from the high temperature of the gas-making operation, and the amount of lampblack recovered depended on the manufacturing process used. In most plants, lampblack was regarded as a valuable byproduct and was the source of additional revenue or was used as fuel. Depending on the process, approximately 20 pounds of lampblack were formed for every 1,000 ft³ of gas manufactured, with the majority of the lampblack removed from the gas stream in the wash box. The water from the wash box containing this lampblack in suspension passed through large overflow pipes and was typically stored in settling ponds. Available evidence does not indicate the former presence of a lampblack settling pond. However, because the oil gas process was used at the Site, it is likely lampblack was produced. The chemical constituents of lampblack include carbon, polynuclear aromatic hydrocarbons (PAHs), and heavy metals.
- Tar Tar was produced by oil-gas processes and consisted of complex hydrocarbons that were removed from the gas stream immediately after generation during cooling, were condensed during gas cooling in the relief holder, or were removed during secondary purification. Areas where tar may have accumulated include the gas holders, areas along underground piping, areas adjacent to gas generators and scrubbers, and in a lampblack settling pond. Chemical constituents of tar include volatile aromatic hydrocarbons and PAHs. The tar was primarily reused as a supplement to boiler fuels, with a small fraction sold.
- Fuel Oil Fuel oil was used as the primary feedstock material for the oil-gas process. Oil was sprayed into the gas-generating apparatus and cracked into lighter hydrocarbon fractions during gas production. Various grades of fuel oil were likely used throughout the Site's history, with increased use of heavy fuel oil or residual oil during peak production years. Areas where oil may be encountered include fuel oil tanks and oil storage tanks. Oil used at the Douglas property was likely stored in an aboveground steel crude oil tank at the Site (Figure 1-2; Geraghty & Miller, 1996a).
- Iron Oxide Purifier Waste Wood chips saturated with ferric hydrate were used to remove the
 hydrogen sulfide from the gas during the final purification process. Some tars or lampblack may also
 have been removed in the purifiers. Wood chips were replaced as they became depleted or "spent."
 Areas that may be impacted by iron oxide purifier waste include the former purifier locations and area
 between the purifiers. Constituents include metals, sulfur, sulfates, cyanide compounds, and PAHs.

2.3 Previous Site Investigations

Since 1995, the following site investigations and remedial activities have been conducted at the Site:

1995 – Site Investigation. Geraghty & Miller conducted a site investigation, with sampling events in October 1995 and December 1995, to evaluate the presence or absence of MGP residuals at the Site. The primary purpose of the investigation was to assess the nature and extent of potential contamination resulting from past MGP activities at the Site and to assess the presence of potential pathways of contaminant migration. The site investigation was limited to surface and shallow subsurface soil sampling

2-6 BI0304191343PHX

(up to 21 feet bgs). A total of 14 surface soil samples, 23 subsurface soil samples, and 2 duplicate samples were collected.

1996 – Site Investigation. Based on 1995 investigation results, Geraghty & Miller collected five composite surface-soil samples on June 1, 1996, within a 20-foot radius of the areas where MGP impacted soil was previously identified. Each composite sample consisted of six to eight discrete locations within each sampled area. In addition, a composite of the five composite samples was submitted to the laboratory for analysis. Based on visual observation and data from the site investigation, five areas of the Site were identified and recommended for soil removal.

1996 – Interim Remedial Action. Geraghty & Miller conducted material removal and sampling activities in August 1996 to address the five areas recommended for soil removal. Based on the analytical results from the initial removal action, three additional areas were identified for soil removal.

In December 1997, Chapter 7, Article 2 of the Arizona Administrative Code was amended to establish predetermined residential and non-residential SRLs to protect human health and the environment that were consistent with the methodology used by EPA and Region 9 EPA guidance for the calculation of risk-based screening levels. ADEQ revised these SRLs, effective May 5, 2007.

The previous investigations occurred before 1997, when the SRLs were promulgated, or used the 1997 SRLs for comparison during evaluations. To provide consistency, this section compares the results of previous investigations to the 2007 SRLs. Most of the compounds identified in the 2007 SRLs as carcinogens include residential SRL values for both 1 x 10^{-5} and 1 x 10^{-6} excess lifetime cancer risks. The 1 x 10^{-5} risk value may be used during remediation unless a future use of the site will be as a childcare facility or school. Sample results were compared to the 1 x 10^{-5} risk value for carcinogens because the Site is not currently used for, or anticipated to be used for, a school or daycare facility.

The following sections present an overview of the investigations and interim removal action (IRA), including soil sampling results. Figure 2-1 shows the former soil sampling locations.

2.3.1 Soil Investigations

Soil sampling was conducted during previous investigations by Geraghty & Miller and Arcadis/Geraghty & Miller in 1995 and 1996. Figure 2-1 shows the locations of soil samples collected during the previous 1995 soil investigation, and the areas where composite samples were collected prior to and after soil removal activities in 1996. The previous soil investigations evaluated the presence of MGP-related contaminants in soil, including PAHs, TPHs, metals, and BTEX. Tables 2-1, 2-2, 2-3, and 2-4 present the analytical results from former sampling activities for PAHs, TPHs and fuel hydrocarbons, BTEX, and total metals, respectively. Figures 2-2, 2-3, 2-4 and 2-5 show the locations where PAH, lead, arsenic, and TPH were detected during previous investigations, respectively, and further identifies the locations with concentrations above residential or non-residential SRLs.

2.3.1.1 October 1995 - Soil Investigation

The October 1995 site investigation included surface and subsurface soil sampling. Fourteen surface soil samples, 23 subsurface, and 2 duplicate samples were collected. Four of the surface samples (SS-8, SS 11, SS-12 and SS-13) were collected from offsite locations to evaluate local background concentrations of MGP-related compounds.

2.3.1.1.1 Surface Sampling

Fourteen surface samples were collected between the ground surface and 6 inches bgs. Samples were analyzed for PAHs, total cyanide, and total metals by Analytical Technologies Incorporated laboratory in Phoenix Arizona. Analytical results for PAHs are presented in Table 2-1, and results for metals and cyanide are presented in Table 2-4.

Eight of the surface soil samples exceeded the residential SRLs for select PAHs as follows:

- SS-1 Benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- SS-5 Benzo(a)pyrene, benzo(b)fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- SS-6 Benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- SS-7 Benzo(a)pyrene and indeno(1,2,3-cd)pyrene
- SS-2, SS-10 and SS-14 Benzo(a)pyrene

Five of the surface soil samples also exceeded the non-residential SRLs for select PAHs as follows:

- SS-1 Benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene
- SS-5 Benz(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene
- SS-4, SS-6, and SS-7 Benzo(a)pyrene

The highest concentrations of all PAHs detected were in sample SS-5. Benzo(a)pyrene was detected at a concentration of 230 mg/kg. The non-residential SRL for benzo(a)pyrene is 0.69 mg/kg. SS-5 was located on the north end of the Site and was not adjacent to any known former MGP structures. Figure 2-2 shows the locations where PAHs were detected above SRLs during the October 1995 investigation.

Arsenic was detected above the residential and non-residential SRL of 10 mg/kg in 11 of the surface samples (SS-1 through SS-7, SS-9, SS-10, SS-11, and SS-13). The highest concentration of 83.5 mg/kg was detected in sample SS-6. Lead was detected in samples SS-6 and SS-7 at concentrations of 2,530 mg/kg and 2,290 mg/kg, respectively, which is above the non-residential SRL for lead of 800 mg/kg. SS-6 and SS-7 were located adjacent to the southern former gas holder and the purifier structure, respectively. Figure 3-4 shows the locations where metals were detected above the SRLs during the October 1995 investigation. Maximum and mean lead concentrations in soil of 1,170 and 254 mg/kg respectively, and maximum and mean arsenic concentrations of 35.8 and 15 mg/kg respectively have been reported by the ATSDR (ATSDR, 1995). Section 2.4.3 provides detailed information on background metals concentration at the Site and surrounding environmental issues.

2.3.1.1.2 Soil Boring Sampling

Twenty-three subsurface samples were collected from 10 soil borings at depths ranging from 1.5 feet to 21.5 feet. The borings were located near former MGP structures. An onsite Analytical Technologies Incorporated mobile laboratory analyzed the subsurface samples for BTEX and TPH. Subsurface soil samples that were visibly degraded were also analyzed for total metals, cyanide, and PAHs at the Analytical Technologies Incorporated laboratory in Phoenix, Arizona. Tables 2-1, 2-2, 2-3, and 2-4 present the analytical results for PAHs, TPHs, BTEX, and total metals, respectively. Figures 2-2 through 2-5 show the locations of SRL exceedances for PAHs, lead, arsenic, and TPHs.

Samples from borings SB-1, SB-2, SB-6, and SB-9 had detections of at least one PAH compound at depths ranging from approximately 1 foot to 10 feet. The only concentration exceeding a residential and/or non-residential SRL was observed in boring SB-4 at 1.5 feet bgs, with a benzo(a)pyrene concentration of 4.5 mg/kg, which exceeds the non-residential SRL of 2.1 mg/kg. SB-4 was located north of the small purifiers and west of the central gas holder. The remaining PAH results from all borings were below the residential SRL. Figure 2-2 shows the locations where PAHs were detected above SRLs during the October 1995 investigation.

BTEX compounds were not detected above the laboratory reporting limit of < 0.025 mg/kg in any soil boring samples. TPH was detected in three soil borings (SB-1, SB-4, and SB-8), with a maximum concentration of 4,000 mg/kg in boring SB-4 at a depth of 1.5 feet bgs. The deepest observed TPH concentration was at approximately 10 feet bgs in boring SB-8. Figure 2.5 shows the locations where TPH was detected during the October 1995 investigation.

2-8 BI0304191343PHX

Arsenic was detected above the residential and non-residential SRL of 10 mg/kg in all samples collected from the 10 soil boring locations, except in one sample from boring SB-8. Arsenic concentrations ranged from 8.7 to 42.1 mg/kg at depths of up to 16.5 feet, with the highest concentration of 42 mg/kg detected in boring SB-2 at approximately 10 feet bgs. The ATSDR has reported maximum and mean arsenic concentrations in the Douglas Site area of 35.8 and 15 mg/kg, respectively (ATSDR, 1995).

Soil boring logs from the previous investigations are included in Appendix C.

2.3.1.1.3 Oil Sump and Purifier Contents Sampling

Waste characterization samples were collected from the sludge in the oil sump and the contents of the large purifier.

The oily sludge sample from the oil sump was analyzed for TPH, RCRA Metals, semivolatile organic compounds (SVOCs), and sulfides, with the following results:

- Total hydrocarbon concentration of 477,000 mg/kg
- Fuel hydrocarbons measured as C6-C10, C10-C22, and C22-C36, with concentrations of 7,300, 270,000, and 200,000 mg/kg, respectively
- No detections of SVOCs (analyzed in accordance with the toxicity characteristic leaching procedure [TCLP] preparation for hazardous waste characterization)
- One volatile organic compound (VOC) was detected (xylene at 180 mg/kg)
- Lead and barium were detected at 1.7 and 0.6 milligram per liter (mg/L) (analyzed for RCRA TCLP metals). Silver, arsenic, cadmium, chromium, mercury, and selenium were not detected.

Samples were collected from the contents of the purifier from the surface to approximately 6 inches bgs on October 25, 1995 (sample SS-3) and March 20, 1996 (sample Purifier). The results from sample SS-3 were as follows:

- Arsenic result at 17.9 mg/kg, above the residential and non-residential SRL
- PAH and metals concentrations below the residential SRLs
- Reactive sulfide concentration of 30.3 mg/kg
- Total sulfur content of approximately 12 percent

The contents of the oil sump and the purifier were not characterized as RCRA hazardous waste.

2.3.1.2 June 1996 – Composite Surface Soil Sampling

Based on the October 1995 investigation results, composite surface soil sampling was conducted in the areas where the soil appeared to have been impacted by former MGP operations. The purpose of the sampling effort was to characterize material that potentially could be disposed of during remedial activities.

Samples were collected within a 20-foot radius of each of the five former surface sampling locations (SS-1, SS-4 through SS-7) that appeared to have been impacted by MGP operations based on analytical results from the previous investigation. Sampling areas are shown on Figure 2-1. Composite samples were also collected near the offsite background surface sample locations SS-11 and SS-12. A composite sample of all the samples collected (Sample COMP) was also analyzed. The composite samples were analyzed for TPH, TCLP metals, SVOCs, and total metals to evaluate whether soil would need to be managed as a RCRA hazardous waste or a petroleum-contaminated soil (PCS) special waste during remedial activities.

TPH was detected in all composite samples at concentrations ranging from 40 to 780 mg/kg (SS-6 Area). TPH was also detected in the offsite composite sample from Area SS-11/SS-12 at a concentration of 110

mg/kg. TPH concentrations are presented in Table 2-2. Concentrations of BTEX compounds were below the laboratory detection limit of 0.025 mg/kg, as presented in Table 2-3. Figure 2-4 shows the composite sampling areas where TPH was detected during the October 1995 investigation.

Arsenic concentrations exceeded the residential and non-residential SRL of 10 mg/kg in samples from Areas SS-4/SS-7 and SS-6. Lead concentrations exceeded the non-residential SRL of 800 mg/kg in the sample from area SS-6 (1,100 mg/kg) and the residential SRL of 400 mg/kg in the sample from area SS-1 (410 mg/kg). Total metals concentrations are presented in Table 2-4. Figure 2-3 shows the composite sampling areas where metals were detected above SRLs during the October 1995 investigation.

TCLP metals and TCLP SVOCs were below the RCRA toxicity characteristic limits.

2.3.2 Remedial Activities – Interim Removal Actions

Based on visual observation and data collected from the soil investigations, the following areas were identified for material removal:

- Oil sump contents
- Purifier structure contents
- Surface soil impacted with metals
- Surface soil impacted with hydrocarbons
- Debris pile impacted with hydrocarbons

Material removal activities were conducted in two phases. Phase I consisted of removing the debris pile, select surface soil, the contents of the purifier and oil sump, the concrete shed in the northwestern portion of the Site, and the purifier. Phase II consisted of removing additional surface soil. The remedial action levels used were the 1996 non-residential health-based guidance levels for PAHs and arsenic cleanup criteria of 15 mg/kg, based on the background arsenic concentration for the City of Douglas area.

Tables 2-1 through 2-4 include the analytical results for soil sampling activities conducted during the soil investigations and removal actions. Figures 2-2, 2-3, 2-4 and 2-5 show the locations where PAHs, lead, arsenic, and TPHs, respectively, were detected during previous investigations, including the IRAs, and further identifies the locations where concentrations exceeded residential or non-residential SRLs. TPH does not have an associated 2007 residential or non-residential SRL. Details of the Phase I and Phase II IRAs are provided in this section.

2.3.2.1 August 1996 – Interim Removal Action

The Phase I IRA was performed in August 1996 and consisted of removing the debris pile, oil sump, concrete shed, purifier, and surface soil previously identified as being impacted with metals and/or PAHs and performing confirmation sampling to evaluate whether additional soil removal was required. Environmental Response, Inc. (ERI) was the IRA contractor, performing demolition and removal activities; Geraghty and Miller prepared the work plan; and Arcadis/Geraghty Miller provided oversight of ERI and collected soil confirmation samples.

2.3.2.1.1 Debris Pile Removal and Sampling

The debris pile was removed in August 1996. An area measuring 130 feet in an east-west direction by 250 feet in a north-south direction was excavated until visibly clean soil was observed. Available information did not indicate the depth of excavation and referred to the samples as "surface samples." The excavated area is shown on Figure 2-2 (Geraghty and Miller, 1996b).

The material from the debris pile was placed on a shaker apparatus to separate bricks, vegetation, and other miscellaneous debris from the lampblack material. The lampblack was transported to Waste

2-10 BI0304191343PHX

Management's Butterfield Station Regional Landfill as a special waste soil and the remaining debris was characterized as PCS solid waste.

Following removal of the debris pile, an area measuring 100 feet east-west by 125 feet north-south was divided into twenty 25-foot square sections, as shown on Figure 2-5. A composite sample was collected from each section and analyzed for TPH. If TPH concentrations exceeded 30 mg/kg in a grid section sample, an additional foot of soil was excavated and a second composite sample was collected. Samples were labeled based on the section from which they were collected (i.e., Debris No.) with a "B" added if the area was further excavated and sampled again.

Additionally, five additional composite samples (Debris A, B, C, D, and E) were collected by compositing the samples from four grid sections. The samples were submitted to the laboratory for the analysis of lead, arsenic, and PAHs. Figure 2-5 shows the composite sampling areas.

Laboratory TPH results of the section samples indicated the initial samples from Sections 3, 4, 9, and 19 exceeded 30 mg/kg, with a maximum concentration of 590 mg/kg in sample Debris 4. An additional 1 foot of soil was excavated in these areas and a composite sample of the remaining samples was collected. All results from the second sampling effort were below the laboratory detection limit of 20 mg/kg.

One PAH (benzo(a)pyrene) result of 0.7 mg/kg at area Debris A exceeded the residential SRL of 0.69 mg/kg. Arsenic results from area samples ranged from 14 to 19 mg/kg, exceeding the residential SRL for arsenic, with the results consistent with historical ATSDR Douglas area mean and maximum background values of 15 and 35.8 mg/kg, respectively (ATSDR, 1995). Lead results ranged from 12 to 100 mg/kg and were below the residential SRL of 400 mg/kg in all samples and below the non-residential SRL. It should be noted current background lead and arsenic levels are planned to be evaluated as part of this Site Investigation Work Plan. Historical background metals are further discussed in Section 2.4.3 and the planned background metals evaluation is described in Section 3.3.

2.3.2.1.2 Oil Sump Removal

The contents of the oil sump were removed on August 13, 1996. Approximately 30 gallons of fluid (oily sludge) were removed. The oil sump was removed on August 16, 1996. When removed, the sump was approximately 2.5 feet in diameter and 3.5 feet long, with no perforations. No visible staining of the surrounding soil was observed during sump removal. The oil sump and contents were recycled at the proper facility. Soil sampling was not performed at the oil sump location.

2.3.2.1.3 Shed and Purifier Removal and Sampling

The concrete shed and purifier were removed in August 1996 and included the following activities:

- On August 5, 1996, Spray Systems Environmental performed an asbestos inspection prior to removal
 of the concrete shed and purifier and submitted a National Emission Standards for Hazardous Air
 Pollutants notification for demolition of the structures.
- On August 19, 1996, approximately 261 tons of material were removed from the purifier structure and transported to Waste Management's Butterfield Station Regional Landfill as solid waste. The shed and purifier structure were demolished (the concrete pad remained), and approximately 230 tons of concrete from the shed and purifier structure demolition were transported to Speedway Landfill for management as a solid waste.
- On August 20, 1996 composite samples were collected from the following locations (shown on Figure 2-5) and submitted to the laboratory for TPH analysis:
 - Area adjacent to the north of the purifier (PUR-N)
 - Area adjacent to the south of the purifier (PUR-S)
 - Area adjacent to the east of the purifier (PUR-E)
 - Area adjacent to the west of the purifier (PUR-W)

TPH concentrations in the composite samples ranged from 71 mg/kg at PUR-N to 520 mg/kg at PUR-E.

• On August 21, 1996, the concrete purifier pad was removed and approximately 78 tons of concrete were transported to Waste Management's Butterfield Station Regional Landfill as solid waste.

Soil to the north and west of the concrete pad was excavated. Depth of excavation was not provided in the report but is estimated to be approximately 1 foot bgs based on other activities at the site. Soil to the south and east of the pad was not excavated because of the presence of the El Paso natural gas line.

Composite samples were collected from the following locations (shown on Figure 2-1) and analyzed for arsenic, lead, and TPH:

- Area adjacent to the north side of the purifier (PUR-N with August 21, 1996 date)
- Below the former purifier pad (Subpurifier)

TPH concentrations were 140 and 57 mg/kg from PUR-N and Subpurifier samples, respectively. Arsenic concentrations were 11 and 15 mg/kg from PUR-N and Subpurifier samples, respectively, which are above the residential and non-residential SRLs of 10 mg/kg and below and equal to the ATSDR background concentration of 15 mg/kg.

On August 22, 1996, the area north of the purifier pad and the area below the purifier pad were regraded and composite samples were collected (PUR-N-B and SUBPUR-B) and submitted for PAH analysis. Depth of excavation was not provided in the report but is estimated to be approximately 1 foot bgs. PAHs were detected below residential SRLs in PUR-N-B. Figure 2-2 shows the composite sampling locations and PAH results.

2.3.2.1.4 Surface Soil Impacted with Metals and PAHs Removal and Sampling

Surface soil sampling results from four locations (SS-4 through SS-7) sampled in October 1995 and June 1996 had detections of arsenic, lead, and PAHs. Because of the proximity of SS-4 and SS-7, these two areas were combined and are referenced as SS4/SS-7, resulting in three material removal areas (SS4-7, SS5, and SS6).

On August 19, 1996, approximately 1 foot of soil was removed from each area, resulting in a total of 894 tons of soil and other materials transported offsite to Waste Management's Butterfield Station Regional Landfill as solid waste PCS.

Samples were collected and analyzed for TPH, arsenic, lead and PAHs, as follows:

- One composite sample (SS4-7) from combined area SS4/SS7
- One composite sample (SS5 Comp) from excavated area SS-5
- Three composite samples (SS6W, SS6CENT, and SS6E) from the western, central, and eastern portions of area SS-6

TPH was not detected above the laboratory reporting limit of 20 mg/kg in SS-5 or SS-4-7 samples. Lead concentrations were below residential SRLs. Arsenic concentrations of 11 and 15 mg/kg for SS-5 and SS-4/SS-7, respectively, were above the residential and non-residential SRLs of 10 mg/kg and below and equal to the mean ATSDR background concentration of 15 mg/kg.

TPH concentrations in SS6W, SS6CENT, and SS6E ranged from 39 to 53 mg/kg; lead ranged from 11 to 217 mg/kg (below the residential lead SRL); and arsenic concentrations ranged from 18 to 24 mg/kg (above the SRL of 10 mg/kg and between the mean and maximum ATSDR background concentration of 15 and 35.8 mg/kg).

2-12 BI0304191343PHX

A composite sample (SS6 PAH Comp) of SS6W, SS6CENT, and SS6E was also submitted for PAH analysis. The benzo(a)pyrene result of the composite sample was 2.9 mg/kg, which is above the residential SRL.

2.3.2.2 November 1996 – Interim Remedial Action

The Phase II IRA was performed in November 1996 for removal of additional soil in the SS-6 area, the area south and east of the purifier, and along the western fence of the Site. Excavated areas were identified based on Phase I IRA results and visibly impacted soil. An Orange Coast Analytical Laboratory onsite mobile laboratory analyzed samples onsite for PAHs to determine the extent of the excavation. Samples were not collected from under the generator house or gas holder foundations. An El Paso Natural Gas representative was onsite to assist representatives of Arcadis/Geraghty Miller in locating the El Paso gas line.

2.3.2.2.1 Removal Activities

Additional removal activities were conducted on November 4 and 5, 1996, as follows:

- On November 4, 1996, approximately 1 foot of soil was removed from the SS-6 area and composite samples (SS6WC, SS6CC, and SS6EC) were collected from the western, center, and eastern areas of the excavation and analyzed for PAHs. All sample results were below the laboratory reporting limit.
- On November 5, 1996, visibly impacted material was removed from the west fence line and a composite sample (WESTFENCE) was collected for PAH analysis. All sample results were below the laboratory reporting limit.
- On November 5, 1996, 1 foot of soil was removed from the south and east of the former purifier and three composite samples were collected (PURS31, PURS32, and PURE31) and analyzed for PAHs, with the following results:
 - PURS31 results for benzo(a)pyrene (6.6 mg/kg) and benzo(a)anthracene (6.9 mg/kg) exceeded the non-residential and residential SRLs, respectively.
 - PURS32 result for benzo(a)pyrene (1.8 mg/kg) exceeded the residential SRL.

Because of the presence of MGP-impacted soil, an additional 1.5 feet of soil were excavated at these locations and two additional composite samples (PURS41 and PURS42) were collected. The benzo(a)pyrene result of 1.5 mg/kg from PURS42 exceeded the residential SRL. The remaining PAH results were less than the residential SRL.

Approximately 380 tons of material were removed during Phase II activities and transported to Waste Management's Butterfield Station Regional Landfill as solid waste PCS. Upon completion of Phase II activities, approximately 400 tons of clean fill material were used to regrade the Site.

2.3.2.2.2 Investigation-derived Waste

ERI transported the material removed from the site. All petroleum-contaminated material removed during 1996 was transported to Waste Management's Butterfield Station Regional Landfill for management as PCS. All petroleum-contaminated material removed during 1997 was transported to Waste Management's Butterfield Station Regional Landfill for management as special waste. The uncontaminated solid waste was transported to Speedway Landfill in Tucson, Arizona. The oil sump contents were transported to Allen Moore Diversified Services Incorporated in Chandler, Arizona, to be recycled. The oil sump itself was transported to EMCO Recycling in Phoenix, Arizona, to be recycled (Arcadis/Geraghty & Miller, 1998).

2.4 Preliminary Estimate of Impacts and Data Gaps

Data gaps from the previous site investigations and the 1996 IRA include soil remaining at the Site known to be impacted, uncharacterized soil, and potential impacts to deep soil and groundwater that were not characterized during the previous site investigations and remediation.

2.4.1 Impacted Soil

Based on historical data, the following five areas at the Site remain above the current benzo(a)pyrene residential SRL:

- The previous removal action reported Area-A sample concentrations of 0.7 mg/kg within the debris
 pile removal area after the previous remediation efforts, which is above the current benzo(a)pyrene
 SRL of 0.69 mg/kg.
- The results for the PUR-S 32/42 area south of the former large purifier (which was removed) and northwest of the small northwest purifier pad were 1.8 (PURS32) and 1.5 mg/kg (PURS42) at 1 foot and 2.5 feet bgs, respectively, after the previous remediation efforts.
- The result for the SS-10 surface sample collected west of Gas Holder 1 and south of the former debris pile was 1.3 mg/kg.
- The result for the SS-14 surface sample collected north of Gas Holder 2 was 0.76 mg/kg.
- The result for the SS-5 surface sample collected north of former MGP operations was 230 mg/kg, in addition to benzo(b)fluoranthene, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and dibenzo(a,h)anthracene results of 170, 160, 160, 93, and 8.6 mg/kg, respectively. Remediation appears to have been conducted adjacent to, and south of, this location.

Based on historical data, arsenic remains above the residential and non-residential SRL of 10 mg/kg in most of the historical samples collected. The SS-1 Area sample also had a lead result of 410 mg/kg, which was above the residential SRL of 400 mg/kg and below the non-residential SRL of 800 mg/kg.

2.4.2 Uncharacterized Soil

The lateral and vertical extents of potentially impacted soil have not been fully delineated at the Site. The sample collection depths and associated analytical results from previous investigations and removal actions, along with the locations and types of former MGP structures, were evaluated to obtain a preliminary estimate of the impacts to soil. Available information indicates that impacts to soil from former MGP operations are likely limited to the upper 3 feet of soil outside the foundational structures remaining on the Site. However, the previous site investigations provided limited data on vertical impacts to soil, and contaminant concentrations in known areas at the Site (described in Section 2.4.1) remain above SRLs after the 1996 remediation efforts.

Previous remedial efforts included composite sampling and excavation at known areas of contamination, largely based on surface sample concentrations. Additionally, data from historical subsurface borings were intermittent, leaving parts of the Site uncharacterized. For example, the SB-4 soil boring was sampled at 5 and 10 feet bgs and a majority of the borings were sampled at 10 feet bgs, which neglected the shallow subsurface at 5 feet bgs; SB-9 was sampled at 10 and 15 feet bgs; and SB-8 was sampled at 10 and 20 feet bgs. The extent of potential impacts from MGP-related activities is incomplete due to these vertical data gaps.

The previous sampling strategy primarily used composite sampling of excavated areas and biased sample depths in borings without delineating the extent of soil impacts. While this strategy can be an efficient method to remove areas of known MGP-related impacts to soil, the strategy leaves data gaps in site characterization. Additional sampling is required at the Site to adequately characterize the extent of

2-14 BI0304191343PHX

MGP-related contamination prior to RAP development and remediation activities to remove the remaining MGP-related impacted soil.

2.4.2.1 Uncharacterized Soil Beneath Foundations

The material removal activities in 1996 did not include removal of all the subsurface foundations. The remaining foundations include the following:

- Generator house foundation
- Two concrete gas holder pads
- Concrete meter house foundation
- Two small concrete purifier pads.

Consequently, soil remains uncharacterized below the remaining foundational structures. The structures themselves also require characterization for disposal purposes. Additionally, the concrete shed foundation north of the generator house may also be present.

2.4.3 Uncharacterized Potential Impact to Groundwater

Potential impact to groundwater from MGP-related activities has not been determined based on historical data. Available historical data indicate MGP-related impacts may be limited to the upper 3 feet of soil. However, soil at the Site has not been characterized and potential impacts to groundwater have not been evaluated.

2.5 Background Metals and Surrounding Environmental Issues

The ATSDR reported background lead concentrations in the Douglas area above SRLs, with lead results from surface sampling of a widespread area in Douglas ranging from 50 to 1,170 mg/kg from samples collected from less than 3 inches bgs. Deeper lead results from two samples collected between 3 inches and 1 foot bgs were reported with lead concentrations less than 250 mg/kg (ATSDR, 1995), indicating background lead soil concentrations generally decrease with depth. Lead results from offsite residential soil are provided in Table 2-5.

The ATSDR has reported arsenic concentrations near the Site. Surface soil samples collected between 1 and 6 miles from the smelter had maximum and mean arsenic concentrations of 35.8 and 15 mg/kg, respectively, reported by the EPA and representative of background arsenic concentrations in the Douglas area (ATSDR, 1995). Additionally, samples collected from the Phelps Dodge smelter property and analyzed for arsenic had a maximum concentration of 1,840 mg/kg and a mean concentration of 422 mg/kg prior to smelter soil removal and 118 mg/kg maximum concentration after smelter soil removal. Arsenic concentrations in soil at the MGP Site after the Site Phase II IRA (Arcadis/Geraghty & Miller, 1998) ranged from 8.7 to 42.1 mg/kg, with a mean concentration of 17.1 mg/kg, which are similar concentrations to the background arsenic concentrations in the Douglas area that were reported by the ATSDR (ATSDR, 1995).

The ATSDR also reported on background groundwater concentrations (ATSDR, 1995) in the Douglas area. Groundwater samples were collected and tested by ADEQ in 1984 from Douglas municipal city well No. 6 (referenced as offsite in Table 2-6) and from a Phelps Dodge well (referenced as onsite in Table 2-6).

3. Proposed Investigation Activities

The following section describes the investigation activities proposed for the Site to provide additional information on the vertical and lateral extents of contamination from MGP-related activities and to collect information to develop a RAP. Site investigation activities will include evaluating the vertical and lateral extents of potential impacts under the remaining foundational structures, evaluating the vertical and lateral extents of impacts remaining at locations with contamination above the SRLs, and evaluating potential deeper soil impacts up to 70 feet bgs. Additionally, groundwater will be evaluated in the deeper soil borings if encountered.

The types of sampling that will be performed, proposed sampling locations, and proposed analyses are presented in this section.

3.1 Sampling

Based on available historical information, five areas have contamination levels that remain above the Arizona SRLs for PAHs in soil (the proposed soil boring identifiers are in parentheses):

- Debris A-2 area (D-SB18, D-SB19, D-SB20, and D-SB25)
- SS-10 location (D-SB22)
- SS-5 location (D-SB21)
- SS-14 location (D-SB23)
- PURS32/42 area (D-SB17)

Soil under the former MGP foundational structures and concrete pads has not been characterized. Therefore, borings are proposed to be advanced at the remaining subsurface structures and locations where historical data indicate concentrations above Arizona SRLs to evaluate MGP-related compounds of TPH, PAH, and metals. An attempt will be made to locate the former shed foundation, which may or may not remain on the Site. Borings are also proposed at and near the following foundational structures and pads:

- Gas holder pads 1 and 2 (D-SB11 and D-SB12)
- Purifier pads 1 and 2 (D-SB24)
- Meter house (D-SB13)
- Generator house (D-SB14 and D-SB15)
- Oil Sump (D-SB16)

A detailed description of the proposed soil borings is presented in Section 3.1.1.

Therefore, to evaluate data gaps, background metals, and potential groundwater impacts, 25 soil borings are proposed to be advanced at the Site, including 3 deep borings to evaluate potential deep impacts to soil and groundwater, if encountered. Samples from all borings will be analyzed for metals and PAHs. Figure 3-1 shows the proposed boring locations and concentrations where PAH compounds have been previously detected above SRLs based on historical reporting. Table 3-1 lists the sample collection depth and analyses for each boring.

As discussed in Section 2.5, the ATSDR conducted a background lead and arsenic analysis in 1995 for the Douglas area, which included the former MGP site parcels (ATSDR, 1995). However, samples will be collected to determine the current background lead and arsenic concentrations (described in Section 3.3). Twelve offsite sample locations are planned to be used in the statistical analysis (D-SB22 and D-SB25 through D-SB35). Anticipated boring locations are shown on Figure 3-1.

Geotechnical parameters will also be collected at borings D-SB11 through D-SB15, D-SB19, D-SB21, D-SB22, and D-SB24 through D-SB35 to classify soil and develop engineering parameters in areas of potential excavation.

3.1.1 Soil Borings

Where applicable, prior to advancing soil borings, surface samples will be collected at 0.5 foot bgs. Surface soil samples will be collected at boring locations not located at a foundation or pad location.

Twenty-two shallow borings and three deep borings will be advanced at the Site. The shallow soil boring depths will range from 10 to 20 feet bgs in total depth to assess the lateral and vertical extents of impact. Three deep borings will be advanced up to 70 feet bgs to assess potential deep soil impacts and the presence of perched groundwater. If groundwater is encountered in a deep boring, a groundwater monitoring well will be installed and developed, and groundwater samples will be collected to assess potential impacts to groundwater from MGP-related activities.

Based on historical boring log information, the hand-auger drilling method will be attempted to advance shallow soil borings up to 10 feet bgs, and the auger drilling method is proposed for the shallow borings greater than 10 feet bgs. If the hand-auger method encounters refusal at a shallow boring, the auger drilling method may be used to complete the soil boring or a new location will be proposed depending on laboratory results prior to refusal. The sonic drilling method is proposed for borings D-SB25, D-SB26, and D-SB26, which may encounter groundwater. Borings that exhibit MGP-related impacts based on field visual observation and screening results will be advanced farther.

Because "SB-10" was the last location identification (ID) from the historical Site investigation, the first boring location ID will start with "SB11" with a prefix of "D-" for APS Site Douglas. Proposed boring locations are shown on Figure 3-1. The following list identifies the proposed soil borings and the purpose of each boring:

- **D-SB11** Boring D-SB11 is located at the central portion of the Gas Holder 1 pad and is proposed to be advanced through the concrete to a depth of up to 20 feet bgs. The purpose of this boring is to evaluate the vertical extent of potential MGP-related contamination under the Gas Holder #1 pad.
- **D-SB12** Boring D-SB12 is located at the central portion of the Gas Holder 2 pad and is proposed to be advanced through the concrete to a depth of up to 20 feet bgs. The purpose of this boring is to evaluate the vertical extent of potential MGP-related contamination under the Gas Holder 2 pad.
- **D-SB13** Boring D-SB13 is located at the central portion of the Meter House pad and is proposed to be advanced through the concrete to a depth of up to 20 feet bgs. The purpose of this boring is to evaluate the vertical extent of potential MGP-related contamination under the Meter House pad.
- **D-SB14** Boring D-SB14 is located at the southeast portion of the Generator House foundation and is proposed to be advanced through the foundation to a depth of up to 20 feet bgs. The purpose of this boring is to evaluate the vertical extent of potential MGP-related contamination under the east side of the Generator House foundation.
- **D-SB15** Boring D-SB15 is located at the north portion of the Generator House foundation and is proposed to be advanced through the foundation to a depth of up to 10 feet bgs. The purpose of this boring is to evaluate the vertical extent of potential MGP-related contamination under the north side of the Generator House foundation.
- **D-SB16** Boring D-SB16 is located at the former oil tank and sump location and is proposed to be advanced to a depth of up to 20 feet bgs. The purpose of this boring is to evaluate the vertical extent of potential MGP-related contamination at the former oil tank and sump location.
- **D-SB17** Boring D-SB17 is located to the south of the PURS32/PURS42 excavation and to the east of Purifier Pad #2 location and is proposed to be advanced to a depth of 20 feet bgs. The purpose of

3-2 BI0304191343PHX

this boring is to evaluate the vertical and lateral extents of remaining MGP-related contamination at the PURS32/PURS42 location.

- D-SB18 Boring D-SB18 is located near the southwest corner of the former Debris Pile Area A location (sample ID Debris A-2) and is proposed to be advanced to a depth of 10 feet bgs. The purpose of this boring is to evaluate the vertical extent of potential MGP-related contamination at the Debris Pile Area A location.
- **D-SB19** Boring D-SB-19 is near the southeast corner of the Debris Pile Area A location and is proposed to be advanced to 20 feet bgs. The purpose of this boring is to evaluate the vertical extent of remaining MGP-related contamination at the Debris Pile Area A and Area B locations.
- D-SB20 Boring D-SB20 is located near the northeast corner of the Debris Pile Area A location and is proposed to be advanced to a depth of 10 feet bgs. The purpose of this boring is to evaluate the vertical and lateral extents of potential MGP-related contamination near the Debris Pile Area A location.
- D-SB21 Boring D-SB21 is located near surface sample SS-5 and is proposed to be drilled to a
 depth of 20 feet bgs. The purpose of this boring is to evaluate the vertical and lateral extents of
 remaining MGP-related contamination near the SS-5 sample location.
- D-SB22 Boring D-SB22 is located near surface sample SS-10 and is proposed to be drilled to a
 depth of 20 feet bgs. The purpose of this boring is to evaluate the vertical and lateral extents of
 remaining MGP-related contamination near the SS-10 sample location, as well as offsite background
 lead and arsenic concentrations.
- **D-SB23** Boring D-SB23 is located near surface sample SS-14 and is proposed to be drilled to a depth of 10 feet bgs. The purpose of this boring is to evaluate the vertical and lateral extents of remaining MGP-related contamination near the SS-14 sample location and Gas Holder 2.
- D-SB24 Boring D-SB24 is located to the southeast of Purifier #1 pad and is proposed to be drilled to
 a depth of 20 feet bgs. The purpose of this boring is to evaluate the vertical and lateral extents of
 potential MGP-related contamination near the purifier pads.
- D-SB25 Boring D-SB25 is located at the northwest corner of the Debris Pile Area A location and is
 proposed to be advanced to a depth of 70 feet bgs. The purpose of this boring is to evaluate the
 vertical and lateral extents of remaining MGP-related contamination near the Debris Pile Area A
 location, evaluate potential impacts to groundwater at the northwest corner of the Site, and provide
 metals data for calculating the background metals concentration.
- D-SB26 Boring D-SB26 is located at the southeast corner of gas holder pad 1 and is proposed to be advanced to 70 feet bgs. The purpose of this boring is to evaluate the vertical and lateral extents of potential MGP-related contamination near gas holder 1, evaluate potential impacts to groundwater at the southeast corner of the Site, and provide metals data for calculating the background metals concentration.
- D-SB27 Boring D-SB27 is located southwest of the Site and is proposed to be advanced to 70 feet bgs. The purpose of this boring is to evaluate the vertical and lateral extents of potential MGP-related contamination southwest of the Site, evaluate potential impacts to groundwater southwest of the Site, and provide metals data for calculating the background metals concentration. This boring will also be used to assess horizontal and vertical PAHs if PAHs above SRLs are detected at boring D-SB22.
- **D-SB28** and **D-SB29** Borings D-SB28 and D-SB29 are located south and west of the Site and are proposed to be advanced to 20 feet bgs to provide metals data for calculating background metals concentration. These borings will also be used to assess horizontal and vertical PAHs if PAHs above SRLs are detected at boring D-SB22.
- D-SB30 Boring D-SB30 is located northeast of the Site and is proposed to be advanced to 20 feet bgs to provide metals data for calculating background metals concentration. This boring will also be used to assess horizontal and vertical PAHs if PAHs are detected above SRLs at borings D-SB23 or D-SB21.

- D-SB31 through D-SB34 Borings D-SB31 through D-SB34 are located north of the Site and are proposed to be advanced to 20 feet bgs to provide metals data for calculating background metals concentration.
- D-SB35 Boring D-SB35 is located northwest of the Site and is proposed to be advanced to 20 feet bgs. The purpose of this boring is to provide metals data for calculating background metals concentration. This boring will also be used to assess horizontal and vertical PAHs if PAHs are detected above SRLs at boring D-SB25.

At locations where a subsurface foundation or pad exists, the first soil sample will be collected immediately under the structure at approximately 1 foot bgs. Samples are planned to be collected in 2.5-foot intervals up to 10 feet bgs, 5-foot intervals from 10 to 30 feet bgs, and 10-foot intervals from 30 to 70 feet bgs. If the shed foundation exists, a boring will advanced (ID D-SB36) up to 20 feet bgs and located based on visual observation of stained soil if it exists. A boring will be advanced deeper than the proposed total depth if visual and screening observations of the soil, described in Section 4.1.1, indicate MGP impacts may exist. Borings will be advanced and soil samples collected until the absence of potential MGP impacts based on visual and screening observations of the soil. A boring location may be modified based on obstructions encountered, utility locations, or observation of MGP-impacted soil during field activities. Additional borings may be drilled and sampled based on visual observations and/or analytical results to provide additional data for remediation. Table 3-1 provides a description of each sample location and lists the geotechnical and analytical testing for each sampled depth.

Generally, samples collected at the deepest depth at each boring will be held by the laboratory pending analysis based on the previous sample result. If the results of the previous sample are less than the laboratory reporting limit, the sample will not be analyzed. If refusal is encountered at a boring location, the boring location may be moved and a second attempt made within 5 feet of the originally planned location. Samples used for background metals analysis will not be collected within the Site extent shown on Figure 1-2.

Borings D-SB13, D-SB17 and D-SB23 are located near the existing El Paso Natural Gas Company gas line. Final locations for these borings will be identified during field activities to avoid potential impacts to the gas line. The borings will be located a minimum of 10 feet from the gas line location. A non-destructive method, such as air lancing or hand auger, will be used for at least the upper 10 feet at these boring locations to reduce potential impacts to the gas line. Because of safety concerns, the El Paso gas line will not be exposed during any investigation or remediation activities.

3.1.2 Chemical Analysis

The proposed analyses for each sample collected from the soil borings are listed in Table 3-1 and have been selected based on former operational activities at the Site and the results of the previous investigations. The analyses have been selected to characterize the waste streams that will be generated during the site investigations and ongoing remedial activities.

The objective of chemical analysis is as follows:

- Evaluate the presence of remaining MGP-related contamination which have not previously been characterized below PAH SRLs.
- Evaluate the vertical and lateral extent of potential MGP-related contamination in soil near the remaining subsurface foundations and concrete pads to provide data for remedial actions at the Site.
- Assist with waste characterization from remedial activities.

3.1.2.1 Extent Determination

The analyses selected to evaluate the extent of contamination were based on the results from previous investigations and historical activities at the Site. The anticipated analyses for evaluating the extent of contamination and identifying the remedial actions and the rationale for the distribution of selected analyses include:

3-4 BI0304191343PHX

- PAHs (EPA Method 8310 or 8270 SIM) PAHs were identified during previous investigations at the
 former Debris Pile Area A, northwest of the small purifier pads at PURS42, and in surface samples
 SS-5, SS-10 and SS-14, with detections of benzo(a)pyrene SRL exceedances. PAH concentrations
 have not been assessed under the remaining foundations and pads planned for removal and are
 unknown. All samples are proposed to be analyzed for PAHs every 2.5 feet as described previously.
- Metals (EPA Method 6010B/7471A) Lead was identified above the residential SRL in the SS-1 composite sample, above the non-residential SRL in the SS-6 surface discrete and composite samples, and the SS-7 surface discrete sample during previous investigations. Lead was less than the residential SRL, as described in Section 2.3.2.1.4, after IRA soil removal at the SS-6 and SS-7 (SS4-7 composite sample) locations. The SS-1 surface composite sample result was 410 mg/kg, above the residential SRL of 400 mg/kg and below the non-residential SRL of 800 mg/kg. Arsenic was identified across the Site above the residential and non-residential SRLs of 10 mg/kg and estimated to be within background concentrations based on the 1995 ATSDR study of the Douglas area. However, due to the uncertainty of background concentrations near the Site, offsite samples will be collected and analyzed to calculate the background concentration (described in Section 3.3). Metals concentrations have not been characterized under the remaining foundations and pads. Metals are proposed to be analyzed at all boring locations.
- VOCs (EPA 8260B) BTEX was not detected above the laboratory reporting limits based on
 historical soil boring results. The oil sump waste characterization results indicated the waste fluid in
 the oil sump had elevated TPH and xylene concentrations. The historical investigation (Geraghty and
 Miller, 1996) reported no evidence of leaking; however, the soil at the oil sump location was not
 characterized. VOCs will be analyzed from the planned D-SB16 sample location at the former oil
 sump to determine if there are potential vertical VOC impacts from the former oil sump. VOCs have
 not been detected in historical soil sampling.
- Waste Characterization Waste characterization samples will be collected during the site investigation. Samples will be analyzed at locations where the highest concentrations are expected, generally at and under the remaining subsurface structures and at areas where data gaps exist. Collecting waste characterization samples provides several advantages, including pre-profiling soil to allow direct haul-off during remedial activities. This saves cost by reducing double-handling, eliminating the need to construct temporary stockpiles, and reducing the chance of runoff or odor issues. Composite waste samples will be collected from the concrete pads and the generator house foundation material. The following waste characterization analyses are proposed:
 - PAHs (EPA Method 8310 or 8270 SIM)
 - Total RCRA 8 metals (EPA Method 6010B/7471A)
 - Total VOCs (EPA Method 8260B)
 - PCBs (EPA Method 8082)
 - Paint filter (EPA Method 9095 [for liquid/saturated samples])
 - Ignitability
 - pH (EPA Method 9045B [for liquid samples])
 - Total cyanide (EPA Method 9014)

3.1.3 Geotechnical Analysis

Geotechnical data are needed for the site-specific GPL model and to evaluate excavation sloping and support and excavations near Site structures. The GPL model is used to determine site-specific GPLs and offsite remediation goals. The following geotechnical data are required to support the remediation design and the GPL modeling:

- Moisture content
- Sieve analysis with percent passing the No. 200
- Atterberg limit

- Porosity
- Fractional organic carbon
- In situ density
- Consolidated, undrained shear strength with pore pressure

Samples for geotechnical analysis will be collected at locations throughout the Site and at multiple depths to obtain a thorough understanding of subsurface conditions. Sample collection is concentrated in areas expected to receive additional remedial activities based on historical activities.

3.2 Groundwater Evaluation

The three deep soil borings D-SB25 through D-SB27 may encounter perched groundwater. If encountered, a notice of intent will be submitted to the Arizona Department of Water Resources using form 55-43B, a groundwater monitoring well will be installed, developed, and groundwater samples will be collected. Groundwater samples will be analyzed for the following constituents:

- PAHs (EPA Method 8310)
- BTEX (EPA Method 8021B)
- Metals (EPA Method 200.7)
- Total VOCs (EPA Method 8260B)

3.3 Background Metals Evaluation

Offsite samples will be collected for lead and arsenic analysis to evaluate background lead and arsenic concentrations near the Site. The calculated background concentrations will be used for development of a RAP. Nine offsite soil borings will be used to collect samples at 5-foot intervals to a total depth of 20 feet bgs. Sample locations were selected outside the Site extent and in undisturbed areas where feasible. Undisturbed areas were selected to avoid anthropogenic bias in the sample results. For example, samples will not be collected adjacent to Pan American Avenue because of the potential for elevated lead levels resulting from the high traffic volume of vehicles and varying fuel sources at the border. Available sample locations are also limited to property access and will primarily be collected from City of Douglas parcels. Sample intervals were determined based on previous arsenic results, available lithological data, and blow counts from historical borings.

- The highest arsenic and lead results were from surface samples: the surface horizon.
- Soils are classified as coarse grained up to 5 feet bgs: the 5-foot bgs horizon.
- Arsenic tends to increase near 10 feet bgs and a mix of clayey silt, silt, sand, and clay from 7.5 to 15 feet bgs is present: the 10-foot bgs horizon.
- Blow counts generally increase near 15 to 16.5 feet bgs, indicating a potential lithologic horizon: the 15-foot bgs horizon.
- Arsenic decreased in the boring that was advanced to approximately 20 feet bgs (SB-8): the 20-foot bgs horizon.

Three offsite borings will be advanced to 70 feet bgs off the southeast, southwest, and northwest corners of the Site extent to evaluate deeper offsite arsenic and lead concentrations and potential groundwater impacts. If groundwater is encountered, water samples will be collected to evaluate lead and arsenic in groundwater.

3.3.1 Statistical Analysis of Offsite Samples

Background threshold values will be developed with a 95/95 upper tolerance limit (UTL95-95) being the target statistic. The UTL95-95 is a 95 percent upper confidence limit on the 95th percentile of the

3-6 BI0304191343PHX

assumed background parent population. Upper tolerance limits will be calculated using either a distributional assumption (when deemed appropriate for the background constituent data) or using a nonparametric approach (no distributional assumption) when evidence for a distribution is not available.

Goodness-of-fit tests will be performed to determine the probability that a particular background data set could have come from the tested distribution. Because a data set can pass a goodness-of-fit test for more than one distribution, the following hierarchy will be used to choose a parametric distribution with which to calculate the background statistics:

- Normal distribution assumed the data pass the test for normality.
- Gamma distribution assumed the data fail the test for normality but pass the test for the gamma distribution.
- Lognormal distribution assumed the data are not normal or gamma but pass the test for lognormality.
- Nonparametric methods used the data fail the test for all three distributions.

The EPA (EPA, 2015) warns that use of a parametric lognormal distribution on a lognormally distributed data set may yield impractically large background values, especially when the standard deviation of the log-transformed data becomes greater than 1.0 for small data sets (less than 30 to 50 measurements). Because environmental data sets typically can be modeled by a gamma distribution, gamma distribution limits will be given preference over lognormal distribution limits, where appropriate.

3.4 Utility and Subsurface Structure Evaluation

The objective of the utility evaluation is to identify underground utilities and remnants of former MGP-related subsurface structures onsite. Prior to the start of the intrusive investigation, known subsurface utilities will be identified by Arizona 811 (formerly Arizona Blue Stake). A third-party utility locating firm will further designate the utility locations using signal line generators and ferrous magnetic locator methods. This firm will also attempt to locate abandoned utilities and subsurface structures. Additionally, El Paso Natural Gas will be contacted to ensure the El Paso pipeline has been marked properly. The areas for the soil borings will be cleared by using nondestructive air lance methods before drilling to verify no utilities are present at the boring location. The utility locations will be surveyed and added to the Site plans.

The current project schedule for the field investigation is presented on Figure 3-2.

4. Sampling and Analysis Plan

This section describes the soil sampling procedures. Also included are procedures for equipment decontamination and investigation-derived-waste disposal.

4.1 Field Sampling Procedures

4.1.1 Soil Boring Drilling

Soil borings are proposed to be advanced using hollow-stem auger, air rotary, or sonic drilling methods. A hand auger with air lancing, if needed, may be used to advance borings D-SB13, D-SB17 and D-SB23 based on field observations and if impacts to the El Paso natural gas line are anticipated. The concrete pad at soil boring D-SB13 will be cored prior to using an auger, if required. Samples will be collected at approximately 2.5-foot intervals by driving standard penetration test split-spoon samplers or ring samplers (auger or sonic drilling method) or hand driving a sampling shoe with a sleeve liner (hand auger method). If geotechnical samples cannot be manually collected, samples will be collected using the auger drill rig. The samplers will be driven in general accordance with American Society for Testing and Materials (ASTM) Method D1586.

The depth to groundwater is unknown. If any of the boreholes encounter groundwater, a notice of intent to drill a monitoring well will be filed with the Arizona Department of Water Resources (ADWR).

Lithologic observations will be recorded on a Jacobs standard boring log form or using P-log software on hand-held data acquisition devices. The field engineer/scientist will note soil attributes such as color, particle size, consistency, moisture content, structure, plasticity, odor (if obvious) and organic content. Soil cuttings will be described using the Uniform Soil Classification System and ASTM Standard Procedure D2488. Based on visual observations in the field, headspace evaluations using a photoionization detector (PID) may be conducted to identify additional sample locations.

At the completion of the borehole advancement and sample collection, the borehole will be abandoned in accordance with the ADWR Well Abandonment Handbook (ADWR, 2008). All boreholes will be filled with cement-bentonite grout using a tremie to place the grout from the bottom of the borehole.

4.1.1.1 Soil Boring Sample Collection

The standard penetration test split-spoon or ring samplers will be used to collect soil samples at depths of 2.5 feet and greater. Samples may also be collected using a hand auger and a manually driven ring sampler will be used as described in Section 4.1.1. The following procedure will be used when soil samples are collected from borings during drilling activities:

- 1. At some locations, geotechnical samples will be collected to assist with remedial design. When geotechnical and environmental soil samples are collected from borings at the same depth, they will be collected simultaneously while using the auger drilling method. The geotechnical samples will be collected in rings or brass sleeves that will be placed in the bottom of the sampler. Environmental samples will be collected in containers noted in Table 4-1 and will be taken from the top of the sampler.
- 2. A decontaminated sampler will be opened, and decontaminated sample collection sleeves or rings will be inserted.
- 3. The sampler will be closed.
- 4. The sample will be collected from the soil boring in general accordance with ASTM Method D1586.
- 5. The sample collection will be verified by looking into the sampler drive shoe. If no sample is retrieved, a second attempt will be made to retrieve the sample. If a second sample cannot be obtained, the boring will be advanced to the next sampling depth and sampling retried.

- If a sample is collected, the drive shoe will be removed, and the sample collection sleeves or rings will be removed.
- 7. If required, methanol extractions will be performed. The fixed-base laboratory will supply 40-milliliter vials that contain a measured volume of methanol and a pre-calibrated syringe for sample collection. At the designated sample location, an intermediate sample container (a 2 to 4-ounce soil jar) will be used to place the soil sample material, followed immediately (within 30 minutes) by the transfer of approximately 5 grams of the sampled material using the pre-calibrated syringe to the 40- milliliter vial (the final sample container) and sealed using the provided vial lid.
- 8. For other analyses, disposable scoops will be used to transfer soil from the sleeves to glass jars.
- 9. Each sample will be labeled, logged into a chain-of-custody form, and placed in a sample box or cooler maintained at 4 degrees Celsius (°C) to be submitted to a laboratory for analysis.

As a result of the short hold time of EnCoreTM samplers, methanol extraction is the preferred method for collecting and preserving samples for VOC analysis.

Samples will be shipped from the Clarkendale International FedEx ship center located at 1433 N G Ave, Douglas, Arizona 85607, prior to 2:45 pm.

4.1.2 Groundwater Sample Collection

The three deep soil borings will be advanced to 70 feet bgs. If groundwater is encountered, a groundwater monitoring well will be installed and developed prior to the collection of groundwater samples. Three purge volumes will be removed from the well and containerized prior to sample collection. Groundwater samples will be analyzed for the following constituents:

- PAHs (EPA Method 8310)
- BTEX (EPA Method 8221B)
- Metals (EPA Method 200.7)
- Total VOCs (EPA Method 8260B)

4.1.3 Decontamination Procedures

Equipment decontamination procedures will be used as part of the site investigation activities. Non-dedicated or non-disposable field equipment used during sampling will be decontaminated prior to, and again after, the sampling event has been completed to prevent cross-contamination between sampling locations. Decontamination procedures for field personnel are described in this subsection and in the site Health and Safety Plan (CH2M HILL, 2018).

Contamination at the Site is principally associated with PAHs and lead; therefore, pressurized hot water cleaning to remove soil and contaminants will be the primary feature of the non-disposable equipment decontamination process. Two levels of non-disposable equipment decontamination will be implemented. The first level (Level 1) will be a general decontamination process that applies to onsite non-disposable equipment used during soil drilling and excavation. The second level (Level 2) of equipment decontamination will be a specific decontamination process applied to non-disposable sampling equipment, tools, utensils, and other equipment that might contact soil samples. This decontamination protocol is based on information presented by EPA in *Protocol for Groundwater Evaluation*, OSWER DIR 9080.0-1.

4.1.3.1 Level 1 – General Equipment Decontamination

Non-dedicated or non-disposable equipment, including support and ancillary equipment, vehicles, and tools, will go through the following general decontamination process before site entry:

· Removal of all loose dirt.

4-2 BI0304191343PHX

- Thorough cleaning with high pressure hot water and Alconox or equivalent laboratory-grade detergent and, if necessary, scrub until all visible dirt, grime, grease, oil, loose paint, and rust flakes have been removed.
- Rinse with potable water.

Non-disposable sampling equipment will be put in a plastic-lined "dirty equipment" area for decontamination after each sampling event.

Use of disposable sampling equipment such as Teflon[®] tubing and plastic scoops is preferred where appropriate. Disposable sampling equipment will be disposed of properly after the equipment has been used to collect a sample or has contacted the soil.

4.1.3.2 Level 2 – Sampling Equipment Decontamination

Non-disposable sampling equipment, such as split spoons and other items that may contact the soil samples, will go through the following decontamination procedure:

- Removal of all loose dirt.
- Scrub with Alconox or equivalent laboratory-grade detergent and water.
- Rinse with potable water.
- · Rinse with distilled deionized water.
- Air dry on a clean surface or rack, such as Teflon®, stainless steel, or oil-free aluminum, elevated at least 2 feet above ground.

4.1.4 Investigation-derived Waste

The following five waste streams are anticipated:

- Excavated and/or drilled soil that does not show impacts by visual or PID screening.
- Concrete from coring the gas holders and meter house pad.
- Debris from coring the generator house foundation.
- Soil that shows impact from visual or PID screening.
- Decontamination wash water.

Waste soil from soil borings will be placed in lined roll-off bins equipped with locking lids and will remain onsite pending analytical results of a waste characterization soil sample from the roll-off bin. A single composite sample will be collected from each roll-off bin. Based on the analytical results from previous sampling events, the roll-off bins will have "Special Waste" labels that identify the contents and date of generation. After results are received, the waste materials will be appropriately disposed of at a licensed facility that is approved for disposal by APS. The soil and concrete waste streams will be segregated for disposal purposes.

If laboratory results for soil and groundwater samples indicate concentrations below the SRLs of the analyzed compounds, the investigation-derived waste (IDW) water will be added to the soil prior to characterization. If laboratory results for IDW decontamination water indicate concentrations above the SRLs, the water will be allowed to evaporate onsite in a plastic lined area with a berm. If laboratory results for IDW groundwater indicate concentrations above the SRLs, the water will be disposed of properly offsite.

Used and disposable personal protective equipment and used disposable equipment will be double-bagged and placed in a municipal refuse dumpster. These wastes are not considered hazardous and can be sent to a municipal landfill.

BI0304191343PHX 4-3

4.2 Laboratory Analysis

The Quality Assurance Project Plan (QAPP; Jacobs, 2019b) for APS's MGP sites was revised in January 2019. The document was reviewed and approved by ADEQ in a letter dated March 2019. The QAPP was developed as specified in *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations* (EPA, 2001). The QAPP provides a description of the analytical methods to be used, the applicable laboratory Practical Quantitation Limits for each analytical method, and sample handling and storing procedures. Analytical data collected during the investigation will be maintained by the project chemist in an Access-based database.

4.2.1 Field Samples

Soil samples and waste characterization samples will be analyzed for chemical constituents depending on the sample purpose and matrix. Table 4-1 provides details for method, container type, preservatives, and holding times for each analysis.

4.2.2 Field Quality Control Samples

The purpose of the field quality assurance/quality control (QA/QC) program is to provide a measure of data quality. Field duplicates indicate the precision of the overall sampling and analysis event. Equipment and field blanks monitor contaminants that might be introduced by the sampling equipment.

The following QA samples will be collected as part of the soil sampling effort:

- **Field Duplicates.** Field duplicates will be collected at a frequency of 1 per 10 confirmation soil samples designated for offsite analysis. Field duplicates will be identified in the field and blind-coded on the sample chain-of-custody. The duplicate will be analyzed for the same parameters as the original sample.
- Equipment Blanks. If non-dedicated sampling equipment (e.g., hand towel, portable pump) is used, equipment blanks will be collected at a frequency of at least one per sampling event. After decontamination procedures have been performed on the sampling equipment, deionized water will be poured over the sampling equipment, collected in the proper sampling bottles, and submitted for analysis. The equipment blank will be analyzed for the same chemical parameters as the samples being collected (PAHs, metals, etc.).
- Trip Blanks. Trip blanks provided by the laboratory will accompany each shipment of soil samples
 collected for VOCs. Trip blanks will be prepared in the laboratory using deionized water and shipped
 to the site in sealed sample containers. They will remain capped in the field prior to shipment and will
 be submitted for analysis with the regular soil samples. One trip blank will be included with each
 shipment of VOC samples to the offsite laboratory.
- Matrix Spike/Matrix Spike Duplicates (MS/MSD). MS/MSD samples will be collected at a frequency
 of 1 per 20 for soil samples that will be submitted to the laboratory for analysis. MS/MSD samples will
 be identified in the field and identified on the sample chain-of-custody. The MS/MSD sample will be
 analyzed for the same parameters as the original sample. For soil, the MS/MSD can be collected
 from the brass sleeve or jar at the laboratory. Additional soil volume is not required.

4.2.3 Quality Control Data Packages

A Level 2 QC laboratory data package will be required for all laboratory analysis. A Level 2 package includes documentation discussed in the QAPP. The Level 2 QA/QC packages will be evaluated as outlined in the project QAPP (Jacobs, 2019b).

4.3 Sample Packaging and Shipment

Most samples will be shipped for delivery to the laboratory.

4-4 BI0304191343PHX

All soil sample containers will be placed in a sturdy shipping container (a steel-belted or hard-plastic cooler). The following packaging procedure will be used when samples are shipped to a laboratory:

- 1. When ice is used, secure the drain plug of the cooler with tape to prevent melting ice from leaking out of the cooler. Double bag all ice.
- 2. Line the bottom of the cooler with bubble wrap to prevent breakage during shipment.
- 3. Secure bottle/container tops with custody seals.
- 4. Wrap all glass sample containers in bubble wrap to prevent breakage.
- 5. Seal all sample containers in plastic zip-lock bags.

All samples will be placed in coolers with the appropriate chain-of-custody forms. All forms will be enclosed in a large plastic bag and affixed to the underside of the cooler lid. Empty space in the cooler will be filled with bubble wrap or Styrofoam peanuts to prevent movement and breakage during shipment. Vermiculite may also be placed in the cooler to absorb any spills. Ice used to cool samples will be double sealed in two zip-closure plastic bags and placed on top and around the samples to chill them to the correct temperature. Each ice chest will be securely taped shut with nylon strapping tape, and custody seals will be affixed to the front, right, and back of each cooler. Analytical data will be managed as described in the APS QAPP (Jacobs, 2019b).

4.4 Sample Documentation

A systematic field sample ID nomenclature has been developed for APS samples collected at APS sites. Consistent nomenclature has been designed to facilitate entry, management, and reporting of field and analytical data for APS.

The field sample ID nomenclature will vary depending on the sampling purpose. Each field sample ID generated must be unique for each environmental sample collected. The field sample ID is limited to 25 characters. This section describes IDs for field samples and QC samples.

4.4.1 Regular Field Sample ID

The following nomenclature is used for regular field samples:

[Site Code]-[Location ID]-[Sample Date]-[Letter Code (optional)]

Where:

Site Code = Single-digit site code given to each site managed by APS. The site code for Douglas is "D."

Location ID = Location that is being sampled, which is determined before sampling in the field, and depth of sample (i.e., B21). If additional borings are drilled, the location will be a sequentially selected number.

Sample Date = Sample collection date in format of "MMDDYY."

Letter Code = This is optional and only to be used if multiple regular samples are collected from the same location; for example, when collecting samples from multiple depths at the same location, use alphabetical letter starting with A to make each sample collected unique.

Example 1: D-B21-2.5-030119 = Arizona Public Service – Douglas, field investigation sample collected from Borehole B-21 at a depth of 2.5 feet bgs on March 1, 2019.

Samples selected for an MS/MSD will be identified on the chain-of-custody form. The sample will be identified using the station code and depth or date as identified previously. In addition to the sample ID,

BI0304191343PHX 4-5

the acronym "MS/MSD" will be written in the comments field of the chain-of-custody form to identify that the sample has been selected as an MS/MSD.

4.4.2 Quality Assurance/Quality Control Samples

Field QC samples can include field duplicates, equipment blanks, field blanks, ambient blanks, trip blanks and any other type of field QC samples that may be required for sampling. The field sample ID nomenclature to use would be as follows:

[Site Code]-[QC Type Code]##-[Sample Date]

Where:

Site Code = Single-digit site code given to each site managed by APS. The site code for Douglas is "D".

Field QC Type = Two-digit code for each type of field QC sample that could be collected. Valid values are provided in Table 4-2. This code is followed by a two-digit sequential number starting with 01 to accommodate multiple samples collected on the same day of the same field QC type.

Sample Date = Sample collection date in format of "MMDDYY."

Example 1: D-SS01-030119 = Arizona Public Service – Douglas, split sample 1 collected on March 1,

2019

Example 2: D-EB02-030119 = Arizona Public Service, Douglas, equipment blank 2 collected on

March 1, 2019

4.5 Field Documentation

4.5.1 Field Log Books

Field log books will be used to document where, when, how, and from whom any vital project information was obtained. Log book entries will be complete and accurate enough to permit reconstruction of field activities. Log books are to be bound with consecutively numbered pages. Each page will be dated and the time of entry noted in military time. All entries will be legible, written in black or blue ink, and signed by the individual making the entries. Language will be factual, objective, and free of personal opinions or other terminology that might prove inappropriate.

At a minimum, the following information will be recorded during the collection of each sample:

- Sample location and description
- Depth of sample for borings and trenches
- Location of trench and boring (measurement from a permanent fixed point and GPS locations)
- Notation if photograph(s) are taken and photograph number
- Site sketch showing sample location and measured distances, if not otherwise clear
- Sampler's name(s)
- Date and time of sample collection
- · Designation of sample as composite or grab
- Type of sample (i.e., matrix)
- Type of sampling equipment used

4-6 BI0304191343PHX

- Onsite measurement data (e.g., temperature, pH, conductivity) (may be collected in a separate field sampling diary)
- Field observations and details important to analysis or integrity of samples (e.g., heavy rains, odors, colors)
- Preliminary sample descriptions (e.g., for soils: clay loam, very wet; for groundwater: clear water with no petroleum-like odor)
- Type(s) of preservation used or present in sample container
- Instrument reading and units of measurement (e.g., pH units, μS/cm, nephelometric turbidity unit)
- Lot numbers of the sample containers, sample tag numbers, chain-of-custody form numbers, and chain-of-custody seal numbers
- Shipping arrangements (overnight air bill number)
- Recipient laboratory

In addition, the following information will be recorded in the field log book for each day of sampling:

- Team members and their responsibilities
- Time of site arrival/entry onsite and time of site departure
- Other personnel onsite
- A summary of any meetings or discussions with APS employees
- A summary of any meetings or discussions with the public, a city employee, or others
- Deviations from sampling plan, site safety plan, or QAPP procedures
- Changes in personnel or responsibilities, as well as the reason for the change
- Levels of safety protection
- Calibration readings for any equipment used and equipment model and serial number

4.5.2 Chain-of-Custody Records

A chain-of-custody record will be used to document sample collection and shipment to a laboratory for sample analysis. A chain-of-custody form will be completed for each cooler of samples shipped to a laboratory. The chain-of-custody record will identify the contents of the shipment and maintain the custodial integrity of the samples. Generally, a sample is considered to be in someone's custody if it is in someone's physical possession, in someone's view, locked up, or kept in a secured area that is restricted to authorized personnel. The site leader or designee will sign the chain-of-custody record. The site leader or designee will sign the "relinquished by" box and note the date, time, and air bill number (if samples are shipped).

4.5.3 Photographs

Photographs will be taken at various sample locations and at other areas of interest onsite. They will serve to verify the information entered in the field log book. When a photograph is taken, the following information will be written in the log book or recorded in a separate photograph field log:

- Photograph number
- Time, date, location, and, if appropriate, weather conditions
- Description of the subject of the photograph
- Name of person taking the photograph

BI0304191343PHX 4-7

5. Public Notice and Public Participation

APS has a community relations and ongoing public involvement program planned for the Site. During implementation of this work plan, APS will prepare Site-specific newsletters in both English and Spanish. The newsletters will be distributed to the neighboring residents, businesses, community leaders, and border patrol agents and it will be posted at the pedestrian walkway to the east of the Site. APS will brief its employees, community leaders, and city staff.

During the remedial planning phase of the project, APS will complete the ADEQ-required public notice, as specified in Arizona Revised Statute (A.R.S.) §49-176, and other proactive public participation activities, which will be included in the RAP submitted to ADEQ.

BI0304191343PHX 5-1

6. References

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Petitioned Public Health Assessment Phelps Dodge Corp Douglas Reduction Works, Douglas, Cochise County, Arizona, CERCLIS No. AZD008397143, U.S. Department of Health and Human Services, Public Health Service. September 29

Arcadis/Geraghty & Miller. 1998. *Material Removal Activities, Former APS Manufactured Gas Plant Site, Douglas, Arizona*. June 5.

Arizona Department of Water Resources (ADWR). 2008. *ADWR Well Abandonment Handbook*. September.

CH2M HILL. 2018. Health and Safety Plan Douglas Former MGP Soil Excavation. December.

Environmental Data Resources (EDR). 2018. EDR D311860, Former Douglas Arizona Manufactured Gas Plant, Douglas, Arizona. Inquiry Number 5485155.2s. November 14.

Geraghty and Miller. 1996a. Site Investigation, Former Manufactured Gas Plant, Douglas, Arizona. July 14.

Geraghty and Miller. 1996b. Composite Soil Sampling, Former Manufactured Gas Plant, Douglas, Arizona. October 29.

Jacobs Engineering Group Inc. (Jacobs). 2019a. Site History APS Former Manufactured Gas Plant Site, Douglas, Arizona. Draft. January.

Jacobs Engineering Group Inc. (Jacobs). 2019b. *Arizona Public Service Quality Assurance Project Plan*. March.

Rascona, S. J. 1993. *Maps Showing Groundwater Conditions in the Douglas Basin, Cochise County, Arizona – 1990.* Arizona Department of Water Resources, Hydrologic Map Series Report Number 26.

U.S. Environmental Protection Agency (EPA). 2001. EPA Requirements for Quality Assurance Project Plans for Environmental Data Operation.

U.S. Environmental Protection Agency (EPA). 2015. ProUCL Version 5.1 Technical Guide. October.

BI0304191343PHX 6-1

Tables

Table 1-1. Summary of Operational History

APS Douglas Former MGP Site, Douglas, Arizona

Year	Site Structure	Site Activities
1905-1908	No information available.	Manufactured gas operations began between 1905 and 1908 and continued until the 1930s ¹ .
1929	Generator house, one large purifier, two small purifiers, a meter house, a steel crude oil tank, two gas holders, and a concrete shed ² .	Manufactured gas operations continued at the Site. 1,2
1930		Arizona Edison Company controlled by Peoples Light and Power Corporation. Annual Production 51.5377 million cubic feet and annual sales 43.9241 million cubic feet. ³
1938		Arizona Edison Company (natural) Natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 115.9389 million cubic feet. ³ Supplies Douglas.
1940		Arizona Edison Company Inc. natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 135.4454 million cubic feet. ³ Supplies Douglas.
1944-1947	Concrete shed, large purifier, and possibly the meter house. Remaining site structures are not indicated on the 1947 Sanborn map.	Manufactured gas operations were discontinued prior to 1947. Annual gas production ranged from 13.7 million cubic feet in 1910 to 51.5 million cubic feet in 1930. ^{1,3}
1945		Arizona Edison Company Inc. natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 215.9795 million cubic feet. ³ Supplies Douglas.
1950		Arizona Edison Company Inc. natural gas purchased from El Paso Natural Gas Company for resale. Annual sales 584.7239 million cubic feet. ³ Supplies Douglas.
1995	Concrete shed, large purifier, concrete foundations from the two gas holders and generator house, and a 2-foot-deep sump associated with the steel crude oil tank.	Site investigation performed from October 1995 to June 1996. The contents of the oil sump and debris from the purifier were characterized in addition to surface and subsurface soil samples. ¹
1996	Oil sump contents and sump; purifier contents and purifier; debris pile; concrete shed; and surface soil.	Materials removed from Site based on Arcadis/Geraghty & Miller, Material Removal Activities Former Manufactured Gas Plant, Douglas, Arizona (June 5, 1998).4

Notes:

¹ Based on available site investigation report (Geraghty & Miller, *Site Investigation Former Manufactured Gas Plant, Douglas, Arizona*, July 14, 1996).

² Based on available Sanborn maps.

³ Review of *Manufactured Gas Plant Sites in Arizona*, Draft Report for Discussion Purposes Only. Atlantic Environmental Services Inc. May 1992.

⁴ Based on available material removal activities (Arcadis/Geraghty & Miller, *Material Removal Activities Former Manufactured Gas Plant, Douglas, Arizona*, June 5, 1998).

Table 2-1. Summary of Historical Analytical Data for Soil – Polynuclear Aromatic Hydrocarbons (PAHs)

_																							
							eue.	φ /				θυ _θ		Θίο.	945	eus		"acene		/	yrene		
						htha	httha	en e	် / မွ		hrac	g, eye	"anti	⁷²⁰ (g,h,i)pervi	ranti	' /	¹² 0(a,h)anth,			(0)		/ g	
						deu _l	(hap,	htthyl	htthe	ene	1)ant	² o(a)pyren))fluc	1,4,1)	Onji(c)	၂ စု)(a,h)	then.		1,8,3	alen _e	threr	
			Sample	Depth		leth)	leth)	^{an} ap.	элар	hrac	3/02/) ₀₂₁	yoz _l)) _{OZ1}	ψ_{oz_l}	Jyse,	_G DZC	oran	oren	, eno(2hthic	⁹ nan	ene
Location	Sample ID	Sample Type	Date	(ft bgs) ¹	Units ²	4,	1/ ₂	_\2	⁴ مو	4 _m	B _e ,	B_{Θ_l}	Be	Be	Bel	<u> </u>	^q ia	J _L	J _L	Pul	/ _{/e} /	الْمِ الْمُ	$\Phi_{Z'}$
Residential SRL ³	_					NE⁵	NE	NE	3,700	22,000	6.9	0.69	6.9	NE	69	680	0.69	2,300	2,700	6.9	56	NE	2,300
Non-Residential						NE	NE	NE	29,000	240,000	21	2.1	21	NE	210	2,000	2.1	22,000	26,000	21	190	NE	29,000
SS-1	SS-1	Discrete	10/26/95	Surface	mg/kg			1.5	1.7U	1.6	17D	33D	21D	40D	11D	20D	0.75	69D	0.63	25D	1.7	28D	78D
SS-2	SS-2	Discrete	10/26/95	Surface	mg/kg			0.17U	0.1U7	0.084	1.0D	1.8D	1.5D	2.3D	0.64D	1.1D	0.13	3.9D	0.08	2.1D	0.15	2.4D	4.6D
SS-3	SS-3	Discrete	10/25/95	Surface	mg/kg			0.17U	0.1U7	0.0083U	0.038	0.071	0.052	0.094	0.044	0.017U	0.034U	0.16	0.017U	0.04	0.083U	0.085	0.15
SS-4	SS-4	Discrete	10/26/95	Surface	mg/kg			0.42	0.1U7	0.32	2.9D	4.7D	4.6D	9.8D	1.8D	3.4D	0.46	12D	0.41	8.2D	1.1	7.7D	13D
SS-5	SS-5	Discrete	10/26/95	Surface	mg/kg			32	1.3	17D	160D	230D	170D	99D	93D	150D	8.6D	630D	15D	160D	13	280D	740D
SS-6 SS-7	SS-6 SS-7	Discrete Discrete	10/26/95 10/25/95	Surface Surface	mg/kg			0.17U 0.19	0.17U 0.17U	0.048	3.6D 4.2D	3.4D 5.6D	8.8D 5.2D	8.8D 9.8D	4.5D 2.3D	11D 5.6D	1.0D 0.65D	27D 15D	0.033	13D 8.6D	0.095 1	18D 9.3D	18D 16D
SS-8	SS-8	Discrete	10/26/95	Surface	mg/kg mg/kg			0.19 0.17U	0.17U	0.047	0.14	0.37	0.26	0.46	0.17	0.19	0.032	0.7	0.18 0.017U	0.2	0.083U	0.43	0.91D
SS-9	SS-9	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.14	0.62D	0.41	0.94D	0.17	0.13	0.063	1.1D	0.038	0.37	0.000	0.43 0.83D	1.3D
SS-10	SS-10	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.70D	1.3D	1.0D	2.0D	0.44D	0.90D	0.16	2.5D	0.034	1.8D	0.32	1.5D	2.8D
SS-11	SS-11	Discrete	10/25/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.049	0.11	0.074	0.12	0.063	0.064	0.034U	0.19	0.017U	0.048	0.083U	0.096	0.2
SS-12	SS-12	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.075	0.045	0.14	0.1	0.025	0.13	0.039	0.1	0.017U	0.026	0.083U	0.038	0.052
SS-13	SS-13	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.0083U	0.087	0.14	0.14	0.17	0.078	0.12	0.034U	0.19	0.017U	0.17	0.083U	0.076	0.065
SS-14	SS-14	Discrete	10/26/95	Surface	mg/kg			0.17U	0.17U	0.046	0.38	0.76D	0.61	1.1D	0.28	0.49D	0.083	1.8D	0.024	0.92D	0.086	0.83D	2.0D
SB-1	SB-1 4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg			0.17U	0.17U	0.0083U	0.072	0.17	0.096	0.21	0.056	0.086	0.034U	0.25	0.017U	0.1	0.083U	0.11	0.31
SB-1	SB-1 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-2	SB-2 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-3	SB-3 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-4	SB-4 0-1.5	Discrete	10/25/95	0-1.5	mg/kg			0.59	0.17U	0.66	2.1D	4.5D	3.2D	5.4D	1.1D	2.4D	0.24D	13D	0.017U	4.5D	1.1	9.4D	14D
SB-4	SB-4 3-4.5	Discrete	10/25/95	3.0-4.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-4	SB-4 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-5	SB-5 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-6	SB-6 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.047	0.017U	0.017U	0.083U	0.0083U	0.03
SB-6	SB-6 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-7	SB-7 10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-7	SB-7-Dup-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-8	SB-8 9-10	Discrete	10/25/95	9-10.0	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-8	SB-8 20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-9	SB-9 3-4	Discrete	10/26/95	3.0-4.5	mg/kg			0.17U	0.17U	0.0093	0.05	0.12	0.079	0.16	0.052	0.066	0.034U	0.17	0.017U	0.093	0.083U	0.058	0.2
SB-9 SB-9	SB-9 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
SB-9 SB-9	SB-9 15-16.5 SB-9 Dup-15-16.5	Discrete Discrete	10/26/95 10/26/95	15.0-16.5 15.0-16.5	mg/kg mg/kg			0.17U 0.17U	0.17U 0.17U	0.0083U 0.0083U	0.017U 0.017U	0.017U 0.017U	0.017U 0.017U	0.017U 0.017U	0.017U 0.017U	0.017U 0.017U	0.034U 0.034U	0.017U 0.017U	0.017U 0.017U	0.017U 0.017U	0.083U 0.083U	0.0083U 0.0083U	0.017U 0.017U
SB-10	SB-10 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg			0.17U	0.17U	0.0083U	0.017U	0.017U	0.017U	0.017U	0.017U	0.017U	0.034U	0.017U	0.017U	0.017U	0.083U	0.0083U	0.017U
Debris Pile	Debris A-2	Composite	08/19/96	Surface	mg/kg	1.0U	1.0U	2.5U	1.0U	0.0083U	0.0170	0.0170	0.0170	0.6	0.0170	0.0170	0.0340 0.25U	0.0170	0.0170 0.25U	0.0170	1.0U	0.00630	0.0170
Debris Pile	Debris B-2	Composite	08/19/96	Surface	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.3	0.6	0.3	0.5	0.1	0.2	0.25U	0.7	0.25U	0.4	1.0U	0.3	0.8
Debris Pile	Debris C-2	Composite	08/19/96	Surface	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.3	0.6	0.3	0.7	0.1	0.2	0.25U	0.7	0.25U	0.4	1.0U	0.3	0.7
Debris Pile	Debris D-2	Composite	08/19/96	Surface	mg/kg	0.2U	0.2U	0.5U	0.2U	0.02U	0.03	0.07	0.03	0.08	0.02	0.03	0.05U	0.08	0.25U	0.05	0.2U	0.03	0.09
Debris Pile	Debris E-2	Composite	08/19/96	Surface	mg/kg	0.2U	0.2U	0.5U	0.2U	0.02U	0.05	0.14	0.07	0.21	0.02	0.04	0.05U	0.17	0.05U	0.11	0.2U	0.09	0.19
SS-4/SS-7	SS4-7	Composite	08/21/96	1	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.00	0.4	0.2	0.5	0.00	0.04	0.25U	0.7	0.25U	0.3	1.0U	0.5	0.13
SS-5	SS5 Comp	Composite	08/19/96	1	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.2	0.5	0.2	0.6	0.1	0.2	0.25U	0.7	0.25U	0.3	1.0U	0.3	0.7
SS-6	SS6 PAH Comp	Composite	08/19/96	1	mg/kg	2.0U	2.0U	5.0U	2.0U	0.2	1.3	2.9	1.3	2.6	0.8	1.2	0.5U	4.7	0.5U	1.8	2.0U	2.1	3.8
PUR N	PUR N-B	Composite	08/22/96	1	mg/kg	1.0U	1.0U	2.5U	1.0U	0.1U	0.2	0.4	0.2	0.5	0.1	0.2	0.25U	0.7	0.25U	0.2	1.0U	0.2	0.8
	1																						

Table 2-1. Summary of Historical Analytical Data for Soil – Polynuclear Aromatic Hydrocarbons (PAHs)

Location Residential SRL ^{3,4} Non-Residential S		Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	R R T-Methylnaphthals.	R S -Methytraphthales	M M Acenaphinylene	3,700 29,000	22,000 240,000	6.9	9/5/ B B 0.69	6.9 6.9	NE Benzo(g,h,i)pervier.	8 Benzouk/Nosusa	905. 400 680	0.69 2.1	2,300 22,000	2,700 26,000	6.9 21	Naphihalene	MZ MZ Phenanthrene	2,300 29,000
Purifier	SUBPUR B	Composite	08/22/96	1	mg/kg	0.2U	0.2U	0.5U	0.2U	0.02U	0.02U	0.02U	0.05U	0.05U	0.02U	0.02U	0.05U	0.05U	0.05U	0.02U	0.2U	0.02U	0.02U
SS-6 Area - E	SS6WC	Composite	11/4/96	2	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
SS-6 Area -C	SS6CC	Composite	11/4/96	2	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
SS-6 Area - E	SS6EC	Composite	11/4/96	2	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
PUR E	PURE31	Composite	11/5/96	1	mg/kg			0.1U	0.1U	0.22	0.56	0.64	0.33	1.1	0.48	0.34	0.1U	0.8	0.1U	0.64	0.1U	0.1U	1.1
PUR S	PURS31	Composite	11/5/96	1	mg/kg			1.2	0.26	9.7	6.9	6.6	4.5	5.9	3.7	3.6	0.48	12	0.93	5.4	0.33	2.08	0.1U
PUR S	PURS32	Composite	11/5/96	1	mg/kg			0.27	0.1U	0.77	1.1	1.8	0.76	1.8	0.8	0.57	0.17	1.7	0.1U	1.4	0.1U	0.12	2.1
PUR S	PURS41	Composite	11/5/96	2.5	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
PUR S	PURS42	Composite	11/5/96	2.5	mg/kg			0.45	0.1U	2.1	1.3	1.5	0.79	1.6	0.91	0.79	0.1U	2.8	0.13	1.0	0.88	0.20	3.4
West Fence	WESTFENCE	Composite	11/5/96	Surface	mg/kg			0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U

Notes:

UJ = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

D = Sample was diluted for analysis

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³ Residential SRLs represent the value for 10⁻⁶ carcinogenic risk for compounds identified as carcinogens in Appendix A of Title 18, Chapter 7.

⁴ Cells highlighted in yellow indicate that the compound exceeded the 2007 residential soil remediation level (SRL).

⁵ Cells highlighted in **red** indicate the compound exceeded the 2007 non-residential SRL.

⁶ NE = Standard not established

⁷ -- = Sample not analyzed for this compound

U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

Table 2-2. Summary of Historical Analytical Data for Soil – TPHs and Fuel Hydrocarbons

				Sample		TRPH (EPA Meth.	Fuel Hydrocarbos	Fuel Hydrocarbos	Fuel Hydrocarbons
Location	Sample ID	Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	/ =	/ Jan	/ Jan	/ Jan.
SB-1	SB-1 1.5-3	Discrete	10/25/95	1.5-3.0	mg/kg	780			
SB-1	SB-1 4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg	20U			
SB-1	SB-1 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20U			
SB-1	SB-1 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-2	SB-2 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	20U			
SB-3	SB-3 9-10.5	Discrete	10/26/95	9.0-10.5		20U			
SB-4	SB-4 0-1.5	Discrete			mg/kg	4000			
SB-4	SB-4 0-1.5 SB-4 3-4.5		10/25/95	0-1.5 3.0-4.5	mg/kg	24			
SB-4		Discrete	10/25/95		mg/kg				
	SB-4 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20U			
SB-4	SB-4 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-5	SB-5 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20U			
SB-6	SB-6 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20U			
SB-6	SB-6 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-7	SB-7 10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	20U			
SB-7Dup	SB-7-Dup-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	20U			
SB-7	SB-7 15.0-16	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-8	SB-8 9-10	Discrete	10/25/95	9.0-10.0	mg/kg	26			
SB-8	SB-8 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	20U			
SB-8	SB-8 20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg	20U			
SB-9	SB-9 0-1.5	Discrete	10/25/95	0-1.5	mg/kg	400U			
SB-9	SB-9 3-4	Discrete	10/26/95	3.0-4.5	mg/kg	20U			
SB-9	SB-9 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	20U			
SB-9	SB-9 15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	20U			
SB-9Dup	SB-9-Dup-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	20U			
SB-10	SB-10 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	20U			
Oil Sump ⁴	Sludge	Discrete	12/27/95		mg/kg	477,000	7300	270000	200000
SS-1 Area ⁵	SS-1	Composite	6/1/1996	Surface	mg/kg	40			
SS-4/SS-7 Area ^{5,6}	SS4-7	Composite	6/1/1996	Surface	mg/kg	270			
SS-5 Area ⁵	SS5	Composite	6/1/1996	Surface	mg/kg	480			
SS-6 Area ⁵	SS6	Composite	6/1/1996	Surface	mg/kg	780			
SS-11/SS-12 Area ^{5,7}	BACK SS11-12	Composite	6/1/1996	Surface	mg/kg	110			
Multiple ^{5,8}	COMP	Composite	6/1/1996	Surface	mg/kg	260			
Debris 1	Debris 1	Composite	08/19/96	Surface	mg/kg	20U			
Debris 2	Debris 2	Composite	08/19/96	Surface	mg/kg	23			
Debris 3	Debris 3	Composite	08/19/96	Surface	mg/kg	50			
Debris 3	Debris 3B	Composite	08/20/96		mg/kg	20U			
Debris 4	Debris 4	Composite	08/19/96	Surface	mg/kg	590			
Debris 4	Debris 4B	Composite	08/20/96	>1	mg/kg	20U			
Debris 5	Debris 5	Composite	08/19/96	Surface	mg/kg	20U			
Debris 6	Debris 6	Composite	08/19/96	Surface	mg/kg	20U			
Debris 7	Debris 7	Composite	08/19/96	Surface	mg/kg	20U			
Debris 8	Debris 8	Composite	08/19/96	Surface	mg/kg	20U			
-	Debris 9		08/19/96	Surface	mg/kg	73			

Table 2-2. Summary of Historical Analytical Data for Soil – TPHs and Fuel Hydrocarbons

APS Douglas I	Former MGP S	ite, Douglas, A	Arizona						
Location	Sample ID	Sample Type	Sample Date	Sample Depth (ft bgs) ¹	Units²	TRPH (EPA Men.	Fuel Hydrocarbon	Fuel Hydrocarbos	Fuel Hydrocathons C22
Debris 9	Debris 9B	Composite	08/20/96	>1	mg/kg	20U			
Debris 10	Debris 10	Composite	08/19/96	Surface	mg/kg	20U			
Debris 11	Debris 11	Composite	08/19/96	Surface	mg/kg	20U			
Debris 12	Debris 12	Composite	08/19/96	Surface	mg/kg	24			
Debris 13	Debris 13	Composite	08/19/96	Surface	mg/kg	27			
Debris 14	Debris 14	Composite	08/19/96	Surface	mg/kg	20U			
Debris 15	Debris 15	Composite	08/19/96	Surface	mg/kg	20U			
Debris 16	Debris 16	Composite	08/19/96	Surface	mg/kg	20U			
Debris 17	Debris 17	Composite	08/19/96	Surface	mg/kg	20U			
Debris 18	Debris 18	Composite	08/19/96	Surface	mg/kg	28			
Debris 19	Debris 19	Composite	08/20/96	Surface	mg/kg	60			
Debris 19	Debris 19B	Composite	08/20/96	>1	mg/kg	20U			
Debris 20	Debris 20	Composite	08/20/96	Surface	mg/kg	20U			
SS4-7	SS4-7		08/21/96	1	mg/kg	20U			
SS5	SS5 Comp	Composite	08/19/96	1	mg/kg	20U			
SS-6 Area - E	SS6E Comp	Composite	08/19/96	1	mg/kg	39			
SS-6 Area - W	SS6W Comp	Composite	08/19/96	1	mg/kg	42			
SS-6 Area - C	SS6CENT Comp	Composite	08/19/96	1	mg/kg	53			
PUR N	PUR N	Composite	08/20/96	Surface	mg/kg	71			
PUR N	PUR N	Composite	08/21/96	1	mg/kg	140			
PUR N	PUR E	Composite	08/20/96	Surface	mg/kg	520			
PUR N	PUR W	Composite	08/20/96	Surface	mg/kg	150			
PUR N	PUR S	Composite	08/20/96	Surface	mg/kg	73			
Purifier	Subpurifier	Composite	08/21/96	>1	mg/kg	57			

Notes:

UJ = The analyte was analyzed for but was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³ -- = Sample not analyzed for this compound

⁴ Sludge sample was collected for waste disposal purposes. Metals reported in milligrams per liter; benzene, toluene, ethylbenzene, and xylene reported in micrograms per liter.

⁵ Sampling location indicates area surrounding former October 1995 sampling Location (SS-x) where composite sample was collected.

⁶ Composite sample from areas surrounding SS-4 and SS-7.

 $^{^{\}rm 7}$ Composite sample from areas surrounding SS-11 and S-S12.

⁸ Sample COMP is a composite sample of samples collected at the Site on 6/1/1996.

U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

Table 2-3. Summary of Historical Analytical Data for Soil – BTEX Compounds

	Sample	Sample	Sample	Depth		$B_{ extsf{enzene}}$	Ethylbenzenz	^T oluen _e	Xylenes, total	m/p-Xylene.	0-Xylenes	Methyr-tert. butyr eth.
Location	ID	Туре	Date	(ft bgs) ¹	Units ²	Ben,	Ethy	\	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	July .	Jak J	Met _t
Residential SI	₹L³				mg/kg	0.65	400	650	270	270	270	270
Non Resident	ial SRL ⁴				mg/kg	1.4	400	650	420	420	420	420
SB-1	SB1-1.5-3	Discrete	10/25/95	1.5-3.0	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-1	SB1-4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-1	SB-1-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-1	SB1-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-2	SB2-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-3	SB3-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB4-0-1.5	Discrete	10/25/95	0-1.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB-4-3-4.5	Discrete	10/25/95	3.0-4.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB-4-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-4	SB4-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-5	SB5-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-6	SB6-9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-6	SB6-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-7	SB7-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-7	SB7-Dup-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-7	SB7-15.0-16	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-8	SB-8-9-10	Discrete	10/25/95	9.0-10.0	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-8	SB8-15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-8	SB8-20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-0-1.5	Discrete	10/25/95	0-1.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-3-4	Discrete	10/26/95	3.0-4.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-9	SB9-Dup-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
SB-10	SB10-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	0.025U	0.025U	0.025U	0.025U			0.025U
Oil Sump ⁵	Sludge	Discrete	12/27/95	NA	μg/L	10U	22.5U	22.5U	180			
SS-1 Area ⁶	SS-1	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-4/SS-7 Area ^{6,7}	SS4-7	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-5 Area ⁶	SS5	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-6 Area ⁶	SS6	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
SS-11/SS-12 Area ^{6,8}	BACK SS11-12	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U
Multiple ^{6,9}	COMP	Composite	6/1/1996	Surface	mg/kg	0.025U	0.025U	0.025U		0.025U	0.025U	0.12U

Notes:

U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

UJ = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³ Cells highlighted in yellow indicate that the compound exceeded the 2007 residential soil remediation level (SRL).

 $^{^{4}}$ Cells highlighted in ${\color{red}{\rm red}}$ indicate the compound exceeded the 2007 non-residential SRL.

⁵ Sludge sample was collected for waste disposal purposes. Benzene, toluene, ethylbenzene, and xylene reported in micrograms per liter. VOCs were analyzed for and not detected in the Sludge sample.

⁶ Sampling location indicates area surrounding former October 1995 sampling Location (SS-x) where composite sample was collected.

⁷ Composite sample from areas surrounding SS-4 and SS-7

 $^{^{\}rm 8}$ Composite sample from areas surrounding SS-11 and S-S12

 $^{^{\}rm 9}$ Sample COMP is a composite sample of samples collected at the Site on 6/1/1996

Table 2-4. Summary of Historical Analytical Data for Soil – Metals and Reactive Sulfide APS Douglas Former MGP Site, Douglas, Arizona

	ronner inder Si			Donath		Arsenic	Barium	Cadmium	Стотіит		Mercury	Selenium		Суапіде	Reactive Sulfide
Location	Sample ID	Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	/se	ariu	/ p _e	, in the second	Lead	le _{rc}	/e/e/	Silver	\\ \xi_n	Sulf
	Sample ID			<u> </u>	mg/kg	10	15000	39	120000	400	23	390	390	1200	NA NA
Non-Residential S					mg/kg	10	170000	510	1000000	800	310	5100	5100	12000	NA
SS-1	SS-1	Discrete	10/26/95	Surface	mg/kg	14.8	71	2	13.1	75.1	0.1U	1.5U	1.0U	0.5U	
SS-2	SS-2	Discrete	10/26/95	Surface	mg/kg	13.2	268	3	9.2	81	0.1U	1.5U	1.0U	0.5U	
SS-3	SS-3	Discrete	10/25/95	Surface	mg/kg	17.9	1.7	1.8	25.6	9.6	0.1U	8U	1.0U	1.5	
SS-4	SS-4	Discrete	10/26/95	Surface	mg/kg	28.8	1.7	9.3	9.6	388	0.10	3U	1.00	3.3	
SS-5	SS-5	Discrete	10/26/95	Surface	mg/kg	30.2	123	2.3	7.3	280	0.1	1.5U	1.1	0.5	
SS-6	SS-6	Discrete	10/26/95	Surface	mg/kg	83.5	68	1.4	96.1	2.530	0.1	13U	1.9	22.8	
SS-7	SS-7	Discrete	10/25/95	Surface			82.7	2.4	12.1		0.2	4U	1.8	14.8	
SS-8	SS-8		10/25/95	Surface	mg/kg	33.5 9.7	76.1	1.1	5.3	2,290	0.2 0.1U	2U	1.8 1.0U	0.5U	
		Discrete			mg/kg	11.4	140	4.3		58.2			1.0U	0.5U	
SS-9	SS-9	Discrete	10/26/95	Surface	mg/kg				5.4	85.9	0.1U	1.5U			
SS-10	SS-10	Discrete	10/26/95	Surface	mg/kg	14.9	142	5.8	6.7	152	0.2	1.0U	1.0U	0.5	
SS-11	SS-11	Discrete	10/25/95	Surface	mg/kg	16.8	91.9	2.6	6.6 4.6	73.5	0.1U 0.1U	1.0U	1.0U	0.5U 0.5U	
SS-12	SS-12	Discrete	10/26/95	Surface	mg/kg	9.5	110	0.8		52.8		1.0U			
SS-13	SS-13	Discrete	10/26/95	Surface	mg/kg	10.4	166	2	8.9	70.7	0.1U	1.0U	1.0U	0.5U	
SS-14	SS-14	Discrete	10/26/95	Surface	mg/kg	8.9	195	1.7	6.3	68.2	0.1U	1.0U	1.0U	0.5U	
SB-1	SB-1 4.5-6	Discrete	10/25/95	4.5-6.0	mg/kg	34.1	29.8	0.5U	14.9	12.1	0.1U	1.0U	1.0U	0.5U	
SB-1	SB-1 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	20	36.6	0.5U	4.8	10.8	0.1U	1.0U	1.0U	0.5U	
SB-2	SB-2 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	42.1	8.9	0.5U	14.9	9.5	0.1U	1.0U	1.0U	0.5U	
SB-3	SB-3 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	19.9	96.2	0.5U	4.2	10.4	0.1U	1.0U	1.0U	0.5U	
SB-4	SB-4 0-1.5	Discrete	10/25/95	0-1.5	mg/kg	18.3	68.4	1.1	6.1	80.6	0.1U	1.0U	1.0U	0.7	
SB-4	SB-4 3-4.5	Discrete	10/25/95	3.0-4.5	mg/kg	10	88.8	0.5U	4.6	5.2	0.1U	1.0U	1.0U	0.5U	
SB-4	SB-4 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	26	30.8	0.5U	7.2	15.5	0.1U	1.0U	1.0U	0.5U	
SB-5	SB-5 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	15.8	24.6	0.5U	4	7.6	0.1U	1.0U	1.0U	0.8	
SB-6	SB-6 9-10.5	Discrete	10/25/95	9.0-10.5	mg/kg	22.6	23	0.5U	3.1	9	0.1U	1.0U	1.0U	22.7	
SB-6	SB-6 15-16.5	Discrete	10/25/95	15.0-16.5	mg/kg	19.1	40	0.5U	42	4.5	0.1U	1.0U	1.0U	15.9	
SB-7	SB-7 10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	18.3	197	0.5U	5.6	11	0.1U	1.0U	1.0U	0.5U	
SB-7Dup	SB-7-Dup-10-11.5	Discrete	10/25/95	10.0-11.5	mg/kg	16.3	100	0.5U	12.2	5.3	0.1U	1.0U	1.0U	4	
SB-8	SB-8 9-10	Discrete	10/25/95	9.0-10.0	mg/kg	27.7	37	0.5U	12	17.4	0.1U	1.0U	1.0U	0.5U	
SB-8	SB-8 20-21.5	Discrete	10/25/95	20.0-21.5	mg/kg	8.7	26.3	0.5U	33	6.9	0.1U	1.0U	1.0U	10	
SB-9	SB-9 9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	19.9	109	0.5U	9.3	10.1	0.1U	1.0U	1.0U	0.5U	
SB-9	SB-9 15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	15.1	38	0.5U	4.6	8.9	0.1U	1.0U	1.0U	0.5U	
SB-9Dup	SB-9-Dup-15-16.5	Discrete	10/26/95	15.0-16.5	mg/kg	14.2	25.7	0.5U	2.6	7.5	0.1U	1.0U	1.0U	0.5U	
SB-10	SB10-9-10.5	Discrete	10/26/95	9.0-10.5	mg/kg	15.3	23.4	0.5U	2.7	6.4	0.1U	1.0U	1.0U	0.5U	
Oil Sump ⁶	Sludge	Discrete	12/27/95	NA	mg/l	1.0UT	0.6T	0.5UT	0.5UT	1.7T	0.1UT	1.0UT	1.0UT		
Purifier	Purifier	Composite	3/20/96	<0.5	% sulfur										12.70
SS-1 Area ⁷	SS-1	Composite	6/1/1996	Surface	mg/kg	10U/0.10UT	120	4.4	10	410	0.08U	5.0U	2.5U		
SS-4/SS-7 Area ^{7,8}	SS4-7	Composite	6/1/1996	Surface	mg/kg	13/0.10UT	110	2.5U	8.1	140	0.08U	5.0U	2.5U		
SS-5 Area'	SS5	Composite	6/1/1996	Surface	mg/kg	10U/0.10UT	85	2.5U	9.2	86	0.08U	5.0U	2.5U		
SS-6 Area'	SS6	Composite	6/1/1996	Surface	mg/kg	19/0.10UT	100	3.1	20	1,100/0.10UT	0.13	5.0U	2.5U		
SS-11/SS-12 Area ^{7,9}	BACK SS11-12	Composite	6/1/1996	Surface	mg/kg	10U/0.10UT	98	2.5U	6.7	75	0.08U	5.0U	2.5U		
Multiple ^{7,10}	COMP	Composite	6/1/1996	Surface	mg/kg	12/0.10UT	92	2.5U	10	250	0.08U	5.0U	2.5U		
Debris A	Debris A	Composite	08/19/96	Surface	mg/kg	18				44			2.50		
Debris A Debris B	Debris A Debris B	Composite	08/19/96	Surface		18				13					
Debris C	Debris C			Surface	mg/kg	19				100					
		Composite	08/19/96		mg/kg	19									
Debris D	Debris D	Composite	08/19/96	Surface	mg/kg					12					
Debris E	Debris E	Composite	08/20/96	Surface	mg/kg	17				41					

Table 2-4. Summary of Historical Analytical Data for Soil – Metals and Reactive Sulfide

Location	Sample ID	Sample Type	Sample Date	Depth (ft bgs) ¹	Units ²	A_{rsenic}	Barium	Cadmium	Сһготіит	rea _Q	Mercury	Selenium	Silver	Cyanide	Reactive Sulfide
Residential SRLs	3				mg/kg	10	15000	39	120000	400	23	390	390	1200	NA
Non-Residential S	SRLs⁴				mg/kg	10	170000	510	1000000	800	310	5100	5100	12000	NA
SS-4/SS-7 Area	SS4-7	Composite	08/21/96	>1	mg/kg	15				50					
SS-5 Area7	SS5 Comp	Composite	08/19/96	>1	mg/kg	18				11					
SS-6 Area - E	SS6E Comp	Composite	08/19/96	>1	mg/kg	18				11					
SS-6 Area - W	SS6W Comp	Composite	08/19/96	>1	mg/kg	24				217					
SS-6 Area - C	SS6CENT Comp	Composite	08/19/96	>1	mg/kg	23				199					
PUR N	PUR N	Composite	08/21/96	Surface	mg/kg	11				91					
Purifier	Subpurifier	Composite	08/21/96	Below Pad	mg/kg	15				15					

Notes:

UJ = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation

T = toxicity characteristic leaching procedure (TCLP) used

¹ ft bgs = feet below ground surface

² mg/kg = milligram(s) per kilogram

³ Cells highlighted in yellow indicate that the compound exceeded the 2007 residential soil remediation level (SRL).

⁴ Cells highlighted in **red** indicate the compound exceeded the 2007 non-residential SRL.

⁵ -- = Sample not analyzed for this compound.

⁶ Sludge sample was collected for waste disposal purposes. Metals reported in milligrams per liter.

⁷ Sampling location indicates area surrounding former October 1995 sampling Location (SS-x) where composite sample was collected. Results presented as total metals/TCLP metals.

⁸ Composite sample from areas surrounding SS-4 and SS-7

⁹Composite sample from areas surrounding SS-11 and S-S12

¹⁰ Sample COMP is a composite sample of samples collected at the Site on 6/1/1996

U = The analyte was analyzed for, but was not detected above, the reported sample quantitation limit.

	las r simer wer site,				techni	aal Taa	ting							An	alytica	ıl Testi	ng				
				Geo	teciiii	cai ies	ung						s	oil					Wat	er ⁴	
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHs (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)
D-SB11	Gas Holder 1	1 ¹								Х	Х	Х	Х	Х	Х	Х	Х				
		2.5								Х	Х	Х									
		5	Х	Х	Х	Х				Х	Х	Х	Х	Х	Х	Х	Х				
		7.5								Х	Х										
		10	Х	Х	Х	Х	Х			Χ	Х										
		15								Χ	Х										
		20 ²								Χ	Х										
D-SB12	Gas Holder 2	1 ¹								Χ	Х	Х	Х	Х	Х	Х	Х				
		2.5								Χ	Х	Х									
		5								Х	Х	Х	Х	Х	Х	Х	Х				
		7.5	Х	Х	Х	Х				Х	Х										
		10								X	Х										
		15	Х	Х	Х	Х				X	X										
D-SB13	Motor House	20 ²								X	X	~									
D-9R13	Meter House	2.5	Х	Х						X	X	X	Х	Х	Х	Х	Х				
		5	^	^						X	X	^	^	^	^	^	^				
		7.5								X	X										
		10								X	X										
		15								X	X										
		20 ²								X	Х										

				Geo	techni	cal Tes	stina							An	alytica	l Testi	ng				
							9						s	oil					Wat	er ⁴	
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHS (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)
D-SB14	South Generator House	1 ¹								Х	Х	Х	Х	Х	Х	Х	Х				
		2.5								Χ	Χ										
		5	Χ	Х	Х	Х				Χ	Х										
		7.5								Х	Х										
		10	Х	Х	Х	Х				Х	Х										
		15								Χ	Χ										
		20 ²								Х	Х										
D-SB15	North Generator House	1 ¹								Χ	Χ										
		2.5								Х	Х										
		5								Х	Х	Х	Χ	Х	Х	Х	Х				
		7.5	Х	Х	Х	Х	Х			Х	Х										
		10 ²								X	X										
D-SB16	Oil Tank/Sump	0 ³								X	X										
		2.5								X	X	X	Х	Х	Х	Х	Х				
		5 7.5								X	X	X									
		10								X	X	X									
		15								X	X	X									
		20 ²								X	X	X									
D-SB17	PURS32/42	0 ³								X	X										
	- 100-11	2.5								X	X										

					technic	aal Taa	ting							An	alytica	ıl Testi	ng				
				Geo	iteciiiii	Cai ies	ung						s	oil					Wat	er ⁴	
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHs (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)
D-SB17	PURS32/42	5								Х	Х	Х	Х	Х	Х	Х	Х				
		7.5								Х	Х										
		10								Х	Х										
		15								Х	Х										
		20 ²								Х	Х										
D-SB18	Area-A southwest	03								Х	Х										
		2.5								Χ	Х										
		5								Χ	Χ										
		7.5								Χ	Х										
		10 ²								Х	Х										
D-SB19	Area-A southeast	03								Χ	Х										
		2.5	Х	Х	Х					Х	Х	Х	Х	Х	Х	Х	Х				
		5								Х	Х										
		7.5	Х	Х	Х	Х				Х	Х										
		10								X	X										
		15								X	X										
D-SB20	Aron A north-set	20 ²								X	X										
D-2R50	Area-A northeast	2.5								X	X										
		5								X	X										
		7.5								X	X										

	lace reminer wier ente,				technic	ool Tos	sting							An	alytica	I Testi	ng				
				Geo	iteciiiii	cai ies	ung						s	oil					Wat	er ⁴	
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHs (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)
D-SB21	SS-5	10 ²								Х	Х										
		03								Х	Х										
		2.5								Х	Х	Х	Х	Х	Х	X	Х				
		5	Х	Х	Х	Х				Χ	Χ										
		7.5								Χ	Χ										
		10								Χ	Χ										
		15								Χ	Χ										
		20 ²	Х	Х	Х	Х	Х			Х	Х										
D-SB22	SS-10 PAH and background metals	03								Х	Х										
		2.5	Х	Х	Х					Χ	Χ										
		5	Х	Х	Х					Χ	Χ										
		7.5								Χ	Χ										
		10	Х	Х	Х					Χ	Х										
		15								Х	Х										
		20 ²								X	Х										
D-SB23	SS-14	03								X	X										
		2.5								X	X										
		5								X	X										
		7.5								X	X										
		10 ²								Χ	Χ										

				Goo	techni	cal Tos	eting							An	alytica	l Testi	ng				
				060	ileciiiii	cai i es	ung						s	oil					Wat	er⁴	
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHS (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)
D-SB24	Purifiers	O ³								Х	Х										
		2.5								Х	Х										
		5	Х	Х	Х	Х				Х	Х										
		7.5								Χ	Χ										
		10								Х	Х										
		15								Х	Χ										<u> </u>
		20 ²	Х	Х	Х	Х				Χ	Χ										
D-SB25	Area-A, Northwest Background Metals and Groundwater	03								Х	X	Х	Х	Х	X	Х	Х				
		2.5								Х	Х	Χ	Х	Х	Χ	Х	Х				
		5	Х	Х	Х	Х				Χ	Х										
		7.5						Х	Χ	Χ	Χ										
		10	Х	Х		Х		Х	Х	Х	Х										
		15								Х											
		20	Х	Х	Х	Х		Х	Х	Х											
		25								Х	Х										
		30						Х	Х	X											
		40	Х	Х		Х				X											
		50 ⁴		V				Х	Х	X	Х										
		60 ⁴	Х	Х	Х	Х		V	V	X								~			
		70 ⁴						X	Χ	Χ		Χ						X	Х	Χ	Χ

				Geo	technic	ral Tos	ting							An	alytica	l Testi	ng				
				060	tecilin	Jai 163	ung						s	oil					Wat	er ⁴	
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHS (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)
D-SB26	Southeast Background Metals and Groundwater	03								х	Х										
		2.5								Х	Х										
		5	Х	Х		Х		Х	Х	Х	Х										
		7.5						Х	Х	Х	Х										
		10						Х	Χ	Х	Χ										
		15	Х	Х	Χ	Χ				Χ	Χ										
		20	Х	Х		Х		Х	Х	Х	Χ										
		25								Х	Χ										
		30	Х	Х	Х	Х		Х	Х	Х											
		40								X											
		50 ⁴	X	X	Х	X		Х	Х	X	Х										
		60 ⁴	X	X		X		Х	Х	X		Х						Х	Х	Х	Х
D-SB27	Southwest Background Metals and Groundwater	0 ³	^	^		^		^	^	X	Х	^						^	^	^	^
		2.5								Х	Х										
		5								Х	Х										
		7.5	Х	Х	Х	Х				Х	Х										
		10						Х	Х	Х	Х										
		15	Х	Х	Х	Х				Х	Х										
		20						Х	Х	Х	Х										

		Geotechnical Testing								Analytical Testing											
				Geo	lecilli	cai ies	ung				Soil						Water⁴				
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHS (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)
		25								Х	Х										
		30						Х	Х	Х											
		40								Х											
		50 ⁴	Х	Х	Χ			Х	Х	Х	Χ										
		60 ⁴								Х											
		70 ⁴						Х	Х	Х		Х						Х	Х	Х	Х
D-SB28 and D-SB29	Southwest Background Metals	03								Х	Х										
		5	Х	Х	Х					Х	Χ	Х	Х	Χ	Χ	Х	Х				
		10	Х	Х	Χ					Х	Х										
		15	Х	Х	Х					Х	Х										
		20 ²								Х	Х										
D-SB30	Northeast Background Metals	03								Х	Х										
		5								Х	Х	Х	Х	Χ	Χ	Х	Х				
		10	Х	Х	Х					Х	Х										
		15	Х	Х	Х					Х	Х										
		20 ²	Χ	Χ	Χ					Χ	Χ										

APS Douglas Former MGP Site, Douglas, Arizona

			Geotechnical Testing							Analytical Testing													
			Geotechnical Testing							Soil									Water⁴				
Location	Description	Sample Depth (ft bgs)	Moisture Content	Sieve Analysis	Atterberg Limit	In Situ Density	Undrained Sheer Strength	FOC (ASTM DD4129-05)	Porosity	PAHs (EPA 8310 or 8270 SIM)	Total Metals (6010B/7471A)	Total VOCs (8260B)	PCB (EPA 8082)	Paint Filter (EPA 9095B)	Ignitability (SW846 Article 7.12)	ph (EPA 9045B)	Total Cyanide (EPA 9013/9014)	BTEX (8021B)	Total VOCs (8260B)	PAHs (8310)	Metals (200.7)		
D-SB31 through D-SB34	North Background Metals	03								Х	х												
		5	Х	Х	Х					Х	Х												
		10	Х	Х	Х					Χ	Χ												
		15	Х	Χ	Х					Χ	Χ												
		20 ²								Χ	Χ												
D-SB35	Northwest Background Metals	O ³								Х	Х												
		5	Х	X	Х					Χ	Х	Х	X	Х	Χ	Х	Х						
		10	Х	Х	Х					Χ	Χ												
		15								Х	Χ												
		20 ²	Х	Х	Х					Χ	Χ												

Notes:

EPA = U.S. Environmental Protection Agency

FOC = fraction organic carbon

PCB = polychlorinated biphenyl

¹ Sample collected immediately under foundation structure or concrete pad.

² Analytical sample held for pending analysis.

³ Surface soil samples collected prior to drill rig mobilization.

⁴ If groundwater is encountered, monitoring wells will be installed and groundwater samples will be collected and analyzed for polynuclear aromatic hydrocarbons (PAHs) (EPA Method 8310), benzene, toluene, ethylbenzene, and xylenes (BTEX) (EPA Method 8221B), Metals (EPA Method 200.7), and total volatile organic compounds (VOCs) (EPA Method 8260B). A notice of intent will be submitted to the Arizona Department of Water Resources using form 55-43B.

Table 4-1. Summary of Sample Handling Requirements

APS Douglas Former MGP Site, Douglas, Arizona

Analyte	Method	Matrix	Container Type	Preservative
Soil Analyses				
	CI	nemical An	alysis	
PAH	EPA 8310 or 8270 SIM	Soil	One 8 oz. glass jar or brass sleeve	4°C
Total VOCs (BTEX)	EPA 8260B	Soil	Methanol Kit (10 grams soil/10 mL MeOH) or Encore	Methanol/4°C
Total Cyanide	EPA 9013/9014	Soil	One 8 oz. glass jar or brass sleeve	4°C
Fraction Organic Carbon	ASTM D4129-05	Soil	One 8 oz. glass jar or brass sleeve	4°C
	Geo	technical A	Analysis	
Moisture Content		Soil	Brass sleeve or Grab	None
% Passing 200 Sieve		Soil	Brass sleeve or Grab	None
Atterberg Limit		Soil	Brass sleeve or Grab	None
In Situ Density		Soil	Brass sleeve	None
Shear Strength		Soil	Brass sleeve	None
Dry Bulk Density		Soil	Brass sleeve	None
Wa	ste Characterization and I	nvestigatio	on-derived Waste (IDW) Analyses	
PAH	EPA 8310 or 8270 SIM	Solid Liquid ¹	One 8 oz. glass jar or brass sleeve Two 500-ml amber glass jars	4°C 4°C
RCRA 8 Total Metals	EPA 6010B/7471A	Soil	One 8 oz. glass jar or brass sleeve	4°C
Total Cyanide	EPA 9013/9014	Solid	One 8 oz. glass jar or brass sleeve	4°C
PCB	EPA 8082	Solid	One 8 oz. glass jar or brass sleeve	4°C
Total VOCs	EPA 8260B	Soil	Methanol Kit (10 grams soil/10 mL MeOH) or Encore	Methanol/4°C
		Liquid ¹	Three 40-mL VOA vials	HCL/4°C
Corrosivity by pH	EPA 9045B	Solid Liquid ¹	One 8 oz. glass jar or brass sleeve One 500 mL poly	4°C 4°C
Paint Filter	EPA 9095	Solid	One 8 oz. glass jar or brass sleeve	4°C
Ignitability	SW846 Article 7.1.2	Solid Liquid ¹	One 8 oz. glass jar or brass sleeve Three 40-mL VOA vials	4°C 4°C

Notes:

BTEX = benzene, toluene, ethylbenzene, and xylenes

EPA = U.S. Environmental Protection Agency

HCL = hydrochloric acid

HNO3 = nitric acid

MeOH = methanol

mL = milliliter(s)

NaOH = sodium hydroxide

oz. = ounce

PAH = polynuclear aromatic hydrocarbon

PCB = polychlorinated biphenyl

RCRA = Resource Conservation and Recovery Act

VOA = volatile organic analysis

VOC = volatile organic compound

¹ Liquid Environmental Solutions will sample and analyze IDW water

[°]C = degrees Celsius

Table 4-2. Quality Control Sample Type Abbreviations

Field QC Type Name	QC Type Codes
Field Duplicate	FD
Trip Blank	ТВ
Field Blank	FB
Ambient Blank	AB
Equipment Blank	EB
Split Sample	SS
Field Spike	FS

Notes:

QC = Quality Control

Table 2-5. ATSDR Historical Contaminant Concentrations in Offsite Residential Soil (Phelps Dodge Site

Contaminant	Maximum Concentration (mg/kg)	Mean Concentration (mg/kg)	Year
Lead ¹	1,170	254	1985
Lead ²	564	172	1989
Arsenic ²	35.8	15	1989

¹ ATSDR. 1995. Reference 4 "Selected Reports on Douglas, AZ, maintained by the Office of Risk Assessment, ADEQ, Phoenix, AZ, 1991". Based on 52 surface samples collected from a widespread area in Douglas and collected less than 3 inches below ground surface

mg/kg = milligram(s) per kilogram

² ATSDR. 1995. Reference 45 "Selected Reports on the Phelps-Dodge site in Douglas, Arizona maintained by the EPA, Region IX. 1973-1994". Based on seven surface samples ranging 1 to 6 miles from the Phelps Dodge site and collected less than 3 inches below ground surface.

Table 2-6. ATSDR Historical Groundwater Concentrations

APS Douglas Former MGP Site, Douglas, Arizona

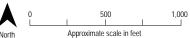
Contaminant		concentration g/L)	Arizona Aquifer Water Quality Standard ¹
	Offsite	Onsite	Standard
Arsenic	0.001	0.0432	0.05
Barium	0.08	ND	2
Cadmium	0.002	ND	0.005
Chromium	0.003	ND	0.1
Lead	0.02	0.0027	0.05
Mercury	0.0001	ND	0.002
Selenium	0.023	ND	0.05
Silver	0.003	ND	NA
Zinc	0.08	ND	NA

Source: ATSDR, 1995

Groundwater samples collected and tested by ADEQ in 1984 from the Douglas municipal city well No. 6 (referenced as offsite in Table 2-6) and from a Phelps Dodge well (referenced as onsite in Table 2-6)

mg/L = milligram(s) per liter


NA = not available


ND = not detected

6-2 BI0304191343PHX

¹ Arizona Aquifer Water Quality Standards source: Arizona Administrative Code R18-11-406.A, December 31, 2016. Accessed July 30, 2019.

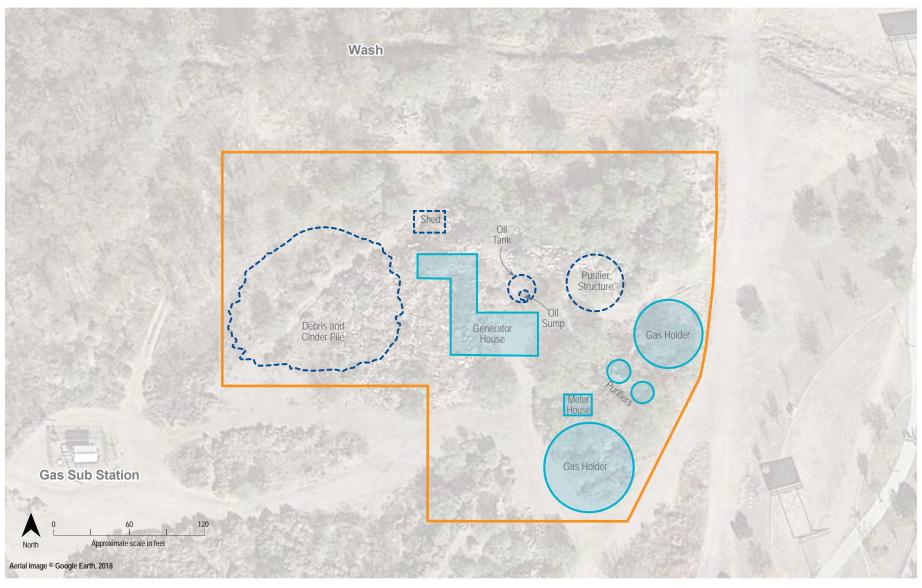
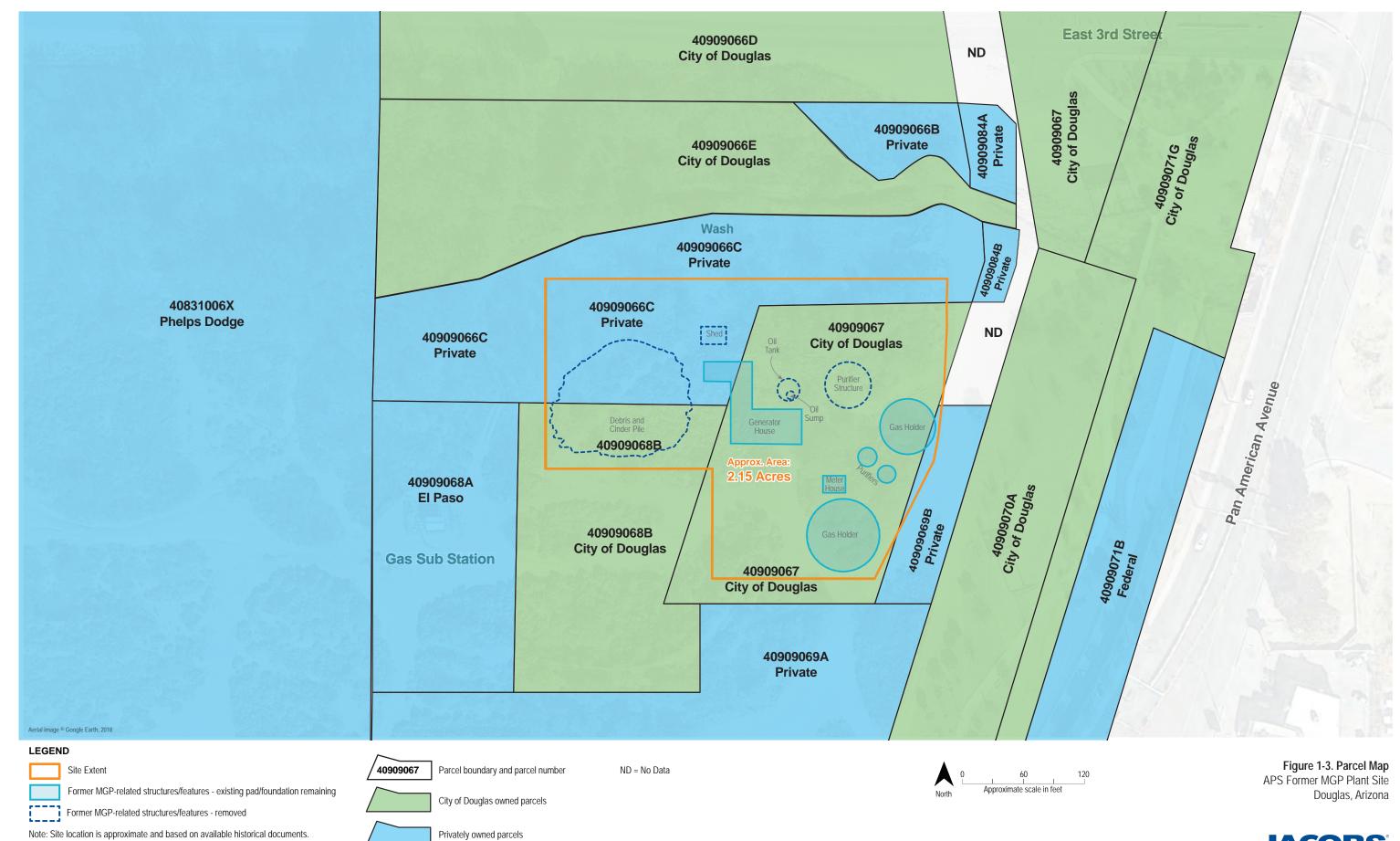

Figures

Figure 1-1. Site Location MapAPS Former MGP Plant Site
Douglas, Arizona

LEGEND



Former MGP-related structures/features - existing pad/foundation remaining

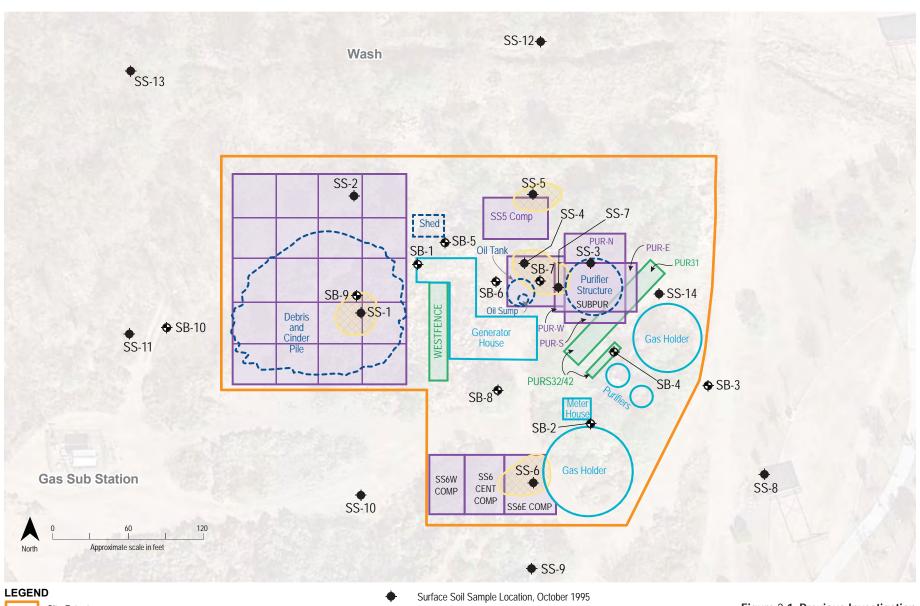
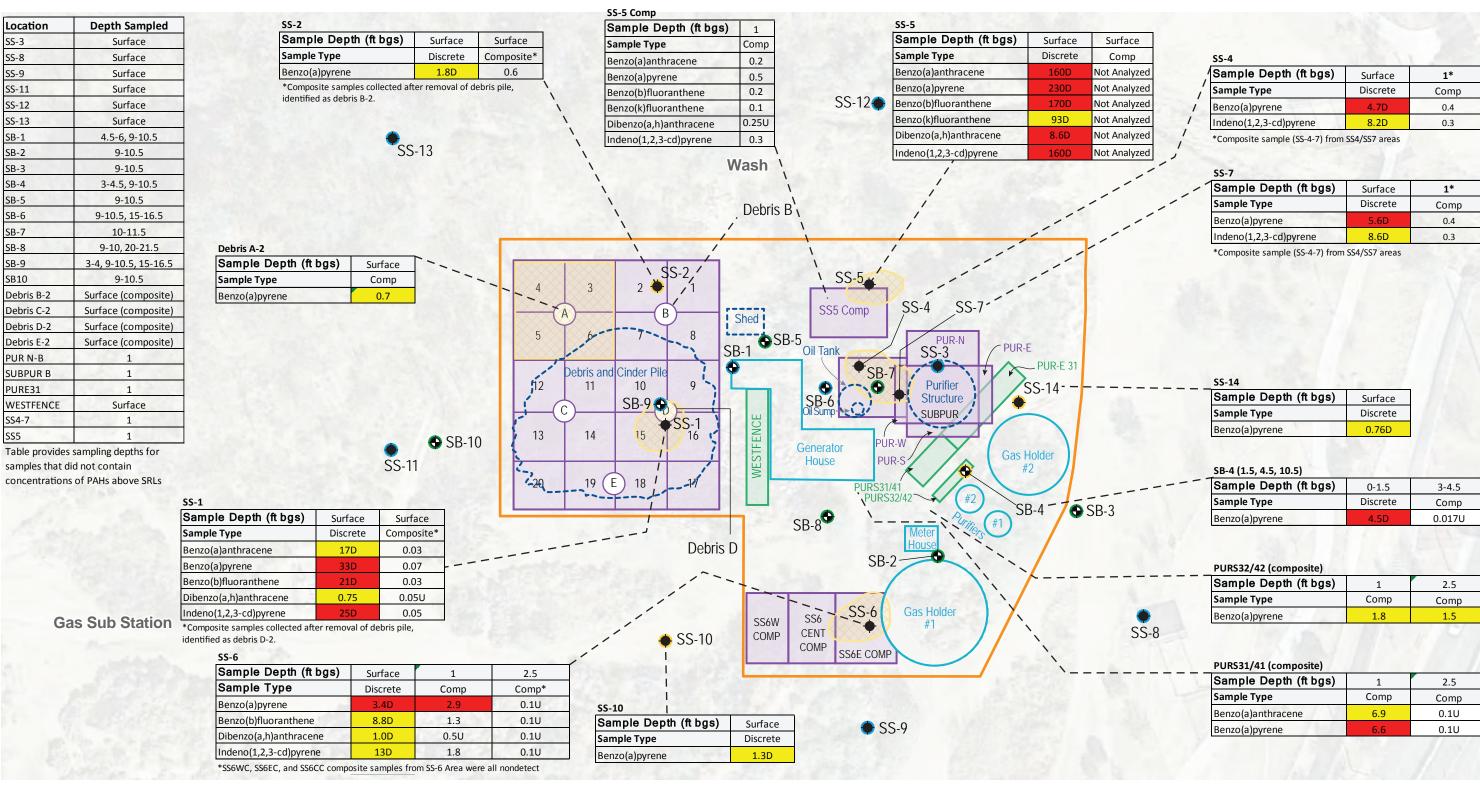

Former MGP-related structures/features - removed

Figure 1-2. Fomer Structures MapAPS Former MGP Plant Site
Douglas, Arizona



- Soil Boring Sample Location, October 1995
- Composite surface soil sampling conducted June 1996 (before excavation activities)
- Phase I composite surface soil sampling conducted August 1996 (after Phase I excavation activities)
- Phase II composite subsurface soil sampling conducted November 1996 (after Phase II excavation activities)

Figure 2-1. Previous Investigation **Sampling Locations** APS Former MGP Plant Site Douglas, Arizona

LEGEND

Site Extent

Former MGP-related structures/features - existing pad/foundation remaining

Former MGP-related structures/features - removed

June', 1996.

Composite surface soil sampling conducted

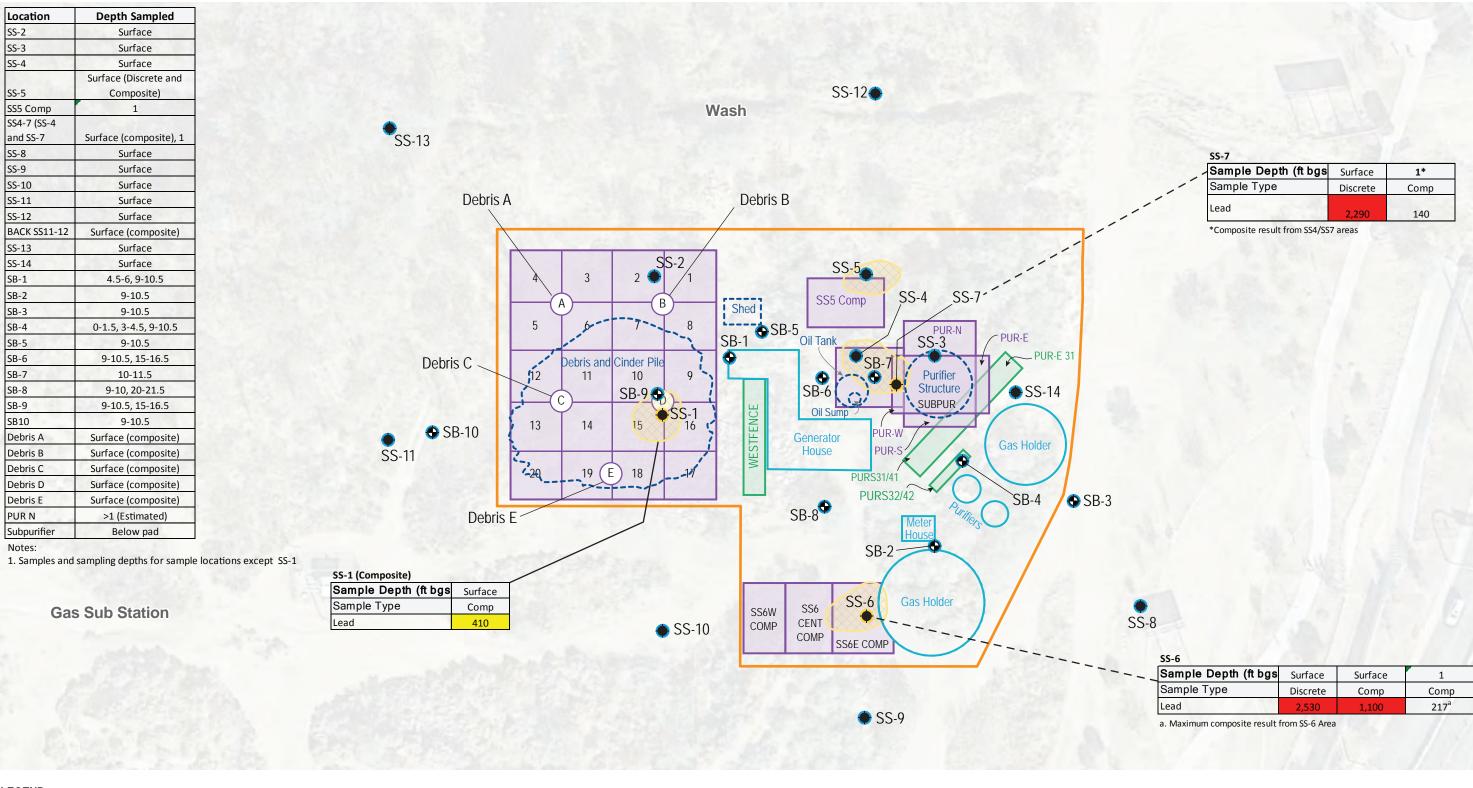
Phase I composite surface soil sampling conducted August, 1996.

> Phase II composite subsurface soil sampling conducted November, 1996

Surface Soil Sample Location, October 1995

Soil Boring Sample Location, October 1995

At least one sample from sampling locations was analyzed for PAH. No PAH were detected.


At least one sample from sampling locations was analyzed for PAH. PAH were detected, but were below residential and non-residential SRLs.

At least one sample from sampling locations was analyzed for PAH. PAH were detected above residential SRLs.

Figure 2-2. Polynuclear Aromatic Hydrocarbons (PAHs) in Soil APS Former MGP Plant Site Douglas, Arizona

LEGEND

Site Extent

Former MGP-related structures/features - existing pad/foundation remaining

Former MGP-related structures/features - removed

Composite surface soil sampling conducted June, 1996.

Phase I composite surface soil sampling

conducted August, 1996.

Phase II composite subsurface soil sampling conducted November, 1996

 At least one sample from sampling locations was analyzed for lead. Lead was detected, but was below residential and non-residential SRLs.

Surface Soil Sample Location, October 1995

Soil Boring Sample Location, October 1995

 At least one sample from sampling locations was analyzed for lead. Lead was detected above residential SRL

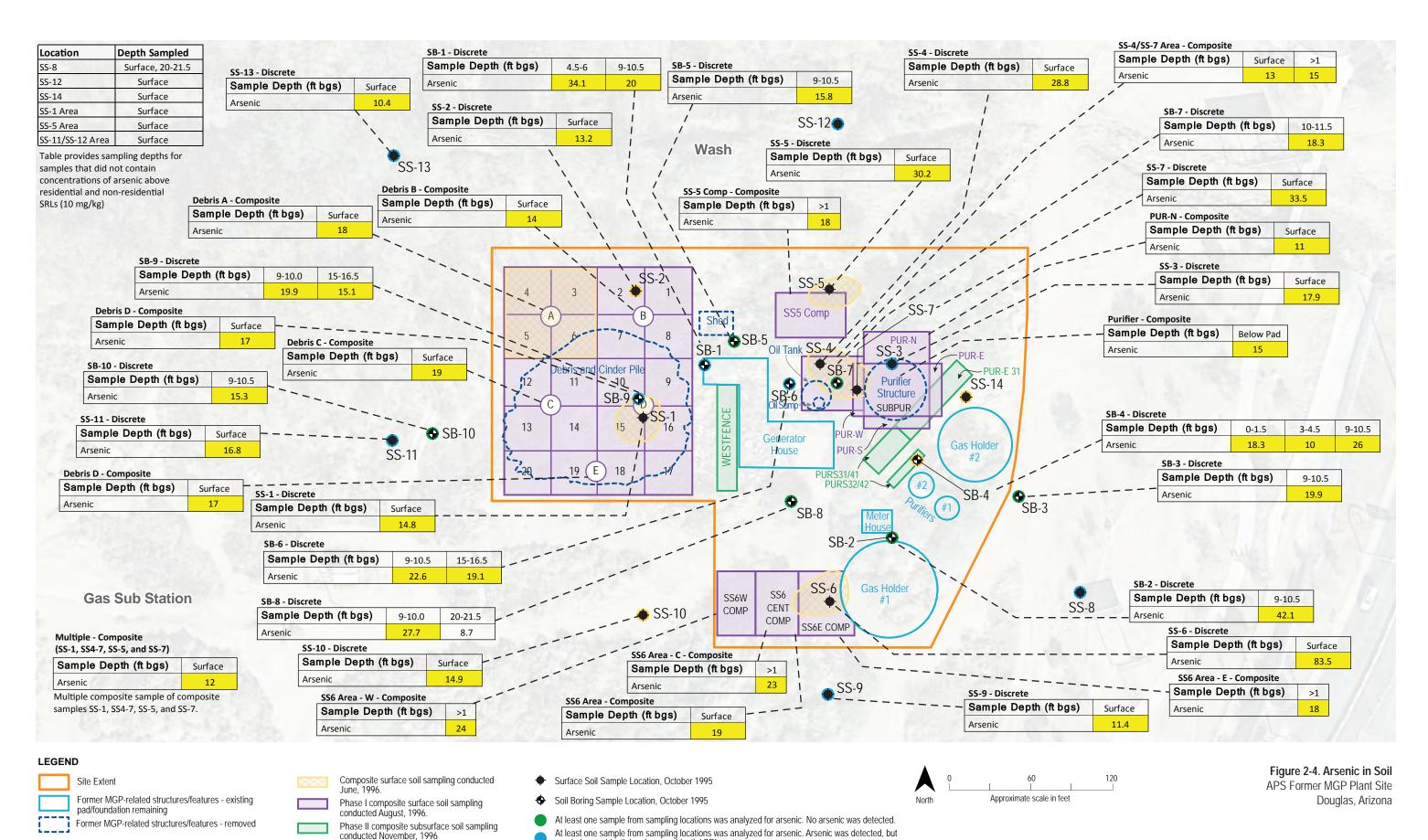



Figure 2-3. Lead in Soil APS Former MGP Plant Site Douglas, Arizona

was below residential and non-residential SRLs.

above residential SRL.

At least one sample from sampling locations was analyzed for arsenic. Arsenic was detected

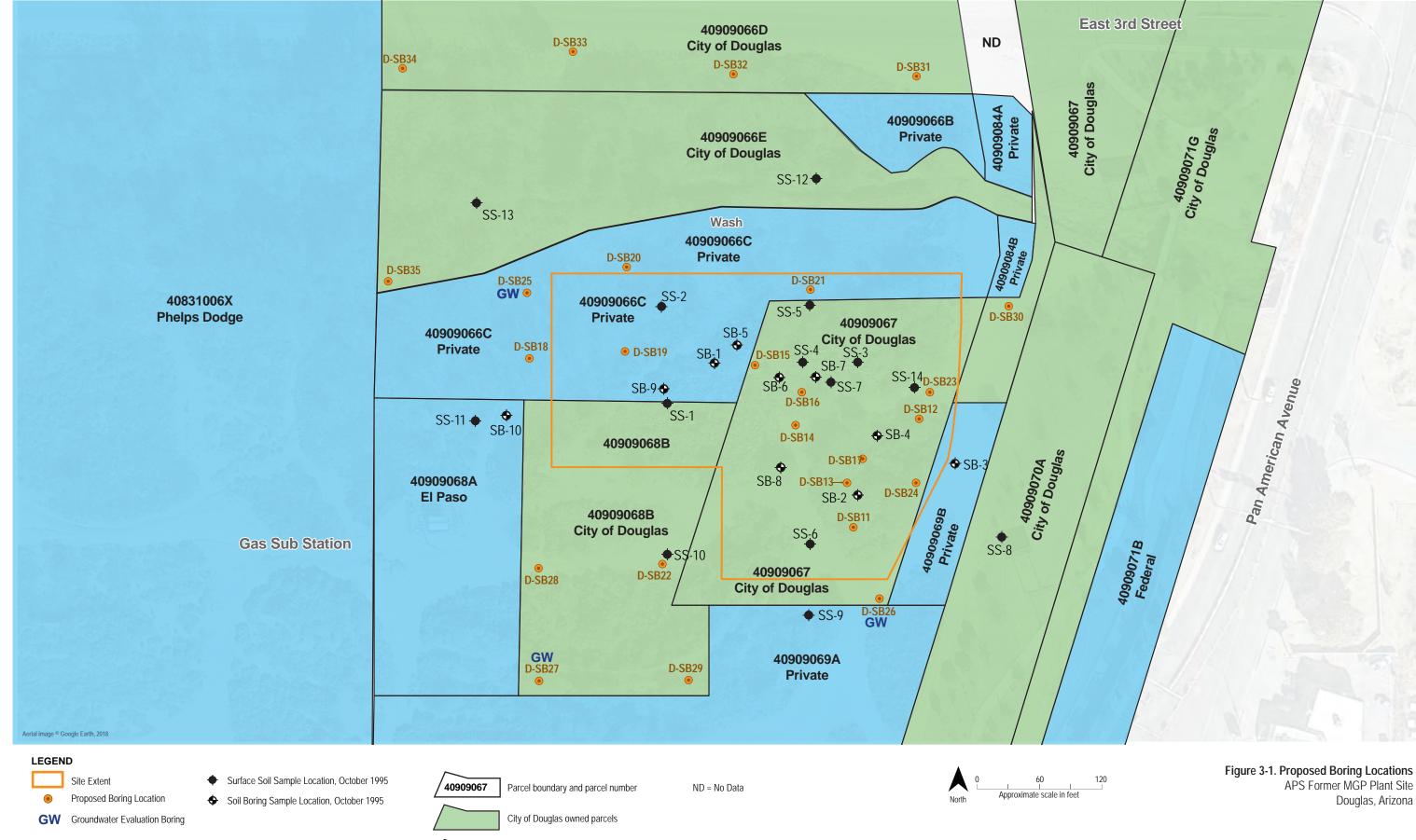
JACOBS

110 270 Location Depth Sampled Debris 3 (Surface, 1) - Composite Debris 2 - Composite SS5 - Composite Debris 9 (Surface, 1) - Composite SB-1 4.5-6, 9-10.5, 15-16.5 Sample Depth (ft bgs) Sample Depth (ft bgs) Sample Depth (ft bgs) Surface Surface Surface Sample Depth (ft bgs) Surface 1 9-10.5 SB-2 50 20U 23 480 73 20U SB-3 9-10.5 PUR N - (Surface, 1) - Composite SB-5 9-10.5 Sample Depth (ft bgs) Surface 1 SS-12 SB-6 9-10.5, 15-16.5 140 71 Wash SB-7 10-11.5, 15-16 0-1.5, 3-4, 9-10.5, 15-16.5 SB-9 SS-13 SB-1 (3, 6, 10.5, 16.5) SB10 9-10.5 Subpurifier - Composite Sample Depth (ft bgs) 1.5-3 Sample Depth (ft bgs) Surface Surface (composite) Debris 1 TPH 780 57 Debris 5 Surface (composite) Debris 4 (Surface, 1) - Composite Debris 6 Surface (composite) Sample Depth (ft bgs) Surface 1 Debris 7 Surface (composite) 590 20U Debris 8 Surface (composite) Debris 10 Surface (composite) Debris 11 Surface (composite) SS-5 Debris 14 Surface (composite) Debris 12 - Composite Debris 15 Surface (composite) Sample Depth (ft bgs) SS-7 Surface SS5 Comp Debris 16 Surface (composite) **PUR E - Composite** TPH 24 Debris 17 Surface (composite) Sample Depth (ft bgs) Surface SB-5 PUR-N Debris 20 Surface (composite) TPH 520 SB-1 SS4-7 ebris and Cinder Pile SS5 Comp Debris 13 - Composite **PUR W - Composite** 11 10 Purifier / This table represents depths of TPH analyses Sample Depth (ft bgs) Surface Sample Depth (ft bgs) Surface Structure/ that were below the laboratory reporting SB-9 27 150 TPH SUBPUR limit Oil Sump ◆ SB-10 Generator Gas Holder House SS-11 **PURS - Composite** 19 (E) 18 Sample Depth (ft bgs) Surface PURS31/41 73 Debris 19 (Surface, 1) - Composite PURS32/42 SB-4 **◆** SB-3 _ SB-8 ◆ Sample Depth (ft bgs) Surface TPH 60 20U SB-4 (1.5, 4.5, 10.5, 16.5) SB-2 Debris 18 - Composite SS-1 - Composite Sample Depth (ft bgs) 0-1.5 3-4.5 Sample Depth (ft bgs) Surface Sample Depth (ft bgs) Surface 4,000 24 28 SS-6 Gas Holder TPH 40 SS6 Gas Sub SS6W SS-8 CENT COMP ◆ SS-10 Station COMP SS6E COMP SS6 - Composite Sample Depth (ft bgs) Surface 780 **♦** SS-9 SS6E Comp - Composite SS6CENT Comp - Composite SB-8 (10, 16.5, 21.5) SS6W Comp - Composite Sample Depth (ft bgs) 1 Sample Depth (ft bgs) Sample Depth (ft bgs) Sample Depth (ft bgs) 9-10 39 26 42 53 **LEGEND** Figure 2-5. Total Petroleum Composite Surface soil sampling conducted Site Extent Surface Soil Sample Location, October 1995 Hydrocarbons in Soil June, 1996. Former MGP-related structures/features - existing Soil Boring Sample Location, October 1995 North Approximate scale in feet APS Former MGP Plant Site Phase I composite Surface soil sampling pad/foundation remaining conducted August, 1996. Douglas, Arizona Former MGP-related structures/features - removed Phase II composite subSurface soil sampling

BACK SS11-12 - Composite

Sample Depth (ft bgs)

SS4-7 - Composite


Sample Depth (ft bgs)

Surface

Surface

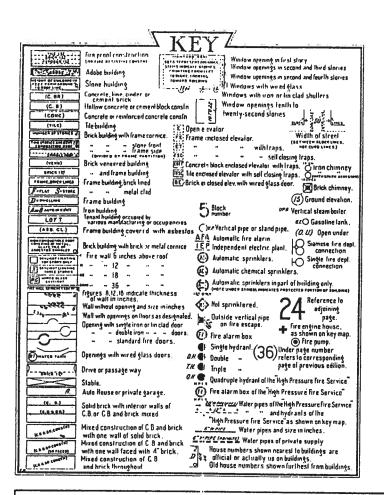
conducted November, 1996

Privately owned parcels

Mode	Task Name	Duration	Start Finis	Year 2 Year 3 Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 Month 6 Month 8 Month 9 Month 1 Month	2 Month 2 Month 2 Month 24
5	Douglas MGP Site	476 days	Wed 10/17/We	['] 2	
-5	Project Award	1 day	Wed 10/17/We	7	
	Project Plans And Start Up	11 days	Thu 10/18/1Thu	18	
- <u>-</u> -	Data review And Site Characterization	111 days	Thu 11/8/18Thu		
9	Additional Site Investigition	62 days	Wed 3/20/1Thu	15	
5	Removal Action Plan (RAP)	77 days	Fri 5/17/19 Mo	.9	
5	Topographic Mapping and Utility Designation	n 12 days	Wed Thu 4/3/19 4/1		
8 =3	Remediation Design	50 days	Tue 8/13/19Mo		
5 -3	Permitting Assistance	30 days	Tue 9/24/19Mo	<u>'1</u>	
8	Contractor Procurement	57 days	Tue 10/8/19We	; <u>/</u>	
4	Removal Action	20 wks	Thu 12/26/1We	2	_
5 🔜	Remediation Closure Report	85 days	Thu 4/16/2(We	<u>'2</u>	

Е Task Project Summary Manual Task Start-only Deadline Project: APS Douglas MGP 201 Date: Tue 2/26/19 Split Inactive Task Duration-only Finish-only 3 Progress Milestone Inactive Milestone Manual Summary Rollup External Tasks Manual Progress \Diamond Summary Inactive Summary Manual Summary External Milestone Page 1

Appendix A Sanborn Maps and Aerial Photographs


APPENDIX A

SANBORN FIRE INSURANCE MAPS

SANBORN MAP LEGEND . CORING OF FIRE-RESISTIVE STRUCTURAL UNITS FOR FIREPROOF AND NON-COMBUSTIBLE BUILDINGS GLOSSARY A. ILLINES An artifrary boundary between educations where. A. Private garage. A. Private garage. A. Private garage. A. P. Above. A. A. A. Couloped with fire detecting deviates which automatically signal accentral fire department. A. ILL. Coulomb figure. A. ILL. A. Insusorry will extending devia through figure. A. ILL. A. Insusorry will extending March fire MALL. A insusorry will extending SNR. M. INS. M. S. M RCEOF CODE STRUCTURAL BRIT CODE STRUCTURAL UNIT CODE STRUCTURAL UNIT The coding to left, for framing, floor and roof structural units is used in describing the construction of fire-resistive buildings, in addition, reports for five-resistive buildings will show the date built, wall construction other than brick, and ceilings. Reinforced Concrete, Heinforced Concrete with Masonry Units. Pre-cast Concrete or Gypsum Slabs or Planks. Heinforced Concrets. Reinforced Concrete with Masoury Units. Reinforced Gypsinn Concrete, Pre-cast Concrete or Gypsinn Slabs or Planks, Reinforced Concrete Frame. ١. ٠. Heinforced Concrete Joists, Columns, Hesma, Trussee, Arches, Masonry Piers, c. Protected Steel Frame. Concrete on Metal Lath, Incombustible Form Boards, Paper-backel Wite Fabric, Steel Deck, or Cethular, Ribbed or Corrugated Steel Units. A fireproof building built in 1963 with concrete walls and reinforced concrete frame, floors and roof. Concrete or Gypsum on Metal Lath, Incombustible Form Huards, Paper-back Wire Fabric, Steel Deck, or Cellular, Ribbed or Corrugated Steel Units, FP - 1962 Individually Protected Steel Joints, Columns, Heams, Trusses, Arches. (CONG.) Đ, À - I - a HASEMENT A story leaving the floor below ground & its ceiling at least it shows grown, the state of the collection of the state of the collection of the state of the collection of the state of the sta Indirectly Protected Steel Ε. FPX - DE A fireproof building built in 1962 with metal panel walls, reinforced concrete columns and beams, concrete floors on metal lath and gypsum slab roof; non-combustible ceilings. (METAL PAMES) B-2-3 (METAL PAMES) Open Steel Deck or Grating. Incombustible Composition Buards with ar without Insulation, Indirectly Protected Steel Joists, Columns, Beams, Trusses, Arches, revisition. Insumry or Metal Tites. Unprotected Steel Frame. Steel Deck, Corrugated Metal or Asbestos Protected Metal with or without Insulation, A noncombustible building built in 1962 with concrete block walls; unprotected steel cul-umns, beams and juists; concrete floors on metal lath and steel deck roof. N C - 1962 Unprotected Steel Juists, Culumna, Beams, Frusses, Arrhes. н. Masonry Bearing Walls only. CONSTRUCTION RESIDENTIAL OCCUPANCY SYMBOLS D. Single family unit or as qualified by Single isting a summer in multi-family residential a MPIS. A multi-family residential building corresponding with tocal Rating Hursau definition in family units per floor, story height. A separation of maranes. Important interior and all exterior mesonry walls of all non-residential buildings of four dwelling units or less are buildings and residential buildings of five or more dwelling units are shown with a standard line and the construction is noted on all buildings shown with a standard line and the construction is noted on all buildings dispersion of the construction is noted on all buildings and after July, 1953, WALLS EMOUTITRAN per thor, story height, & separation of entrance, the MMCG. A revidential building normally occupied by a single family but with 10 or more rooms rested for lodging purposes. EXCHIONS: 6 rooms in Arizons. California, Nevada, Utah & Mostans; 5 rooms in tregot & Washington; 6 rooms in Idaho & Sassington; 6 OPENINGS (Intertor) (Exterior) 3" Brick Mixed Construction of Concrete Blocks, Brick Faced Wall with No Openings Ist Ploor CBMI Frame D Wall with Double Standard Fire Doors lat Floor (tong) 12" ('oncrete ist & 2nd Floors Mixed Construction of Concrete Blocks & Brick Wall with Standard Fire Door Hasement Tile from Foundation to Top Ceiling only PINE REASTIVE CONSTRUCTION SYMBOLS F.P. Approved masonry walls, floors & F.O., interior supports of approved masonry, concrete, and/or protected steel. 570 4 18" & 20" Stone 3rd Floor Wall with Substandard Fire Doors let & 3rd Floors Concrete 1st Floor only TILE) Wall Thicknesses Placed Relative to Respective Places lat & 4th Fl. with Metal Shutter Lat. Masonry Walls, Metal Wall with Metal & Wired Class Fire Doors all Floors Hollow Cinder or Con-crete Block 1st Floor only F. P. Z. F. P. qualifications except in-ferior or sub-standard walls. HOURY Adobe Wall with Substandard Fire Doors 1st, 2nd & 3rd Floors & Unprotected Opening 4th 10th & 22nd only ferior or sub-standard walls. N.C. Fire resistive with unprotected structural stool units. History WALL A bounded manner; wat heart was a sub-standard manner; wat heart was a sub-standard manner; wat heart was a sub-standard wall between the condition of terrain. LEXIVED WALL A manner; bearing wall with attended ledges to support floors. LOT Trensited by industrial uccupancies. M. S. & G. Metal usui & glass. M. S. & G. Metal usui & glass. M. S. & C. Metal usui & glass. Hotlow Cinder or Con-crete Block Interior Wall Basement to Roof (C SR) Cinder, Concrete or Cement 1b tok 10th to 22nd P1. St. 240 Brick 2nd Floor only Wall with Small Unprotected Openings only (C B) Hollow Cimier or Con-crete Blocks, Pilan-tered Tile Interior Wall MC/28 Tile lat 6 3rd Floors Wired Glass in Metal Sush 2nd & 3rd Fi, Wall with Unprotected Open-ings all Floors C AR Cement Brick End Watt NON-MASONRY CONSTRUCTION Non-masonry waits are shown with fine (_____) lines, (Wall construction other than wood and stucco o Wood & Sturro & Cement Plaster, Etc. on Wood Frame the curresponding flour of an adjoining building. Q.L. Chen between ground and first floor. PIASTID. Mesonry reinforcing columns in walls. Strike Str fron Building with Wood Boof, (Location of Exten-sive Wood Areas Specif-ically noted) Aspnalt and/or Asbestos Protected Metal on Steel Prame Woud Sauh & Glass Apron Wally With Wood Sash and Glass TELFR Brick Veneered on Wood Frame (Other Types of Veneered on Wood Frame Specifically Noted) GLASS Metal Sash & Glass ري معوا on diagram. Stissivi), Suspended ceilings below floor sad/or roof beams. SYST. System. TRANSE. Transformer. W(I), Wood. Stucco, Cement Plaster. Etc. on Steel Frame Ashestos Clad on Wood Frame, Noted in Nos-Residential Structures only. Asphalt and/or Asbestos Protected Metal on Wood Prame Metal Clad on Wood (IR CL) Mixed Musuary & Non-Massary (Type of Massary Massary (Noted) Mixed Wall--0' of CB 1 800 500 Craw appraises to mitte as - Vt | 1 Parent. (NOW) | Iron BullJing POST IN THE (diass Gines Panels VE SULEY 28 Paul Ch U MILLION M Wood, Brick Lined, Sr. Filled or Heick Nogged Metal Panels 7 ******** FIRE PROTECTION -8 Fire Department Connection Single Hydrant 2 Stories & Basement 1st Floor Gecupied by Stor 2 Residential Units above 1 Auto in Basement Drive or Passageway Wood Shingle Hoof, esc Frame Enclosed Elevator with Self Closing Traps \$ 28 2-D. A w d -W-JU-, OH . Double Hydrant **(3)** Automatic Sprinklers throughout contiguous sections of single risk Concrete Block Enclosed Elevator with Traps er. TH, Triple Hydrani Automatic Sprinklers all floors of building **(3)** QH . Quadruple Hydrant of the High Pressure Service Tile Enclosed Elevator with Self Closing Traps O. TSC, Iron Chimney Brick Chimney Autumatic Sprinklers in part of hulding only (Note under Symbol Indicates protected portion of building) **(1)** Water Pipes of the High Pressure Iron Chimney (with Spark Arrestor) 670 Gasoline Tank DE 7 Brick Enclosed Elevator with Wired Glass Door IR.CH. SA IST ONLY (A) ● UP B Vertical Steam Boiler ### Water Pipes of the High Pressure Service as Shown on Key Map Open Hoist @ Fire Pump € Not Sprinklered [VT]Horizontal Steam Boiler Hoist with Traps 1'ublic Water Service STORE **69** Automatic Chemical Sprinklers (A) Width of Street between Black Lines, not Curb Lines Chemical Sprinklers in part of building unly (Note under Symbol indicates protected portion of building) Open Hoist Basement to 1st EMACALY) Private Water Service \$ 03 **(2)** 9 Stairs Ground Elevation SAN LINE MISCELLANEOUS House numbers nearest to Hulldings are Official or Actually up on Build-ings. Old House Numbers are Farthest from Hulldings VERTICAL OPENINGS 35 D ő ő Number of Stories Height in Feet Composition Hoof Covering Vertical Pipe or Stand Pice Skylight lighting top story only 1000 AFA Automatic Pire Alarm Skylight lighting 3 stories 3 Parapet 5" above Roof € Water Tank Skylight with Wired Glaus in Metal Sash WO Frame Cornice Parapet 12" above Roof Reference to Adjoining Page Outside Vertical Pipe on fire escape Parapet 24" above Roof tecupled by Warehouse Metal, Slate, Tile or Ashestos Stringle Roof Covering l'arapet 48" ahnve Roof Open Elevator (E) Pire Department as shown on Key Map Fire Alarm Hox Noted "HPFS" on High Pressure Fire Service W. HO. $[\tilde{F}\tilde{E}]$ Prame Enclosed Elevator **(** ET Frame Enclosed Elevator with Traps Vac. & Op. or V.-O. - Vacent & Open

GARAGE CAPCY. 20 CARS CONC. FL WOOD RAMPTO ZND REP. 2ND.

> PRIVATE GARAGE CAPCY. 10 CARS CONC. FL.

CODING OF STRUCTURAL UNITS FOR FIREPROOF AND NON-COMBUSTIBLE BUILDINGS

FRAMING

CODE STRUCTURAL UNIT

- Reinforced Concrete Α. Frame.
- в. Reinforced Concrete Joists, Columns, Beams, Trusses, Arches, Masonry Piers.
- c. Protected Steel Frame.
- Individually Protected Steel Joists, Columns, Beams, Trusses, Arches.
- Indirectly Protected Steel Frame.
- Indirectly Protected Steel Joists, Columns, Bearis, Trusses, Arches.
- G. Unprotected Steel Frame.
- Unprotected Steel Joists, H. Columns, Beams, Trusses, Arches.
- O. Masonry Bearing Walls.

FLOORS

CODE STRUCTURAL UNIT

- Reinforced Concrete. Reinforced Concrete with Masonry Units. Pre-cast Concrete or Gypsum Slabs or Planks.
- Concrete on Metal Lath. Incombustible Form Boards, Paper-backed Wire Fabric, Steel Deck, and Cellular, Ribbed or Corrugated Steel Units.
- Open Steel Deals

ODE APPLICABLE TO C	HANGES DIA	GRAMMED AFTER 3/6
RESIDENTIAL.	М	MANUFAC IT HING
RESIDENTIAL .	Ρ	PUBLIC OR INSTITUTIONAL
COMMERCIAL	U	UTILITY
WAREHUNISE	7	TRANSPORTATION
	RESIDENTIAL RESIDENTIAL TRANSIENT COMMERCIAL	RESIDENTIAL - P COMMERCIAL U

ROOF

CODE STRUCTURAL UNIT

Reinforced Concrete. Reinforced Concrete with Masonry Units. Reinforced Gypsum Concrete. Pre-cast Concrete or Cypsum Slabs or Planks.

Ĕ.

- Concrete or Gypsum on Metal Lath, Incombustible Form Boards, Paper-backed Wire Fabric, Steel Deck, and Cellular, Ribbed or Corrugated Steel Units.
- Incombustible Composition Boards with or without Insulation. Masonry or Metal Tiles.
- Steel Deck, Corrugated Metal or Asbestos Protected Metal with or without Insulation.

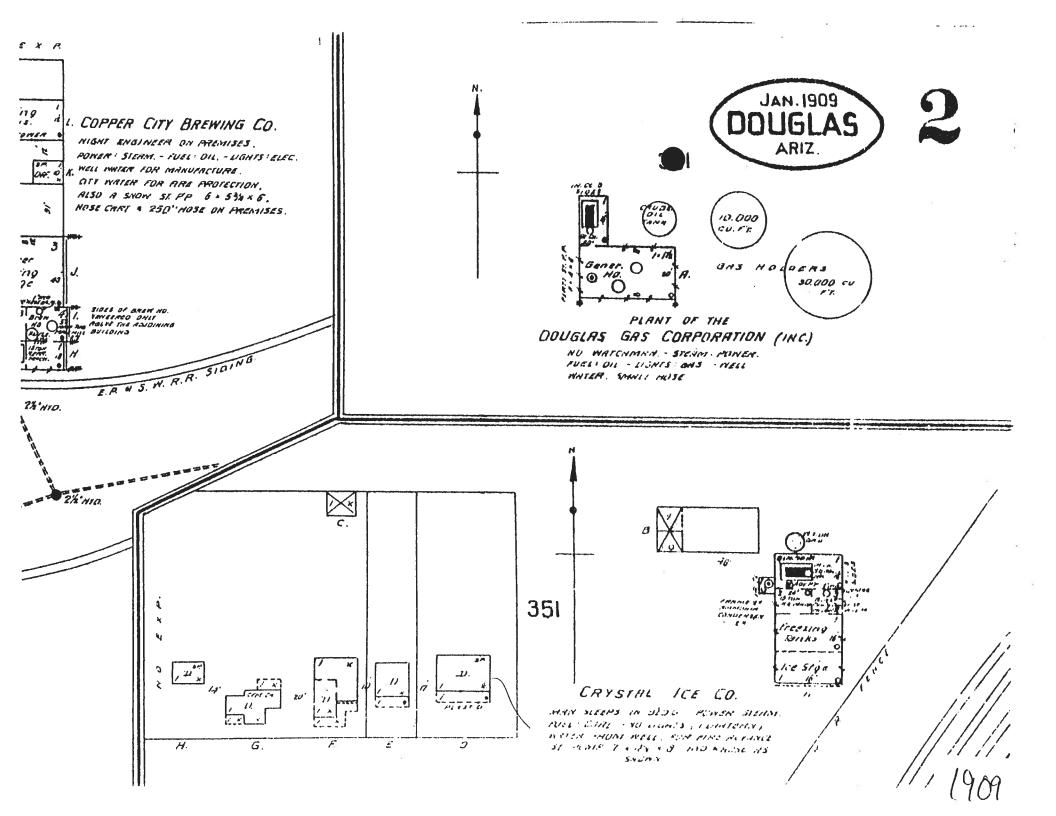
The coding for framing, floor and roof structural units as shown above is used in describing the construction of fire-resistive buildings. In addition, reports for fire-resistive buildings will show the date built and wall construction when other tian brick.

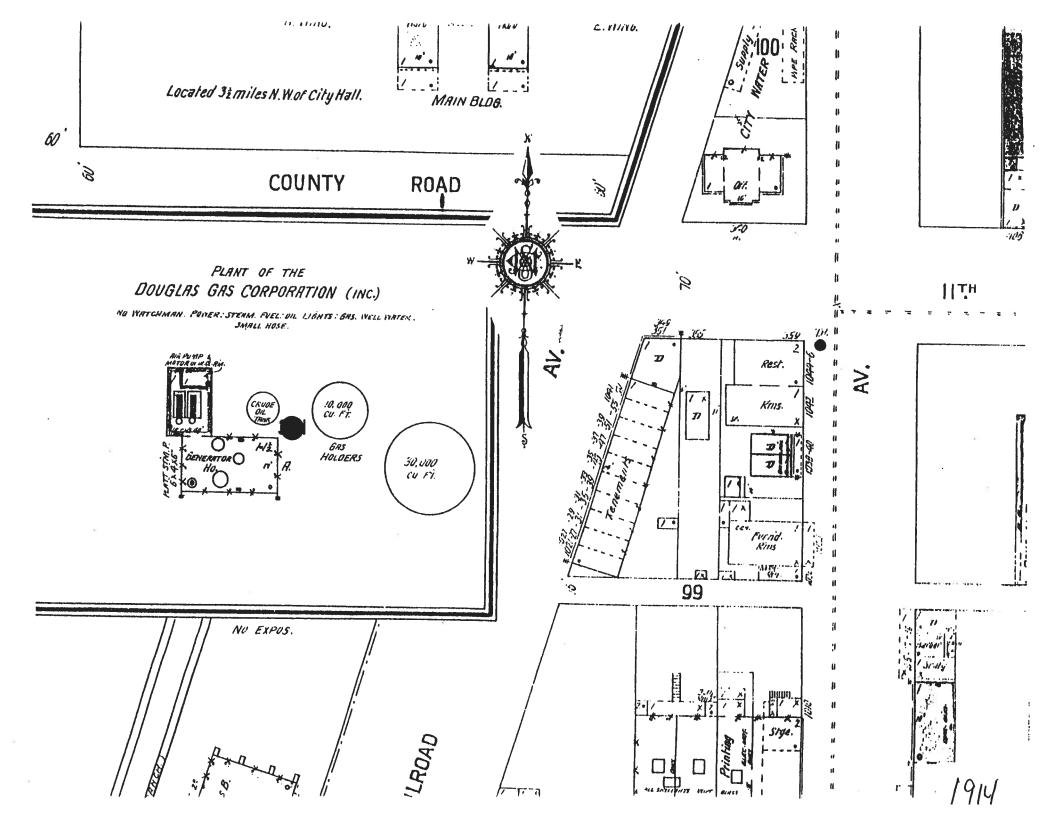
F P buildings have masonry floors and roof; concrete and/or directly or indirectly protected steel framing;

and clay brick, stone or poured concrete walls.

FPX buildings are FP buildings with inferior walls such as concrete block, cement brick, metal or glass panels, etc.

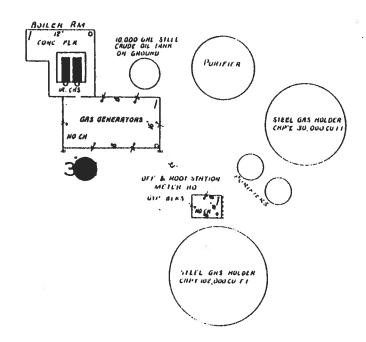
N C buildings have unprotected steel framing and fireresistive but non-masonry floors and roof.

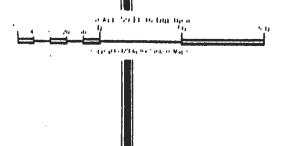

A fire-resistive building built in 1962 with concrete walls and reinforced concrete frame, floors and roof.

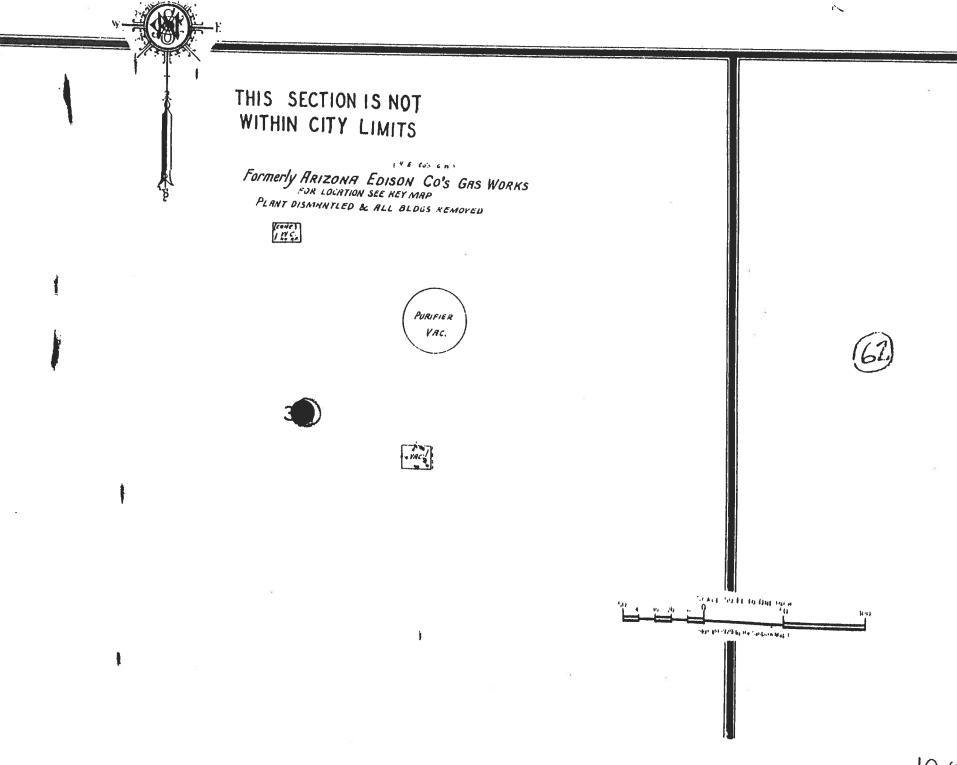


A fire-resistive building built in 1962 with metal panel walls, indirectly protected steel frame, concrete floors and roof on metal lath, noncombustible ceilings.

A noncombustible building built in 1962 with concrete block walls; unprotected steel columns and beams; concrete floors on metal lath and steel deck roof.




THIS SECTION IS NOT WITHIN CITY LIMITS


ARIZONA EDISON CO'S GAS WORKS FOR LOCATION SEE KEY MAP

IN OPERATION DAY & NIGHT - POWER STEAM FUEL:
OIL - LIGHTS: ELEC. GRS GENERATOR FROM CRUDE
OIL. NO FIRE APPARATUS

Appendix B Executive Summary of EDR Report

D3118600

Former Douglas Arizona Manufactured Gas Plant Douglas, AZ 85607

Inquiry Number: 5485155.2s

November 14, 2018

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

FORMER DOUGLAS ARIZONA MANUFACTURED GAS PLANT DOUGLAS, AZ 85607

COORDINATES

Latitude (North): 31.3357170 - 31° 20' 8.58" Longitude (West): 109.5620580 - 109° 33' 43.40"

Universal Tranverse Mercator: Zone 12 UTM X (Meters): 636800.9 UTM Y (Meters): 3467516.5

Elevation: 3946 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 6719529 DOUGLAS, AZ

Version Date: 2014

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20150621 Source: USDA

MAPPED SITES SUMMARY

Target Property Address: FORMER DOUGLAS ARIZONA MANUFACTURED GAS PLANT DOUGLAS, AZ 85607

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
1	DOUGLAS GAS CORPORAT	PAN AMERICAN AVE	EDR MGP	Lower	1 ft.
A2	USDHS USC&BP - DOUGL	5 N PAN AMERICAN AVE	UST	Higher	524, 0.099, SE
A3	DOUGLAS PORT OF ENTR	1 PAN AMERICAN AVE	VCP	Higher	532, 0.101, SE
B4	BORDER MART SHELL	100 E 3RD ST	UST, EMAP, Enforcement, Financial Assurance	Higher	586, 0.111, NE
B5	BORDER EXPRESS	305 N PAN AMERICAN A	LUST, UST, EMAP, Enforcement	Higher	659, 0.125, NE
B6	BORDER EXPRESS INC	305 N PAN AMERICAN A	EDR Hist Auto	Higher	659, 0.125, NE
7	DOUGLAS CHEVRON	461 N PAN AMERICAN A	UST, EMAP, Enforcement, Financial Assurance	Higher	982, 0.186, NE
8	WHITE KNIGHT HEALTHC	300 S 1ST ST	RCRA-CESQG, FINDS, ECHO	Higher	1029, 0.195, East
9	HAMLIN INC	230 INTERNATIONAL AV	RCRA NonGen / NLR, FINDS, ECHO	Higher	1057, 0.200, ESE
C10	WAL-MART SUPERCENTER	199 WEST 5TH STREET	AST	Lower	1295, 0.245, NW
C11	WALMART SUPERCENTER	199 W 5TH ST	RCRA-CESQG, EMAP, MANIFEST	Lower	1295, 0.245, NW
12	DOUGLAS, CITY OF - M	101 E 7TH ST	LUST, UST, EMAP	Higher	1502, 0.284, North
D13	TEXACO - BULK PLANT	7TH ST PAN AMERICAN	LUST, UST, EMAP	Higher	1714, 0.325, NNE
D14	PARK WEST PARTNERS W		AZURITE, AUL, EMAP	Higher	1983, 0.376, NNE
15	PARK WEST PARTNERS E		AZURITE, AUL, EMAP	Higher	2096, 0.397, NNE
16	SENOR BARRATO	560 N G AVE	LUST, UST, EMAP, Financial Assurance	Higher	2224, 0.421, NE
17	DOUGLAS DEVELOPMENT	SEC W. 9TH STREET &	VCP	Lower	2541, 0.481, NNW

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list	
NPL	National Priority Liet
	Proposed National Priority List Sites
NPL LIENS	
Federal Delisted NPL site lis	st
Delisted NPL	National Priority List Deletions
Federal CERCLIS list	
	Federal Facility Site Information listing
SEMS	Superfund Enterprise Management System
Federal CERCLIS NFRAP si	ita liat
SEMS-ARCHIVE	Superfund Enterprise Management System Archive
Federal RCRA CORRACTS	facilities list
CORRACTS	. Corrective Action Report
Federal RCRA non-CORRA	CTS TSD facilities list
RCRA-TSDF	RCRA - Treatment, Storage and Disposal
	, ,
Federal RCRA generators li	ist
RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
	ls / engineering controls registries
LUCIS	Land Use Control Information System
	Engineering Controls Sites List Sites with Institutional Controls
33 1131 3011110L	- Ottoo with inditational Controls

Federal L	ERNS	list
-----------	------	------

ERNS..... Emergency Response Notification System

State- and tribal - equivalent NPL

AZ NPL NPL Detail Listing

AZ WQARF...... Water Quality Assurance Revolving Fund Sites

State- and tribal - equivalent CERCLIS

SPL..... Superfund Program List

SHWS.....ZipAcids List

State and tribal landfill and/or solid waste disposal site lists

SWF/LF..... Directory of Solid Waste Facilities

State and tribal leaking storage tank lists

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists

FEMA UST..... Underground Storage Tank Listing

INDIAN UST...... Underground Storage Tanks on Indian Land

State and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing

State and tribal Brownfields sites

BROWNFIELDS..... Brownfields Tracking System

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWTIRE...... Solid Waste Tire Facilities

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands

ODI...... Open Dump Inventory

DEBRIS REGION 9...... Torres Martinez Reservation Illegal Dump Site Locations

IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

CDL..... Clandestine Drug Labs

US CDL...... National Clandestine Laboratory Register

Local Land Records

LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS_____ Hazardous Materials Information Reporting System

SPILLS..... Hazardous Material Logbook SPILLS 90...... SPILLS 90 data from FirstSearch

Other Ascertainable Records

FUDS..... Formerly Used Defense Sites DOD..... Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR______ Financial Assurance Information EPA WATCH LIST_____ EPA WATCH LIST

2020 COR ACTION........... 2020 Corrective Action Program List TSCA...... Toxic Substances Control Act

TRIS...... Toxic Chemical Release Inventory System

SSTS..... Section 7 Tracking Systems ROD...... Records Of Decision RMP..... Risk Management Plans

RAATS...... RCRA Administrative Action Tracking System

PRP..... Potentially Responsible Parties

ICIS...... Integrated Compliance Information System

Act)/TSCA (Toxic Substances Control Act)

..... Material Licensing Tracking System COAL ASH DOE Steam-Electric Plant Operation Data

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER_____PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS...... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS..... Incident and Accident Data

CONSENT..... Superfund (CERCLA) Consent Decrees

INDIAN RESERV..... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS..... Lead Smelter Sites

US AIRS..... Aerometric Information Retrieval System Facility Subsystem

US MINES..... Mines Master Index File ABANDONED MINES..... Abandoned Mines

FINDS..... Facility Index System/Facility Registry System

UXO...... Unexploded Ordnance Sites

DOCKET HWC..... Hazardous Waste Compliance Docket Listing ECHO..... Enforcement & Compliance History Information

FUELS PROGRAM..... EPA Fuels Program Registered Listing

AIRS..... Arizona Airs Database

Aquifer..... Waste Water Treatment Facilities AZ DOD..... Department of Defense Sites

Dry Wells...... Drywell Registration

SPDES......NPDES

WWFAC...... Waste Water Treatment Facilities

EDD LUCU DIOX LUCTODIO AL DECODO

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR Hist Cleaner EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS	Recovered Government Archive State Hazardous Waste Facilities List
RGA LF	Recovered Government Archive Solid Waste Facilities List
RGA LUST	Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in bold italics are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Federal RCRA generators list

RCRA-CESQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

A review of the RCRA-CESQG list, as provided by EDR, and dated 03/01/2018 has revealed that there are 2 RCRA-CESQG sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WHITE KNIGHT HEALTHC	300 S 1ST ST	E 1/8 - 1/4 (0.195 mi.)	8	15

EPA ID:: AZD982344350

Lower Elevation	Address	Direction / Distance	Map ID	Page
WALMART SUPERCENTER	199 W 5TH ST	NW 1/8 - 1/4 (0.245 mi.)	C11	19
FPA ID.: AZR000047662				

State and tribal leaking storage tank lists

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Department of Environmental Quality's LUST File Listing by Zip Code.

A review of the LUST list, as provided by EDR, and dated 09/07/2018 has revealed that there are 4 LUST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
BORDER EXPRESS Date Closed: 01/02/13 Facility Id: 0-009658 Facility Status: CLOSED	305 N PAN AMERICAN A	NE 0 - 1/8 (0.125 mi.)	B5	11
DOUGLAS, CITY OF - M Date Closed: 02/20/96 Facility Id: 0-006774 Facility Status: CLOSED	101 E 7TH ST	N 1/4 - 1/2 (0.284 mi.)	12	41
TEXACO - BULK PLANT Date Closed: 08/18/98 Facility Id: 0-004251 Facility Status: CLOSED	7TH ST PAN AMERICAN	NNE 1/4 - 1/2 (0.325 mi.)	D13	43
SENOR BARRATO Facility Id: 0-006668 Facility Status: Confirmed	560 N G AVE	NE 1/4 - 1/2 (0.421 mi.)	16	45

State and tribal registered storage tank lists

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Environmental Quality's Arizona UST-DMS Facility and Tank Data Listing by City database.

A review of the UST list, as provided by EDR, and dated 09/07/2018 has revealed that there are 4 UST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
USDHS USC&BP - DOUGL Closure Type: Removal Facility Id: 0-006810 Date Closed: 12/06/1990	5 N PAN AMERICAN AVE	SE 0 - 1/8 (0.099 mi.)	A2	8
BORDER MART SHELL	100 E 3RD ST	NE 0 - 1/8 (0.111 mi.)	B4	9

Facility Id: 0-009318				
BORDER EXPRESS	305 N PAN AMERICAN A	NE 0 - 1/8 (0.125 mi.)	B5	11
Closure Type: Removal				
Facility Id: 0-009658				
Date Closed: 08/30/2012				
DOUGLAS CHEVRON	461 N PAN AMERICAN A	NE 1/8 - 1/4 (0.186 mi.)	7	13
Facility Id: 0-010052		, ,		

AST: The Aboveground Storage Tank database contains registered ASTs. The data come from the Department of Environmental Quality's Arizona UST-DMS Facility and Tank Data Listing by City database.

A review of the AST list, as provided by EDR, has revealed that there is 1 AST site within approximately 0.25 miles of the target property.

Address	Direction / Distance	Map ID	Page
199 WEST 5TH STREET	NW 1/8 - 1/4 (0.245 mi.)	C10	19
ent Version: 08/15/2018			
		199 WEST 5TH STREET NW 1/8 - 1/4 (0.245 mi.)	199 WEST 5TH STREET NW 1/8 - 1/4 (0.245 mi.) C10

State and tribal institutional control / engineering control registries

AZURITE: ADEQ maintains a repository listing sites remediated under programs administered by the department.

A review of the AZURITE list, as provided by EDR, and dated 08/07/2018 has revealed that there are 2 AZURITE sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
PARK WEST PARTNERS W PARK WEST PARTNERS E		NNE 1/4 - 1/2 (0.376 mi.) NNE 1/4 - 1/2 (0.397 mi.)		44 45

AUL: DEUR and VEMUR sites. DEUR: Declaration of Environmental Use Restriction. A restrictive land use covenant that is required when a property owner elects to use an institutional (i.e., administrative) control or engineering (i.e., physical) control as a means to meet remediation goals. The DEUR runs with and burdens the land, and requires maintenance of any institutional or engineering controls. VEMUR: Voluntary Environmental Mitigation Use Restriction. A restrictive land use covenant that, prior to July 18, 2000, was required when a property owner elected to remediate the property to non-residential uses. Effective July 18, 2000, the DEUR replaced the VEMUR as a restrictive use covenant.

A review of the AUL list, as provided by EDR, and dated 08/07/2018 has revealed that there are 2 AUL sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
PARK WEST PARTNERS W Remediation ID: 31409		NNE 1/4 - 1/2 (0.376 mi.)	D14	44
PARK WEST PARTNERS E Remediation ID: 31404		NNE 1/4 - 1/2 (0.397 mi.)	15	45

State and tribal voluntary cleanup sites

VCP: Sites involved in the Voluntary Remediation Program..

A review of the VCP list, as provided by EDR, and dated 05/14/2018 has revealed that there are 2 VCP sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
DOUGLAS PORT OF ENTR	1 PAN AMERICAN AVE	SE 0 - 1/8 (0.101 mi.)	A3	8
Date Closed: 06/28/2002				
Date Closed: 08/03/2007				
Facility Status: Transferred to Site	Assessment Program			

Facility Status, Classed

Facility Status: Closed

Lower Elevation	Address	Direction / Distance	Map ID	Page
DOUGLAS DEVELOPMENT Date Closed: 09/04/2014	SEC W. 9TH STREET &	NNW 1/4 - 1/2 (0.481 mi.)	17	47
Facility Status: Closed				

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

RCRA NonGen / NLR: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

A review of the RCRA NonGen / NLR list, as provided by EDR, and dated 03/01/2018 has revealed that there is 1 RCRA NonGen / NLR site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
HAMLIN INC	230 INTERNATIONAL AV	ESE 1/8 - 1/4 (0.200 mi.)	9	17
EPA ID:: AZD982429086				

MANIFEST: Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

A review of the MANIFEST list, as provided by EDR, and dated 12/31/2017 has revealed that there is 1 MANIFEST site within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
WALMART SUPERCENTER	199 W 5TH ST	NW 1/8 - 1/4 (0.245 mi.)	C11	19
EPA Id: AZR000047662				

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

A review of the EDR MGP list, as provided by EDR, has revealed that there is 1 EDR MGP site within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
DOUGLAS GAS CORPORAT	PAN AMERICAN AVE	0 - 1/8 (0.000 mi.)	1	8

EDR Hist Auto: EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

A review of the EDR Hist Auto list, as provided by EDR, has revealed that there is 1 EDR Hist Auto site within approximately 0.125 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
BORDER EXPRESS INC	305 N PAN AMERICAN A	NE 0 - 1/8 (0.125 mi.)	B6	13

Due to poor or inadequate address information, the following sites were not mapped. Count: 1 records.				
Site Name	Database(s)			
DOUGLAS AIRFIELD	SHWS			

Appendix C Soil Boring Logs from Previous Investigations

KEY TO BORING LOG SYMBOLS

	MAJOR DIVISIONS			LETTER SYMBOL	DESCRIPTIONS	
		CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES	
SIEVE	GRAVELS MORE THAN 50% OF COARSE FRACTION			GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES	
SOILS AN #200	IS LARGER THAN THE NO. 4 SIEVE SIZE	GRAVEL WITH OVER		GM	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES	
COARSE GRAINED SOIL.S (>50% BY WEIGHT LARGER THAN #200 SIEVE)		12% FINES		GC	CLAYEY GRAVELS, GRAVEL- SAND-CLAY MIXTURES	
E GRA IT LAR	SANDS	CLEAN SAND WITH LITTLE		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
COARSE Y WEIGHT	MORE THAN 50% OF COARSE FRACTION	OR NO FINES	The same	SP	POORLY-GRADED SANDS, GRAVELLY SANDS	
C 50% BY	IS SMALLER THAN NO. 4 SIEVE SIZE	SAND WITH	SAND WITH OVER 12%		SM	SILTY SANDS, POORLY GRADED SAND-SILT MIXTURES
۵	·	FINES		SC	CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES	
SIZE).				ML	INORGANIC SILTS AND VERY FINE SANDS, SILTY OR CLAYEY FINE SANDS	
SOILS 00 SIEVE	SILTS AN	MIT LESS		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY. GRAVELLY. SANDY OR SILTY CLAYS. LEAN CLAYS	
VED S	THAI	N 50)		OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
GRAINED ER THAN #2	SII TS ANI	SH TS AND SI AVS		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS	
FINE	SILTS AND CLAYS (LIQUID LIMIT LESS THAN 50) SILTS AND CLAYS THAN 50) SILTS AND CLAYS (LIQUID LIMIT GREATER THAN 50)			СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	
%05<)				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
HARD PAN SOILS				HP	CALICHE AND OTHER IMPERVIOUS LAYERS	

_ Stabilized water level (date)

Water level encountered during drilling

PID

Photo-ionization Detector

FID

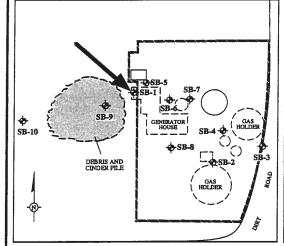
Flame-ionization Detector

EXP

Gastech Explosimeter

Asphaltic Concrete

Portland Cement Concrete


Cement Grout

DEGREE OF VERTICAL refers to the angle at which the boring is drilled with respect to a plumb line.

Soil sample depth interval (blackened interval indicates portion of sample prepared for laboratory chemical analysis.)

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

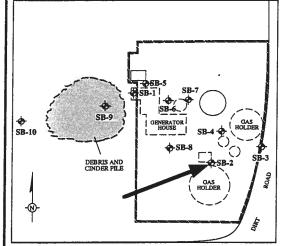
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

		11					
(gy			-	 ਜ਼ਿ	ည	٦ 2	WATER LEVEL ENCOUNTERED: NA
OVA (mg/kg)	SAMPLE	TPH (mg/kg)	ВГОЖЅ/6"	DEPTH (feet) GEOLOGIC LOG		SOIL SYMBOL (U.S.C.S.)	TIME: NA
VA (ID	(m)	BLO	EPTI	EOI	IL S	DATE: NA
0				᠒	0		SAMPLE/CUTTINGS DESCRIPTION
NA	SB1-0-1.5	NA	5-7-7	1 -		OL ML	Dry, powdery lampblack from 0 to 6". Brown, silt to fine sand with minor clay, moderately cemented, slightly moist, no odor.
40	SB1-1.5-3	780	3-5-9	2 — 3 —		OL SM	Lampblack from 1.5 to 2'. From 2-3' brown to light brown, silt and sand with caliche nodules, dry, no odor.
NA	SB1-3-4.5	NA	9-50/6	4 —		SM	Brown to light brown, silty sand with minor clay, block fragments, and caliche nodules, dry no odor.
NA	SB1-4.5-6	<20	20-50/6	5 —		SM	Same as above.
NA	SB1-6-7.5	NA	14-20-25	7 -		SM	Brown to light rust, silty sand with some caliche veins and nodules, poorly cemented, dry, no odor.
NA	SB1-7.5-9	NA	24-50/6	8 — - 9 —		SM	Same as above.
NA	SB1-9-10.5	NA	18-50/6	10 —		SM/ ML	Brown, silty sand with clay, dense, moderately well cemented. Black organic matter, specks, slightly moist, no odor.
NA		NA		11 — 12 — 13 — 14 — 15 —		SM/ ML	Same as above.
NA	SB1-15-16.5	<20	25-36-50/6			ML	Light brown, sandy silt with abundant caliche, dry, no odor.
				17 —			TOTAL DEPTH = 16.5 FEET
				18 —			
				19 —			
				20 —			
				20			

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002

LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

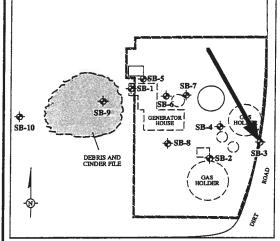
DRILLER: BRETT

HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	LOG	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
NA	SB2-0-1.5	NA	2-4-5	1			ML	Brown to light brown, silt with organic matter, dried grass, etc., dry, no odor.
NA	SB2-1.5-3	NA	6-10-15	2 -			ML	Brown to light brown, silt with organic matter with white nodules (caliche), dry, no odor.
» NA	SB2-3-4.5	NA	16-30-41	4 -			ML	Same as above but no organic matter, poorly cemented.
NA	SB2-4.5-6	NA	29-50/6	5 — 6 —			ML	Brown to light brown, clay, silt and sand, moderately cemented, dense, dry to slightly moist, no odor.
NA	SB2-6-7.5	NA	12-50/6	7 —			SM	Same as above but not as dense and drier, soil breaks into blocky fragments.
NA	SB2-7.5-9	NA	16-36-48	8 — 9 —			ML	Brown, dense silt with some clay and rock fragments, slightly moist, no odor.
NA	SB2-9-10.5	<20	22-24-24	10 —			ML	Caliche nodules present.
				11 — 12 — 13 — 14 — 15 — 16 — 17 — 18 — 19 — 20 —				TOTAL DEPTH = 10.5'

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

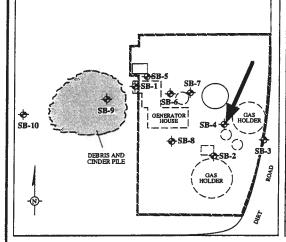
CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER


SAMPLING METHOD: SPLIT SPOON

DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
NA	SB3-0-1.5	NA	15-13-15	1 -		SM	Brown-gray, silty sand, moderately compacted, dry, no odor.
NA	SB3-1.5-3	NA	7-15-19	2 -		ML	Brown to light brown, sandy silt with clay, moderately cemented with caliche veins and nodules, dry to slightly moist, no odor.
NA	SB3-3-4.5	NA	6-26-36	4 -		ML	Same as above but more caliche, poorly cemented, slightly moist.
NA	SB3-4.5-6	NA	23-23-27	5 —		SM/ ML	Brown, mottled with white veins and nodules, a well cemented layer at 5 feet with the rest poorly cemented silty sand, slightly moist, no odor.
NA	SB3-6-7.5	NA	12-24-24	7 —		SP	Rust brown, medium-coarse sand with very few fines, slightly moist, no odor.
NA	SB3-7.5-9	NA	8-20-25	8 —		ML	Dark brown, silty fine sand with clay, dense, moderately well cemented, black organic specks and lines, slightly moist, no odor.
NA	SB3-9-10.5	<20	12-13-18	10 —		ML	Same as above.
				11 — 12 — 13 — 14 — 15 — 16 — 17 — 18 — 19 — 20 —			TOTAL DEPTH = 10.5'

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

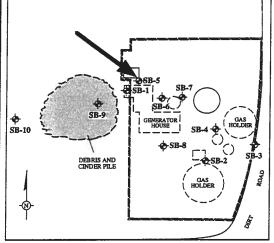
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

							
OVA (mg/kg)	G 4.3 5DY 5	(8)	9/s	feet)	GIC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA
A (m	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC LOG	L SYA	DATE: NA
6	Vii I		m m	DEI	5	SOII	SAMPLE/CUTTINGS DESCRIPTION
NA	SB4-0-1.5	4000	17-27-26	1 —		OL SM	Dark brown-gray-black silt and sand, moderately cemented, dry, no odor.
NA	SB4-1.5-3	24	17-17-11	2 -		SM	Light brown-gray, silt and sand, powdery, very dry, no odor.
NA	SB4-3-4.5	NA		4 —		ML	Light brown clay, silt and sand with trace of gravel, poor to moderately caliche cemented, dry, no odor.
NA	SB4-4.5-6	NA	19-50/6	5 —		MIL	Same as above with abundant white caliche or salt precipitates nodules.
NA	SB4-6-7.5	NA	9-24-36	7 —		ML	Same as above.
NA	SB4-7.5-9	NA	9-20-22	8 —		SP	Brown to slight rust colored, medium-coarse sand, some rocks, slightly moist, no dor.
NA	SB4-9-10.5	<20	6-14-12	10 —		ML/ CL	Brown, dense, clayey silt with black organic matter pieces, moist, no odor.
NA		NA		11 — 12 — 13 — 14 —		SM	Brown, mix of silt, sand, and clay, slightly moist, no odor.
NA	SB4-15-16.5	<20	20-50/6	16 —		SP	Brown to rust colored, similar to sample taken at 7.5 to 9 feet, well mixed soil, very sandy, clean, medium-coarse sand. Moist at 16.5 feet, no odor.
				17 —	*		TOTAL DEPTH = 16.5 FEET
				18 —			
				19 —			
				20 _			

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

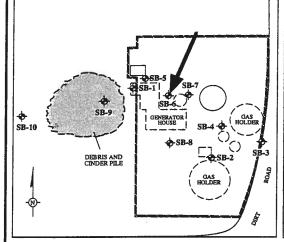
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

						•	
OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
NA	SB5-0-1.5	NA	6-6-6	1 -		SM	Light brown, silty sand, minor rocks and asphalt, dry, no odor.
NA	SB5-1.5-3	NA	9-15-15	2		SM	Same as above.
NA	SB5-3-4.5	NA	6-11-15	4 —		SM	Brown, silty fine sand with white veins, weakly cemented, dry, no odor.
NA	SB5-4.5-6	NA	18-25-26	5		SM	Same as above with more rocks 1/2 to 1 inch diameter.
NA	SB5-6-7.5	NA	9-24-27	7 —		SP	Brown to slightly rust colored, medium-coarse sand, dry to slightly moist, no odor.
NA	SB5-7.5-9	NA	10-27-30	8 —		ML	Brown, silt with fine sand and clay, slightly moist, no odor.
NA	SB5-9-10.5	<20	9-14-28	10 —		ML	Same as above with black organic matter specks.
				11 —			TOTAL DEPTH = 10.5'
		33		12 — 13 — 14 — 15 — 16 — 17 — 18 — 19 — 20 —			

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

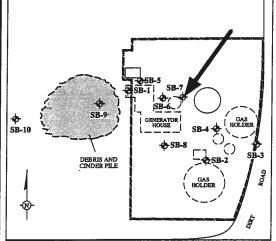
CHECKED BY: EDWARD F. HAGAN DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

		•					
(g)		TPH (mg/kg)	=_	ੜ	၂	占	WATER LEVEL ENCOUNTERED: NA
OVA (mg/kg)	SAMPLE		WS/6	DEPTH (feet)	DOTO	SOIL SYMBOL (U.S.C.S.)	TIME: NA
A	ID	TT (mg	BLOWS/6"	PTT	GEOLOGIC	IL S'	DATE: NA
Ó				Ī	5	S	SAMPLE/CUTTINGS DESCRIPTION
NA	SB6-0-1.5	NA	7-5-6	1 —		SM	Brown, fine sand and silt, dry, no odor.
NA	SB6-1.5-3	NA	8-3-5	2 —		SM	Same as above, weak cementation, poorly compacted.
NA	SB6-3-4.5	NA	4-14-17	4 —		SM/ ML	Brown, sand and silt with some white caliche, poorly compacted, slightly moist, no odor.
NA	SB6-4.5-6	NA	6-4-14	5 —		ML/ SM	Brown, sandy silt with some clay, better cementation than above, slightly moist to moist, no odor.
NA	SB6-6-7.5	NA	11-12-16	7 —		sw	Brown, well graded sand with some silt, rock fragments, slightly moist, no odor.
NA	SB6-7.5-9	NA	7-7-7	8 —		ML	Brown silt.
NA	SB6-9-10.5	220		10 —		ML	Brown, fine sand with silt, poorly cemented, slightly moist to moist, no odor.
NA		NA		11 — 12 — 13 — 14 —		MIL/ SC	Same as above, but with more clay.
NA	SB6-15-16.5	<20	16-50/6	15 — - 16 —		ML/ CL	Light brown-gray silt and clay with well graded sand, slightly moist to moist, no odor.
				17 —			TOTAL DEPTH = 16.5 FEET
				18 —			
				- 19			
				20			
				20			

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002

LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

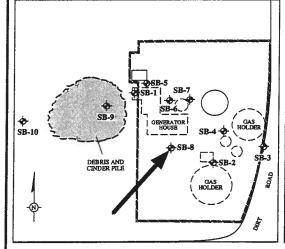
DRILLER: BRETT

HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 17

					OTALDE	111 (1001	,, <u>, , , , , , , , , , , , , , , , , ,</u>
OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
NA	SB7-0-1.5	NA	7-10-10	1 -		SM	Brown-gray, silty fine sand, dry, but some moisture.
NA	SB7-1.5-3	NA	10-11-14	2 -		SM	Brown to light brown, silty fine sand with trace of gravel and pebbles, some weak caliche cementation, dry, no odor.
NA	SB7-3-4.5	NA	17-18-24	4 —		SM	Same as above.
NA	SB7-4.5-6	NA	18-50/6	5 6		SM	Same as above.
NA	SB7-6-7.5	NA	50/6	7 —		sw	Brown to slight rust color, well graded sand, dry to slightly moist, no odor.
				8 —			No recovery.
				-	<u> </u>		No recovery.
NA	SB7-8.5-10	NA	100/6	9 — 10 —		ML	Brown, clayey silt with sand and minor gravels, well cemented, slightly moist, no odor.
NA	SB7-10-11.5	<20	18-50/6	11 —		ML	Same as above.
NA		NA		12 — 13 — 14 — 15 —		ML	Same as above.
NA	SB7-15-16.5	<20	30-50/6	16 —		MIL/ CL	Brown to light brown, silty fine sand with strong caliche cementation, dry, no odor.
NA	SB7-16.5-17		14/100	17 —	<u>////</u>		
NA	SB7-17		100/6				TOTAL DEPTH = 17 FEET
1				18 —			
				19 —			
				-			
				20 —			

SOIL BORING SB-8 THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

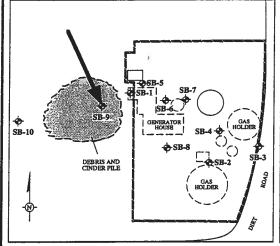
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 21.5

OVA (mg/kg)							I TELEGRAPH TO THE TOTAL CONTROL OF THE STATE OF THE STAT
gm) 1			BLOWS/6"	eet)));	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA
	SAMPLE	TPH (mg/kg)		H (f	GEOLOGIC	X.W.	TIME: NA
Ž	ID	L m	BLC	DEPTH (feet)	EO]	(U.S	DATE: NA
0				Ω		S	SAMPLE/CUTTINGS DESCRIPTION
NA	SB8-0-1.5	NA	11-14-13	1 —		SM/ ML	Light brown to gray brown, sandy silts, dry, no odor.
NA	SB8-1.5-3	NA	7-14-23	2		ML	Light brown, silts with some caliche, becoming darker brown to fine sands at top of spoon.
NA	SB8-3-4.5	NA	17-28-32	4 —		ML	Brown, sandy silt, abundant caliche colored cemented silt, dry, no odor.
NA S	SB8-4.5-5.5	NA	24-50/6	5 —		ML	Brown, caliche cemented silt, dry, no odor.
NA S	SB8-5.5-7	NA	23-50/6	6 —		ML	Brown, caliche cemented silt, dry to slightly moist, no odor.
NA S	SB8-7-8.5	NA	16-50/6	8 —		ML/ SM	Brown to slightly rust colored, silt and fine sand with some clay, moderately well cemented, some pebbles and gravel, slightly moist.
NA S	SB8-8.5-10	26	18/17/3	9 — 10 —		ML/ SM	Brown, same as above, continue drilling.
NA		NA		11 — 12 — 13 — 14 —		ML/ SM	Same as above.
NA S	SB8-15.16.5	<20	50/6	15 — 16 —		SM	Same as above with more rocks. Less cemented than above.
NA SI	SB8-16.5-20	NA		17 — 18 — 19 —		SM	Brown, silty fine sand, less cemented, slightly moist, no odor.
NA SI	SB8-20-21.5	<20	19-50/6	20 = = = = = = = = = = = = = = = = = = =		SM/ SP	Brown, fine to medium sand, very minor silt, slightly moist to moist, no odor.
				$_{22} \mathcal{I}$			TOTAL DEPTH = 21.5 FEET

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002

LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

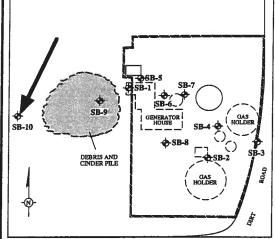
DRILLER: BRETT

HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM SUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

kg)			BLOWS/6"	ef	ပ္	To	WATER LEVEL ENCOUNTERED: NA
OVA (mg/kg)	SAMPLE	TPH (mg/kg)		H (fe	DOTOG]	SOIL SYMBOL (U.S.C.S.)	TIME: NA
\ \\	ID	(mg	BLO	DEPTH (feet)	GEOLOGIC	U.S.	DATE: NA
°				Ӓ	0	SC	SAMPLE/CUTTINGS DESCRIPTION
NA	SB9-0-1.5	<400		1 —		OL	Lampblack, powdered silt, very dry, no odor.
100	SB9-1.5-3	NA	30-30-13	2 —		OL	Lampblack with chunks of rock, slightly moist, no odor. At 3 feet, gray, ash type soil, hard, well cemented.
NA	SB9-3-4.5	<20	3-5-6	3 — 4 —		ML	Brown, silty fine sand, poorly compacted, slightly moist, no odor.
NA	SB9-4.5-6	NA	5-10-20	5 — 6 —		ML/ SM	Light brown, silt, sand and clay with abundant caliche, poorly cemented, very dry, no odor.
NA	SB9-6-7.5	NA	19-40-42	7 —		MIL/ SM	Same as above.
NA	SB9-7.5-9	NA	29-50/6	8 —		sw	Brown, silty well graded sand, poorly cemented, slightly moist, no odor.
NA	SB9-9-10.5	<20	15-19-29	10 —		SC/ ML	Brown to light brown, clayey silt with sand, moderately cemented with caliche nodules, some black organic specks, slightly moist, no odor.
NA		NA		11 — 12 — 13 — 14 —		ML	Same as above but with less clay.
NA	SB9-15-16.5	<20	31-50/6	16 —		ML/ CL	Brown, clayey silt, dense, black organic specks, slightly moist, no odor.
				17 —			TOTAL DEPTH = 16.5 FEET
				18 —			
				19 —			
				20 _			

SOIL BORING SB-10 THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

DRILLER: BRETT

HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

						111 (1000)	
OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC LOG	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
NA	SB10-0-1.5	NA	4-6-7	1 —		SP/ SM	Brown, silt and well graded sands, abundant plant roots and organic matter, dry, no odor.
NA	SB10-1.5-3	NA	9-10-19	2		SM	From 1.5 to 2 feet, same as above. From 2 to 3 feet brown to light brown, silty sand with abundant caliche, dry, no odor.
NA	SB10-3-4.5	NA	12-22-27	4 —		SM	Same as above from 2 to 3 feet.
NA	SB10-4.5-6	NA	14-32-34	5 — 6 —		ML	Similar to above but with more clay, moderately cemented with some rocks, slightly moist.
NA	SB10-6-7.5	NA	12-21-23	7 —		SP SC/ ML	From 6 to 6.5 feet, brown, coarse to medium sand, dry, no odor. From 6.5 to 7.5 feet, brown, clay and silty sand, dense, moderately well cemented, slightly moist, no odor. Black
NA	SB10-7.5-9	NA	14-20-24	8 — 9 —		SC/ ML	organic specks. Same as above with very minor caliche.
NA	SB10-9-10.5	<20	12-21-22	10 —		SC/ ML	Same as above from 2 to 3 feet.
				11 — 12 — 13 — 14 — 15 — 16 — 17 — 18 — 19 — 20 —			TOTAL DEPTH = 10.5'

Appendix D
Soil Boring Logs

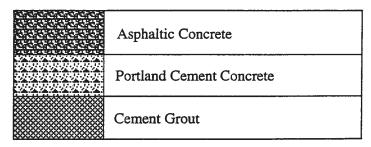
KEY TO BORING LOG SYMBOLS

]	MAJOR DIVIS	IONS	GRAPH SYMBOL	LETTER SYMBOL	DESCRIPTIONS
		CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES
SIEVE	GRAVELS MORE THAN 50% OF COARSE FRACTION	WITH LITTLE OF NO FINES		GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES
SOILS AN #200	IS LARGER THAN THE NO. 4 SIEVE SIZE	GRAVEL WITH OVER		GM	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES
COARSE GRAINED SOIL.S (>50% BY WEIGHT LARGER THAN #200 SIEVE)		12% FINES		GC	CLAYEY GRAVELS, GRAVEL- SAND-CLAY MIXTURES
E GRA	SANDS	CLEAN SAND WITH LITTLE		sw	WELL-GRADED SANDS, GRAVELLY SANDS
OARS	MORE THAN 50% OF COARSE FRACTION	OR NO FINES		SP	POORLY-GRADED SANDS, GRAVELLY SANDS
C 50% BY	IS SMALLER THAN NO. 4 SIEVE SIZE	SAND WITH OVER 12%		SM	SILTY SANDS, POORLY GRADED SAND-SILT MIXTURES
۵	·	FINES		SC	CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES
SIZE).				ML	INORGANIC SILTS AND VERY FINE SANDS, SILTY OR CLAYEY FINE SANDS
SOILS 0 SIEVE	SILTS AN	MIT <u>LESS</u>		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY. GRAVELLY, SANDY OR SILTY CLAYS, LEAN CLAYS
VED S	THAI	N 50)		OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
FINE GRAINED SOILS >50% SMALLER THAN #200 SIEVE SIZE).	SILTS AN) CLAYS		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS
FINE	(LIQUID LIM	IIT <u>GREATER</u> N 50)		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
%05<)				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
-	HARD PAN S	OILS		HP	CALICHE AND OTHER IMPERVIOUS LAYERS

__ Stabilized water level (date)

Water level encountered during drilling

PID

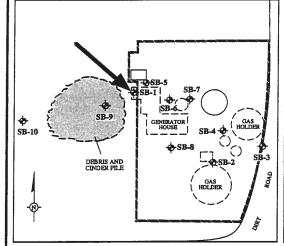

Photo-ionization Detector

FID

Flame-ionization Detector

EXP

Gastech Explosimeter



DEGREE OF VERTICAL refers to the angle at which the boring is drilled with respect to a plumb line.

Soil sample depth interval (blackened interval indicates portion of sample prepared for laboratory chemical analysis.)

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

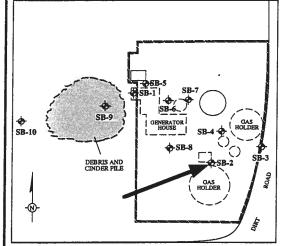
DRILLING CO: VERDE
DRILLER: BRETT

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

SAMPLE H S S S S S S S S S			11							
NA SB1-0-1.5 NA 5-7-7 NA SB1-3-4.5 NA 9-50/6 NA SB1-4.5-6 <20 20-50/6 NA SB1-7.5-9 NA 14-20-25 NA 18-50/6 NA SB1-9-10.5 NA 18-50/6 NA SB1-9-10.5 NA 18-50/6 NA SB1-15-16.5 <20 25-36-50/6 NA SB1-15-16.5 <20 25-36-50/6 NA SB1-15-16.5 <20 25-36-50/6 NA SB1-15-16.5 <20 25-36-50/6 NA SB1-15-16.5 SB1-1	OVA (mg/kg)		TPH (mg/kg)	BLOWS/6"	DEPTH (feet)		GEOLOGIC LOG		OIL SYMBOL (U.S.C.S.)	TIME: NA DATE: NA
NA SB1-0-1.5 NA S-7-7 1								_		SAMPLE/CUTTINGS DESCRIPTION
SB1-1.5-3 780 3-5-9 2	NA	SB1-0-1.5	NA	5-7-7	1 —				ML	
NA SB1-3-4.5 NA 9-50/6 4 — 1	40	SB1-1.5-3	780	3-5-9				1:0		
NA SB1-4.5-6 <20 20-50/6 6 SM Same as above. NA SB1-6-7.5 NA 14-20-25 7 SM Brown to light rust, silty sand with some caliche veins and nodules, poorly cemented, dry, no odor. NA SB1-7.5-9 NA 24-50/6 SM Same as above. NA SB1-9-10.5 NA 18-50/6 SM/ML Brown, silty sand with clay, dense, moderately well cemented. Black organic matter, specks, slightly moist, no odor. NA NA SSM/ML SSM/ML Same as above. NA SB1-15-16.5 <20	NA	SB1-3-4.5	NA	9-50/6	4 —				SM	
NA SB1-6-7.5 NA 14-20-25 7 - SM Brown to light rust, silty sand with some caliche veins and nodules, poorly cemented, dry, no odor. NA SB1-7.5-9 NA 24-50/6 8 - SM Same as above. NA SB1-9-10.5 NA 18-50/6 10 - SM/ ML Brown, silty sand with clay, dense, moderately well cemented. Black organic matter, specks, slightly moist, no odor. NA SB1-15-16.5 <20 25-36-50/6 16 - ML Light brown, sandy silt with abundant caliche, dry, no odor. TOTAL DEPTH = 16.5 FEET	NA	SB1-4.5-6	<20	20-50/6					SM	Same as above.
NA SB1-7.5-9 NA 24-50/6 NA SB1-9-10.5 NA 18-50/6 NA SB1-9-10.5 NA 18-50/6 NA SB1-9-10.5 NA 18-50/6 NA SB1-15-16.5 <20 25-36-50/6 NA SB1-15-16.5 <20 25-36-50/6 NA SB1-15-16.5 SM/ Same as above. SM/ Same as above. SM/ Brown, silty sand with clay, dense, moderately well cemented. Black organic matter, specks, slightly moist, no odor. SM/ SM/ ML Same as above. SM/ Same as above. SM/ Same as above. TOTAL DEPTH = 16.5 FEET TOTAL DEPTH = 16.5 FEET	NA	SB1-6-7.5	NA	14-20-25	_				SM	
NA SB1-15-16.5 <20 25-36-50/6 10 — SM/ ML Brown, silty sand with clay, dense, moderately well cemented. Black organic matter, specks, slightly moist, no odor. SM/ Brown, silty sand with clay, dense, moderately well cemented. Black organic matter, specks, slightly moist, no odor. SM/ ML Same as above. ML Light brown, sandy silt with abundant caliche, dry, no odor. TOTAL DEPTH = 16.5 FEET	NA	SB1-7.5-9	NA	24-50/6	_				SM	Same as above.
NA SB1-15-16.5 <20 25-36-50/6 16 — ML Light brown, sandy silt with abundant caliche, dry, no odor. 12 — SM/ ML Same as above. 14 — ML Light brown, sandy silt with abundant caliche, dry, no odor. 17 — 18 — TOTAL DEPTH = 16.5 FEET	NA	SB1-9-10.5	NA	18-50/6	_					
NA SB1-15-16.5 <20 25-36-50/6 16 ML Light brown, sandy silt with abundant caliche, dry, no odor. 17 - 18 - 16.5 FEET	NA		NA		12 — 13 — 14 —					Same as above.
	NA	SB1-15-16.5	<20	25-36-50/6					ML	Light brown, sandy silt with abundant caliche, dry, no odor.
					17 —					TOTAL DEPTH = 16.5 FEET
					10					
					18 —					
					19 —					
20 7					20	L				

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002

LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

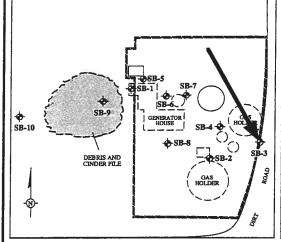
DRILLER: BRETT

HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

/kg)			9	eet)	یا		SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA
OVA (mg/kg)	SAMPLE	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOI OGIC	507	YMI	TIME: NA
> A	ID	L (m)	BLC	EPT) H		OIL S	DATE: NA
				Δ		,	SS	SAMPLE/CUTTINGS DESCRIPTION
NA	SB2-0-1.5	NA	2-4-5	1 -			ML	Brown to light brown, silt with organic matter, dried grass, etc., dry, no odor.
NA	SB2-1.5-3	NA	6-10-15	2 —			ML	Brown to light brown, silt with organic matter with white nodules (caliche), dry, no odor.
NA	SB2-3-4.5	NA	16-30-41	4			ML	Same as above but no organic matter, poorly cemented.
NA	SB2-4.5-6	NA	29-50/6	5 — 6 —			ML	Brown to light brown, clay, silt and sand, moderately cemented, dense, dry to slightly moist, no odor.
NA	SB2-6-7.5	NA	12-50/6	7 —			SM	Same as above but not as dense and drier, soil breaks into blocky fragments.
NA	SB2-7.5-9	NA	16-36-48	8 — - 9 —			ML	Brown, dense silt with some clay and rock fragments, slightly moist, no odor.
NA	SB2-9-10.5	<20	22-24-24	10 —			ML	Caliche nodules present.
				11 —				TOTAL DEPTH = 10.5'
				12 —				
				13 —				-
				14 —				
				15 —				
				_				
				16 — —				*
				17 —				
				18 —				
				19 —				
				20 _				

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

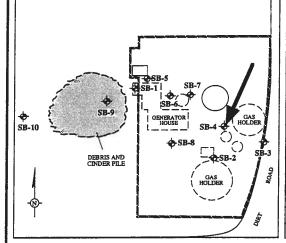
CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER


SAMPLING METHOD: SPLIT SPOON

DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

kg)			9	et)	C	30L	WATER LEVEL ENCOUNTERED: NA
OVA (mg/kg)	SAMPLE	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	SOIL SYMBOL (U.S.C.S.)	TIME: NA
VA		L E	BLC	EPT	GEO T T	OE C	DATE: NA
					343143143	Š	SAMPLE/CUTTINGS DESCRIPTION
NA	SB3-0-1.5	NA	15-13-15	1 -		SM	Brown-gray, silty sand, moderately compacted, dry, no odor.
NA	SB3-1.5-3	NA	7-15-19	2 -		ML	Brown to light brown, sandy silt with clay, moderately cemented with caliche veins and nodules, dry to slightly moist, no odor.
NA	SB3-3-4.5	NA	6-26-36	4 —		ML	Same as above but more caliche, poorly cemented, slightly moist.
NA	SB3-4.5-6	NA	23-23-27	5 —		SM/ ML	Brown, mottled with white veins and nodules, a well cemented layer at 5 feet with the rest poorly cemented silty sand, slightly moist, no odor.
NA	SB3-6-7.5	NA	12-24-24	7 —		SP	Rust brown, medium-coarse sand with very few fines, slightly moist, no odor.
NA	SB3-7.5-9	NA	8-20-25	8 — 9 —		ML	Dark brown, silty fine sand with clay, dense, moderately well cemented, black organic specks and lines, slightly moist, no odor.
NA	SB3-9-10.5	<20	12-13-18	10 —		ML	Same as above.
				11			TOTAL DEPTH = 10.5'
				12 —			
				13 —			
				14 —			
				- 15 —			
				16 —			
				17 —			
				_			
				18 —			æ
				19 —	:		
				20 —			

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

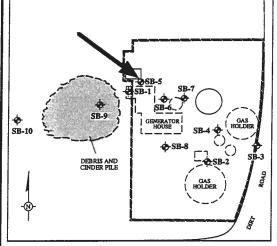
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

							
OVA (mg/kg)	G 4.3 5DY 5	(8)	9/s	feet)	GIC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA
A (m	SAMPLE ID	TPH (mg/kg)	"9/SWOJB	DEPTH (feet)	GEOLOGIC LOG	L SYA	DATE: NA
6	Vii I		m m	DEI	5	SOII	SAMPLE/CUTTINGS DESCRIPTION
NA	SB4-0-1.5	4000	17-27-26	1 —		OL SM	Dark brown-gray-black silt and sand, moderately cemented, dry, no odor.
NA	SB4-1.5-3	24	17-17-11	2 - 3 -		SM	Light brown-gray, silt and sand, powdery, very dry, no odor.
NA	SB4-3-4.5	NA		4 —		ML	Light brown clay, silt and sand with trace of gravel, poor to moderately caliche cemented, dry, no odor.
NA	SB4-4.5-6	NA	19-50/6	5 —		MIL	Same as above with abundant white caliche or salt precipitates nodules.
NA	SB4-6-7.5	NA	9-24-36	7 —		ML	Same as above.
NA	SB4-7.5-9	NA	9-20-22	8 —		SP	Brown to slight rust colored, medium-coarse sand, some rocks, slightly moist, no dor.
NA	SB4-9-10.5	<20	6-14-12	10 —		ML/ CL	Brown, dense, clayey silt with black organic matter pieces, moist, no odor.
NA		NA		11 — 12 — 13 — 14 —		SM	Brown, mix of silt, sand, and clay, slightly moist, no odor.
NA	SB4-15-16.5	<20	20-50/6	16 —		SP	Brown to rust colored, similar to sample taken at 7.5 to 9 feet, well mixed soil, very sandy, clean, medium-coarse sand. Moist at 16.5 feet, no odor.
				17 —	*		TOTAL DEPTH = 16.5 FEET
				18 —			
				19 —			
				20 _			

THE FORMER DOUGLAS, ARIZONA MGP SITE

HELPER: BENJAMIN

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

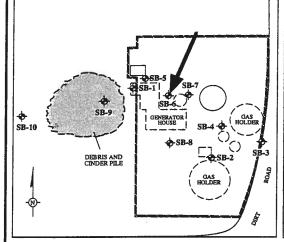
CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE DRILLER: BRETT

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

/kg)			9	eet)	li C	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA
gm)	SAMPLE	TPH (mg/kg)	BLOWS/6"	H (f	9070 9070	Y.W.	TIME: NA
OVA (mg/kg)	ID	Figure	BLO	DEPTH (feet)	GEOLOGIC	OIL S	DATE: NA
0						S	SAMPLE/CUTTINGS DESCRIPTION
NA	SB5-0-1.5	NA	6-6-6	1 -		SM	Light brown, silty sand, minor rocks and asphalt, dry, no odor.
NA	SB5-1.5-3	NA	9-15-15	2		SM	Same as above.
NA	SB5-3-4.5	NA	6-11-15	4 —		SM	Brown, silty fine sand with white veins, weakly cemented, dry, no odor.
NA	SB5-4.5-6	NA	18-25-26	5 — 6 —		SM	Same as above with more rocks 1/2 to 1 inch diameter.
NA	SB5-6-7.5	NA	9-24-27	7 —		SP	Brown to slightly rust colored, medium-coarse sand, dry to slightly moist, no odor.
NA	SB5-7.5-9	NA	10-27-30	8 —		ML	Brown, silt with fine sand and clay, slightly moist, no odor.
NA	SB5-9-10.5	<20	9-14-28	10 —		ML	Same as above with black organic matter specks.
				11 —			TOTAL DEPTH = 10.5'
				12 —	:		
				- 13 —			
				- 14			
				_			
				15 —			
		12		16 —			
				17 —			
				18 —			
				19 —			
				20 _			

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

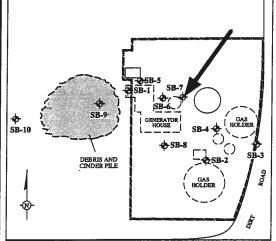
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

	·	,		,			
(B)			-	ੂ ਦ	ည	ا ا	WATER LEVEL ENCOUNTERED: NA
OVA (mg/kg)	SAMPLE	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	SOIL SYMBOL (U.S.C.S.)	TIME: NA
A	ID	TT (mg	BLO	PTT	EOL	IL S'	DATE: NA
Ó				Ī	9	S	SAMPLE/CUTTINGS DESCRIPTION
NA	SB6-0-1.5	NA	7-5-6	1 —		SM	Brown, fine sand and silt, dry, no odor.
NA	SB6-1.5-3	NA	8-3-5	2 —		SM	Same as above, weak cementation, poorly compacted.
NA	SB6-3-4.5	NA	4-14-17	4 —		SM/ ML	Brown, sand and silt with some white caliche, poorly compacted, slightly moist, no odor.
NA	SB6-4.5-6	NA	6-4-14	5 —		ML/ SM	Brown, sandy silt with some clay, better cementation than above, slightly moist to moist, no odor.
NA	SB6-6-7.5	NA	11-12-16	7 —		sw	Brown, well graded sand with some silt, rock fragments, slightly moist, no odor.
NA	SB6-7.5-9	NA	7-7-7	8 —		ML	Brown silt.
NA	SB6-9-10.5	220		10 —		ML	Brown, fine sand with silt, poorly cemented, slightly moist to moist, no odor.
NA		NA		11 — 12 — 13 — 14 —		MIL/ SC	Same as above, but with more clay.
NA	SB6-15-16.5	<20	16-50/6	15 — - 16 —		ML/ CL	Light brown-gray silt and clay with well graded sand, slightly moist to moist, no odor.
				17 —			TOTAL DEPTH = 16.5 FEET
				18 —			
				- 19			
				20			
				20			

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

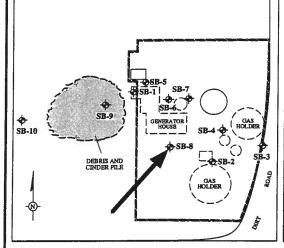
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 17

1-							111 (1001	<u> </u>
	OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
	NA	SB7-0-1.5	NA	7-10-10	1 —		SM	Brown-gray, silty fine sand, dry, but some moisture.
	NA	SB7-1.5-3	NA	10-11-14	2 -		SM	Brown to light brown, silty fine sand with trace of gravel and pebbles, some weak caliche cementation, dry, no odor.
	NA	SB7-3-4.5	NA	17-18-24	4 —		SM	Same as above.
	NA	SB7-4.5-6	NA	18-50/6	5 — 6 —		SM	Same as above.
	NA	SB7-6-7.5	NA	50/6	7 —		sw	Brown to slight rust color, well graded sand, dry to slightly moist, no odor.
					8 —			No recovery.
<u> </u>					_	 		No recovery.
	NA	SB7-8.5-10	NA	100/6	9 — 10 —		ML	Brown, clayey silt with sand and minor gravels, well cemented, slightly moist, no odor.
	NA	SB7-10-11.5	<20	18-50/6	11 —		ML	Same as above.
	NA		NA		12 — 13 — 14 — 15 —		ML	Same as above.
	NA	SB7-15-16.5	<20	30-50/6	16 —		MIL/ CL	Brown to light brown, silty fine sand with strong caliche cementation, dry, no odor.
_	NA	SB7-16.5-17		14/100	17 —	Y////		
	NA	SB7-17		100/6	_			TOTAL DEPTH = 17 FEET
Ì					18 —			
					19 —			
					_			
\vdash					20 —			

SOIL BORING SB-8 THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

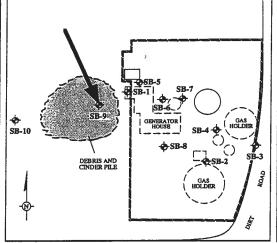
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/25/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 21.5

Se					l	i .	WATER LEVEL ENGOLD TEERED NA
5 1			9/	eet)	3IC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA
OVA (mg/kg)	SAMPLE	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	Y.W.	TIME: NA
VA	ID	L m	BLC	EPT	iEO]	(C.S	DATE: NA
0				[Q		S	SAMPLE/CUTTINGS DESCRIPTION
NA	SB8-0-1.5	NA	11-14-13	1 —		SM/ ML	Light brown to gray brown, sandy silts, dry, no odor.
NA	SB8-1.5-3	NA	7-14-23	2		ML	Light brown, silts with some caliche, becoming darker brown to fine sands at top of spoon.
NA	SB8-3-4.5	NA	17-28-32	4 —		ML	Brown, sandy silt, abundant caliche colored cemented silt, dry, no odor.
NA S	SB8-4.5-5.5	NA	24-50/6	5 —		ML	Brown, caliche cemented silt, dry, no odor.
NA	SB8-5.5-7	NA	23-50/6	6 -		ML	Brown, caliche cemented silt, dry to slightly moist, no odor.
NA	SB8-7-8.5	NA	16-50/6	8 —		MIL/ SM	Brown to slightly rust colored, silt and fine sand with some clay, moderately well cemented, some pebbles and gravel, slightly moist.
NA :	SB8-8.5-10	26	18/17/3	9 —		ML/ SM	Brown, same as above, continue drilling.
NA		NA		11 — 12 — 13 — 14 —		ML/ SM	Same as above.
NA S	SB8-15.16.5	<20	50/6	15 — 16 —		SM	Same as above with more rocks. Less cemented than above.
NA S	SB8-16.5-20	NA		17 — 18 — 19 —		SM	Brown, silty fine sand, less cemented, slightly moist, no odor.
NA S	SB8-20-21.5	<20	19-50/6	20 = = = = = = = = = = = = = = = = = = =		SM/ SP	Brown, fine to medium sand, very minor silt, slightly moist to moist, no odor.
				$_{22} \Box$			TOTAL DEPTH = 21.5 FEET

THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

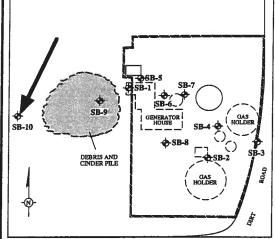
DRILLING CO: VERDE

DRILLER: BRETT HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM SUGER

SAMPLING METHOD: SPLIT SPOON


DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 16.5

OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC LOG	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
NA	SB9-0-1.5	<400		1 -		OL	Lampblack, powdered silt, very dry, no odor.
100	SB9-1.5-3	NA	30-30-13	2 -		OL	Lampblack with chunks of rock, slightly moist, no odor. At 3 feet, gray, ash type soil, hard, well cemented.
NA	SB9-3-4.5	<20	3-5-6	4 —		ML	Brown, silty fine sand, poorly compacted, slightly moist, no odor.
NA	SB9-4.5-6	NA	5-10-20	5 —		ML/ SM	Light brown, silt, sand and clay with abundant caliche, poorly cemented, very dry, no odor.
NA	SB9-6-7.5	NA	19-40-42	7 —		MIL/ SM	Same as above.
NA	SB9-7.5-9	NA	29-50/6	8 —		sw	Brown, silty well graded sand, poorly cemented, slightly moist, no odor.
NA	SB9-9-10.5	<20	15-19-29	10 —		SC/ ML	Brown to light brown, clayey silt with sand, moderately cemented with caliche nodules, some black organic specks, slightly moist, no odor.
NA		NA		11 — 12 — 13 — 14 — 15 —		ML	Same as above but with less clay.
NA	SB9-15-16.5	<20	31-50/6	16 —		ML/ CL	Brown, clayey silt, dense, black organic specks, slightly moist, no odor.
				17 — 18 — 19 — 20 —			TOTAL DEPTH = 16.5 FEET

SOIL BORING SB-10 THE FORMER DOUGLAS, ARIZONA MGP SITE

PROJECT NUMBER: AZ0519.002 LOGGED BY: EDWARD F. HAGAN

CHECKED BY: EDWARD F. HAGAN

DRILLING CO: VERDE

DRILLER: BRETT

HELPER: BENJAMIN

DATE DRILLED: 10/26/95

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

DEGREE OFF VERTICAL: 0

HOLE DIAMETER (inch): 8

TOTAL DEPTH (feet): 10.5

					<u> </u>		
OVA (mg/kg)	SAMPLE ID	TPH (mg/kg)	BLOWS/6"	DEPTH (feet)	GEOLOGIC	SOIL SYMBOL (U.S.C.S.)	WATER LEVEL ENCOUNTERED: NA TIME: NA DATE: NA SAMPLE/CUTTINGS DESCRIPTION
NA	SB10-0-1.5	NA	4-6-7	1 -		SP/ SM	Brown, silt and well graded sands, abundant plant roots and organic matter, dry, no odor.
NA	SB10-1.5-3	NA	9-10-19	2		SM	From 1.5 to 2 feet, same as above. From 2 to 3 feet brown to light brown, silty sand with abundant caliche, dry, no odor.
NA	SB10-3-4.5	NA	12-22-27	4 —		SM	Same as above from 2 to 3 feet.
NA	SB10-4.5-6	NA	14-32-34	5 — 6 —		ML	Similar to above but with more clay, moderately cemented with some rocks, slightly moist.
NA	SB10-6-7.5	NA	12-21-23	7 —		SP SC/ ML	From 6 to 6.5 feet, brown, coarse to medium sand, dry, no odor. From 6.5 to 7.5 feet, brown, clay and silty sand, dense, moderately well cemented, slightly moist, no odor. Black
NA	SB10-7.5-9	NA	14-20-24	8 — 9 —		SC/ ML	organic specks. Same as above with very minor caliche.
NA	SB10-9-10.5	<20	12-21-22	10 —		SC/ ML	Same as above from 2 to 3 feet.
				11 — 12 — 13 — 14 — 15 — 16 — 17 — 18 — 19 —			TOTAL DEPTH = 10.5'

BORING NUMBER D-B11

SHEET 1 OF 1

PROJECT : .OCATION :	Douglas, AZ	PRILLING CONTRACTOR: DRILLING METHOD AND EQUIPMENT USED:	Cascade Drilling Hollow Stem Auger
DATE:	10/30/2019	ELEVATION:	N/A
ART TIME :	9:05	WATER LEVEL :	
END TIME :	10:20	LOGGER:	A. Shwartz, I. Dinkleman
PTH BELOW	SURFACE (FT)	SOIL DESCRIPTION	COMMENTS
INTER	/AL (FT) RECOVERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
	counts	WINELVESSI	PID (ppm) Breathing Zone
-	N/A	Surface: Silty sand w/gravel. (SM) Gravel angular up to 1/2" φ. Sand well-graded. Dry. 10 yr/5/2. Grayish brow	Reacts with HCL wn
-	6713	1.0 - 1.5': Silty sand (SM) Few gravel. Subangular. Sand well graded. Moist. 7.5 yr 4/4. Brown	Reacts with HCL
-		Cultu Wolf graded. Moles. 7.0 yr 474. Brown	Concrete slab @ 3.0 - 3.5'
- 5 <u> </u>	6 for 6"	2.5 - 3.0' : Silty sand with gravel (SM). Gravel angular - subangular, up to 2.0" ф. Sand is well graded. Moist. Interbedding of caliche. Hard calcareous layer. 7.5 yr 3/4 Dark brown	Reacts with HCL
-	10-16-20	5.0 - 5.5': Silty sand (SM). Trace gravel. Caliche layer ~ 25". Dry. Reacts strongly with HCL. White. 7.5 yr 5/3. Brown	Reacts with HCL
- - 0		7.5 - 8.0' Silty sand (SM). Sand well-graded. Caliche layer ~ 2.5". Moist. 7.5 yr 4/4. Brown	Reacts with HCL
_	17-18-21	10-10.5' Same as above (7.5-8.') with few clay clasts.	
_		- -	
5	1114 16	15.0-15.5'. Well graded sand with silt (SW-SM). Dry. Sand sub-angular - sub-rounded. Poorly cemented.	Reacts with HCL
_		Gravel up to 1/2" Angular to sub-rounded. Few caliche 5 yr 4/6 Yellowish Red -	
-		-	
0	101011	19.5 - 20'. Silty Sand (SM). Sand is well graded. Angular - sub angular. Moist. 5 yr 4/6 Yellowish Red	Reacts with HCL
-		-	

BORING NUMBER D-B12

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/31/2019	ELEVATION:	N/A
START TIME :	11:00	WATER LEVEL :	
END TIME :	12:15	LOGGER:	A. Shwartz

DEPTH E	EPTH BELOW SURFACE (FT)		SOIL DESCRIPTION	COMMENTS
	INTERVA			
	RECOVERY (FT) blow counts		SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
				PID (ppm) Breathing Zone
_		8911	1.0-1.5 - Sandy silt (ML) Brown Damp, soft, trace clay. No plasticity _	HS = 0.4 ppm
-		5712	2.5-3.0 - Clayey silt (CL) Brown mottled with white, brown silt and white kaolin clay lenses. Trace coarse gravel, silt is soft, clay is firm.	HS=0.2 ppm
5 <u> </u>		101415	5.0-5.5' Sandy silt (ML). Dark brown, some fine gravel and black tar substance. Trace clay, no plasticity.	HS=0.2 ppm Black tar/asphalt
-		50 for 3"	7.5-8.0'. Same as above. Possible lamp black tar	HS= 0.7 ppm
10		30-50 for 6"	10-10.5'. Gravelly silt (GM) Brown, dry, well-graded.Trace clay	HS=0.3 ppm
-			- - -	
15 - -		121316	15.0-15.5' - Sandy silt (ML) Dry, few gravel, trace clay, medium dense	HS=0.5 ppm
20		111115	19.5-20.0' Gravelly sand (SW) Brown, dry, coarse sand. Some gravel, little silt, no plasticity, lense of possible lamp black.	HS= 0.3 ppm Lense of broken soil has visual line of lamf_ Took pic. Believe it could be slough from above as rest is clean.
-			-	
_ 25		489	24.5-25' Silty sand (ML) Yellowish brown, moist, trace gravel, soft, non-plastic	HS=1.4 ppm -
-			- -	
- 30			EOB 10-31-19 ADS	

BORING NUMBER

D-B13

SHEET 1

OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED:	Hollow Stem Auger
DATE :	10/31/2019	ELEVATION :	N/A
START TIME :	7:40	WATER LEVEL :	
END TIME :	10:00	LOGGER :	A. Shwartz

DEPTH F	PTH BELOW SURFACE (FT)		SOIL DESCRIPTION	COMMENTS
	INTERVA		OSIE BESONII HON	
		RECOVERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
				PID (ppm) Breathing Zone
1		НА	1.0-1.5' - Silty sand (SM) Reddish brown, moist, trace coarse gravel Some kaolin lenses, hard, no plasyicity, trace specks of very fine black, possible lamp black	HS = 0.9 ppm Slight odor
-		НА	2.5-3.0' - Silty clay (CL) White, dry, large lenses of kaolin clay in between silty sand (SM) Red, very fine, hard, no plasticity	HS=1.1 ppm Slight odor Concrete @ 3'bgs - possibly meter house foundation
5		91415	5.0-5.5' Silty sand (SM). Reddish brown, dry, ~ 3" lense of Kaolin clay, white, trace wood debris, possible foundation for meter house, trace gravel	HS=0.2 ppm Slight odor
_		71418	7.5-8.0'. Sandy silt (SM) Reddish brown, dry, trace Kaolin, trace tar/asphalt like substance, hard, no plasticity	HS= 0.6 ppm Mothball odor Found piece of pipe ~ 7' bgs Trace asphalt-like substance
10		101216	10-10.5'. Silty sand (SM) Reddish brown, damp, trace coarse gravel, trace asphalt substance (maybe slough) very fine, no plasticity, soft	HS=0.2 ppm Slight mothball odor, trace asphalt
_			- - -	- - -
15 _		111114	15.0-15.5' - Same as above. No gravel or asphalt material -	HS=0.2 ppm
-		8815	19.5-20.0' Silty sand (SM) Reddish brown, damp, trace gravel (maybe sloug	- HS= 0.2 ppm
20			trace Kaolin chunks, soft, non plastic	-
_			-	
25				-
-			-	-
30			EOB 10-31-19 ADS	-

BORING NUMBER D-B14

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/29/2019	ELEVATION:	N/A
START TIME :	8:05	WATER LEVEL :	
END TIME :	13:55	LOGGER :	A. Shwartz

LIVE	END LIME: 13:55			LOGGER: A. Shwartz		
		SURFACE (FT)	SOIL DESCRIPTION	COMMENTS		
	INTERVA			DEPTH OF CASING, DRILLING RATE,		
		RECOVERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.		
		Counts		PID (ppm) Breathing Zone		
		HA	1.0-1.5' - Clayey silt (ML) Yellowish brown, dry, very fine,	BZ = 0.0 ppm		
-			trace gravel and sand, low plasticity	-		
_		НА	2.5-3.0' - Silt (ML) Yellowish brown, dry, powder fine, some gravel	-		
_			-	-		
5 _		НА	5.0-5.5' Same as above	HS=0.4 ppm		
-			-	-		
_		101420	7.5-8.0' - Same as above	_		
-			-	-		
10		141823	10-10.5 - Same as above	HS=1.3 ppm		
_			_	-		
-			-	-		
- 15		75 for 6"	15.0-15.5' - Same as above. Stiff	HS= 1.5 ppm		
		76 16. 6	-			
_			-	-		
_			-	-		
20		35 for 6"	19.5-20.0' Silty sand (ML) Yellowish brown, dry, coarse gravel, stiff, no plasticity	HS= 2.3 ppm		
-			-	-		
-			EOB 10-29-19 ADS	-		
_				_		
25			_	_		
-			-	-		
-				-		
-			-	-		
30						

BORING NUMBER D-B15

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	11/1/2019	ELEVATION :	N/A
START TIME :	13:30	WATER LEVEL :	
END TIME :	15:00	LOGGER :	A. Shwartz

LIND II		13.00	LOGGEN .	A. SIWAILZ
_		URFACE (FT)	SOIL DESCRIPTION	COMMENTS
	INTERVA	RECOVERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
		counts		PID (ppm) Breathing Zone
		100 for 4"	1.0-1.5' - Silty sand and gravel (SM/SW) Dark brown, dry, some clay, coarse gravel, well-graded,	HS=0.2 ppm Visible lamp black
_			visible lamp black veins and staining, hard	visible lamp black
-		50 for 6"	2.5-3.0' - Silty sand (SM) Brown, dry, trace gravel and cemented sands, trace clay, medium dense, no plasticity	HS=0.1 ppm Visible lamp black
-			uace day, medium dense, no plasticity	visible lamp black
5		11 11 15	5.0-5.5' Silty sand and clay (ML/SC) Brown, dry, very hard,	HS=0.3 ppm
5 —		111115	some gravel, trace lamp black	Trace lamp black
_			-	-
-		131419	7.5-8.0' - Sandy silt (SM) Brown, dry, some fine gravel,	HS= 0.2 ppm
-			black rocks (possibly tar?), hard	Possible lamp black _
10		91213	10-10.5 - Clayey silt (CL) Yellowish brown, dry, trace sand,	- HS=0.3 ppm
10 _		91213	very fine, stiff, visible lamp black	Visible lamp black
-			-	Advance to 15' bgs
-			-	
-			-	-
-			-	-
15		101012	14.5-15.0' - Sandy silt (SM) Reddish brown, dry, some gravel, medium dense, no plasticity	HS= 0.2 ppm No visible lamp black
-			-	
-			-	
-			-	
-			-	
20			_	_
-			-	
-			-	
-			-	
-			_	
25			_	-
-			-	
-			-	
-			-	
-			EOB 11-1-19 ADS	
30				

BORING NUMBER D-B16

SHEET 1

OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/29/2019	ELEVATION :	N/A
START TIME :	8:05	WATER LEVEL :	
END TIME :	12:15	LOGGER:	A. Shwartz

END	ΓIME :	12:15		LOGGER :	A. Shwartz
DEPTH	BELOW S	SURFACE	= (FT)	SOIL DESCRIPTION	COMMENTS
	INTERV		- \· · /	50E 5E50111 11011	
			ERY (FT) blow	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONTENT SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
			counts	MINERALOGY	PID (ppm) Breathing Zone
					PID (ppin) Breatining Zone
-				-	-
-			НА	2.5-3.0' - Clayey silt (ML) Yellowish brown, dry, very fine, hard, trace gravel,	-
_				_	-
5 _			НА	5.0-5.5' Gravelly silt (GM) Yellowish brown, dry, hard,	Concrete
-				some concrete and gravel, no plasticity -	-
-				-	-
-				-	-
10 _				10-10.5 - Gravelly silt, (GM) Yellowish brown, dry, very hard, well-graded	HS=1.3 ppm
-				some concrete and sand, no plasticity -	Concrete –
-				-	-
-				-	-
15				15.0-15.5' - Same as above	_
-				-	-
-				-	-
_				_	-
20 _				19.5-20' Same as above	HS= 0.4 ppm
-				-	-
-				-	-
_					_
25 _				_	_
_				-	-
-				-	-
_					_
30				EOB 10-29-19 ADS	

BORING NUMBER D-B17

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/30/2019	ELEVATION :	N/A
START TIME :	10:45	WATER LEVEL :	
END TIME :		LOGGER:	I. Dinkleman

LIND	END TIME: LOGGER: I. DINKIEMAN						
DEPTH E	BELOW S	SURFACE (FT)	SOIL DESCRIPTION	COMMENTS		
	INTERVA				DEDTH OF CACING DRILLING DATE		
		blow		RECOVERY (FT)		SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
		co	unts	WIINERALOGT	PID (ppm) Breathing Zone 0.0 ppm		
				Surface same across site: Silty sand w/gravel. (SM)			
-				Gravel angular up to 1/2" φ. Sand well-graded. Dry. 10 yr/5/2. Grayish bı _	Reacts with HCL		
_			7811	2.5-3.0' - Silty sand (SM) Few clay and trace gravel.	PID= 2.4 ppm		
_				Gravel angular up to 1/4" φ Sand well graded. Moist. 7.5 yr 3/4 Dark Brown	Reacts with HCL		
5		1	/1618	5.0-5.5' Silty sand with gravel (SM) Few clay. Dry.	PID=1.1 ppm		
3		'	41010	Asphalt and caliche identified in sample.	Reacts with HCL		
-				Sand well graded. Angular-sub-angular Gravel and Asphalt up to 1/2" ф. 10 yr 5/3 Brown	-		
-				-	-		
_		1	11113	7.5-8.0' - Same as above (SM) Asphalt up to 1/4" φ. Color 7.5 yr 4/4 Brown	PID= 1.4 ppm Reacts with HCL		
_				-	-		
10		9	91314	10-10.5 - Silty sand (SM) Sand is well graded. Subangular. Interbedded with some clay clasts. Caliche observed in sample.	PID=3.1 ppm Reacts with HCL		
-				Moist. 7.5 yr 5/6 Strong brown.	-		
-				-	-		
_				-	-		
_				-	-		
15		1	01212	15.0-15.5' - Same as above (SM)	PID= 2.5 ppm Reacts with HCL		
_				_	-		
_				_	-		
_				_	-		
20					PID=4.1 ppm		
				Gravel angular up to 1/4" φ. Sand angular-Subangular 7.5 yr 5/8 Strong brown	Reacts with HCL		
_				_			
_				_			
				_			
25							
				_			
_				_			
_				_			
_				_			
-				-			
30	<u> </u>						

BORING NUMBER
D-B18

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :		ELEVATION :	N/A
START TIME :	10/28/19 - 17:00; 11/6/19 - 9:15	WATER LEVEL :	
END TIME :	11/6/19 - 10:00	LOGGER:	A. Shwartz

END TIME :	11/6/19 - 1		LOGGER:	A. Shwartz L. Amskold
DEPTH BELOW		-T)	SOIL DESCRIPTION	COMMENTS
INTER	VAL (FT) RECOVER blo		SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
				PID (ppm) Breathing Zone 0.0 ppm
_		НА	0-2.5' - Silt (ML) Yellowish red, dry, some gravel, trace sand	-
-		НА	2.5-3.0' - (SM) Yellowish red, dry, fine with gravel, well graded, no plasticity	-
5		НА	5.0-5.5' - Same as above	-
_		HA	7.5-8.0' - same as above	-
_			-	-
- 10	1.5	111516	9.0-10.5' - Clayey sand (SC) Dry, reddish brown, poorly graded sand. Trace brownish black root fragments (possible lampblack) Loose sand fine>>medium	- 0.3 ppm
-			-	-
-			-	-
_ 15	1.5	9920	14.0-15.0' > Dry, light reddish brown, well graded sand with silt (SW-SM) _ Some coarse, subangular gravel White caliche	0.1 ppm
-			-	-
-			-	-
20			_	-
_			-	-
-			- -	-
_ 25			-	-
-				-
-				-
30			_	-

BORING NUMBER D-B19

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	11/1/2019	ELEVATION:	N/A
START TIME :	15:25	WATER LEVEL :	
END TIME :	11-2-19/8:25	LOGGER :	A. Shwartz

DEDTIL	251 0141 0	11-2-13		OOU DECORIDATION	COMMENTO
DEPTH	BELOW S		⊏(⊦।)	SOIL DESCRIPTION	COMMENTS
	INTLIVA		/ERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
					PID (ppm) Breathing Zone 0.0 ppm
_			101012	2.5-3.0' - Silty sand (SM) Brown with white Kaolin, dry, lamp black ribbons and staining, loose, no plasticity	HS=0.4 ppm Visible lamp black staining
5			71011	5.0-5.5' Clayey silt (CL) Mottled brown with trace white Kaolin lenses, trace visible lamp black staining, trace fine gravel, medium dense	HS=0.2 ppm Lamp black staining and ribbons
_			171821	7.5-8.0' - Silty sand (SM) Brown, dry, trace Kaolin, trace visible lamp blac very fine, soft -	HS=0.3 ppm
10			50 for 6"	10-10.5 - Silty sand (SM) Reddish brown, dry, little clay, lense of bouldervery fine, stiff, no visible lamp black	HS=0.1 ppm No lamp black
-				- - -	- -
15 <u> </u>			50 for 6"	15.0-15.5' - Same as above, no lense of boulder and hard, no plasticity, n	HS=0.0 ppm No lampblack
-			5 40 40	-	
20			51618	19.5-20' Silty sand (SM) Reddish brown with lenses of white Kaolin, moist, soft to medium,no plasticity, no visible lamp black -	HS=0.1 ppm No lampblack
-				-	
25				_	-
_				- -	-
30				EOB 11-2-19 ADS	

BORING NUMBER D-B20

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/30/2019	ELEVATION:	N/A
START TIME :	10:00	WATER LEVEL :	
END TIME :	11-2-19/9:55	LOGGER :	A. Shwartz

DEPTH F	BELOW S	URFACI	F (FT)	SOIL DESCRIPTION	COMMENTS	
	INTERVA		V /			_
			blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATI DRILLING FLUID LOSS, TESTS, ANI INSTRUMENTATION.	D
					PID (ppm) Breathing Zone 0.0 ppm	
_				-		
_			HA	2.5-3.0' - Silt (MH) Brown, dry, very fine, medium firm, low-medium plasticity		
-				-		
-				4.5-5.0' Darker brown, No visible lamp black		
5			HA	5.0-5.5' Gravelly silt (GM) Brown, dry, well graded, fine to coarse gravel, some trash, glass, bottles, etc. No plasticity		_
_				-		
_			51725	- 7.5-8.0' - Silty sand (SM) Yellowish brown, dry, mottled with white,	HS=0.1 ppm	
_			0 17 20	some Kaolin, some fine gravel, hard	No lamp black	
10			2050 for 6"	9.5-10' - Clayey silt (ML) Reddish brown, damp, hard, low plasticity, visible specs and staining of lamp black	HS=0.2 ppm Visible LB	_
-				visible specs and staining or ramp black	Advance 5' bgs	
-				-		
-				-		
- 15			50 for 6"		HS=0.1 ppm Visible lampblack staining and ribbons	
_					Advance 5' bgs	
_				-		
_				-		
_				-		
20 _			141515	19.5-20' Silty sand with clay lenses (SM/CL) Mottled reddish brown and white, moist, soft, low plasticity	HS=0.1 ppm Clean. No visible lampblack	-
-				-		
-				-		
_				-		
25				_		
_						_
_				_		
_				-		
-				EOB 11-2-19 ADS		
30						

BORING NUMBER D-B21

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	11/1/2019	ELEVATION:	N/A
START TIME :	9:56	WATER LEVEL :	
END TIME :	13:05	LOGGER :	A. Shwartz

DEDTU I	BELOW S	LIDEACI	E (ET)	SOIL DESCRIPTION	COMMENTS
	INTERVA		<u> </u>	SOIL DESCRIPTION	
			ERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. PID (ppm) Breathing Zone 0.0 ppm
					PID (ppm) Breathing Zone 0.0 ppm
-				-	
_			НА	2.5-3.0' - Sandy silt (SM) Brown, dry, trace Kaolin (white),	HS=0.2 ppm
_			1111-13	trace gravel, some concrete, visible lamp black	Visible lamp black and concrete
_				-	
5			1212-14	5.0-5.5' Sandy silt and fine gravel (SM/GC), well graded, brown, dry, fine	HS=0.2 ppm
_				with coarse concrete, visible lamp black -	Visible lamp black and coarse concrete grav ~ 3" diameter @ 5.5-6' bgs
_				_	
_			710-11	7.5-8.0' - Clayey silt (ML) Dark brown, umbre to reddish brown,	HS=0.2 ppm
				medium dense, dry, visible lamp black	Visible lamp black
10			1517-18	10-10.5' - Sandy silt (SM) Reddish brown, damp, trace Kaolin,	HS=0.4 ppm
			10 17 10	trace gravel, very fine, stiff, non plastic	Visible lamp black ribbons and staining
_				-	
_				-	
-				-	
_			16-16-17	15.0-15.5' Clayey silt (ML) Reddish brown with white lenses of Kaolin, dry,	HS=0.3 ppm
15				soft, visible ribbons of lamp black	Ribbons of lamp black _
_				-	
_				-	
_				-	
_				-	
20			131315	19.5-20' Clayey silt (ML) Mottled light brown and white, dry, stiff,	HS=0.4 ppm
_				trace sand, medium plasticity	Visible staining of possible lamp black
_				_	
_				-	
-				-	
25			889	24.5-25.0' Clayey silt (ML) Yellowish brown, moist, soft medium plasticity	HS=0.2 ppm _ No visible lamp black
-				-	
-				-	
-				-	
-				EOR 11 1 10 ADC	
30				EOB 11-1-19 ADS	

BORING NUMBER D-B22

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/29/2019	ELEVATION:	N/A
START TIME :	10:00	WATER LEVEL :	
END TIME :	15:10	LOGGER :	A. Shwartz

	I IIVIL .	13.10		LOGGEN.	A. Sliwarz
DEPTH	BELOW S		(FT)	SOIL DESCRIPTION	COMMENTS
	INTLINA	RECOVE	ERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
		(counts	12.0.250.	PID (ppm) Breathing Zone 0.0 ppm
-				-	-
-			НА	2.5-3.0' - Silt (ML) Yellowish brown, dry, some gravel -	BZ=0.0 ppm
5 <u> </u>			30 for 6"	5.0-5.5' Clayey silt (ML) Yellowish brown, dry, lenses of Kaolin (white), low plasticity	_
-			50 for 6"	7.5-8.0' - Silty clay (CL) Mottled yellowish brown and white, dry, large lenses of Kaolin, low plasticity, very hard	- HS=0.3 ppm
10 _			1550 for 6"	10-10.5' - Silt (ML) Reddish brown, dry, trace gravel, very hard, no plasti	HS=0.8 ppm
_				- - -	
- 15			50 for 6"	15.0-15.5' Clayey silt (ML) Reddish brown, trace Kaolin, very hard —	HS=0.5 ppm
-				Refusal @ 15.5 unless added water	
-				-	
20				-	-
_				-	
25 _				_	_
-				-	
-				- EOB 10-29-19/1510 ADS	
30					

BORING NUMBER D-B23

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/31/2019	ELEVATION:	N/A
START TIME :	14:10	WATER LEVEL :	
END TIME :	16:35	LOGGER :	A. Shwartz

DEPTH BELO INTE	RECOVE	ERY (FT) blow counts 121214 91516 111517 50 for 6"	SOIL DESCRIPTION SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY 2.5-3.0' - Sandy silt (SM) Light brown, dry, little gravel, no plasticity 5.0-5.5' Clayey silt (ML) Mottled light brown with white, dry, medium der lenses of Kaolin, low plasticity 7.5-8.0' - Silty sand (SM) Mottled light brown with white, dry, little Kaolin, little concrete gravel 9.5-10' - Sandy clay and gravel (CL) Light brown, dry, hard, concrete, possible subsurface slab, trace ribbons of lamp black in clay cuttings, low plasticity	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. PID (ppm) Breathing Zone 0.0 ppm HS=0.2 ppm HS=0.2 ppm HS=0.5 ppm Possible lamp black and concrete structure
	RECOVE	121214 91516 111517 50 for 6"	RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. PID (ppm) Breathing Zone 0.0 ppm HS=0.2 ppm HS=0.2 ppm HS=0.5 ppm
- - - 10 - - - - 15 -		91516 111517 50 for 6"	5.0-5.5' Clayey silt (ML) Mottled light brown with white, dry, medium der	HS=0.2 ppm HS=0.2 ppm HS=0.5 ppm
- - - 10 - - - 15 -		91516 111517 50 for 6"	5.0-5.5' Clayey silt (ML) Mottled light brown with white, dry, medium der	HS=0.3 ppm HS=0.2 ppm HS=0.5 ppm
10		111517 50 for 6"	lenses of Kaolin, low plasticity 7.5-8.0' - Silty sand (SM) Mottled light brown with white, dry, little Kaolin, little concrete gravel 9.5-10' - Sandy clay and gravel (CL) Light brown, dry, hard, concrete, possible subsurface slab, trace ribbons of lamp black in clay cuttings,	HS=0.2 ppm HS=0.5 ppm
- - - 15 - -		50 for 6"	little concrete gravel 9.5-10' - Sandy clay and gravel (CL) Light brown, dry, hard, concrete, possible subsurface slab, trace ribbons of lamp black in clay cuttings,	HS=0.5 ppm
- - - 15 - -		50 for 6"	possible subsurface slab, trace ribbons of lamp black in clay cuttings,	
- - -			-	
- - -			-	
_ _ _ _ 20		91414	14.5-15.0' Silty sand (SM) Light brown, dry, some gravel and concrete, very fine, stiff, trace ribbons of possible lamp black	HS=0.4 ppm Small ribbon of possible lamp black _ Advance another 5'
20			- - -	
			19.5-20.0' - Silty sand (SM) Reddish brown, dry, coarse sand, little gravel/concrete, loose, non plastic	HS=0.2 ppm _
-			- -	
-			- -	
25				-
-			_	
-			- EOB 10-31-19 ADS	

BORING NUMBER D-B24

SHEET 1 OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/30/2019	ELEVATION :	N/A
START TIME :	14:30	WATER LEVEL :	
END TIME :	16:00	LOGGER :	A. Shwartz

END 1	TIME :	16:00		LOGGER :	A. Shwartz
DEPTH E	BELOW 9	SLIREAC	F (FT)	SOIL DESCRIPTION	COMMENTS
DEI IIII	INTERV		L (1 1)	COLE DECOMM HOM	
			/ERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
			counts	MINERALOGY	
					PID (ppm) Breathing Zone 0.0 ppm
-				-	-
_			НА	2.5-3.0' - Clayey silt (ML) Yellowish brown, moist, firm, trace gravel, trace sand, low plasticity	HS=2.7 ppm
_				_	_
5			НА	5.0-5.5' Clayey sand (SC) Brown with specks of white, moist, Kaolin clay trace fine gravel, some silt, medium, low plasticity	HS=3.1 ppm
-					- -
_			НА	7.5-8.0' - Clayey silt (ML) Brown, moist, medium, lenses of Kaolin _ white to pink, lense of black, possible lamp black at bottom, trace gravel	HS=0.2 ppm _
10			91314	To-10.5' Clayey silt (ML) Red with small lenses of black, possible lamp black, firm, very fine, low plasticity	HS=3.1 ppm
-					-
_				-	-
- 15			91214	- 15-15.5' Gravely sand (SW) Brown, well graded medium grain, sand witl	HS= 0.0 ppm
-			3-12-14	fine gravel, loose, no plasticity -	-
-				-	-
_				- -	-
20			121318	19.5-20.0' - Silty sand (SM) Brown, moist, trace coarse gravel, no plasticity	HS=0.0 ppm
_				-	-
-				-	_
_ 25				- _	-
-				-	-
-				-	-
_				EOB 10-30-19 ADS	_
30					

BORING NUMBER

D-B25

SHEET 1

1 OF 2

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED:	Hollow Stem Auger
DATE :	10/30/2019 Hand auger to 9.0'	ELEVATION :	N/A
START TIME :	9:00 (start drilling 10/31/19)	WATER LEVEL :	~ 26.0
END TIME :	10/31/19 - 16:45	LOGGER:	I. Dinkelman

END I	TIME :	10/31/1	9 - 16:45	LOGGER :	I. Dinkelman
				AND DESCRIPTION	0011151170
DEPTH E			E (FT)	SOIL DESCRIPTION	COMMENTS
	INTERV		ERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
					PID (ppm) Breathing Zone
				00.5' - Silty sand (SH) with few gravel, sand is fine to medium grained	PID 0.0 ppm
-				Gravel up to 1/4" φ. Angular. Dry. 7.5 yr 5/4 Brown	Reacts with HCL - some organics (roots)
-				2.5-3.0' - Silty sand with gravel (SM). Sand well graded. Gravel up to 1.0 _ Angular. Dry. 7.5 yr 6/6 Reddish yellow	PID 1.1 ppm _ Reacts with HCL.
-				_ _	D-B25-2.5-3.0 @ 16:20
5				5.0-5.5' - Silty sand (SM) Trace gravel. Sand well graded.	PID= 0.4 ppm
				Gravel up to 1/4" φ. Gravel angular. Sand subangular. Dry.	Reacts with HCL
-				7.5 yr 5/6 Strong brown	D-B25 - 5.0-5.5 @ 16:30
-				7.5-8.0' - Silty sand with gravel (SM). Gravel up to 1/2" φ. Angular.	PID=0.0 ppm Reacts with HCL
-				Sand well graded. Dry. 7.5 yr 4/6 Strong brown	D-B25 - 7.5-8.0 @ 16:55
-				9.0' Obstruction. Refusal with hand auger. Large rock @ 9.0'	10/31/2019 ↓ _
10 _		ВС	22/31	10-10.5 - Silty sand with gravel (SM). Gravel up to 1/2" ф. Angular. Sand is well graded. Dry. 7.5 yr 5/6 Strong brown.	PID=0.5 ppm Reacts with HCL D-B25 - 10.0-10.5 @ 9:30
_				- 10.5 13.0' - Same as above.	-
_				- Carrie as above.	_
_				13.0-14.0' - Silty sand (SM). Sand is well graded.	PID=1.1 ppm
				Angular-subangular. Dry. 7.5 yr 7/4 Pink.	Reacts with HCL
_				-	_
15				14.0-15.0' - Sandy silt (ML). Sand well graded. Angular. Dry. Slow dilater Low toughness and dry strength. Low plasticity. 7.5 yr 8/3. Pink.	PID= 3.3 ppm Reacts with HCL Few gravel up to 3/4" \$\phi\$
_				15.0-16.0' - Silt with sand (ML) Sand poorly graded. Fine to very fine. Dry. Slow dilatency. Caliche in sample in thin layers or clasts. 7.5 yr 6/4. Light	PID= 3.3 ppm Reacts with HCL D-B25 - 15.0-15.5 @ 10:50
-				16.0-17.5' - Silt with sand (ML). Sand well graded. Moderately to wellcemented. Some clay. No dilatency. 7.5 yr 4/6. Strong brown	PID=15.3 ppm _
20				17.5-20.0' - Clayey silt (ML/CL). Few sand. Dry. Sand well graded	PID= 1.8 ppm
-				20.0-21.0' - Silty sand (SM) with few clay. Dry. 7.5 yr 5/4. Brown. Sand is well graded. Subangular.	PID= 3.6 ppm 325 - 20.0-21.5 @ 11:25
-				21.0-23.0' - Well graded sand with silt (SW-SM). Angular 7.5 yr 5/4. Brown	PID= 1.9 ppm _
25				23.0-25.0' - Fat clay with sand (CH). Moist. Sand well graded. No dilatency. High toughness. High plasticity. High to very high dry strength. 7.5 yr 4/6 Strong brown	PID= 11.7 ppm —
-				25.0-29.5' - Fat clay (CH) Moist. Clasts of Caliche observed in core. No dilatency. High plasticity. High dry strength. 7.5 yr 4/6. Strong brown.	PID= 8.3 ppm D-B25 - 25.0-25.5 MS/MSD
30				29.5-30.0' - Well graded sand (SW). Few silt. Sand angular-subangular. Moist. 10 yr 5/3. Brown	PID= 4.1 ppm Encountered water

BORING NUMBER

D-B25

SHEET 2 OF 2

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED:	Hollow Stem Auger
DATE :	10/30/2019 Hand au	ELEVATION :	N/A
START TIME :	9:00 (start drilling 10/31/19)	WATER LEVEL :	~ 26.0
END TIME :	10/31/19 - 16:45	LOGGER:	I. Dinkelman

END	ΓIME :	10/31/1	9 - 16:45	LOGGER :	I. Dinkelman
DEDTILL	DEL OW	CLIDEAC	C (CT)	SOIL DESCRIPTION	COMMENTS
DEPIRE		SURFAC	E (FI)	SOIL DESCRIPTION	COMMENTS
	IIN I EK	/AL (FT)	ERY (FT)	COIL NAME LICCO ODOLID CYMPOL COLOD MOIOTUDE CONTENT	DEDTH OF CASING DRILLING DATE DRILLING
		RECOV	blow	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
			counts	MINENALOGI	PID (ppm) Breathing Zone
30		BC=	7/4	30.0-31.0' - Lean clay with sand (CL). Sand well graded. Subangular.	PID= 1.1 ppm
-		BC-	7/4	Small yellow grains are observed in core sample. Clay is marbeled in appearance with white, yellowish brown and darker soils. Few areas appear to be redox condition Fe staining. 10 yr 6/4. Light yellowish brown.	D-B25 - 30.0-30.5 @ 13:20
				31.0-31.5' - Fat clay (CH). Trace sand. No dilatency. High plasticity. High dry strength and toughness. 10 yr 6/3. Pale brown.	PID= 10.8 ppm
35				31.5-33.0' - Appears to be a weathered caliche. Reacts strongly with HCL. From white page color. 10 yr _/1. White	PID=21.6 ppm —
_				33.0-34.0' - Lean clay with sand (CL). Weathered clasts of caliche (?) No dilatency. Medium dry strength and toughness. 7.5 yr 5/4. Brown	PID=13.6 ppm
_				34.0-37.0' - Same as 31.5 - 33.0' Weathered caliche	PID=7.5 ppm –
40				37.0-38.0' - Well graded sand with clay (SW-SC). Few silt. Angular-subangular. Poorly cemented with trace moderately cemented clast: Wet. 7.5 yr 4/4. Brown	PID=10.5 ppm s
-				38.0-40.0' - Fat clay (CH). High dry strength. No dilatency. High toughneard plasticity. Moist. 7.5 yr 4/6. Strong brown.	PID= 15.9 ppm _
_		BC=	8	40.0-40.5' Same as above (38-40')	PID= 1.9 ppm D-B25 - 40-40.5 @ 16:20
45				-40.5-50.0' - mSame as above (38-40')	-
_				-	PID 41.0-43.0=1.7 ppm -43.0-45.5=9.7 ppm -45.5-47.0-17.4 ppm
_				-	45.5-47.0=17.4 ppm 47.0-48.5=4.7 ppm 48.5-50.0=0.8 ppm
- 50				-	-
_				-	-
_				-	-
-				-	-
55					_
-				-	-
-					-
60					

BORING NUMBER D-B26

SHEET 1

OF 2

PROJECT :	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	11/1/2019 Hand auger to 5.0'	ELEVATION:	N/A
START TIME :	11/2/19 - Drilling start @ 9:10	WATER LEVEL :	~ 26.5
END TIME :	11/3/19 - 16:00	LOGGER:	I. Dinkelman

END T	IME :	11/3/19 - 16:00	/3/19 - 16:00 LOGGER : I. Dinkelman				
DEDTH E	REL OW	SURFACE (FT)	SOIL DESCRIPTION	COMMENTS			
		VAL (FT)	OOL BESSIAN HOIL	COMMENTO			
		RECOVERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT,	DEPTH OF CASING, DRILLING RATE, DRILLING			
		blow	RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	FLUID LOSS, TESTS, AND INSTRUMENTATION.			
		counts	MINERALOGY	DID (com)			
-			0-5.0.5' - Silty sand (SM) with gravel, sand well graded.	PID (ppm) Breathing Zone PID 0.0 ppm			
			Gravel up to 1/2" φ. Angular. Dry. 7.5 yr 4/3 Brown	PID 0.0 ppm			
_							
_			2.5-3.0' - Silty sand (SM). Trace gravel. Sand well graded. Angular-suba	PID 1.4 ppm			
			Gravel up to 1/4"	D-B26-2.5-3.0 @ 14:15			
-			-	(Field duplicate D-FD05 - T10119) 14:20			
_			-	·			
5			5.0-5.5' - Silty sand (SM) Few gravel up to 1/2" φ. Gravel Caliche.	PID= 0.1 ppm			
			Sand well graded. Subangular. Dry. 7.5 yr 5/6. Strong brown	D-B26 - 5.0-5.5 @ 14:30 (MS/MSD)			
_				November 2, 2019			
			5.5-7.5' - Silty sand (SM). Interbedded with layers of caliche. Strong reaction with HCL. Sand well graded. Angular-subangular. @ 6.0' observed black				
-			rock (lamp black?). Caliche up to 1.5"\(\phi\$. 7.5 yr 4/6. Strong brown	Reacts strongly to HCL			
_		9	7.5-10.0' - Well graded sand with silt and gravel. (SW-SM). Moist.	PID=2.1 ppm. No reaction to HCL			
_			Angular-subangular. Gravel up to 3/4" φ. 7.5 yr 4/6. Strong brown	D-B26 - 7.5-8.0 @ 9:50.			
10		15	10.0.10.5. Silty cond with group! (SM). Sand well areded. Subsection	PID=2.3 ppm Reacts with HCL _			
10 _		15	10.0-10.5 - Silty sand with gravel (SM). Sand well graded. Subangular Gravel up to 2.0" \(\phi\). Angular. Broken pieces of caliche. Moist. 7.5 yr 4/6.	D-B26 - 10.0-10.5 @ 10:15 (MS/MSD)			
			Strong brown	B B20 10.0 10.0 @ 10.10 (MO/MOD)			
_							
_			10.5-11.0' - Same as above. (10.0-10.5')				
_			11.0-15.0' - Well graded sand with silt and gravel. (SW-SM). Sand is ang to subangular. Gravel up to 2.5" \(\phi \). Angular. 7.5 yr 4/6. Strong brown.				
			to subangular. Graver up to 2.5 \(\psi\). Angular. 7.5 yr 470. Strong brown.				
_			-				
15		15	15.0-15.5' - Well graded sand with silt and gravel (SW-SM).	PID= 2.1 ppm			
				D-B26 - 15.0-15.5 @ 10:35			
_			-				
_							
_			15.5-20.0' - Same as above (SW-SM)	PID=3.0 ppm			
_			-				
20			20.0-20.5' - Same as above (SW-SM)	D-B26 - 20.0-20.5' @ 10:50			
			, ,				
-			-				
-			-				
			20.5-23.0' - Same as above(SW-SM).				
-			_				
_			_				
			23.0-25.0' - Clayey sand (SC). Sand is well graded. Angular. Moist.	PID= 8.9 ppm (23.0-24.0)			
25 _			5 yr 5/8 Yellowish red.	-			
			25.0-26.0' - Clayey sand (SC). Sand is poorly graded.	PID= 12.2 ppm			
-			Subangular-Subrounded. Medium/fine sand. Moist 7.5 yr 5/4. Brown	D-B26 - 25.0-25.5 @ 11:15			
_			_	.			
			26.0-28.0' -Appears to be weathered caliche.	PID=12.8 ppm			
-			Reacts strongly with HCL. From white page color 10 yr -/1 white.	Encountered GW @ 26'			
_			28.0-30.0' - Fat clay (CH). Moist. No dilatency. Very stiff.	PID= 17.2 ppm			
		1		- FE:::			

BORING NUMBER

D-B26

2 OF 2

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/30/2019 Hand au	ELEVATION :	N/A
START TIME :	9:00 (start drilling 10/31/19)	WATER LEVEL :	~ 26.5
END TIME :	10/31/19 - 16:45	LOGGER:	I. Dinkelman

END 1	TIME :	10/31/19 - 16:45	LOGGER:	I. Dinkelman
DEDTILL	DEL OW	CUDEACE (ET)	SOIL DESCRIPTION	COMMENTS
DEPIRE	INTERV	SURFACE (FT) /AL (FT)	SOIL DESCRIPTION	COMMENTS
		RECOVERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
				PID (ppm) Breathing Zone
30			30.0-31.5' - Fat clay with sand (CH). Sand is well graded. Angular. No dilate High dry strength and toughness. 7.5 yr 7/3. Pink. (Moist)	PID= 5.9 ppm D-B26 - 30.0-31.5 @ 13:25
-			31.5-32.5' - Same as above exceept color is 7.5 yr 6/6. Reddish yellow	PID=6.8 ppm _
-			32.5-33.0' - Fat clay (CH). Moist. No dilatency. Very stiff. High toughness and dry strength. 5 yr 5/4. Reddish brown	PID= 6.8 ppm
35			33.0-35.0' - Lean clay with sand (CL). Moist to wet. Sand well graded. Angular. 7.5 yr 5/3. Brown.	PID=6.8 ppm —
-			35.0-38.5' - Calcareous layer. Reacts strongly with HCL. May be weathered caliche. Hard consistency. Resembles a fat clay. No dilatency. High toughness and plasticity.	PID=7.4 ppm _
_			From white page. 10 yr -/1 white.	
-			angular to subangular. Gravel up to 1/2"¢ subangular. Wet. 7.5 yr 4/4. Brown.	- -
40			39.0-50.0' - Fat clay (CH). Interbedded with a lean clay with sand @ 43.0' and 45.0'. Moist.	39.0-40.0' - PID=1.7 ppm
-			Fat clay 7.5 yr 4/6. Strong brown Lean clay 5 yr 7/4. Pink No dilatency. Very stiff. High toughness and plasticity.	40.0-42.0' - PID=10.2 ppm D-B26-40.0-40.5 @14:30
-			High dry strength.	42.0-44.0' - PID=14.3 ppm
45 <u> </u>			_	44.0-46.0' - PID=3.8 ppm 46.0-48.0' - PID=11.5 ppm
-			-	48.0-50.0' - PID=8.7 ppm
-			-	-
_				
50			_	_
-			-	-
_			_	_
-			-	-
55				_
-			_	_
-			-	-
- 60			-	-

BORING NUMBER D-B27

SHEET 1

OF 2

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	11/3/2019 Hand auger 10:00-10:30	ELEVATION :	N/A
START TIME :	11/3/19 - 15:00	WATER LEVEL :	
END TIME :	11/4/19 - 11:30	LOGGER :	I. Dinkelman

END.	TIME :	11/4/19 -	- 11:30	LOGGER:	I. Dinkelman
				T	
DEPTH		SURFACE	(FT)	SOIL DESCRIPTION	COMMENTS
i	INTERV	VAL (FT)	EDV (ET)	1	DEDTH OF CACING DOWN INC DATE DOWN
i		RECOVE	. ,	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT,	DEPTH OF CASING, DRILLING RATE, DRILLING
ĺ			blow .	RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	FLUID LOSS, TESTS, AND INSTRUMENTATION.
ĺ			counts	WIINELIAEOGT	DID (nam) Breathing Zone
—		+		Ourfees with sound with sound (OM). Does Oursell sounded	PID (ppm) Breathing Zone
ĺ				Surface - silty sand with gravel (SM). Dry. Sand well graded.	
-				Angular to subangular. Gravel up to 2.0" Φ. Some cobbles and asphalt	-
ĺ				debris in vicinity of well. 7.5 yr 5/6. Strong brown	
-				2 F 2 O' Silty cond with grovel (SM). Dry Coliche checoved in comple	- DID 1.6 nnm - Boosto with HCI
ĺ				2.5-3.0' - Silty sand with gravel (SM). Dry. Caliche observed in sample. Sand is well graded. Subangular. Gravel up to 1/4"	PID 1.6 ppm Reacts with HCL D-B27-2.5-3.0 @ 10:00
-				7.5 yr 6/4. Light brown	D - FD01 - 110319 @ 10:05
ĺ				7.5 yr 0/4. Light blown	D - 1 D01 - 110313 @ 10.03
-				5.0-5.5' - Silty sand with gravel (SM). Dry. Gravel angular up to 1/4" φ.	PID= 1.9 ppm
5				Sand is well graded. Angular - subangular. 5 yr 5/6. Yellowish red.	D-B27 - 5.0-5.5 @ 10:10
ı					
ĺ				5.5-7.5' - Silty sand (SM). Laminated with caliche. Trace gravel. Angular.	PID=11.1 ppm
_				Sand is well graded. Subangular. 5 yr 5/6. Yellowish red.	
				3. 1. 1. g. 2. 2. 2. 2. 2. 3. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	•
-				7.5-8.0' - Silt with sand (ML). Reacts with HCL. Dry. Few clasts of	PID=5.6 ppm
_]			moderately cemented silt and sand. 7.5 yr 6/4. Light brown	
_					
_]			8.0-8.5' - Silty sand (SM). Few laminates of caliche. (Reacts with HCL)	PID=5.6 ppm
i –				Trace gravel. Sand is well graded. Angular.	
ĺ				Gravel up to 1/2" Φ. Angular. 7.5 yr 5/6. Strong brown	_
ĺ					
_				8.5-9.0' - Caliche layer reacts strongly to HCL. Predominately caliche	PID=5.6 ppm
ĺ				intermixed with silt and sand. Moist. 7.5 yr 5/2. Pinkish white.	
_				_	
				9.0-10.0' - Silty sand (SM). Few laminates of caliche. Few gravel.	PID= 5.6 ppm
10				(caliche clasts up to 1.5"Φ). Sand is well graded. Angular.	
				7.5 yr 4/4. Brown	
_				_	_
ĺ				10.0-12.0' - Silty sand (SM). Dry. Sand well graded. Trace gravel up to 1/4"	PID=3.1 ppm
_				Gravel angular. Sand angular-subangular. 7.5 yr 4/6. Strong brown	_
ĺ					
-				12.0-14.0' - Well graded sand with silt (SW-SM). Trace gravel. Sand ang	PID=2.7 ppm
ĺ				Gravel up to 1/4"Φ. 7.5 yr 5/8. Strong brown.	
-				_	_
				14.0-16.0' - Well graded sand with silt and gravel (SW-SM).	PID= 4.4 ppm
15				Gravel up to 1/2"Φ. Angular. Sand angular-subangular.	_
				7.5 yr 5/8. Strong brown. Dry.	
_				-	
i					PID=4.4 ppm
_				Angular. Trace gravel. 7.5 yr 5/8. Strong brown.	-
				17.E. 10.EL Well gradedfoodd (CW) Towns and Consulting to 17.E.	DID 50 mm
_				17.5-18.5' - Well gradedf sand (SW). Trace gravel. Gravel up to 1/4"Φ.	PID=5.9 ppm
				Sand and gravel subangular. Dry. 7.5 yr 5/6. Strong brown	
-				19 F 20 OL Well graded and with group (CM). Croup up to 1 File	- DID 5 0
20				18.5-20.0'-Well graded sand with gravel (SW). Gravel up to 1.5"Φ.	PID=5.9 ppm
20				Sub-angular. Sand subangular. Moist. 7.5 yr 4/4. Brown.	-
				20.0.21.0' Samo as above (SW)	PID-12 0 ppm
_	1			20.0-21.0' - Same as above. (SW)	PID=12.9 ppm
				21.0-24.5' - Clayey sand with gravel (SC). Gravel up to 1/2"Φ. Angular.	PID - 21.22'=12.9 ppm
_				Sand is well graded. Subangular. Moist. 5 yr 4/6. Yellowish red.	21-24'=30.5 ppm
				Sand is well graded. Subangular, Moist, 5 yr 4/6, Yellowish red.	
25				24.5-25.0' - Sandy lean clay (CL). Moist. Sand is well graded.	24-24.5'=18.2 ppm PID=18.2 ppm
25_					PID=18.2 μμπ
-				Angular-subangular. Moist. 5 yr 4/6. Yellowish red.	-
ĺ				25.0-25.5' - Clayey sand (SC). Moist. Sand poorly graded. Subangular.	PID=12.9 ppm
-				7.5 yr 4/6. Strong brown.	
i				7.5 7. 1.5. Guong brown.	
-	1			25.5-27.0' - Fat clay (CH). Few sand. Moist. Sand subangular.	GW ~ 26.5'
				7.5 yr 4/6. Strong brown.	

BORING NUMBER

D-B27

OF 2

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/30/2019 Hand au	ELEVATION :	N/A
START TIME :	9:00 (start drilling 10/31/19)	WATER LEVEL :	
END TIME :	10/31/19 - 16:45	LOGGER:	I. Dinkelman

END	TIME :	10/31/19 - 16:45	LOGGER:	I. Dinkelman
DEDTH	REI OW 9	SURFACE (FT)	SOIL DESCRIPTION	COMMENTS
DEFIII	INTERV		SOIL BESCHII TION	COMMENTS
		RECOVERY (FT) blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
				PID (ppm) Breathing Zone
-			27.0-29.0' - Clayey sand (SC). Wet. Sand poorly graded. Subangular. 7.5 yr 5/6. Strong brown.	PID= 5.9 ppm D-B26 - 30.0-31.5 @ 13:25
30			29.0-30.0' - Well graded sand (SW). Wet. Trace gravel up to 1/4"Φ.	
- 00			Subangular. Sand subangular. 7.5 yr 5/4. Brown.	Stop drilling 11/3/19 @ 30.0'
_			_	November 4, 2019 ↓ _
_			30.0-30.5' - Silty sand (SM) with few clay. Sand poorly graded. Wet. Subangular. 7.5 yr 5/4. Brown.	PID=8.9 ppm D-B27 - 30.0-30.5 @ 9:50
			30.5-31.0 - Well graded sand (SW). Trace gravel. Up to 1/4"Φ angular.	
-			Sand is subangular. 7.5 yr 5/3. Brown	_
_			31.0-31.5 - Poorly graded sand (SP). Wet. Sand subrounded/subangular. 10 yr 7/2. Light gray.	-
35			31.5-35.0' - Fat clay (CH). Few sand. No dilatency. High toughness and plasticity. High dry strength. Moist. 7.5 yr 5/2. Brown Fracture @ 34.5-35.0(?)	PID - 31.5-32.0=8.9 ppm PID - 32.0-34.0=22.2 ppm
_			- 1333310 (8) 0 110 0010(1)	<u> </u>
			35.0-39.0' - Appears to be weathered caliche. Very strong reaction to HCI	D-B27 - 40.0-40.5 @ 11:05
			Hard consistency. Very stiff. Resembles a fat clay.	PID - 40-42'=19.2 ppm
-			No dilatency. 10 yr -/white.	PID - 42-44'=16.7 ppm PID - 44-46'=17.3 ppm
40			39.0-50.0' - Fat clay (CH). Moist-wet. High dry strength and toughness.	PID - 46-48'=11.4 ppm
_			High plasticity. 7.5 yr 4/6. Strong brown	PID - 48-50'=15.1 ppm
_			-	_
45			_	_
-			-	-
-			-	_
-			-	-
50				_
-			-	-
-			-	_
-			-	-
-			-	-
55			_	_
_				_
-			-	_
-			-	-
60				

BORING NUMBER
D-B28

SHEET 1

OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/29/2019	ELEVATION :	N/A
START TIME :	12:25	WATER LEVEL :	
END TIME :	16:15	LOGGER:	A. Shwartz

END 7	IIME :	16:15		LOGGER :	A. Shwartz
DEPTH I	BELOW S	SURFAC	E (FT)	SOIL DESCRIPTION	COMMENTS
	INTERV	AL (FT)	/ERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			blow counts	RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION.
					PID (ppm) Breathing Zone 0.0 ppm
_				_	_
_				_	_
-				-	-
-				-	-
5 _			НА	5.0-5.5' Gravely silt (GM) Yellowish brown, well graded, very fine, very d	
_				very hard, no plasticity	BZ= 0.0 ppm _
_				-	_
-				-	-
-				-	-
10 _			192030	10-10.5' Gravely silt (GM) Same as above with coarse gravel and trace Kaolin	HS=0.5 ppm
-				-	-
_				_	_
_				_	
_				-	_
15 _			40-50 for 6"	15-15.5' Clayey silt (ML) Reddish brown, dry, very hard, very fine, trace (lenses ~ 1" of white Kaolin, no plasticity	
-				-	_
_				_	_
_				_	
_				_	-
20				19.5-20.0' - Silty sand (SM) Reddish brown, damp, some gravel, well graded, very hard, no plasticity	HS=0.4 ppm
-				-	-
_				-	_
_				_	_
_				-	_
25				_	
-				-	-
-				-	_
				_	
-				EOB 10-29-19 ADS	-
30					

BORING NUMBER
D-B29

SHEET 1

OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED:	Hollow Stem Auger
DATE :	11/5/2019 - 15:05	ELEVATION :	N/A
START TIME :	11/7/19 - 7:55	WATER LEVEL :	
END TIME :	11/7/19 - 9:15	LOGGER:	L. Amskold

				OOU DECORPTION		
_	EPTH BELOW SURFACE (FT) INTERVAL (FT)		1)	SOIL DESCRIPTION	COMMENTS	
	RECOVERY (FT)			SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND	
			counts	RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION.	
					PID (ppm) Breathing Zone 0.0 ppm	
				Hand auger 0-5 (2 attempts refusal @ 1.5' bgs)		
-				Third attempt successful	-	
-				-		
_				-		
_	grass	stems	162223	4.5-6.0' - Dry, reddish brown {5 yr 5/3] Well cleaned sand with silt (SW-SM)	0.0	
5	ſ			Trace fine to medium subangular gravel	_	
				Broken glass and debris present		
_				_		
	6	"	50(6)	6.0-7.5' - Dry, pinkish clay [5-yr 6/2] well graded sand with fat clay	0.0	
_				Trace Gravel, caliche, clay medium plasticity (SW-SC)		
_	6	,"		7.5-9 - Dry compact light red {2.5 yr 6/6]	0.0	
				Material as described above. (SW-SC)	0.1	
_	18	R"	50(6)	9.5-11.0'	0.1	
10	'`		212729	Material as above (SW-SC)		
			2. 2. 20		_	
	0	,"	172122	No recovery. (shoe only)	0.1	
_				_		
_				-	-	
-	18	0"	121520	14 El Material de described above (CM, CC)	0.1	
15	10	5	121320	14.5' - Material as described above (SW-SC)		
· -	6	;"	171520		0.2	
				_		
_				_		
_				_		
_				-		
20	8		50(6)	19.5' - Dry, red [2.5 yr - 4/6] Well graded sand with silt (SW-SM)	0.1	
20	l °		30(0)	Trace Gravel. Sand subangular. Gravel fine, subrounded		
				Trace diaren cana casangalan araren inio, casi canaca		
_				_		
_				_		
				EOH @ 21' bgs		
-				-		
-				-		
25						
حى —				_	_	
-				_		
_				_		
_						
_				_		
_				-		
20						
30		1			I	

BORING NUMBER D-B30

SHEET 1

OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	11/1/2019	ELEVATION:	N/A
START TIME :	7:55	WATER LEVEL :	
END TIME :	9:30	LOGGER:	A. Shwartz

DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION				COIL DESCRIPTION	TION COMMENTS		
DEPTHE	INTERVA		E(FI)	SOIL DESCRIPTION			
			blow counts	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. PID (nom) Resthing Zone 0.0 nom		
_					PID (ppm) Breathing Zone 0.0 ppm		
_				_	-		
_				-	-		
5			101012	5.0-5.5' Sandy silt (SM) Brown, damp, little gravel, fine sand some Kaolin clay chunks, visible lamp black, soft, no plasticity	HS=0.0 ppm Visible lamp black Collected small piece of tar		
_				-	-		
_				-	-		
10			50 for 6"	10-10.5' - Same as above, possible staining from lamp black in very small amounts, dry and hard —	HS=0.1 ppm Possible staining from lamp black No visible ribbons or chunks		
_				- -	-		
_ 15			121415				
_				black, but doesn't appear to be tar or lamp black, obsidian?, firm, low plasticit –	No visible lamp black -		
_				-			
20			7810	19.5-20.0' - Silty sand (SM) Reddish brown, lenses of yellow clayey sanc moist, firm to medium, no plasticity, no visible lamp black or black rocks/grav			
_				- -	-		
_				_			
25				_	_		
-				-			
-				-			
30				EOB 11-1-19 ADS			

BORING NUMBER
D-B31

SHEET 1

OF 1

PROJECT :		glas former MC		Cascade Drilling	
OCATION :	N : Douglas, AZ		DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger	
DATE: 10/28/19 - 13:50			ELEVATION:	N/A	
ART TIME : END TIME :	11/6/19 - 11/6/19 - 1		WATER LEVEL : LOGGER :	L. Amskold	
LIND TIIVIL .	11/0/13 -	13.23	LOGGLN.	A. Shwartz	
PTH BELOW	SURFACE	(FT)	SOIL DESCRIPTION	COMMENTS	
	/AL (FT)	()	COLL DESCRIPTION	002	
	RECOVE	RY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT	DEPTH OF CASING, DRILLING RAT	
		blow	RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DRILLING FLUID LOSS, TESTS, AN INSTRUMENTATION.	
		counts	MINERALOGY	INSTRUMENTATION.	
				PID (ppm) Breathing Zone 0.0 ppm	
			0-5.0' -Clayey silt (ML) Dark brown, damp, trace gravel, trace sand,		
-			very hard, low plasticity	_	
-				-	
-				-	
-				_	
	1		5.0-5.5' - Silty sand (SM) yellowish brown, dry, well graded, no plasticity		
_				_	
	1				
_				_	
-				_	
-				-	
	4"	50	(CII) Day compared alayer and Fet alay (CC)	0.1	
_	4	50	(6") Dry, cemented clayey sand. Fat clay (SC) Light brown [7.5 yr 6/3] dry, cemented fat clayey sand	0.1	
			No dilatency, meduim plasticity, low toughness, caliche		
_			The dilaterity, medalin plasticity, low loagimess, canone	-	
_					
_				_	
_				_	
_	10"	161618	14.5-16' - Material as above		
			4" damp, loose, yellowish red [5 yr 4/6]	1.3	
-			Poorly graded sand with silt (SP-SM). Sand fine>>medium, trace Coarse	-	
			Sand line>>medium, trace Coarse		
-				-	
_				-	
	1			_	
	6"	151719	Material as above, damp (SP-SM)	0.2	
-				-	
	1				
-			FOU. @ 2415	-	
			EOH @ 21' bgs		
-				-	
-	1				
_	1			_	
_				_	
-				-	
_				-	

BORING NUMBER
D-B32

SHEET 1

OF 1

PROJECT:	APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
LOCATION:	Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
DATE :	10/28/19 - 12:10	ELEVATION :	N/A
START TIME :	11/6/19 - 10:15	WATER LEVEL :	
END TIME :	11/6/19 - 11:00	LOGGER:	A. Shwartz

END	TIME :	11/6/19	- 11:00	LOGGER:	A. Shwartz L. Amskold
DEPTH	BELOW S	SURFAC	E (FT)	SOIL DESCRIPTION	COMMENTS
	INTERV		_ (· · ·)		
		RECOV	/ERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			counts	MINERALOGY	INSTRUMENTATION.
					PID (ppm) Breathing Zone 0.0 ppm
			HA	0-5' - Clayey silt (ML) Dark brown, dry, trace gravel, trace sand very fine, hard	
_				_	-
-				-	-
_					
-				-	-
5			HA	5.0-5.5' Silty sand (SM) Yellowish brown, dry, well graded, no plasticity	
-				-	-
_				_	_
-				-	-
_				_	_
10		~4"	121221	9.5-11.0' - No recovery	0.1
10 _		~4"	50 - 4"	No recovery - logging material in cutting shoe/core catcher	
_				-	-
				Dry, cemented clayey sand, light brown [7.5 yr 6/3] Fat clay (SC)	
-				No dilatency. Medium plasticity	-
_			E0 0"	-	-
		~6"	50-6"	12.5-15.0' - Material as above. Less cement (SC).	0.0
_				· ·	_
15				_	
_					
-				-	-
_				_	_
-		6"	51415	19.5-21 - Material as above. No dilatency. Medium plasticity	- 0.0
20					
_				-	-
-					-
				EOH @ 21'	
_					1
-				-	-
25					_
_				_	_
-				-	-
_				_	_
-				-	-
_				_	_
20					
30			I		<u> </u>

BORING NUMBER
D-B33

SHEET 1

OF 1

APS Douglas former MGP	DRILLING CONTRACTOR:	Cascade Drilling
Douglas, AZ	DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
10/28/19 - 11:20	ELEVATION :	N/A
11/6/19 - 9:15	WATER LEVEL :	
11/6/19 - 10:00	LOGGER:	A. Shwartz
	Douglas, AZ 10/28/19 - 11:20 11/6/19 - 9:15	Douglas, AZ DRILLING METHOD AND EQUIPMENT USED: 10/28/19 - 11:20 ELEVATION: 11/6/19 - 9:15 WATER LEVEL:

START T END T		11/6/19		WATER LEVEL : LOGGER :	A. Shwartz
			_ (DOUBLE DESCRIPTION	L. Amskold
	INTERV		E (FT)	SOIL DESCRIPTION	COMMENTS
	INTERV		/ERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
					PID (ppm) Breathing Zone 0.0 ppm
_				-	-
_				-	-
-				-	-
-	0			-	-
5	0-		HA	5.0-5.5' Clayey silt (ML) Dark brown, damp, trace gravel Trace sand, very fine, medium plasticity, hard	BZ=0.0 ppm
_				_	-
_				_	
_		1.5	91516	9.5-11.0' - Damp well graded sand with silt (SW-SM)	0.2 ppm _
10				Caliche, reddish brown [2.5 yr 4/6] trace fine, subrounded gravel and oxidized root fragments	_
_				-	-
-				-	-
_				-	-
- 15		1.5	151618	14.5-16.0' - Dry, hard, tough fat clayey sand (SC) fine >> medium trace coarse, red [2.5 yr 4/6] Caliche, medium plasticity	0.1 ppm _
13 _				Calicite, medium prasticity	_
_				_	
_				_	-
_		1.5	71213		-
20 _		1.0	7 12 10	silty sand (SM), red oxidized root traces caliche, firm-soft (<i>i.e. ranges firm to soft</i>)	0.1 ppm
-				-	-
-				EOH - 21' bgs	-
_				-	-
_ 25				_	-
_				_	
_				_	-
_				-	-
_				-	-
30					

BORING NUMBER D-B34

SHEET 1

OF 1

PROJECT : APS Douglas former N LOCATION : Douglas, AZ			MGP DRILLING CONTRACTOR: DRILLING METHOD AND EQUIPMENT USED:	Cascade Dri Hollow Sterr			
	ATE :	10/28/1		ELEVATION :	N/A		
START T		11/6/19		WATER LEVEL :			
END T	IME :	11/6/19	- 9:00	LOGGER:	A. Shwartz		
				L. Amskold			
DEPTH BELOW SURFACE (FT)		E (FT)	SOIL DESCRIPTION		COMMENTS		
	INTERV		(EDV (ET)		DEPTH O	F CASING, DRILLI	NG RATE,
RECOVERY (FT)		blow	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,		FLUID LOSS, TE		
	counts			MINERALOGY	11	NSTRUMENTATIO	N.
			Counts		PID (ppm)	Breathing Zone	0.0 ppm
					· -= (FF:)		
_				_	_		
_				-	_		
-				-	_		
-				-	-		
5	0-5.5'		HA	5.0-5.5' Clayey silt (ML) Dark brown, damp, trace gravel	BZ=0.0 ppm		
				Trace sand, very fine, medium plasticity, hard			
_					_		
_				-	-		
-				-	-		
		1.5	161015	0 F 12 F' Day lease well graded cand with ailt and gravel (SW SM)			
-		1.5	101013	9.5-12.5' - Dry, loose well graded sand with silt and gravel (SW-SM) Weak red [16 yr 4/3]	-		
10				Lower fine >>medium subangular, white caliche (tr)	0.1 ppm	6.0 ppm	
-							
_				_	_		
_				-	_		
-				-	-		
		1.5	192223	14.5-16.0' - Damp, compact, weak red, well graded sand with fat clay.	0.1 ppm		
-		1.5	192223	(SW-SC) Trace gravel, sand subangular, gravel fine, subangular	o. i ppiii		
15				No recovery on second splitspoon. (2 attempts)			
_				-	-		
-				-	-		
-				-	-		
_		1.5	262325	19.5-20.75 - Material as described above.			
20				Well graded sand with fat clay (SW-SC)	0.1 ppm		
_				20.75-21.0 - Moist, very pale brown, poorly graded sand with silt (SP-SM)	-		
				16 yr 4/4			
-				EOH (21)	-		
				EOH - (21)			
-				-	-		
_				_			
25				_	_		
_				-	-		
		ĺ	I		I		

BORING NUMBER D-B35

SHEET 1 OF 1

				•	
PROJI			ouglas former		Cascade Drilling
LOCAT		Dougla		DRILLING METHOD AND EQUIPMENT USED :	Hollow Stem Auger
	ATE:		9 - 15:00 - 13:50	ELEVATION :	N/A
START T				WATER LEVEL :	A Churante
END T	IIVIE :	11/5/19	- 14:35	LOGGER :	A. Shwartz L. Amskold
DEDTILE		SUDEAC	C (CT)	SOIL DESCRIPTION	COMMENTS
DEPTH E	INTERV	AL (CT)	E (F1)	SOIL DESCRIPTION	COMMENTS
	INTERV	RECOV	/ERY (FT)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			counts	MINERALOGY	INSTRUMENTATION.
	0-1'			0-1' - Silty sand (SM) Light yellowish brown, dry, well graded,	PID (ppm) Breathing Zone 0.0 ppm
_	0-1			some gravel	
_		1		-	
_				_	
_				_	
5				5.0-5.5' Silt (ML) Light reddish brown, damp, very fine,	_
				poorly graded, low plasticity	
_				-	
_				-	-
_				-	
_				-	-
10		1.5		10-10.5' - Dry, loose reddish brown wekk graded sand with silt (SW-SM) Trace fine subangular gravel. White caliche.	0.1 ppm
-				Possible lamp black (black shiny nodules) 5 yr 4/4	
_				-	
_				-	
_				-	
15		1.5	9910	15-15.5' - Dry, very hard, very tough clayey sand (SC) Light reddish brov	0.0 ppm
_				Fat clay, well graded sand, Trace subangular fine gravel. 5 yr 4/4	
_				_	
_				_	
_				_	
20		1.5		20.0-20.5 - (SP-SC) Material same as above, very pale	0.0 ppm
_	21 EOH			20.5-21.0 - Moist, light yellowish brown-white, poorly graded sand	
_				with silt (SP-SM) 16 yr 4/4	
_				EOH -	
_				_	
25				_	_
-				-	•
-				-	
-				-	
30					

Appendix E Well Construction Diagrams and Development Logs

WELL NUMBER

D-MW25 (boring B-25)

SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: APS former MGP Site LOCATION: Douglas, AZ DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD AND EQUIPMENT USED : Sonic 600 SC WATER LEVELS : 26.38' START:11/1/2019:1040 END:11/1/2019:1530 LOGGER: Ilka Dinkleman 1- Ground elevation at well За 2- Top of casing elevation a) vent hole? 3- Wellhead protection cover type Monument 8" a) weep hole? 20' b) concrete pad dimensions 2'x2' 4- Dia./type of well casing 4" schedule 40 pvc 5- Type/slot size of screen 0.01 50' 6- Type screen filter 12/20 sand a) Quantity used 13 bags 7- Type of seal 3/8" bentonite chips a) Quantity used 1 bag 8- Grout a) Grout mix used Quick gel, Portland b) Method of placement pour c) Vol. of well casing grout 20 gallons 20' Development method Surge and Purge Development time 11/6/2019 Estimated purge volume 98 gallons Comments Borehole backfilled with filterpack from 50' to 45' such that the screen interval is from 25-45' bgs 8.0"

WELL NUMBER

D-MW25 (boring B-25)

SHEET 1 OF 1

WELL DEVELOPMENT LOG

PROJECT : APS Douglas former MGP LOCATION: Douglas, AZ DEVELOPMENT CONTRACTOF Cascade Drilling DEVELOPMENT METHOD AND EQUIPMENT USED: Smeal Hoist Development Rig START: START WATER LEVELS : 26.38' 11/6/2019 14:00 END : 17:05 LOGGER : I. Dinkleman MAXIMUM DRAWDOWN DURING PUMPING: RANGE AND AVERAGE DISCHARGE RATE: 0.5-1.08 ~ 0.68 GPM TOTAL QUANTITY OF WATER DISCHARGED: 98 - 102 gal initial purge water very turbid to very clear. Final =1.4NTU DISPOSITION OF DISCHARGE WATER:

NR=not recordable, NTU too high

 	Water Volume	Water								
	Discharged	Level	Turbidity	Temperature		Conductivity	DO	ORP		
Time	(gal)	(ft BTOC)	(NTU)	(°C)	pН	(ms/cm)	(mg/L)	ON	(color odor sh	neen, sediment, etc.)
1515	10	33.14	NR	18.64	7.32	1153	4.48	185.6	Turbid	Low production,
1525	18	34.58	NR	17.75			2.62	183.1	Turbid	Low production,
1535	24	35.36	NR	17.45		1092	2.05	180		-
1545	30	35.38	NR	17.97	7.03		2.14	176.4		
1555	34	35.42	35.2	17.76		1079	2.32	170.8		
1605	40	35.76	229	17.73			2.01	165.7	cloudy	
1615	45	36.97	500	17.35	7.04	1080	2.06	161.1	very cloudy	
1625	51	34.89	550	17.49		1097	2.31	158.9		
1635	58	35.11	80	17.41	7.05	1083	2.06	155.4		
1645	65	35.09	15	17.5		1083	1.86	146.3	clear	
1655	72	35.14	5.5	17.3	7.04	1085	1.86	136.6		
1700	75	35.12	1.4	17.42	7.04	1081	1.89	133.8	clear	
Ī										
Ī										
Ī										

WELL NUMBER

D-MW26 (boring B-26) SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: APS former MGP Site LOCATION: Douglas, AZ DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD AND EQUIPMENT USED : Sonic 600 SC WATER LEVELS : 28.72' START:11/3/2019:0805 END:11/3/2019:1100 LOGGER: Ilka Dinkleman 2a 1- Ground elevation at well За 2- Top of casing elevation a) vent hole? 3- Wellhead protection cover type Monument 8", 3' Stickup, 5 bags a) weep hole? 20' b) concrete pad dimensions 4- Dia./type of well casing 4" schedule 40 pvc 5- Type/slot size of screen 0.010 50' 6- Type screen filter 12/20 sand a) Quantity used 16 bags 7- Type of seal 3/8" bentonite chips a) Quantity used 1 bag 8- Grout Quick gel, Portland a) Grout mix used b) Method of placement pour/tremmie c) Vol. of well casing grout 20 gallons 20' Development method Surge and Purge 11/6/2019 Development time Estimated purge volume 177 gallons Comments 8.0"

D-B26 WCD.xls xxxxxx.xx.xx

WELL NUMBER

D-MW26 (boring B-26)

SHEET 1 OF 1

WELL DEVELOPMENT LOG

PROJECT: APS Douglas former MGP LOCATION: Douglas, AZ

DEVELOPMENT CONTRACTOF Cascade Drilling

DEVELOPMENT METHOD AND EQUIPMENT USED : Smeal Hoist Development Rig

START WATER LEVELS: 28.72' START: 11/6/2019 0955 END: LOGGER: I. Dinkleman

MAXIMUM DRAWDOWN DURING PUMPING: 1.09'

RANGE AND AVERAGE DISCHARGE RATE: 1.08-1.7 GPM

TOTAL QUANTITY OF WATER DISCHARGED: 177 Gal

DISPOSITION OF DISCHARGE WATER: Clear <5.0 ntu, Initial Purge water very turbi and silty

NR=not recordable, NTU too high

	\M/=+==\/-	10/	1				1	Ti .	
	Water Volume	Water	T	- .		0 1	50	000	
	Discharged	Level	Turbidity	Temperature		Conductivity (ms/cm)	DO	ORP	
Time	(gal)	(ft BTOC)	(NTU)	(°C)	pН	,	(mg/L)	mv	(color, odor, sheen, sediment, etc.)
1105	11	29.7	NR	19.89	6.93	1599			Turbid
1115	19	29.77	NR	19.63	6.99	1656			Turbid
1125	47	29.83	NR	19.76	7.02	1662	2.3		Turbid
1135	60	29.83	900	19.57	7.01	1663			Turbid
1145	75	29.84	550	19.4	7.02	1662	2.35		very cloudy
1155	91	29.67	240	19.48	7.03	1665			cloudy
1205	102	29.68	150	19.4	7.04	1661	2.57		cloudy
1215	119	29.8	60	19.32	7.02	1670			cloudy
1225	127	29.56	37	19.44	7.01	1664	2.14		clearing up
1235	144	29.49	22	19.96	7.02	1667	2.18		
1240	149	29.48	13.7	19.43	7.02	1669			
1245	159	29.47	12.6	19.87	7.04	1673		179.6	clear
1255	164	29.31	5.96	19.81	7.02	1670			
1305	175	29.58	4.14	19.6	7.01	1674	2.1	170.5	clear
I									
I									
I									
I									
I									
I								ĺ	
I									
L		l							

WELL NUMBER

D-MW27 (boring B-27) SHEET 1

Γ 1 OF 1

WELL COMPLETION DIAGRAM

PROJECT: APS former MGP Site LOCATION: Douglas, AZ DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD AND EQUIPMENT USED : Sonic 600 SC WATER LEVELS : 29.22' START:11/4/2019:1300 END:11/4/2019:1515 LOGGER: Ilka Dinkleman 2a 1- Ground elevation at well За 2- Top of casing elevation a) vent hole? 3- Wellhead protection cover type Monument 8", 3' Stickup, 5 bags a) weep hole? 20' b) concrete pad dimensions 4- Dia./type of well casing 4" schedule 40 pvc 5- Type/slot size of screen 0.010 50' 6- Type screen filter 12/20 sand a) Quantity used 15 bags 7- Type of seal 3/8" bentonite chips a) Quantity used 1 bag 8- Grout Quick gel, Portland a) Grout mix used b) Method of placement pour/tremmie c) Vol. of well casing grout 20 gallons 20' Development method Surge and Purge 11/5/2019 - 11/6/2019 Development time Estimated purge volume 210 gallons Comments 8.0"

 JACOBS WELL DEVELOPMENT LOG

PROJECT NUMBER WELL NUMBER

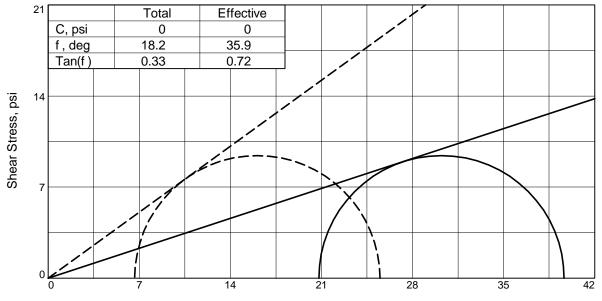
D3118600.A.CS.EV.DG.05-1B D-MW27 (boring B-27) SHEET 1 OF 1

PROJECT : APS Douglas former MGP LOCATION: Douglas, AZ

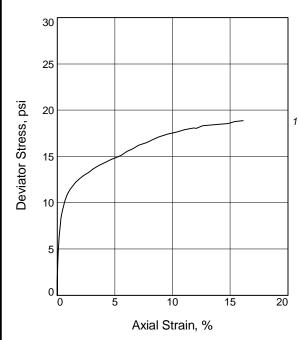
DEVELOPMENT CONTRACTOF Cascade Drilling

DEVELOPMENT METHOD AND EQUIPMENT USED: Smeal Hoist Development Rig

START: 11/5/2019 1405 END: 11-6-19 START WATER LEVELS : 29.22' LOGGER : I. Dinkleman


MAXIMUM DRAWDOWN DURING PUMPING: RANGE AND AVERAGE DISCHARGE RATE: 0.90-1.94 GPM TOTAL QUANTITY OF WATER DISCHARGED: 215 Gal DISPOSITION OF DISCHARGE WATER: slity to clear

NR=not recordable, NTU too high


1	Water Volume	Water			1				
	Discharged	Level	Turbidity	Temperature		Conductivity	DO	ORP	
Time	(gal)	(ft BTOC)	(NTU)	(°C)	рН	(ms/cm)	mg/L	mV	(color, odor, sheen, sediment, etc.)
1600	(gai) 36	32.77	NR	19.85	μ⊓ 6.9	1948	U	IIIV	turbid, silty
1610	36 49	32.77	134	19.85	6.98				cloudy
1620	65	33.62	NR	18.62	7.02	1940	2.71		turbid
1630	74	33.85	404	18.33	7.02	1944	2.85		turbid
1640	90	33.92	143	18.31	7.03	1941	2.63		cloudy
1650	104	33.98	66.2	18.41	7.01	1942	2.72		cloudy
1700	121	34.18	26.1	18.13	7.01	1947	2.75		cloudy
1710	137	34.03	481	18.1	7.01	1941	2.82	130.5	
1715	147	35.57	56.8	17.98	7.03	1943			cloudy
1713	154	35.91	NR	17.78	7.02	1941	2.63		
1725	162	37.09	505	18.08	7.03	1940	3.07	120.3	
1730	167	36.66	NR	18.03		1943			
1700	107	00.00	1411	11/6/2019	7.00	1010	0.20	120.2	tai bia
810	175	31.09	160	16.62	6.73	1927	5.88	298.2	cloudy
820	181	31.95	180	17.65	6.96	1931	4.95		cloudy
830	187	31.9	87	17.86	6.96				cloudy
840	193	32.24	36	17.89	6.96		2.95		
850	204	32.26	18	18.01	6.95	1938			
855	210	32.27	6.8	18.13	6.96	1939	2.49		
900	214	32.27	3.6	17.89	6.96	1943	2.48	245.8	clear
I									
Ī									
Ī									
Ī									
Ī									

Appendix F Geotechnical Testing Laboratory Results

Total Normal Stress, psi ———
Effective Normal Stress, psi ———

Type of Test:

CU with Pore Pressures

Sample Type: Brass Sleeve

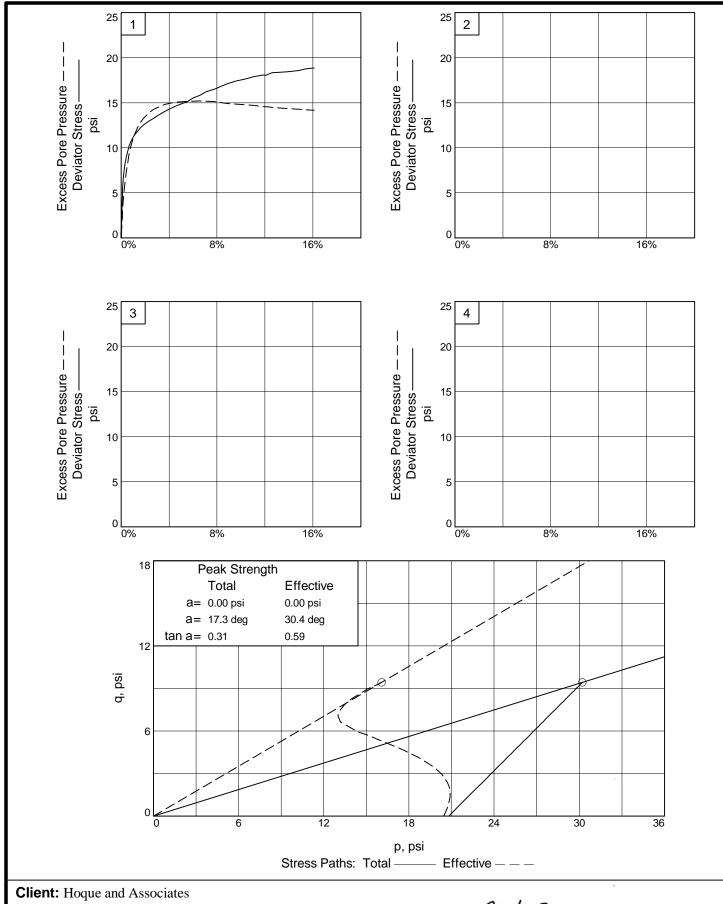
Description: Clayey Sand

Assumed Specific Gravity= 2.651

Remarks: Single Point CU

	Saı	mple No.	1	
1	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	6.5 99.6 26.0 0.6623 1.925 3.880	
	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	22.4 103.9 100.0 0.5934 1.891 3.853	
	Str	ain rate, in./min.	0.017	
	Ba	ck Pressure, psi	55.0	
	Ce	II Pressure, psi	75.8	
	Fai	I. Stress, psi	18.8	
	E	Excess Pore Pr., psi	14.2	
	Ult.	. Stress, psi		
	E	xcess Pore Pr., psi		
	$\overline{\mathbf{S}}_{1}$	Failure, psi	25.5	
	$\overline{\mathbf{S}}_3$	Failure, psi	6.6	

Client: Hoque and Associates


Project: APS Douglas Former MGP, HA PN 19107

Source of Sample: B-11 **Depth:** 10.0-10.5 ft

Sample Number: N/A

> TRIAXIAL SHEAR TEST REPORT Terracon Consultants, Inc. Phoenix, AZ

lerracon

Project: APS Douglas Former MGP, HA PN 19107 **Source of Sample:** B-11 **Depth:** 10.0-10.5 ft

Project No.: 65181094

Nink Jackson Reviewed By.

Terracon Consultants, Inc.

PROJECT: APS Douglas former MGP

LOCATION: Douglas, AZ
MATERIAL: See Below
SAMPLE SOURCE See Below

CLIENT: Jacobs
JOB NO: 19107
LAB NO: See Below
DATE ASSIGNED: 10/28/2019

MOISTURE CONTENT OF SOILS (ASTM D 2216)

LAB#	BORING & DEPTH	WET WGT. (GRAMS)	DRY WGT. (GRAMS)	MOISTURE CONTENT %
19L1043	B-34 @ 5-5.5'	118.0	104.0	13.5%
19L1044	B-33 @ 5-5.5'	159.0	131.0	21.4%
19L1045	B-32 @ 5-5.5'	171.0	143.0	19.6%
19L1046	B-31 @ 5-5.5'	126.0	113.0	11.5%
19L1047	B-35 @ 5-5.5'	129.0	117.0	10.3%
19L1048	B-14 @ 5-5.5'	205.0	189.0	8.5%
19L1049	B-22 @ 2.5-3.0'	184.0	172.0	7.0%
19L1050	B-28 @ 5-5.5'	158.0	147.0	7.5%
19L1051	B-14 @ 10-10.5'	169.0	153.0	10.5%
19L1052	B-22 @ 5-5.5'	246.0	229.0	7.4%
19L1053	B-22 @ 10-10.5'	218.0	206.0	5.8%
19L1054	B-11 @ 5-5.5'	270.0	245.0	10.2%
19L1055	B-11 @ 10-10.5'	195.0	180.0	8.3%
19L1056	B-24 @ 5-5.5'	167.0	147.0	13.6%
19L1057	B-24 @ 19.5-20.0'	269.0	238.0	13.0%
19L1058	B-13 @ 2.5-3.0'	232.0	214.0	8.4%
19L1059	B-25 @ 5-5.5'	395.0	365.0	8.2%
19L1061	B-12 @ 7.5-8.0'	203.0	184.0	10.3%
19L1062	B-12 @ 15.15.5'	206.0	188.0	9.6%
19L1063	B-25 @ 10-10.5'	211.0	199.0	6.0%
19L1064	B-25 @ 20-20.5'	284.0	265.0	7.2%
19L1066	B-25 @ 40-40.5'	626.0	450.0	39.1%
19L1067	B-30 @ 10-10.5'	251.0	224.0	12.1%
19L1068	B-30 @ 15-15.5'	242.0	218.0	11.0%
19L1069	B-30 @ 19.5-20.0'	282.0	251.0	12.4%
19L1070	B-21 @ 5-5.5'	192.0	176.0	9.1%

Reviewed By

Trent Titchenal Lab Manager

Tut The

PROJECT: APS Douglas former MGP

LOCATION: Douglas, AZ
MATERIAL: See Below
SAMPLE SOURCE See Below

CLIENT: Jacobs
JOB NO: 19107
LAB NO: See Below
DATE ASSIGNED: 10/28/2019

MOISTURE CONTENT OF SOILS (ASTM D 2216)

LAB#	BORING & DEPTH	WET WGT.	DRY WGT.	MOISTURE
		(GRAMS)	(GRAMS)	CONTENT %
19L1071	B-21 @ 19.5-20.0'	169.0	156.0	8.3%
19L1072	B-15 @ 7.5-8.0'	225.0	214.0	5.1%
19L1073	B-19 @ 2.5-3.0'	223.0	205.0	8.8%
19L1074	B-19 @ 7.5-8.0'	230.0	207.0	11.1%
19L1075	B-26 @ 5-5.5'	160.0	148.0	8.1%
19L1078	B-26 @ 15-15.5'	245.0	231.0	6.1%
19L1079	B-26 @ 20.0-20.5'	218.0	206.0	5.8%
19L1080	B-26 @ 30.0-30.5'	250.0	203.0	23.2%
19L1081	B-27 @ 7.5-8.0'	251.0	221.0	13.6%
19L1083	B-27 @ 15-15.5'	219.0	194.0	12.9%
19L1085	B-35 @ 10-10.5'	284.0	258.0	10.1%
19L1086	B-35 @ 20-20.5'	268.0	236.0	13.6%
19L1087	B-34 @ 10-10.5'	271.0	250.0	8.4%
19L1088	B-34 @ 15-15.5'	371.0	343.0	8.2%
19L1089	B-29 @ 5-5.5'	313.0	299.0	4.7%
19L1090	B-29 @ 10-10.5'	228.0	209.0	9.1%
19L1091	B-29 @ 15-15.5'	210.0	190.0	10.5%

Reviewed By

Trent Titchenal Lab Manager

Lut The

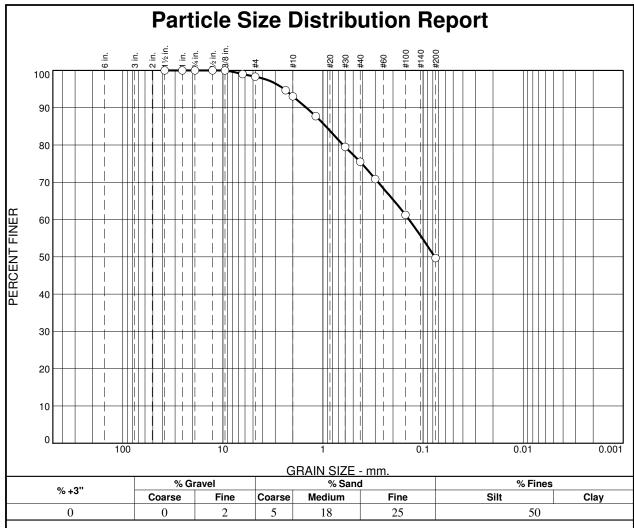
PROJECT: APS Douglas former MGP (D3118600.A.CS.EV.DG.05-1B)

LOCATION: Douglas, AZ
MATERIAL: Borings
SAMPLE SOURCE: SEE BORING

 CLIENT:
 Jacobs

 JOB NO:
 19107

 LAB NO:
 SEE BELOW


 DATE ASSIGNED:
 10/28/19

DENSITY OF ROCK CORE USING VOLUMETRIC CALCULATIONS

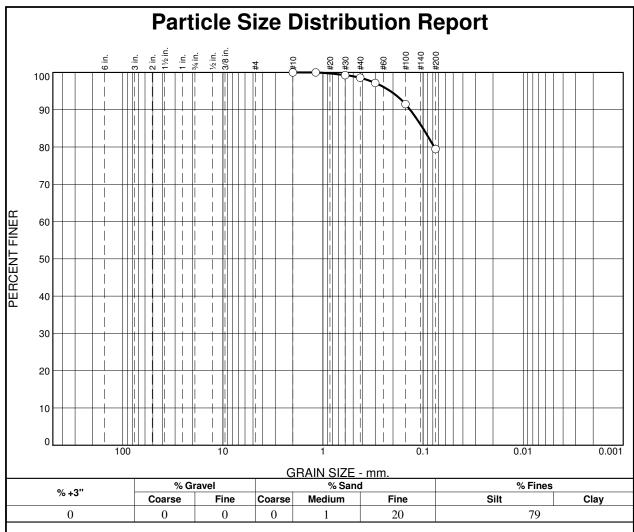
			MOISTURE				WET WEIGHT	WEIGHT	DRY
		WET WT.	DRY WT.	MOISTURE	DIA.	HGT.	& RINGS	OF RINGS	DENSITY
LAB#	BORING	(g)	(g)	CONTENT	(cm)	(cm)	(g)	(g)	(pcf)
19L1048	B-14 @ 5-5.5'	371.0	347.0	6.9%	4.9	12.6	547.9	176.9	91.1
19L1051	B-14 @ 10-10.5'	270.0	240.0	12.5%	4.9	12.1	434.3	164.2	65.4
19L1054	B-14 @ 5-5.5'	270.0	245.0	10.2%	4.9	14.7	645.9	163.6	98.6
19L1056	B-24 @ 5-5.5'	167.0	147.0	13.6%	4.9	11.4	524.8	163.8	92.3
19L1057	B-24 @ 19.5-2.'	506.0	458.0	10.5%	4.9	15.2	670.1	163.9	99.9
19L1059	B-25 @ 5-5.5'	238.0	217.0	9.7%	4.9	9.3	402.0	164.1	77.2
19L1061	B-12 @ 7.5-8'	203.0	184.0	10.3%	4.9	13.9	604.8	163.8	95.0
19L1062	B-12 @ 15-15.5'	371.7	353.3	5.2%	4.9	11.9	535.9	163.7	98.6
19L1063	B-25 @ 10-10.5'	515.3	470.7	9.5%	4.9	14.4	679.0	163.5	108.1
19L1064	B-25 @ 20-20.5'	529.9	479.1	10.6%	4.9	15.2	692.4	163.5	104.3
19L1066	B-25 @ 40-40.5'	537.4	382.9	40.3%	4.9	15.2	684.0	163.6	80.9
19L1070	B-21 @ 5-5.5'	455.5	420.8	8.2%	4.9	14.0	617.9	163.5	98.7
19L1071	B-21 @ 19.5-20'	169.0	156.0	8.3%	4.9	12.6	555.6	165.5	94.8
19L1072	B-15 @ 7.5-8.0'	225.0	214.0	5.1%	4.9	15.1	654.6	164.8	101.6
19L1074	B-19 @ 7.5-8.0	230.0	207.0	11.1%	4.9	15.1	655.0	163.8	96.6
19L1075	B-26 @ 5-5.5'	160.1	148.0	8.2%	4.9	10.8	474.8	163.4	88.2
19L1078	B-26 @ 15-15.5'	245.0	231.0	6.1%	4.9	15.2	636.5	164.2	97.1
19L1079	B-26 @ 20.0-20.5'	218.0	206.0	5.8%	4.9	15.2	667.5	164.6	103.6
19L1080	B-26 @ 30.0-30.5'	250.0	203.0	23.2%	4.9	15.1	662.1	165.3	88.2
19L1081	B-27 @ 7.5-8.0'	251.0	227.0	10.6%	4.9	13.6	645.8	163.9	106.2
19L1083	B-27 @ 15-15.5'	219.0	194.0	12.9%	4.9	15.2	694.2	165.2	102.2

REVIEWED BY Zut Tithe

Trent Titchenal Lab Manager

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1-1/2"	100		
1"	100		
3/4"	100		
1/2"	100		
3/8"	100		
1/4"	99		
#4	98		
#8	95		
#10	93		
#16	88		
#30	79		
#40	75		
#50	71		
#100	61		
#200	50		
*			

sandy lean clay	Soil Description	
PL= 16	Atterberg Limits	PI= 14
D ₉₀ = 1.4660 D ₅₀ = 0.0764 D ₁₀ =	Coefficients D ₈₅ = 0.9360 D ₃₀ = C _u =	D ₆₀ = 0.1382 D ₁₅ = C _c =
USCS= CL	Classification AASHT	O= A-6(4)
	Remarks	


Location: B-34 **Sample Number:** 19L1043 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

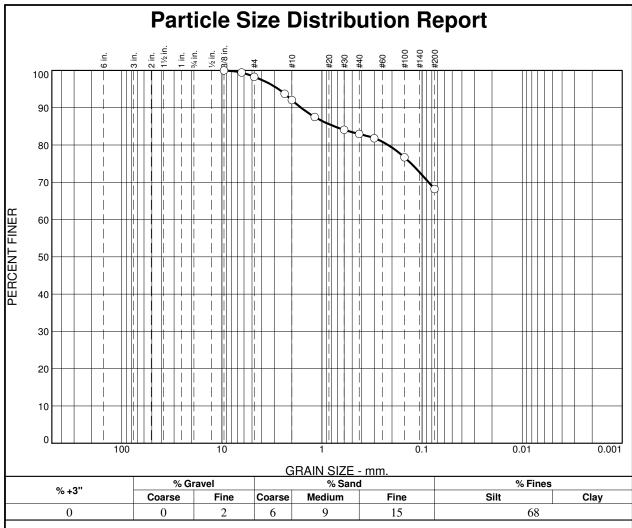
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1034 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100		
#16	100		
#30	99		
#40	99		
#50	97		
#100	91		
#200	79		

$\begin{array}{c} \textbf{Atterberg Limits} \\ \text{PL= } 21 & \textbf{LL= } 45 & \text{Pl= } 24 \\ \hline \\ \textbf{D90= } 0.1349 & \textbf{D85= } 0.1002 & \textbf{D60=} \\ \textbf{D50= } & \textbf{D30= } & \textbf{D15=} \\ \textbf{Cu= } & \textbf{C_c=} \\ \hline \\ \textbf{USCS= CL} & \textbf{AASHTO= } \textbf{A-7-6(19)} \\ \hline \\ \textbf{Remarks} & \\ \hline \end{array}$	lean clay with sa	Soil Description and	ı
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PL= 21		
USCS= CL AASHTO= A-7-6(19)	D ₉₀ = 0.1349 D ₅₀ = D ₁₀ =	D ₈₅ = 0.1002 D ₃₀ =	D ₆₀ = D ₁₅ = C _c =
<u>Remarks</u>	USCS= CL		O= A-7-6(19)
		Remarks	


Location: B-33 **Sample Number:** 19L1044 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

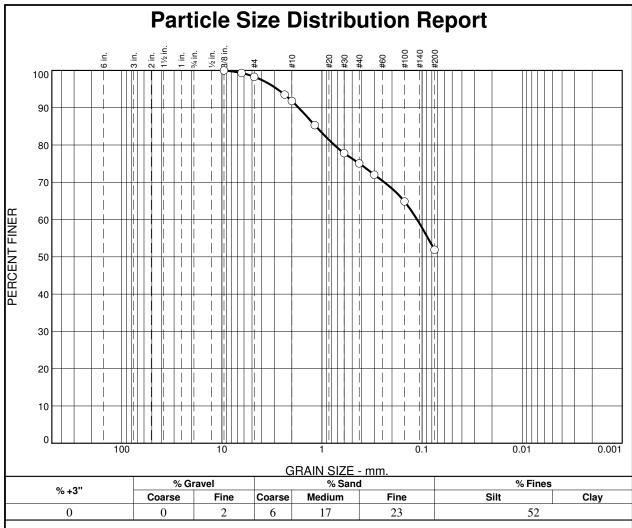
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1044Project No: 19107

SIZE FINER PERCENT (X=N) 3/8" 100 1/4" 99 #4 98 #8 94 #10 92 #16 88 #30 84 #40 83 #50 82 #100 77 #200 68 68	S?	PASS'	SPEC.*	PERCENT	SIEVE
1/4" 99 #4 98 #8 94 #10 92 #16 88 #30 84 #40 83 #50 82 #100 77	iO)	(X=NO	PERCENT	FINER	SIZE
#4 98 #8 94 #10 92 #16 88 #30 84 #40 83 #50 82 #100 77				100	3/8"
#8 94				99	1/4"
#10 92 #16 88 #30 84 #40 83 #50 82 #100 77				98	#4
#16				94	#8
#30 84 #40 83 #50 82 #100 77				92	#10
#40 83 #50 82 #100 77				88	#16
#50 82 #100 77				84	#30
#100 77				83	#40
				82	#50
#200 68				77	#100
				68	#200

sandy lean clay	Soil Description	1
PL= 20	Atterberg Limits	<u>s</u> PI= 24
D ₉₀ = 1.6177 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.7515 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CL	Classification AASH	TO= A-7-6(15)
	<u>Remarks</u>	


Location: B-32 Sample Number: 19L1045 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

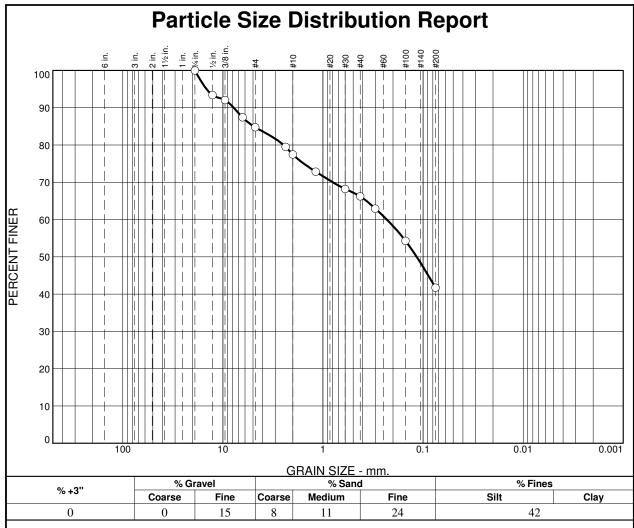
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1045Project No: 19107

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3/8"	100		
	1/4"	99		
	#4	98		
	#8	94		
	#10	92		
	#16	85		
	#30	78		
	#40	75		
	#50	72		
	#100	65		
	#200	52		
_	* (no specif	ication provid	ad)	

sandy lean clay	Soil Description	1
PL= 19	Atterberg Limits	S PI= 22
D ₉₀ = 1.7107 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 1.1501 D ₃₀ = C _u =	D ₆₀ = 0.1122 D ₁₅ = C _c =
USCS= CL	Classification AASH	TO= A-7-6(8)
	<u>Remarks</u>	


Location: B-31 Sample Number: 19L1046 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

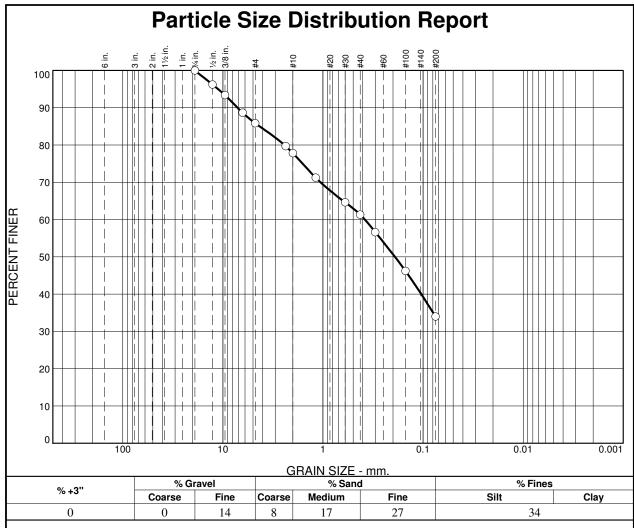
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1046 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	93		
3/8"	92		
1/4"	87		
#4	85		
#8	79		
#10	77		
#16	73		
#30	68		
#40	66		
#50	63		
#100	54		
#200	42		

clayey sand with	Soil Description gravel	
PL= 17	Atterberg Limits LL= 45	PI= 28
D ₉₀ = 7.7733 D ₅₀ = 0.1160 D ₁₀ =	Coefficients D ₈₅ = 4.9022 D ₃₀ = C _u =	D ₆₀ = 0.2305 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-7-6(6)
	<u>Remarks</u>	


Location: B-35 Sample Number: 19L1047 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

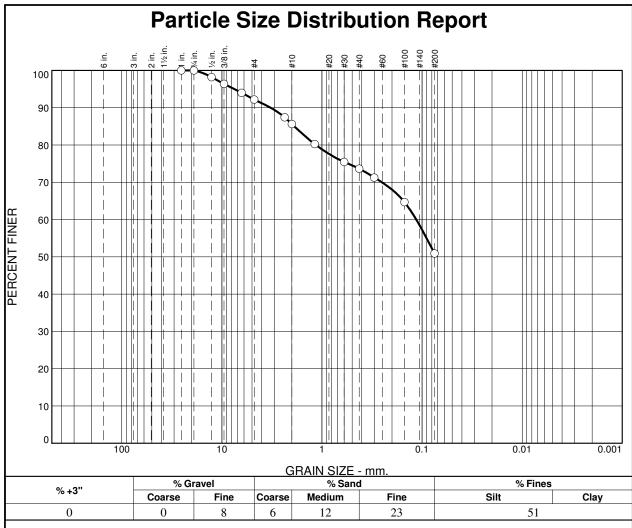
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1047Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	96		
3/8"	93		
1/4"	89		
#4	86		
#8	80		
#10	78		
#16	71		
#30	65		
#40	61		
#50	57		
#100	46		
#200	34		
*			

clayey sand	Soil Description	1
, ,		
PL= 24	Atterberg Limits	PI= 34
D ₉₀ = 7.1259 D ₅₀ = 0.1909 D ₁₀ =	Coefficients D ₈₅ = 4.2998 D ₃₀ = C _u =	D ₆₀ = 0.3820 D ₁₅ = C _c =
USCS= SC	Classification AASHT	TO= A-2-7(5)
	<u>Remarks</u>	


Location: B-14 Sample Number: 19L1048 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

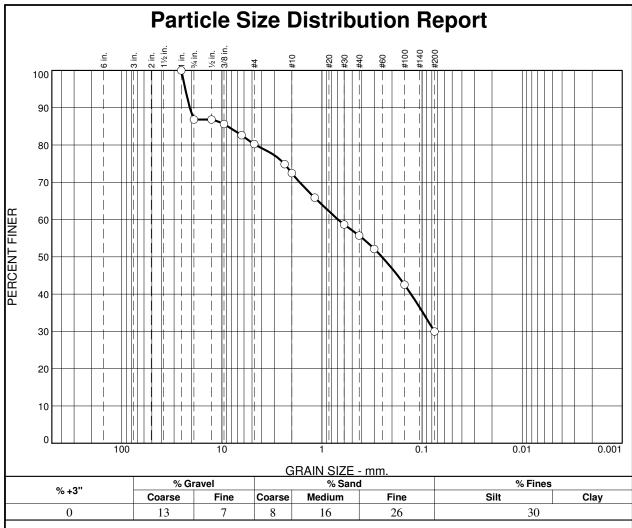
Client: Jacobs

Project: APS Douglas former MGP

 $\textbf{Lab Number} \quad 19L1048$ Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100		
3/4"	100		
1/2"	98		
3/8"	96		
1/4"	94		
#4	92		
#8	87		
#10	86		
#16	80		
#30	75		
#40	74		
#50	71		
#100	65		
#200	51		

sandy lean clay	Soil Description	1
PL= 17	Atterberg Limits	PI= 21
D ₉₀ = 3.2549 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 1.8897 D ₃₀ = C _u =	D ₆₀ = 0.1145 D ₁₅ = C _c =
USCS= CL	Classification AASH1	ΓO= A-6(7)
	<u>Remarks</u>	


Location: B-22 Sample Number: 19L1049 **Depth:** 2.5-3.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

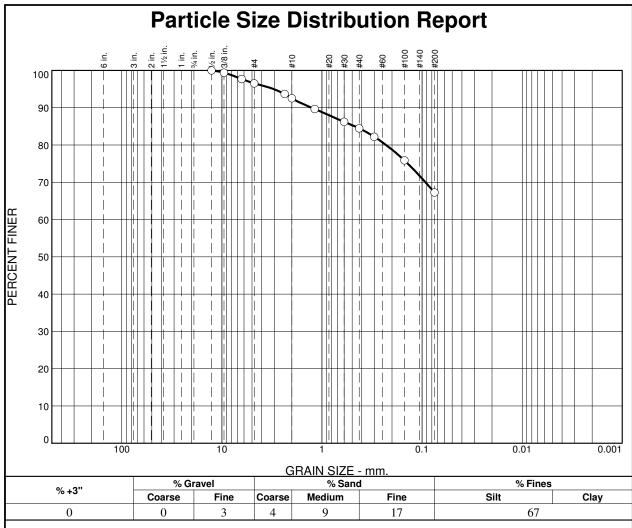
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1049Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100		
3/4"	87		
1/2"	87		
3/8"	86		
1/4"	83		
#4	80		
#8	75		
#10	72		
#16	66		
#30	59		
#40	56		
#50	52		
#100	43		
#200	30		

Soil Description clayey sand with gravel				
PL= 16	Atterberg Limits	PI= 21		
D ₉₀ = 20.9280 D ₅₀ = 0.2520 D ₁₀ =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{85} = 8.7515 \\ D_{30} = 0.0752 \\ C_{\text{U}} = \end{array}$	D ₆₀ = 0.6892 D ₁₅ = C _c =		
USCS= SC	USCS= SC Classification AASHTO= A-2-6(2)			
	<u>Remarks</u>			


Location: B-28 Sample Number: 19L1050 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

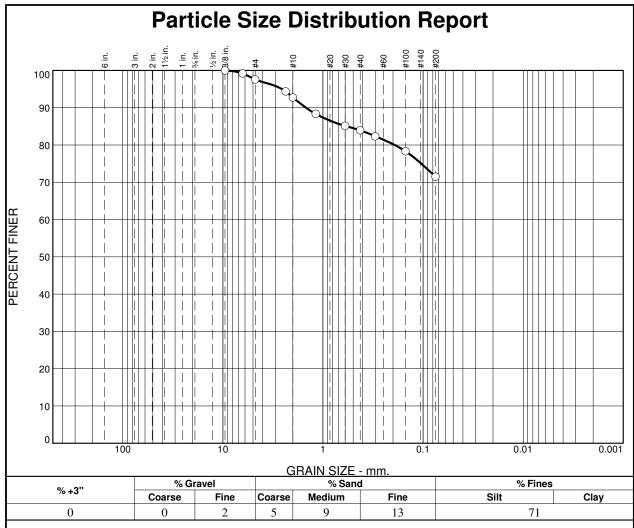
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1050Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	99		
1/4"	98		
#4	97		
#8	94		
#10	93		
#16	90		
#30	86		
#40	84		
#50	82		
#100	76		
#200	67		
*			

sandy lean clay	Soil Description	1
PL= 19	Atterberg Limits	PI= 23
D ₉₀ = 1.2655 D ₅₀ = D ₁₀ =	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 0.4681 \\ \text{D}_{30} = \\ \text{C}_{\text{U}} = \end{array}$	D ₆₀ = D ₁₅ = C _c =
USCS= CL	Classification AASH	TO= A-7-6(13)
	<u>Remarks</u>	


Location: B-14 Sample Number: 19L1051 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

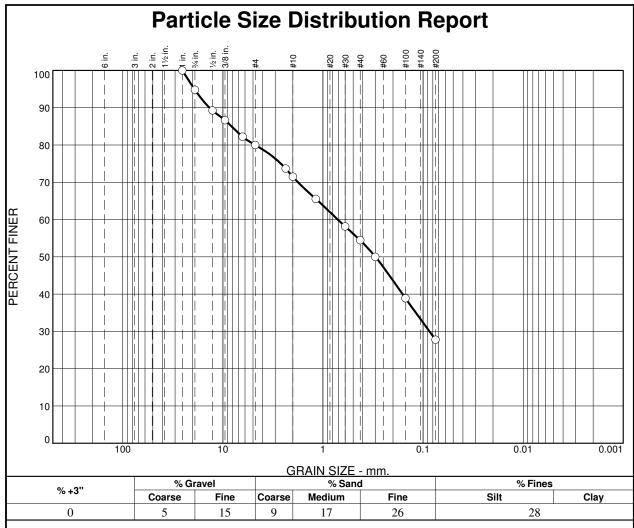
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1051 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100		
1/4"	99		
#4	98		
#8	94		
#10	93		
#16	88		
#30	85		
#40	84		
#50	82		
#100	78		
#200	71		
*			

Soil Description lean clay with sand			
PL= 16	Atterberg Limits LL= 43	PI= 27	
D ₉₀ = 1.4751 D ₅₀ = D ₁₀ =	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 0.5757 \\ \text{D}_{30} = \\ \text{C}_{\text{U}} = \end{array}$	D ₆₀ = D ₁₅ = C _c =	
USCS= CL Classification AASHTO= A-7-6(17)			
<u>Remarks</u>			


Location: B-22 Sample Number: 19L1052 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

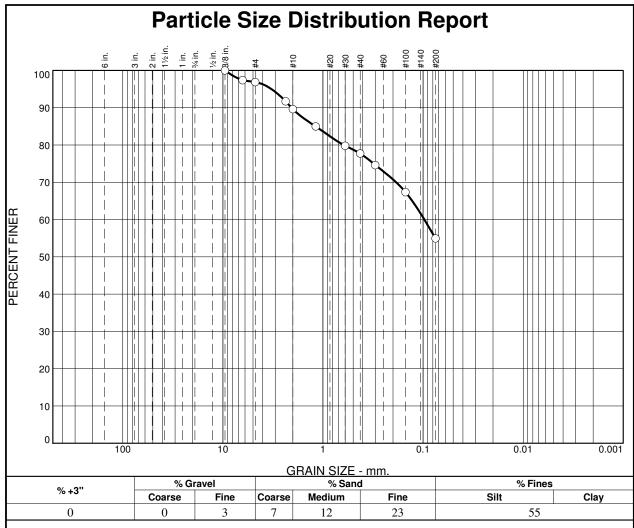
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1052 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100		
3/4"	95		
1/2"	89		
3/8"	87		
1/4"	82		
#4	80		
#8	74		
#10	71		
#16	66		
#30	58		
#40	54		
#50	50		
#100	39		
#200	28		

Soil Description clayey sand with gravel			
PL= 16	Atterberg Limits LL= 32	PI= 16	
D ₉₀ = 13.6043 D ₅₀ = 0.3000 D ₁₀ =	Coefficients D ₈₅ = 8.1693 D ₃₀ = 0.0863 C _U =	D ₆₀ = 0.7118 D ₁₅ = C _c =	
USCS= SC	Classification AASHT	O= A-2-6(1)	
Remarks			


Location: B-22 Sample Number: 19L1053 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

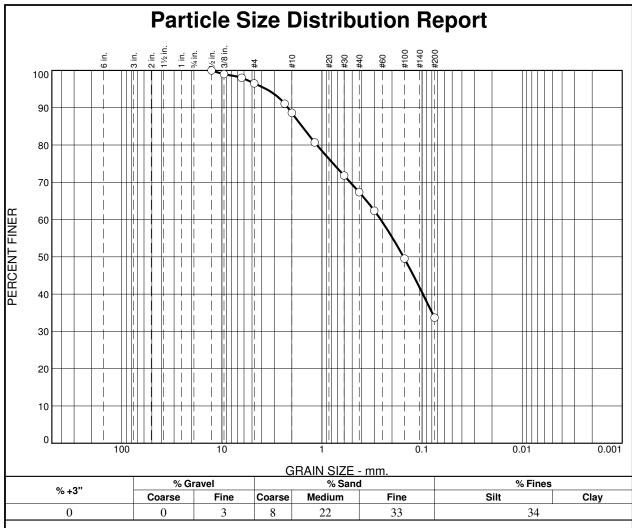
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1053Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100		
1/4"	97		
#4	97		
#8	92		
#10	90		
#16	85		
#30	80		
#40	78		
#50	75		
#100	67		
#200	55		
* (no anosit	ication provid	od)	

sandy lean clay	Soil Description	
PL= 15	Atterberg Limits LL= 39	PI= 24
D ₉₀ = 2.0609 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 1.1839 D ₃₀ = C _u =	D ₆₀ = 0.0971 D ₁₅ = C _c =
USCS= CL	Classification AASHT	O= A-6(10)
	<u>Remarks</u>	


Location: B-11 Sample Number: 19L1054 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

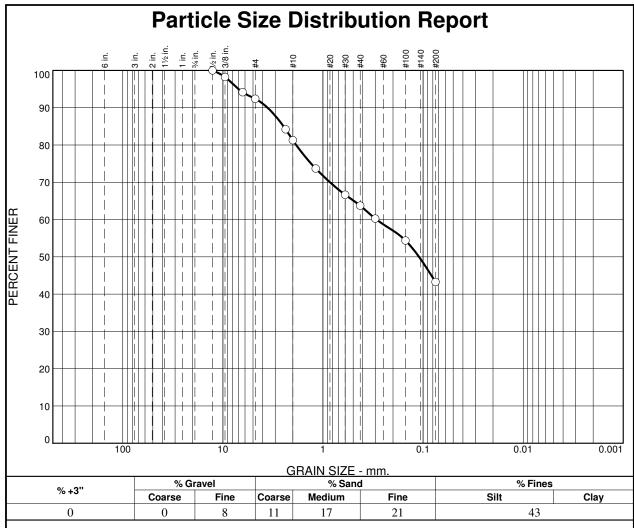
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1054 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	99		
1/4"	98		
#4	97		
#8	91		
#10	89		
#16	81		
#30	72		
#40	67		
#50	62		
#100	50		
#200	34		

clayey		I Description	
PL= 1		erberg Limits L= 31	PI= 16
D ₉₀ = D ₅₀ = D ₁₀ =	2.1878 D	85= 1.5820 30= u=	D ₆₀ = 0.2591 D ₁₅ = C _c =
USCS		assification AASHTO)= A-2-6(1)
		<u>Remarks</u>	


Location: B-11 Sample Number: 19L1055 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

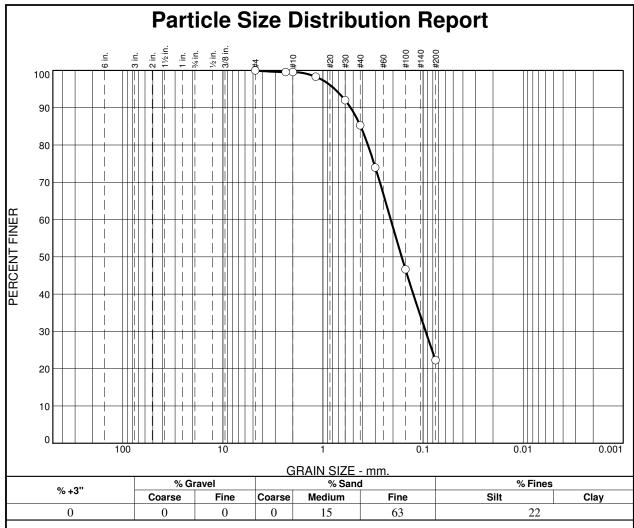
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1055 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	98		
1/4"	94		
#4	92		
#8	84		
#10	81		
#16	74		
#30	67		
#40	64		
#50	60		
#100	54		
#200	43		
* (no en	ecification provid	ad)	

clayey sand	Soil Description	
PL= 18	Atterberg Limits	PI= 26
D ₉₀ = 3.5756 D ₅₀ = 0.1099 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 2.4734 D ₃₀ = C _u =	D ₆₀ = 0.2923 D ₁₅ = C _c =
USCS= SC	Classification AASH1	O= A-7-6(6)
	<u>Remarks</u>	


Location: B-24 Sample Number: 19L1056 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

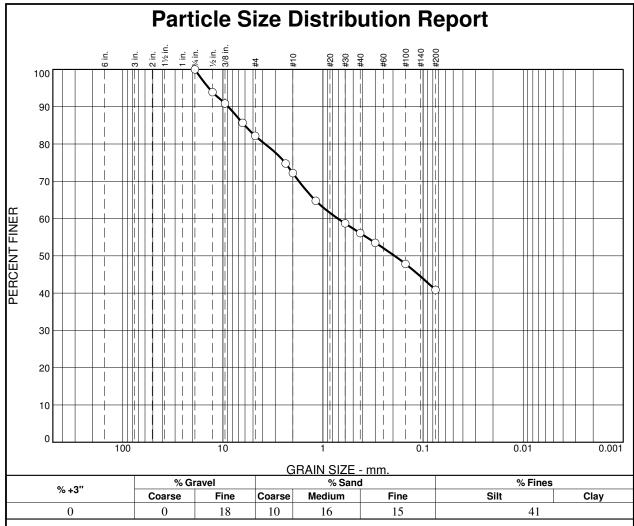
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1056 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100		
#8	100		
#10	100		
#16	98		
#30	92		
#40	85		
#50	74		
#100	47		
#200	22		

	•	
silty sand	Soil Description	ı
PL= NP	Atterberg Limits	PI= NP
D ₉₀ = 0.5290 D ₅₀ = 0.1636 D ₁₀ =	Coefficients D ₈₅ = 0.4203 D ₃₀ = 0.0943 C _u =	D ₆₀ = 0.2101 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-2-4(0)
	<u>Remarks</u>	


Location: B-24 Sample Number: 19L1057 **Depth:** 19.5-20.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

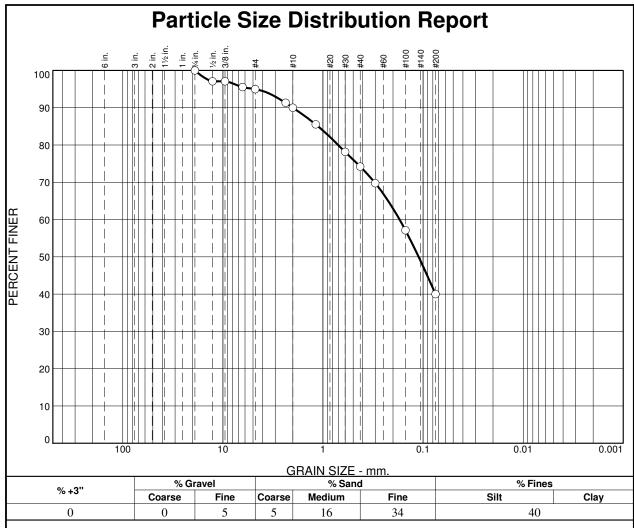
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1057Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	94		
3/8"	91		
1/4"	86		
#4	82		
#8	75		
#10	72		
#16	65		
#30	59		
#40	56		
#50	53		
#100	48		
#200	41		
* (no specif	ication provid	od)	

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 8.8388 D ₅₀ = 0.1926 D ₁₀ =	Coefficients D ₈₅ = 6.0388 D ₃₀ = C _u =	D ₆₀ = 0.7098 D ₁₅ = C _c =
USCS=	Classification AASHTO)=
	<u>Remarks</u>	


Location: B-13 **Sample Number:** 19L1058 **Depth:** 2.5-3.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

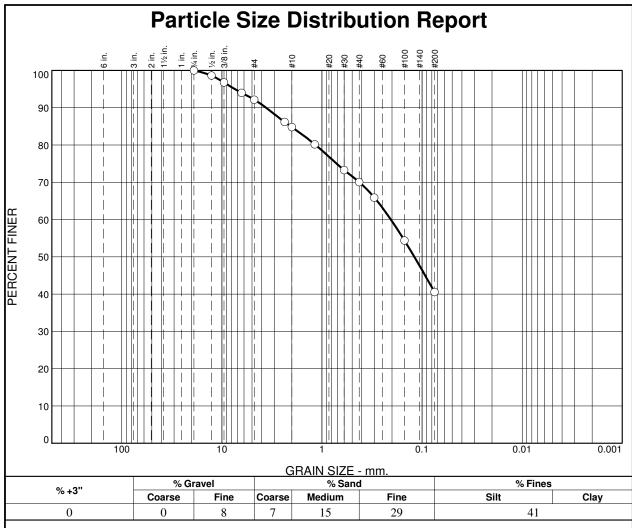
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1058Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	97		
3/8"	97		
1/4"	96		
#4	95		
#8	91		
#10	90		
#16	86		
#30	78		
#40	74		
#50	70		
#100	57		
#200	40		

clayey sand	Soil Description	
PL= 21	Atterberg Limits LL= 46	PI= 25
D ₉₀ = 2.0000 D ₅₀ = 0.1109 D ₁₀ =	Coefficients D ₈₅ = 1.1178 D ₃₀ = C _u =	D ₆₀ = 0.1718 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-7-6(5)
	<u>Remarks</u>	


Location: B-25 Sample Number: 19L1059 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

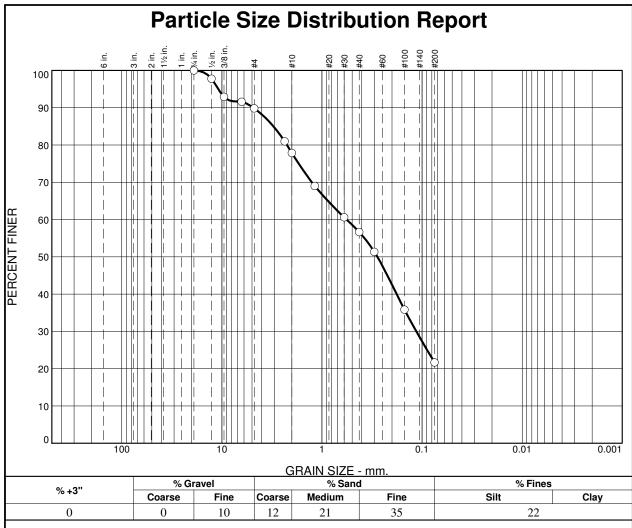
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1059 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	99		
3/8"	97		
1/4"	94		
#4	92		
#8	86		
#10	85		
#16	80		
#30	73		
#40	70		
#50	66		
#100	54		
#200	41		

clayey sand	Soil Description			
PL= 15	Atterberg Limits	: PI= 9		
D ₉₀ = 3.6207 D ₅₀ = 0.1196 D ₁₀ =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{85} = 2.0510 \\ D_{30} = \\ C_{u} = \end{array}$	D ₆₀ = 0.2049 D ₁₅ = C _c =		
USCS= SC Classification AASHTO= A-4(0)				
Remarks				


Location: B-25 Sample Number: 19L1061 **Depth:** 7.5-8.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

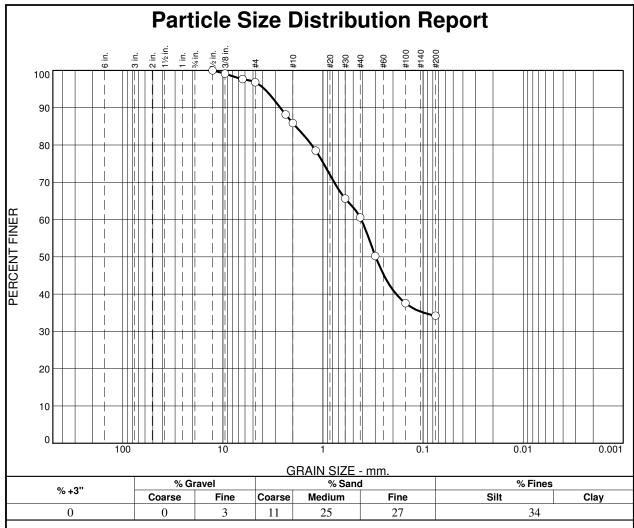
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1061 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	98		
3/8"	93		
1/4"	92		
#4	90		
#8	81		
#10	78		
#16	69		
#30	61		
#40	57		
#50	51		
#100	36		
#200	22		

Soil Description				
clayey sand				
PL= 24	Atterberg Limits LL= 55	Pl= 31		
D ₉₀ = 4.8501 D ₅₀ = 0.2799 D ₁₀ =	Coefficients D ₈₅ = 3.0498 D ₃₀ = 0.1143 C _u =	D ₆₀ = 0.5674 D ₁₅ = C _C =		
USCS= SC Classification AASHTO= A-2-7(1)				
<u>Remarks</u>				


Location: B-12 Sample Number: 19L1062 **Depth:** 15-15.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

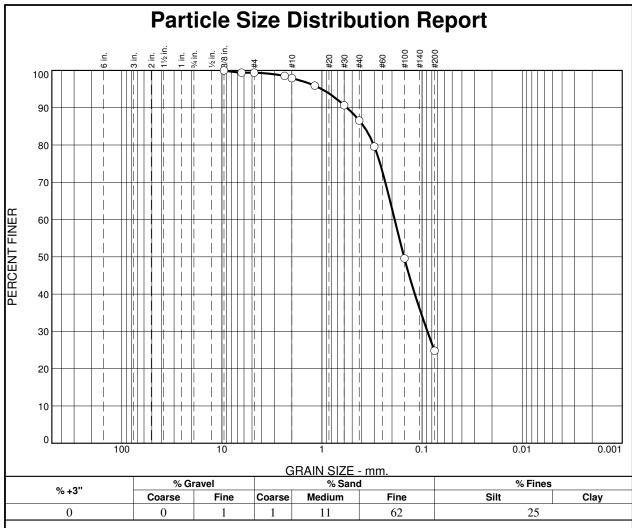
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1062 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	99		
1/4"	98		
#4	97		
#8	88		
#10	86		
#16	78		
#30	66		
#40	61		
#50	50		
#100	38		
#200	34		
*			

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 2.6657 D ₅₀ = 0.2979 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 1.8725 D ₃₀ = C _u =	D ₆₀ = 0.4151 D ₁₅ = C _c =
USCS=	Classification AASHTO)=
	<u>Remarks</u>	


Location: B-25 Sample Number: 19L1063 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

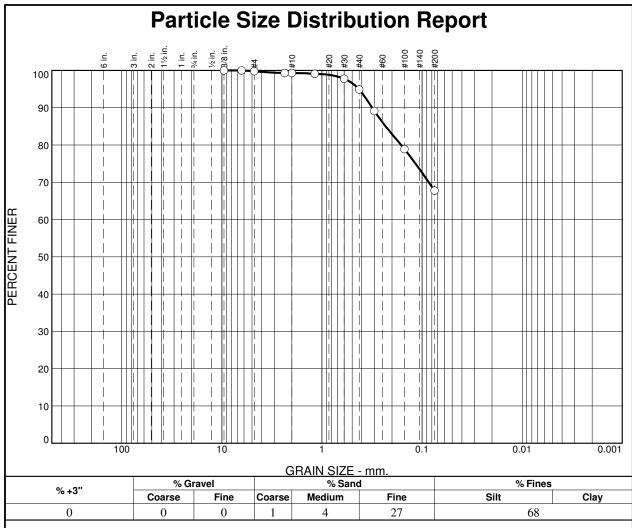
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1063Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100		
1/4"	99		
#4	99		
#8	99		
#10	98		
#16	96		
#30	91		
#40	87		
#50	80		
#100	50		
#200	25		

	-		-
clayey		Description	
PL= 2		erberg Limits = 37	PI= 15
D ₉₀ = D ₅₀ = D ₁₀ =	0.5627 Dg 0.1515 Dg C	oefficients 35= 0.3824 30= 0.0883	D ₆₀ = 0.1877 D ₁₅ = C _c =
USCS		assification AASHT	O= A-2-6(0)
]	<u>Remarks</u>	


Location: B-25 **Sample Number:** 19L1064 **Depth:** 20-20.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

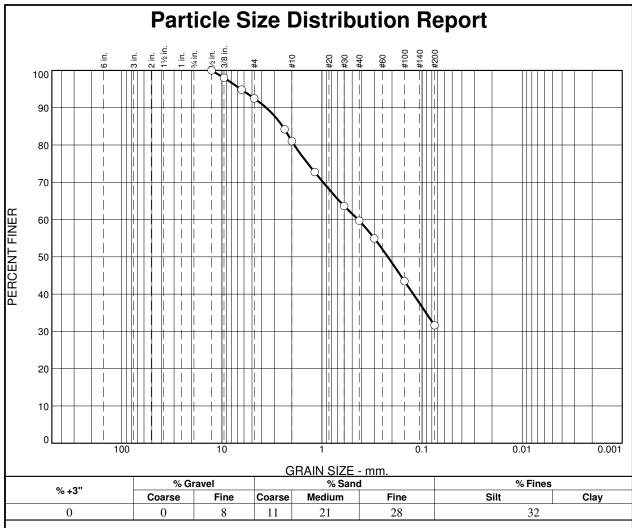
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1064 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100		
1/4"	100		
#4	100		
#8	99		
#10	99		
#16	99		
#30	98		
#40	95		
#50	89		
#100	79		
#200	68		
* ,	ification massid		

Soil Description	
Atterberg Limits LL=	PI=
$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 0.2309 \\ \text{D}_{30} = \\ \text{C}_{\text{U}} = \end{array}$	D ₆₀ = D ₁₅ = C _c =
Classification AASHT	O=
Remarks	
	Atterberg Limits LL= Coefficients D85= 0.2309 D30= Cu= Classification AASHT


Location: B-25 Sample Number: 19L1066 **Depth:** 40-40.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

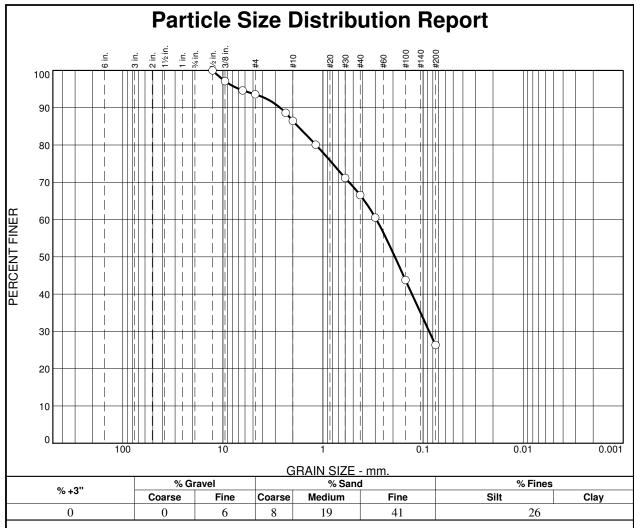
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1066 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	98		
1/4"	95		
#4	92		
#8	84		
#10	81		
#16	73		
#30	64		
#40	60		
#50	55		
#100	43		
#200	32		
*			

clayey sand	Soil Description	
PL= 21	Atterberg Limits LL= 46	PI= 25
D ₉₀ = 3.6099 D ₅₀ = 0.2198 D ₁₀ =	Coefficients D ₈₅ = 2.4714 D ₃₀ = C _u =	D ₆₀ = 0.4364 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-2-7(3)
	<u>Remarks</u>	


Location: B-30 Sample Number: 19L1067 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

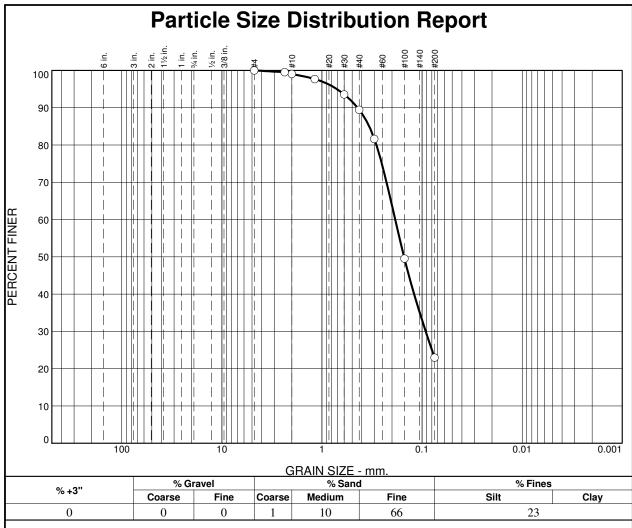
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1067Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	97		
1/4"	95		
#4	94		
#8	89		
#10	86		
#16	80		
#30	71		
#40	67		
#50	60		
#100	44		
#200	26		
*		1)	

clayey sand	Soil Description	1
	Attaula ann Lineite	
PL= 19	Atterberg Limits LL= 45	PI= 26
D ₉₀ = 2.6794 D ₅₀ = 0.1912 D ₁₀ =	Coefficients D ₈₅ = 1.7792 D ₃₀ = 0.0869 C _u =	D ₆₀ = 0.2928 D ₁₅ = C _c =
USCS= SC	Classification AASHT	TO= A-2-7(2)
	Remarks	


Location: B-30 Sample Number: 19L1068 **Depth:** 15-15.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

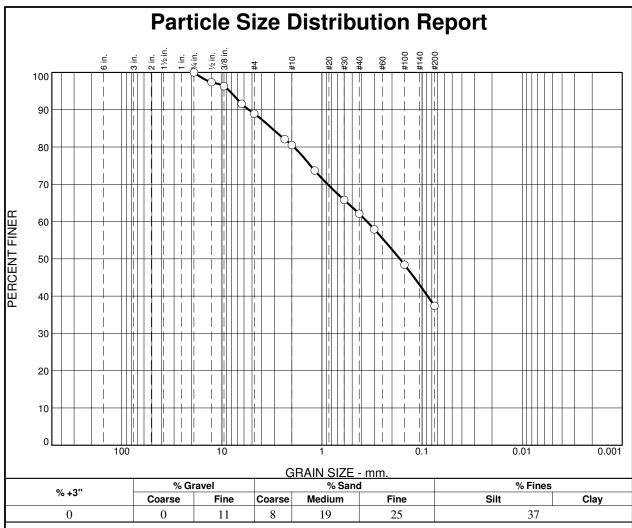
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1068Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100		
#8	100		
#10	99		
#16	98		
#30	94		
#40	89		
#50	82		
#100	50		
#200	23		
* (no specif	ication provid	ed)	I

-	,	
clayey sand	Soil Description	1
PL= 20	Atterberg Limits	PI= 19
D ₉₀ = 0.4411 D ₅₀ = 0.1515 D ₁₀ =	Coefficients D ₈₅ = 0.3374 D ₃₀ = 0.0920 C _U =	D ₆₀ = 0.1853 D ₁₅ = C _c =
USCS= SC	Classification AASHT	ΓO= A-2-6(1)
	<u>Remarks</u>	


Location: B-30 Sample Number: 19L1069 **Depth:** 19.5-20' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

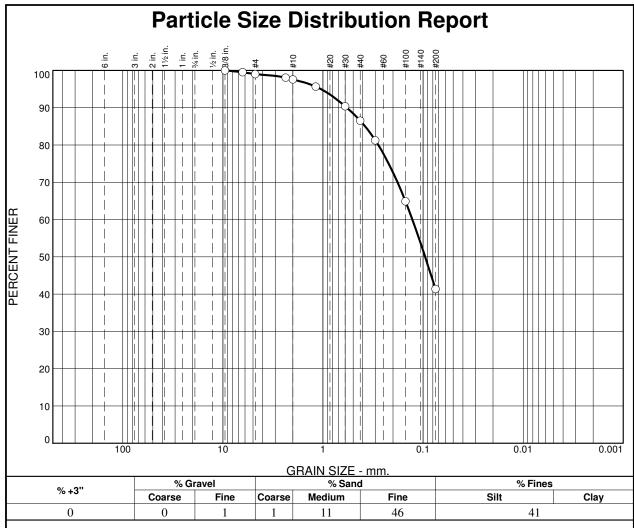
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1069 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	97		
3/8"	96		
1/4"	92		
#4	89		
#8	82		
#10	81		
#16	74		
#30	66		
#40	62		
#50	58		
#100	48		
#200	37		

	Soil Description	<u> </u>
clayey sand		
PL= 17	Atterberg Limits LL= 36	<u>s</u> PI= 19
D ₉₀ = 5.3869 D ₅₀ = 0.1670 D ₁₀ =	Coefficients D ₈₅ = 3.1582 D ₃₀ = C _u =	D ₆₀ = 0.3553 D ₁₅ = C _c =
USCS= SC	Classification AASH	TO= A-6(2)
	<u>Remarks</u>	


Location: B-21 **Sample Number:** 19L1070 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

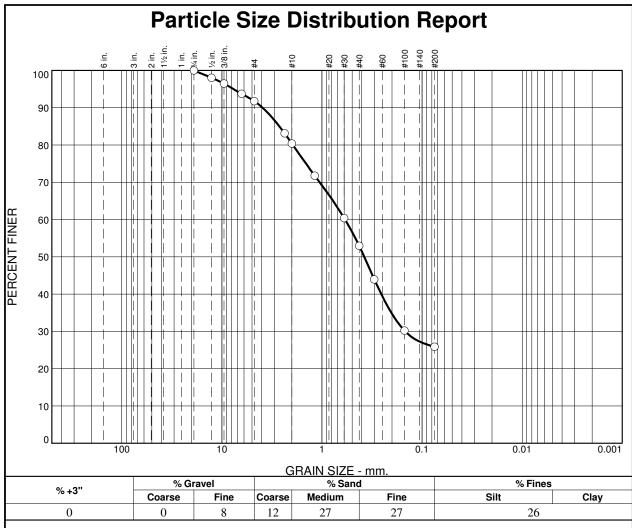
Client: Jacobs

Project: APS Douglas former MGP

 $\textbf{Lab Number} \quad 19L1070$ Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100		
1/4"	100		
#4	99		
#8	98		
#10	98		
#16	96		
#30	90		
#40	87		
#50	81		
#100	65		
#200	41		
* (no anosif	ication provid		

clayey sand	Soil Description	
PL= 16	Atterberg Limits LL= 37	PI= 21
D ₉₀ = 0.5774 D ₅₀ = 0.0955 D ₁₀ =	Coefficients D ₈₅ = 0.3794 D ₃₀ = C _u =	D ₆₀ = 0.1281 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-6(4)
	<u>Remarks</u>	


Location: B-21 Sample Number: 19L1071 **Depth:** 19.5-20' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

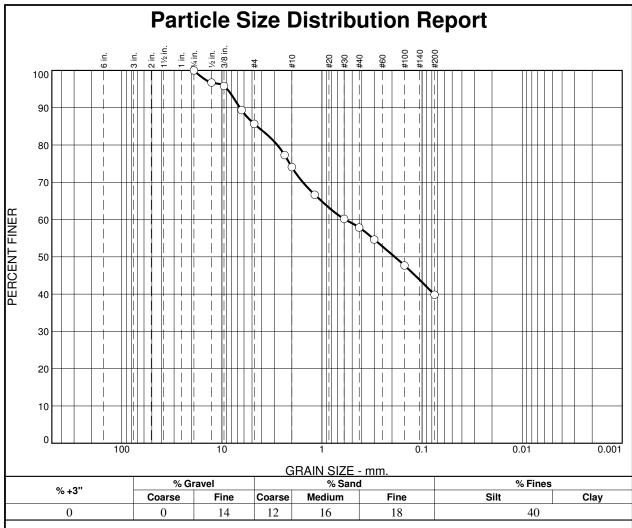
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1071 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	98		
3/8"	96		
1/4"	94		
#4	92		
#8	83		
#10	80		
#16	72		
#30	60		
#40	53		
#50	44		
#100	30		
#200	26		
* (no speci	fication provid	ad)	I

	Soil Description	
clayey sand		
PL= 17	Atterberg Limits LL= 31	PI= 14
D ₉₀ = 3.9243 D ₅₀ = 0.3784 D ₁₀ =	Coefficients D ₈₅ = 2.6600 D ₃₀ = 0.1476 C _u =	D ₆₀ = 0.5879 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-2-6(0)
	<u>Remarks</u>	


Location: B-15 **Sample Number:** 19L1072 **Depth:** 7.5-8.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

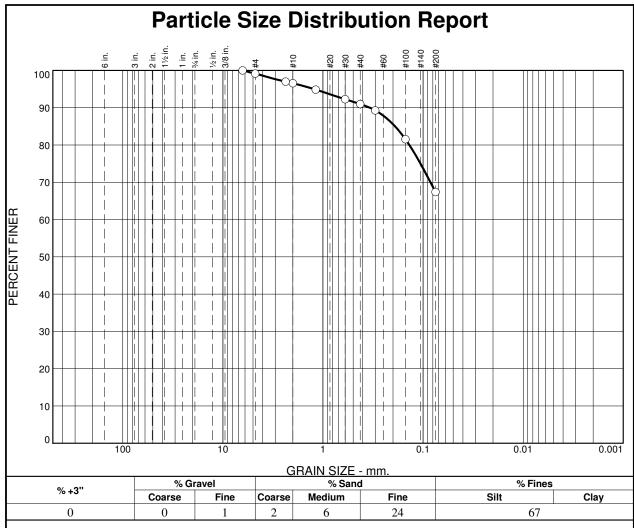
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1072Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	97		
3/8"	96		
1/4"	89		
#4	86		
#8	77		
#10	74		
#16	67		
#30	60		
#40	58		
#50	55		
#100	48		
#200	40		

	Soil Description	<u>1</u>
clayey sand		
PL= 17	Atterberg Limits	PI= 33
D ₉₀ = 6.5971 D ₅₀ = 0.1878 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 4.4517 D ₃₀ = C _u =	D ₆₀ = 0.5842 D ₁₅ = C _c =
USCS= SC	Classification AASH	ΓO= A-7-6(7)
	<u>Remarks</u>	


Location: B-19 Sample Number: 19L1073 **Depth:** 2.5-3.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

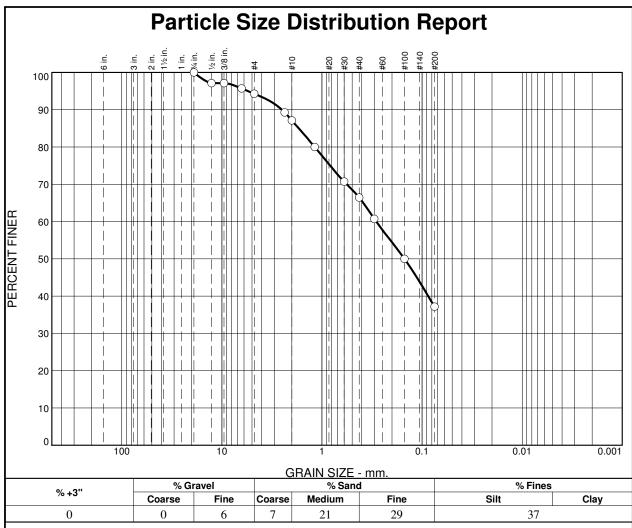
Client: Jacobs

Project: APS Douglas former MGP

 $\textbf{Lab Number} \quad 19L1073$ Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/4"	100		
#4	99		
#8	97		
#10	97		
#16	95		
#30	92		
#40	91		
#50	89		
#100	82		
#200	67		
* (no specif	ication provid	ed)	

sandy fat clay	Soil Description	<u>1</u>
PL= 19	Atterberg Limits	PI= 38
D ₉₀ = 0.3405 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1904 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASH	ΓO= A-7-6(24)
	<u>Remarks</u>	


Location: B-19 Sample Number: 19L1074 **Depth:** 7.5-8.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

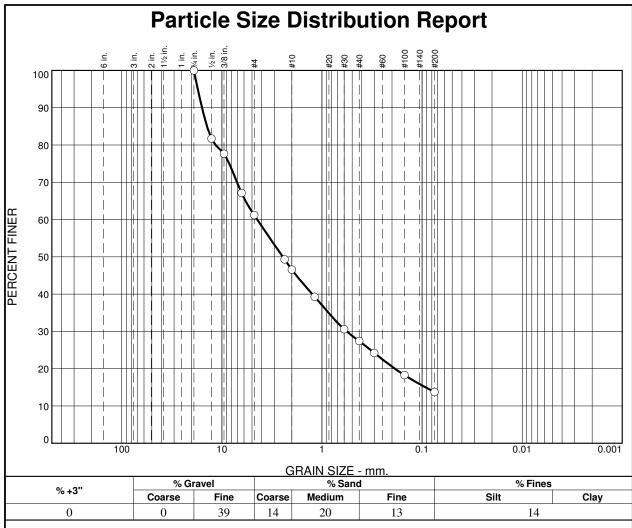
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1074Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	97		
3/8"	97		
1/4"	96		
#4	94		
#8	89		
#10	87		
#16	80		
#30	71		
#40	66		
#50	61		
#100	50		
#200	37		

	Soil Description	
PL=	Atterberg Limits	PI=
D ₉₀ = 2.5151 D ₅₀ = 0.1500 D ₁₀ =	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 1.7044 \\ \text{D}_{30} = \\ \text{C}_{\text{U}} = \end{array}$	D ₆₀ = 0.2872 D ₁₅ = C _c =
USCS=	Classification AASHT	O=
	<u>Remarks</u>	


Location: B-26 Sample Number: 19L1075 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

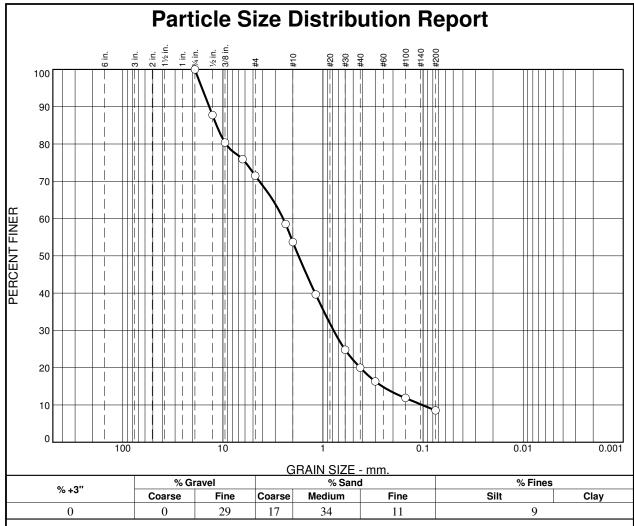
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1075Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	82		
3/8"	78		
1/4"	67		
#4	61		
#8	49		
#10	47		
#16	39		
#30	31		
#40	27		
#50	24		
#100	18		
#200	14		
*			

clayey sand with	Soil Description gravel	
PL= 20	Atterberg Limits LL= 34	PI= 14
D ₉₀ = 15.7843 D ₅₀ = 2.4580 D ₁₀ =	Coefficients D ₈₅ = 14.0832 D ₃₀ = 0.5660 C _U =	D ₆₀ = 4.4389 D ₁₅ = 0.0926 C _c =
USCS= SC	Classification AASHT	O= A-2-6(0)
	<u>Remarks</u>	


Location: B-26 **Sample Number:** 19L1078 **Depth:** 15-15.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

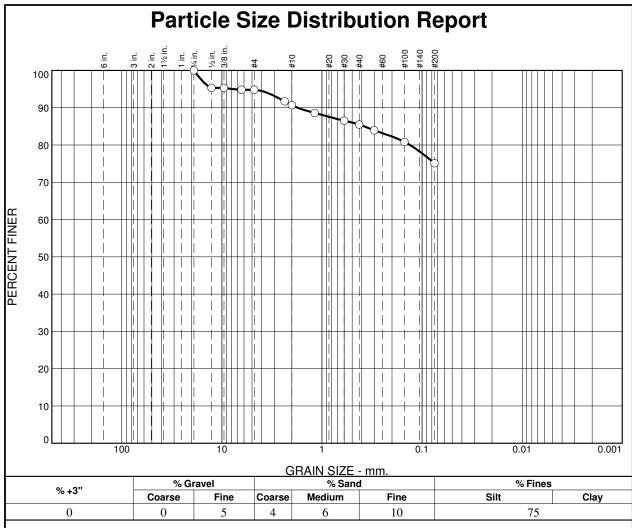
Client: Jacobs

Project: APS Douglas former MGP

 $\textbf{Lab Number} \quad 19L1078$ Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	88		
3/8"	80		
1/4"	76		
#4	71		
#8	59		
#10	54		
#16	40		
#30	25		
#40	20		
#50	16		
#100	12		
#200	8.5		

	Soil Description	
PL=	Atterberg Limits	PI=
D ₉₀ = 13.6826 D ₅₀ = 1.7570 D ₁₀ = 0.1025	Coefficients D ₈₅ = 11.5463 D ₃₀ = 0.7847 C _u = 24.37	D ₆₀ = 2.4986 D ₁₅ = 0.2562 C _c = 2.40
USCS=	Classification AASHTO	O=
	<u>Remarks</u>	


Location: B-26 Sample Number: 19L1079 **Depth:** 20-20.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

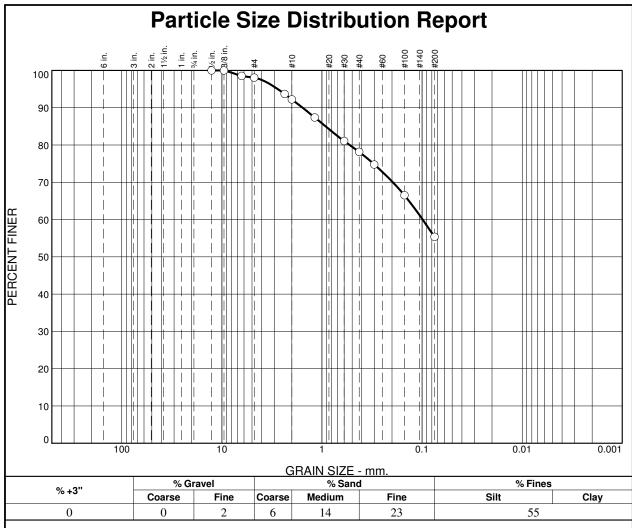
Client: Jacobs

Project: APS Douglas former MGP

 $\textbf{Lab Number} \quad 19L1079$ Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	95		
3/8"	95		
1/4"	95		
#4	95		
#8	92		
#10	91		
#16	89		
#30	87		
#40	85		
#50	84		
#100	81		
#200	75		

fat clay with san	Soil Description	
PL= 22	Atterberg Limits	PI= 65
D ₉₀ = 1.7518 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.3778 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASHT	O= A-7-6(50)
	Remarks	
	<u>Remarks</u>	


Location: B-26 Sample Number: 19L1080 **Depth:** 30-30.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

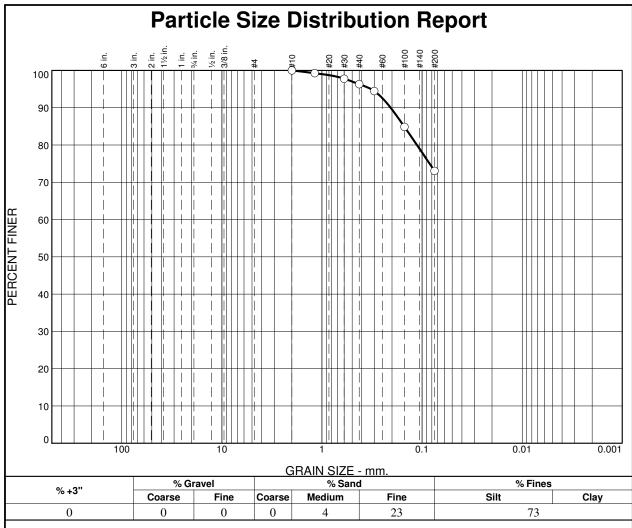
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1080Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	100		
1/4"	99		
#4	98		
#8	94		
#10	92		
#16	87		
#30	81		
#40	78		
#50	75		
#100	67		
#200	55		
*			

	Soil Description	1
sandy lean clay		_
PL= 17	Atterberg Limits	PI= 30
D ₉₀ = 1.5625 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.9205 D ₃₀ = C _u =	D ₆₀ = 0.0988 D ₁₅ = C _c =
USCS= CL	Classification AASH	TO= A-7-6(13)
	<u>Remarks</u>	


Location: B-27 Sample Number: 19L1081 **Depth:** 7.5-8.0' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

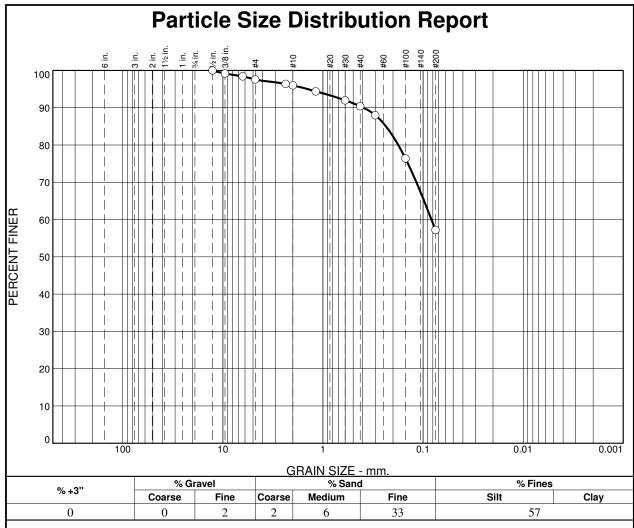
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1081 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100		
#16	99		
#30	98		
#40	96		
#50	94		
#100	85		
#200	73		
* (no specif	ication provid	ed)	

lean clay with sa	Soil Description and	
PL= 17	Atterberg Limits LL= 42	PI= 25
D ₉₀ = 0.2059 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1512 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CL	Classification AASHT	O= A-7-6(17)
	<u>Remarks</u>	


Location: B-27 Sample Number: 19L1083 **Depth:** 15-15.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

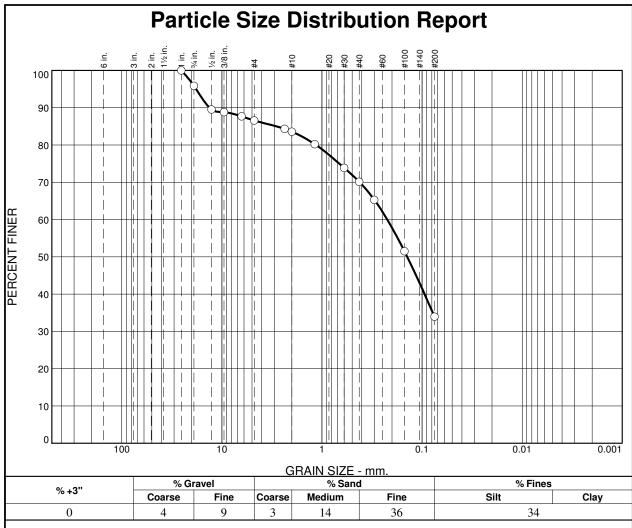
Client: Jacobs

Project: APS Douglas former MGP

 $\textbf{Lab Number} \quad 19L1083$ Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	99		
1/4"	98		
#4	98		
#8	96		
#10	96		
#16	94		
#30	92		
#40	90		
#50	88		
#100	76		
#200	57		
*			

Soil Description	
Atterberg Limits	PI= 23
Coefficients D ₈₅ = 0.2347 D ₃₀ = C _u =	D ₆₀ = 0.0824 D ₁₅ = C _c =
Classification AASHT	O= A-6(10)
<u>Remarks</u>	
	Coefficients D85= 0.2347 D30= Cu= Classification AASHT


Location: B-35 Sample Number: 19L1085 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

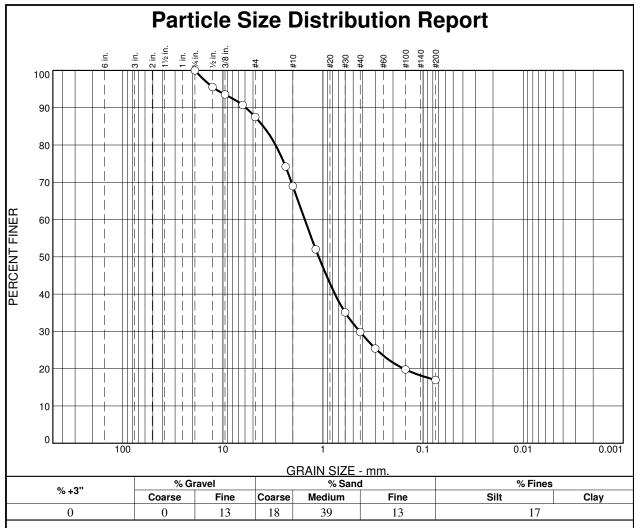
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1085 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100		
3/4"	96		
1/2"	90		
3/8"	89		
1/4"	88		
#4	87		
#8	84		
#10	84		
#16	80		
#30	74		
#40	70		
#50	65		
#100	51		
#200	34		

1	•	
clayey sand	Soil Description	<u>n</u>
PL= 17	Atterberg Limit	<u>s</u> PI= 22
D ₉₀ = 13.2949 D ₅₀ = 0.1408 D ₁₀ =	Coefficients D ₈₅ = 2.8445 D ₃₀ = C _u =	D ₆₀ = 0.2228 D ₁₅ = C _c =
USCS= SC	Classification AASH	TO= A-2-6(2)
	<u>Remarks</u>	


Location: B-35 Sample Number: 19L1086 **Depth:** 20-20.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

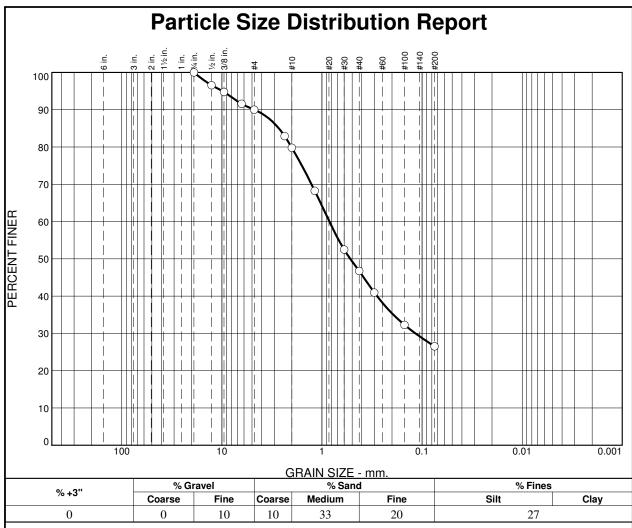
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1086 Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	96		
3/8"	94		
1/4"	91		
#4	87		
#8	74		
#10	69		
#16	52		
#30	35		
#40	30		
#50	25		
#100	20		
#200	17		

alayay sand	Soil Description	1
clayey sand		
PL= 14	Atterberg Limits	PI= 16
D ₉₀ = 5.8937 D ₅₀ = 1.1031 D ₁₀ =	Coefficients D ₈₅ = 3.9490 D ₃₀ = 0.4301 C _u =	D ₆₀ = 1.5213 D ₁₅ = C _c =
USCS= SC	Classification AASHT	TO= A-2-6(0)
	Remarks	


Location: B-34 Sample Number: 19L1087 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

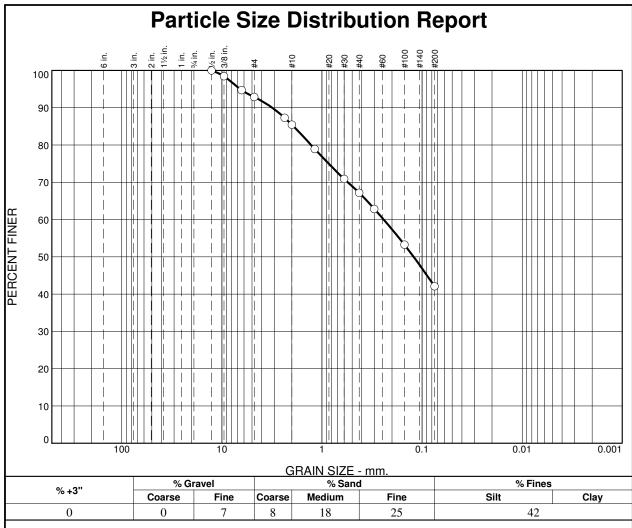
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1087Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	97		
3/8"	95		
1/4"	92		
#4	90		
#8	83		
#10	80		
#16	68		
#30	52		
#40	47		
#50	41		
#100	32		
#200	27		

	Soil Description	 !
clayey sand		
PL= 14	Atterberg Limits	PI= 13
D ₉₀ = 4.7268 D ₅₀ = 0.5209 D ₁₀ =	Coefficients D ₈₅ = 2.6928 D ₃₀ = 0.1167 C _u =	D ₆₀ = 0.8432 D ₁₅ = C _c =
USCS= SC	Classification AASH1	TO= A-2-6(0)
	Remarks	


Location: B-34 Sample Number: 19L1088 **Depth:** 15-15.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

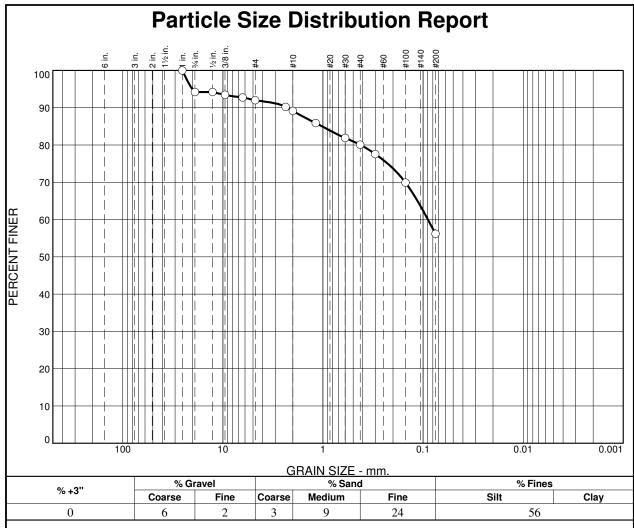
Client: Jacobs

Project: APS Douglas former MGP

 $\textbf{Lab Number} \quad 19L1088$ Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	98		
1/4"	95		
#4	93		
#8	87		
#10	85		
#16	79		
#30	71		
#40	67		
#50	63		
#100	53		
#200	42		
* (no specif	ication provid	ed)	

	Soil Description	<u>1</u>
clayey sand		
PL= 14	Atterberg Limits	S PI= 11
D ₉₀ = 3.1441 D ₅₀ = 0.1216 D ₁₀ =	Coefficients D ₈₅ = 1.9251 D ₃₀ = C _u =	D ₆₀ = 0.2418 D ₁₅ = C _c =
USCS= SC	Classification AASH	TO= A-6(1)
	<u>Remarks</u>	


Location: B-29 Sample Number: 19L1089 **Depth:** 5-5.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

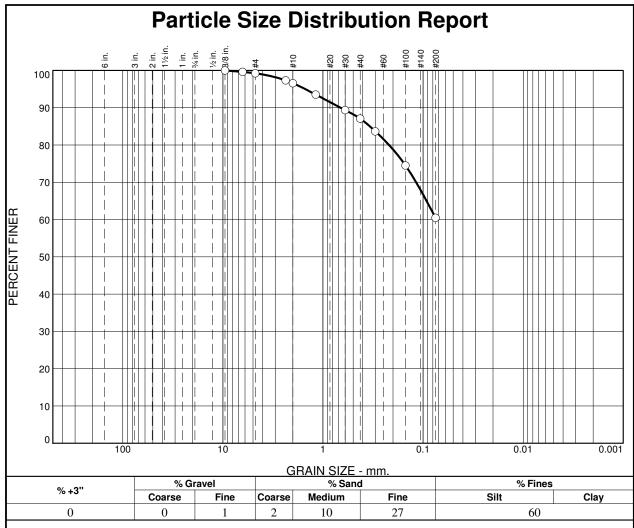
Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1089Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100		
3/4"	94		
1/2"	94		
3/8"	93		
1/4"	93		
#4	92		
#8	90		
#10	89		
#16	86		
#30	82		
#40	80		
#50	78		
#100	70		
#200	56		
* (no specif	ication provid	od)	1

sandy lean clay	Soil Description	1
PL= 15	Atterberg Limits	PI= 26
D ₉₀ = 2.2763 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 1.0232 D ₃₀ = C _u =	D ₆₀ = 0.0894 D ₁₅ = C _c =
USCS= CL	Classification AASH	ΓO= A-7-6(11)
	<u>Remarks</u>	


Location: B-29 Sample Number: 19L1090 **Depth:** 10-10.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1090Project No: 19107

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100		
1/4"	100		
#4	99		
#8	97		
#10	97		
#16	94		
#30	89		
#40	87		
#50	84		
#100	75		
#200	60		
 * (no specif	ication provid	ad)	

sandy lean clay	Soil Description	<u>n</u>
PL= 17	Atterberg Limit	<u>s</u> Pl= 22
D ₉₀ = 0.6679 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.3405 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CL	Classification AASH	TO= A-6(10)
	<u>Remarks</u>	

Location: B-29 Sample Number: 19L1091 **Depth:** 15-15.5' **Date:** 10-28-19

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Jacobs

Project: APS Douglas former MGP

Lab Number 19L1091 Project No: 19107

PROJECT: APS Douglas former MGP

LOCATION: Douglas, AZ
MATERIAL: SEE BELOW
SAMPLE SOURCE: SEE BELOW

CLIENT: Jacobs JOB NO: 19107

LAB NO: SEE BELOW **DATE SAMPLED:** 10/28/19

SPECIFIC GRAVITY OF SOILS (ASTM D854)

LAB NO	SAMPLE SOURCE	OVEN DRY SOIL (g)	FLASK & WATER (g)	WEIGHT OF FLASK, WATER & SOIL (g)	TEMP. (C)	SPECIFIC GRAVITY
19L1060	B-25 @ 7.5-8.0'	40.8	336.97	362.19	21	2.622
19L1063	B-25 @ 10-10.5'	45.8	336.97	365.50	19	2.654
19L1064	B-25 @ 20-20.5'	38.7	336.97	360.97	20	2.637
19L1065	B-25 @ 30-30.5'	46.0	335.24	363.68	21	2.624
19L1075	B-26 @ 5-5.5'	50.1	336.97	368.07	19	2.641
19L1076	B-26 @ 7.5-8.0'	50.0	336.60	368.00	20	2.686
19L1077	B-26 @ 10-10.5'	47.8	339.60	369.02	21	2.600
19L1079	B-26 @ 20-20.5'	47.2	336.97	366.55	19	2.684
19L1080	B-26 @ 30-30.5'	45.5	339.60	367.81	19	2.636
19L1082	B-27 @ 10-10.5'	46.3	335.24	364.01	20	2.646
19L1084	B-27 @ 20-20.5'	42.9	339.60	366.26	20	2.641

REVIEWED BY The

Trent Titchenal Lab Manager

Appendix G Laboratory Analytical Reports

Analytical Report 641446

for

APS

Project Manager: Judy Heywood

APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 11.18.2019

Collected By: Client

4147 Greenbriar Dr. Stafford, TX 77477

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

11.18.2019

Project Manager: Judy Heywood

APS P.O. Box 53999 Mail Station 8376

Mail Station 8376 Phoenix, AZ 85072

Reference: XENCO Report No(s): 641446

APS MGP Douglas, AZ Project Address: Miami, AZ

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 641446. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 641446 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

XENCO

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

Project ID: D3118600.A.CS.EV.DG.0. Report Date: 11.18.2019
Work Order Number(s): 641446 Date Received: 10.30.2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3105931 Volatiles by SW 8260C

Lab Sample ID 641446-029 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Bromomethane, Chloroethane recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Bromoform recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641446-014, -019, -029, -034, -037, -038, -039. The Laboratory Control Sample for Bromomethane, Chloroethane, Bromoform is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3106008 PAHs by 8270D SIM

Samples in work order 641446 were run at dilution due to the physical characteristics of the samples-dark and viscous.

Batch: LBA-3106011 PAHs by 8270D SIM

Acenaphthylene, Anthracene, Benzo(b)fluoranthene , Benzo(k)fluoranthene , Chrysene, Fluoranthene, Pyrene Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits.

Samples in the analytical batch are: 641446-022, -023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038, -039, -040

Lab Sample ID 641446-029 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Fluoranthene, Pyrene recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641446-022, -023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038, -039, -040.

The Laboratory Control Sample for Anthracene, Benzo(k)fluoranthene , Chrysene, Pyrene, Benzo(b)fluoranthene , Fluoranthene is within laboratory Control Limits, therefore the data was accepted.

Surrogate Terphenyl-D14 recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 641446-023.

Samples in work order 641446 were run at dilution due to the physical characteristics of the samples-dark and viscous.

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

 Project ID:
 D3118600.A. CS. EV. DG. 0.
 Report Date:
 11.18.2019

 Work Order Number(s):
 641446
 Date Received:
 10.30.2019

Batch: LBA-3106129 Metals, RCRA List, by SW 6020

Lab Sample ID 641446-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641446-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -020.

The Laboratory Control Sample for Barium is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3106155 Metals, RCRA List, by SW 6020

Lab Sample ID 641446-029 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Lead recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641446-021, -022, -023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038, -039, -040.

The Laboratory Control Sample for Barium, Lead is within laboratory Control Limits, therefore the data was accepted.

Flagging Criteria

Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

Sample Cross Reference 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D-B31-0-102719	S	10.27.2019 10:45		641446-001
D-B32-0-102719	S	10.27.2019 11:00		641446-002
D-B33-0-102719	S	10.27.2019 11:22		641446-003
D-B34-0-102719	S	10.27.2019 11:34		641446-004
D-B27-0-102719	S	10.27.2019 12:16		641446-005
D-B29-0-102719	S	10.27.2019 12:50		641446-006
D-B35-0-102719	S	10.27.2019 13:09		641446-007
D-B18-0-102719	S	10.27.2019 13:30		641446-008
D-B20-0-102719	S	10.27.2019 13:52		641446-009
D-FD01-102719	S	10.27.2019 14:00		641446-010
D-B28-0-102719	S	10.27.2019 14:58		641446-011
D-B22-0-102719	S	10.27.2019 15:06		641446-012
D-B19-0-102719	S	10.27.2019 15:36		641446-013
D-B25-0-102719	S	10.27.2019 15:50		641446-014
D-B21-0-102719	S	10.27.2019 16:26		641446-015
D-B23-0-102719	S	10.27.2019 16:40		641446-016
D-B16-0-102719	S	10.27.2019 17:12		641446-017
D-B17-0-102719	S	10.27.2019 17:38		641446-018
D-TB01-102719	S	10.27.2019 00:00		641446-019
D-B26-0-102719	S	10.28.2019 10:15		641446-020
D-B24-0-102719	S	10.28.2019 10:32		641446-021
D-B30-0-102719	S	10.28.2019 11:12		641446-022
D-B34-5.0-5.5-102819	S	10.28.2019 11:05	5 - 5.5 ft	641446-023
D-FD01-102819	S	10.28.2019 11:15		641446-024
D-B33-5.0'-5.5'	S	10.28.2019 11:50	5 - 5.5 ft	641446-025
D-B32-5.0-5.5	S	10.28.2019 13:55	5 - 5.5 ft	641446-026
B-FD02-102819	S	10.28.2019 14:05	5 - 5.5 ft	641446-027
D-B31-5.0-5.5	S	10.28.2019 14:25	5 - 5.5 ft	641446-028
D-B35-5.0-5.5	S	10.28.2019 16:40	5 - 5.5 ft	641446-029
D-B18-2.0-2.5	S	10.28.2019 17:10	2 - 2.5 ft	641446-030
D-B18-5.0-5.5	S	10.28.2019 17:15	5 - 2.5 ft	641446-031
D-FD03-102819	S	10.28.2019 17:20		641446-032
D-B18-7.0-7.5	S	10.28.2019 17:30	7 - 7.5 ft	641446-033
D-B14-1.0-1.5	S	10.29.2019 08:15	1 - 1.5 ft	641446-034
D-B14-2.5-3.0	S	10.29.2019 08:20	2.5 - 3 ft	641446-035
D-B14-5.0-5.5	S	10.29.2019 09:15	5 - 5.5 ft	641446-036
D-B16-2.5-3.0	S	10.29.2019 09:50	2.5 - 3 ft	641446-037
D-FD01-102919	S	10.29.2019 10:00		641446-038
D-B16-5.0-5.5	S	10.29.2019 10:05	5 - 5.5 ft	641446-039
D-B22-2.5-3.0	S	10.29.2019 10:15	2.5 - 3 ft	641446-040

ADS

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B31-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-001 Date Collected: 10.27.2019 10:45

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 10:25 Basis: Wet Weight Seq Number: 3106077

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0211 0.0175 mg/kg 10.31.2019 16:17 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 09:30 Wet Weight Seq Number: 3106129

SUB: T104704215-19-30

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.08	1.92	mg/kg	10.31.2019 19:42		10
Barium	7440-39-3	186	3.85	mg/kg	10.31.2019 19:42		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	10.31.2019 19:42	U	10
Chromium	7440-47-3	10.3	3.85	mg/kg	10.31.2019 19:42		10
Lead	7439-92-1	34.8	1.92	mg/kg	10.31.2019 19:42		10
Selenium	7782-49-2	BRL	1.92	mg/kg	10.31.2019 19:42	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	10.31.2019 19:42	U	10

DRU

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B31-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-001 Date Collected: 10.27.2019 10:45

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 10.30.2019 10:09 Basis: Wet Weight

Seq Number: 3106008 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	10.30.2019 19:09	U	10
Acenaphthylene	208-96-8	BRL	0.0167		mg/kg	10.30.2019 19:09	U	10
Anthracene	120-12-7	BRL	0.0167		mg/kg	10.30.2019 19:09	U	10
Benzo(a)anthracene	56-55-3	0.0182	0.0167		mg/kg	10.30.2019 19:09		10
Benzo(a)pyrene	50-32-8	0.0216	0.0167		mg/kg	10.30.2019 19:09		10
Benzo(b)fluoranthene	205-99-2	0.0355	0.0167		mg/kg	10.30.2019 19:09		10
Benzo(g,h,i)perylene	191-24-2	0.0206	0.0167		mg/kg	10.30.2019 19:09		10
Benzo(k)fluoranthene	207-08-9	BRL	0.0167		mg/kg	10.30.2019 19:09	U	10
Chrysene	218-01-9	0.0242	0.0167		mg/kg	10.30.2019 19:09		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	10.30.2019 19:09	U	10
Fluoranthene	206-44-0	0.0413	0.0167		mg/kg	10.30.2019 19:09		10
Fluorene	86-73-7	BRL	0.0167		mg/kg	10.30.2019 19:09	U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.0167		mg/kg	10.30.2019 19:09	U	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	10.30.2019 19:09	U	10
Phenanthrene	85-01-8	0.0169	0.0167		mg/kg	10.30.2019 19:09		10
Pyrene	129-00-0	0.0366	0.0167		mg/kg	10.30.2019 19:09		10
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		71	%	31-130	10.30	0.2019 19:09		
2-Fluorobiphenyl	orobiphenyl 73 % 51-133 10.30.2019 19:09		.2019 19:09					
Terphenyl-D14		74	%	46-137	10.30	.2019 19:09		

% Recovery								
Surrogate		Units	Limits	Analysis Date	Flag			
Nitrobenzene-d5	71	%	31-130	10.30.2019 19:09				
2-Fluorobiphenyl	73	%	51-133	10.30.2019 19:09				
Terphenyl-D14	74	%	46-137	10.30.2019 19:09				

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B32-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-002 Date Collected: 10.27.2019 11:00

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 10:25 Basis: Wet Weight

Seq Number: 3106077 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0294
 0.0179
 mg/kg
 10.31.2019 16:53
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Seq Number: 3106129 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.73	2.00	mg/kg	10.31.2019 20:03		10
Barium	7440-39-3	176	4.00	mg/kg	10.31.2019 20:03		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	10.31.2019 20:03	U	10
Chromium	7440-47-3	9.26	4.00	mg/kg	10.31.2019 20:03		10
Lead	7439-92-1	48.3	2.00	mg/kg	10.31.2019 20:03		10
Selenium	7782-49-2	BRL	2.00	mg/kg	10.31.2019 20:03	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	10.31.2019 20:03	U	10

DRU

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B32-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-002 Date Collected: 10.27.2019 11:00

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 10.30.2019 10:18 Basis: Wet Weight

Seq Number: 3106008 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	10.30.2019 19:26	U	10
Acenaphthylene	208-96-8	BRL	0.0167		mg/kg	10.30.2019 19:26	U	10
Anthracene	120-12-7	BRL	0.0167		mg/kg	10.30.2019 19:26	U	10
Benzo(a)anthracene	56-55-3	0.0233	0.0167		mg/kg	10.30.2019 19:26		10
Benzo(a)pyrene	50-32-8	0.0319	0.0167		mg/kg	10.30.2019 19:26		10
Benzo(b)fluoranthene	205-99-2	0.0581	0.0167		mg/kg	10.30.2019 19:26		10
Benzo(g,h,i)perylene	191-24-2	0.0320	0.0167		mg/kg	10.30.2019 19:26		10
Benzo(k)fluoranthene	207-08-9	BRL	0.0167		mg/kg	10.30.2019 19:26	U	10
Chrysene	218-01-9	0.0342	0.0167		mg/kg	10.30.2019 19:26		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	10.30.2019 19:26	U	10
Fluoranthene	206-44-0	0.0580	0.0167		mg/kg	10.30.2019 19:26		10
Fluorene	86-73-7	BRL	0.0167		mg/kg	10.30.2019 19:26	U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0258	0.0167		mg/kg	10.30.2019 19:26		10
Naphthalene	91-20-3	BRL	0.167		mg/kg	10.30.2019 19:26	U	10
Phenanthrene	85-01-8	0.0183	0.0167		mg/kg	10.30.2019 19:26		10
Pyrene	129-00-0	0.0515	0.0167		mg/kg	10.30.2019 19:26		10
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fla	ag	
Nitrobenzene-d5		76	%	31-130	10.30	0.2019 19:26		
2-Fluorobiphenyl		73	%	51-133	10.30	0.2019 19:26		
Terphenyl-D14		79	%	46-137	10.30	0.2019 19:26		

% Recovery								
Surrogate		Units	Limits	Analysis Date	Flag			
Nitrobenzene-d5	76	%	31-130	10.30.2019 19:26				
2-Fluorobiphenyl	73	%	51-133	10.30.2019 19:26				
Terphenyl-D14	79	%	46-137	10.30.2019 19:26				

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B33-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-003 Date Collected: 10.27.2019 11:22

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 10:25 Basis: Wet Weight Seq Number: 3106077

SUB: T104704215-19-30

Prep Method: SW3050B

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0289 0.0196 mg/kg 10.31.2019 16:32 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech: Analyst: DEP Date Prep:

Basis: 10.31.2019 09:30 Wet Weight

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.47	1.85	mg/kg	10.31.2019 20:05		10
Barium	7440-39-3	149	3.70	mg/kg	10.31.2019 20:05		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	10.31.2019 20:05	U	10
Chromium	7440-47-3	8.64	3.70	mg/kg	10.31.2019 20:05		10
Lead	7439-92-1	29.7	1.85	mg/kg	10.31.2019 20:05		10
Selenium	7782-49-2	BRL	1.85	mg/kg	10.31.2019 20:05	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	10.31.2019 20:05	U	10

Seq Number: 3106008

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B33-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-003 Date Collected: 10.27.2019 11:22

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 10.30.2019 10:21 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Acenaphthylene	208-96-8	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Anthracene	120-12-7	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Benzo(a)anthracene	56-55-3	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Benzo(a)pyrene	50-32-8	0.00972	0.00834		mg/kg	10.30.2019 19:42		5
Benzo(b)fluoranthene	205-99-2	0.0184	0.00834		mg/kg	10.30.2019 19:42		5
Benzo(g,h,i)perylene	191-24-2	0.0102	0.00834		mg/kg	10.30.2019 19:42		5
Benzo(k)fluoranthene	207-08-9	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Chrysene	218-01-9	0.0113	0.00834		mg/kg	10.30.2019 19:42		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Fluoranthene	206-44-0	0.0192	0.00834		mg/kg	10.30.2019 19:42		5
Fluorene	86-73-7	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Naphthalene	91-20-3	BRL	0.0834		mg/kg	10.30.2019 19:42	U	5
Phenanthrene	85-01-8	BRL	0.00834		mg/kg	10.30.2019 19:42	U	5
Pyrene	129-00-0	0.0175	0.00834		mg/kg	10.30.2019 19:42		5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fla	g	
Nitrobenzene-d5		64	%	31-130	10.30	.2019 19:42		

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	64	%	31-130	10.30.2019 19:42	
2-Fluorobiphenyl	71	%	51-133	10.30.2019 19:42	
Terphenyl-D14	85	%	46-137	10.30.2019 19:42	

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B34-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-004 Date Collected: 10.27.2019 11:34

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 10:25 Basis: Wet Weight

Seq Number: 3106077 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0288
 0.0175
 mg/kg
 10.31.2019 16:34
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.3	1.92	mg/kg	10.31.2019 20:08		10
Barium	7440-39-3	208	3.85	mg/kg	10.31.2019 20:08		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	10.31.2019 20:08	U	10
Chromium	7440-47-3	11.0	3.85	mg/kg	10.31.2019 20:08		10
Lead	7439-92-1	41.3	1.92	mg/kg	10.31.2019 20:08		10
Selenium	7782-49-2	BRL	1.92	mg/kg	10.31.2019 20:08	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	10.31.2019 20:08	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B34-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-004 Date Collected: 10.27.2019 11:34

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:24 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	10.30.2019 19:59	U	10
Acenaphthylene	208-96-8	BRL	0.0167		mg/kg	10.30.2019 19:59	U	10
Anthracene	120-12-7	BRL	0.0167		mg/kg	10.30.2019 19:59	U	10
Benzo(a)anthracene	56-55-3	0.0335	0.0167		mg/kg	10.30.2019 19:59		10
Benzo(a)pyrene	50-32-8	0.0467	0.0167		mg/kg	10.30.2019 19:59		10
Benzo(b)fluoranthene	205-99-2	0.0888	0.0167		mg/kg	10.30.2019 19:59		10
Benzo(g,h,i)perylene	191-24-2	0.0371	0.0167		mg/kg	10.30.2019 19:59		10
Benzo(k)fluoranthene	207-08-9	0.0221	0.0167		mg/kg	10.30.2019 19:59		10
Chrysene	218-01-9	0.0504	0.0167		mg/kg	10.30.2019 19:59		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	10.30.2019 19:59	U	10
Fluoranthene	206-44-0	0.0847	0.0167		mg/kg	10.30.2019 19:59		10
Fluorene	86-73-7	BRL	0.0167		mg/kg	10.30.2019 19:59	U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0323	0.0167		mg/kg	10.30.2019 19:59		10
Naphthalene	91-20-3	BRL	0.167		mg/kg	10.30.2019 19:59	U	10
Phenanthrene	85-01-8	0.0273	0.0167		mg/kg	10.30.2019 19:59		10
Pyrene	129-00-0	0.0729	0.0167		mg/kg	10.30.2019 19:59		10
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		77	%	31-130	10.30	0.2019 19:59		
2-Fluorobiphenyl		77	%	51-133		0.2019 19:59		
Terphenyl-D14		84	%	46-137	10.30	0.2019 19:59		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B27-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-005 Date Collected: 10.27.2019 12:16

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 10:25 Basis: Wet Weight Seq Number: 3106077

SUB: T104704215-19-30

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0227 0.0189 mg/kg 10.31.2019 16:36 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 09:30 Wet Weight Seq Number: 3106129

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	13.9	2.00	mg/kg	10.31.2019 20:11		10
Barium	7440-39-3	70.5	4.00	mg/kg	10.31.2019 20:11		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	10.31.2019 20:11	U	10
Chromium	7440-47-3	8.01	4.00	mg/kg	10.31.2019 20:11		10
Lead	7439-92-1	16.1	2.00	mg/kg	10.31.2019 20:11		10
Selenium	7782-49-2	BRL	2.00	mg/kg	10.31.2019 20:11	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	10.31.2019 20:11	U	10

Seq Number: 3106008

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B27-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-005 Date Collected: 10.27.2019 12:16

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:27 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Benzo(a)pyrene	50-32-8	0.00210	0.00166		mg/kg	10.30.2019 18:19		1
Benzo(b)fluoranthene	205-99-2	0.00294	0.00166		mg/kg	10.30.2019 18:19		1
Benzo(g,h,i)perylene	191-24-2	0.00232	0.00166		mg/kg	10.30.2019 18:19		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Chrysene	218-01-9	0.00178	0.00166		mg/kg	10.30.2019 18:19		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Fluoranthene	206-44-0	0.00205	0.00166		mg/kg	10.30.2019 18:19		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00180	0.00166		mg/kg	10.30.2019 18:19		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	10.30.2019 18:19	U	1
Phenanthrene	85-01-8	BRL	0.00166		mg/kg	10.30.2019 18:19	U	1
Pyrene	129-00-0	0.00275	0.00166		mg/kg	10.30.2019 18:19		1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fla	ag	
Nitrobenzene-d5		89	%	31-130	10.30	.2019 18:19		
2-Fluorobiphenyl		92	%	51-133		0.2019 18:19		
Terphenyl-D14		95	%	46-137	10.30	.2019 18:19		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-006 Date Collected: 10.27.2019 12:50

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 10:25 Basis: Wet Weight

Seq Number: 3106077 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0574
 0.0167
 mg/kg
 10.31.2019 16:38
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.22	1.82	mg/kg	10.31.2019 20:14		10
Barium	7440-39-3	62.9	3.64	mg/kg	10.31.2019 20:14		10
Cadmium	7440-43-9	BRL	1.82	mg/kg	10.31.2019 20:14	U	10
Chromium	7440-47-3	6.16	3.64	mg/kg	10.31.2019 20:14		10
Lead	7439-92-1	22.2	1.82	mg/kg	10.31.2019 20:14		10
Selenium	7782-49-2	BRL	1.82	mg/kg	10.31.2019 20:14	U	10
Silver	7440-22-4	BRL	1.82	mg/kg	10.31.2019 20:14	U	10

Seq Number: 3106008

Terphenyl-D14

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-006 Date Collected: 10.27.2019 12:50

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:36 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00834		mg/kg	10.30.2019 20:16	U	5
Acenaphthylene	208-96-8	0.0883	0.00834		mg/kg	10.30.2019 20:16		5
Anthracene	120-12-7	0.0726	0.00834		mg/kg	10.30.2019 20:16		5
Benzo(a)anthracene	56-55-3	0.287	0.00834		mg/kg	10.30.2019 20:16		5
Benzo(a)pyrene	50-32-8	0.392	0.00834		mg/kg	10.30.2019 20:16		5
Benzo(b)fluoranthene	205-99-2	0.456	0.00834		mg/kg	10.30.2019 20:16		5
Benzo(g,h,i)perylene	191-24-2	0.265	0.00834		mg/kg	10.30.2019 20:16		5
Benzo(k)fluoranthene	207-08-9	0.142	0.00834		mg/kg	10.30.2019 20:16		5
Chrysene	218-01-9	0.325	0.00834		mg/kg	10.30.2019 20:16		5
Dibenz(a,h)Anthracene	53-70-3	0.0450	0.00834		mg/kg	10.30.2019 20:16		5
Fluoranthene	206-44-0	0.603	0.00834		mg/kg	10.30.2019 20:16		5
Fluorene	86-73-7	0.0405	0.00834		mg/kg	10.30.2019 20:16		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.218	0.00834		mg/kg	10.30.2019 20:16		5
Naphthalene	91-20-3	BRL	0.0834		mg/kg	10.30.2019 20:16	U	5
Phenanthrene	85-01-8	0.641	0.00834		mg/kg	10.30.2019 20:16		5
Pyrene	129-00-0	0.750	0.00834		mg/kg	10.30.2019 20:16		5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		60	%	31-130	10.30	.2019 20:16		
2-Fluorobiphenyl		72	%	51-133	10.30	.2019 20:16		

92

46-137

10.30.2019 20:16

Seq Number: 3106077

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B35-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-007 Date Collected: 10.27.2019 13:09

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 10:25 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0268
 0.0172
 mg/kg
 10.31.2019 16:40
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.69	1.89	mg/kg	10.31.2019 20:17		10
Barium	7440-39-3	181	3.77	mg/kg	10.31.2019 20:17		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	10.31.2019 20:17	U	10
Chromium	7440-47-3	10.1	3.77	mg/kg	10.31.2019 20:17		10
Lead	7439-92-1	30.3	1.89	mg/kg	10.31.2019 20:17		10
Selenium	7782-49-2	BRL	1.89	mg/kg	10.31.2019 20:17	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	10.31.2019 20:17	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B35-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-007 Date Collected: 10.27.2019 13:09

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:39 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	10.30.2019 20:33	U	10
Acenaphthylene	208-96-8	BRL	0.0167		mg/kg	10.30.2019 20:33	U	10
Anthracene	120-12-7	BRL	0.0167		mg/kg	10.30.2019 20:33	U	10
Benzo(a)anthracene	56-55-3	0.0211	0.0167		mg/kg	10.30.2019 20:33		10
Benzo(a)pyrene	50-32-8	0.0285	0.0167		mg/kg	10.30.2019 20:33		10
Benzo(b)fluoranthene	205-99-2	0.0541	0.0167		mg/kg	10.30.2019 20:33		10
Benzo(g,h,i)perylene	191-24-2	0.0247	0.0167		mg/kg	10.30.2019 20:33		10
Benzo(k)fluoranthene	207-08-9	BRL	0.0167		mg/kg	10.30.2019 20:33	U	10
Chrysene	218-01-9	0.0311	0.0167		mg/kg	10.30.2019 20:33		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	10.30.2019 20:33	U	10
Fluoranthene	206-44-0	0.0513	0.0167		mg/kg	10.30.2019 20:33		10
Fluorene	86-73-7	BRL	0.0167		mg/kg	10.30.2019 20:33	U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0191	0.0167		mg/kg	10.30.2019 20:33		10
Naphthalene	91-20-3	BRL	0.167		mg/kg	10.30.2019 20:33	U	10
Phenanthrene	85-01-8	BRL	0.0167		mg/kg	10.30.2019 20:33	U	10
Pyrene	129-00-0	0.0442	0.0167		mg/kg	10.30.2019 20:33		10
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		58	%	31-130		0.2019 20:33		
2-Fluorobiphenyl		60	%	51-133		0.2019 20:33		
Terphenyl-D14		71	%	46-137	10.30	0.2019 20:33		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B18-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-008 Date Collected: 10.27.2019 13:30

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 10:25 Basis: Wet Weight

Seq Number: 3106077 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0202
 0.0169
 mg/kg
 10.31.2019 16:42
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.70	1.89	mg/kg	10.31.2019 20:20		10
Barium	7440-39-3	148	3.77	mg/kg	10.31.2019 20:20		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	10.31.2019 20:20	U	10
Chromium	7440-47-3	10.0	3.77	mg/kg	10.31.2019 20:20		10
Lead	7439-92-1	25.5	1.89	mg/kg	10.31.2019 20:20		10
Selenium	7782-49-2	BRL	1.89	mg/kg	10.31.2019 20:20	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	10.31.2019 20:20	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B18-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-008 Date Collected: 10.27.2019 13:30

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 10.30.2019 10:42 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00834		mg/kg	10.30.2019 20:49	U	5
Acenaphthylene	208-96-8	BRL	0.00834		mg/kg	10.30.2019 20:49	U	5
Anthracene	120-12-7	0.00960	0.00834		mg/kg	10.30.2019 20:49)	5
Benzo(a)anthracene	56-55-3	0.0425	0.00834		mg/kg	10.30.2019 20:49)	5
Benzo(a)pyrene	50-32-8	0.0583	0.00834		mg/kg	10.30.2019 20:49)	5
Benzo(b)fluoranthene	205-99-2	0.0912	0.00834		mg/kg	10.30.2019 20:49)	5
Benzo(g,h,i)perylene	191-24-2	0.0386	0.00834		mg/kg	10.30.2019 20:49)	5
Benzo(k)fluoranthene	207-08-9	0.0261	0.00834		mg/kg	10.30.2019 20:49)	5
Chrysene	218-01-9	0.0591	0.00834		mg/kg	10.30.2019 20:49)	5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00834		mg/kg	10.30.2019 20:49	U	5
Fluoranthene	206-44-0	0.112	0.00834		mg/kg	10.30.2019 20:49)	5
Fluorene	86-73-7	BRL	0.00834		mg/kg	10.30.2019 20:49	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0326	0.00834		mg/kg	10.30.2019 20:49)	5
Naphthalene	91-20-3	BRL	0.0834		mg/kg	10.30.2019 20:49	U	5
Phenanthrene	85-01-8	0.0570	0.00834		mg/kg	10.30.2019 20:49)	5
Pyrene	129-00-0	0.100	0.00834		mg/kg	10.30.2019 20:49)	5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date I	lag	
Nitrobenzene-d5		85	%	31-130	10.30	.2019 20:49		
2-Fluorobiphenyl		93	%	51-133	10.30	.2019 20:49		
Terphenyl-D14		108	%	46-137	10.30	.2019 20:49		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B20-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-009 Date Collected: 10.27.2019 13:52

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 10:25 Basis: Wet Weight Seq Number: 3106077

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0391 0.0175 mg/kg 10.31.2019 16:47 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 09:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.4	1.85	mg/kg	10.31.2019 20:23		10
Barium	7440-39-3	166	3.70	mg/kg	10.31.2019 20:23		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	10.31.2019 20:23	U	10
Chromium	7440-47-3	7.89	3.70	mg/kg	10.31.2019 20:23		10
Lead	7439-92-1	29.7	1.85	mg/kg	10.31.2019 20:23		10
Selenium	7782-49-2	BRL	1.85	mg/kg	10.31.2019 20:23	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	10.31.2019 20:23	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B20-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-009 Date Collected: 10.27.2019 13:52

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:45 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	10.30.2019 21:0	5 U	1
Acenaphthylene	208-96-8	0.0391	0.00167		mg/kg	10.30.2019 21:0	5	1
Anthracene	120-12-7	0.0281	0.00167		mg/kg	10.30.2019 21:0	5	1
Benzo(a)anthracene	56-55-3	0.129	0.00167		mg/kg	10.30.2019 21:0	5	1
Benzo(a)pyrene	50-32-8	0.230	0.00167		mg/kg	10.30.2019 21:0	5	1
Benzo(b) fluoranthene	205-99-2	0.286	0.00167		mg/kg	10.30.2019 21:0	5	1
Benzo(g,h,i)perylene	191-24-2	0.190	0.00167		mg/kg	10.30.2019 21:0	5	1
Benzo(k) fluoranthene	207-08-9	0.0737	0.00167		mg/kg	10.30.2019 21:0	5	1
Chrysene	218-01-9	0.170	0.00167		mg/kg	10.30.2019 21:0	5	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	10.30.2019 21:0	5 U	1
Fluoranthene	206-44-0	0.419	0.00834		mg/kg	10.31.2019 10:4	2 D	5
Fluorene	86-73-7	0.00455	0.00167		mg/kg	10.30.2019 21:0	5	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.146	0.00167		mg/kg	10.30.2019 21:0	5	1
Naphthalene	91-20-3	0.0238	0.0167		mg/kg	10.30.2019 21:0	5	1
Phenanthrene	85-01-8	0.170	0.00167		mg/kg	10.30.2019 21:0	5	1
Pyrene	129-00-0	0.516	0.00834		mg/kg	10.31.2019 10:4	2 D	5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date 1	lag	
Nitrobenzene-d5		84	%	31-130		0.2019 21:06		
2-Fluorobiphenyl		88	%	51-133		0.2019 21:06		
Terphenyl-D14		100	%	46-137	10.30	0.2019 21:06		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-010 Date Collected: 10.27.2019 14:00

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 10:25 Basis: Wet Weight

Seq Number: 3106077 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0357
 0.0175
 mg/kg
 10.31.2019 16:49
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.7	1.89	mg/kg	10.31.2019 20:26		10
Barium	7440-39-3	218	3.77	mg/kg	10.31.2019 20:26		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	10.31.2019 20:26	U	10
Chromium	7440-47-3	12.0	3.77	mg/kg	10.31.2019 20:26		10
Lead	7439-92-1	42.5	1.89	mg/kg	10.31.2019 20:26		10
Selenium	7782-49-2	BRL	1.89	mg/kg	10.31.2019 20:26	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	10.31.2019 20:26	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-010 Date Collected: 10.27.2019 14:00

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:48 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	10.30.2019 21:23	U	1
Acenaphthylene	208-96-8	0.0484	0.00166		mg/kg	10.30.2019 21:23		1
Anthracene	120-12-7	0.0397	0.00166		mg/kg	10.30.2019 21:23		1
Benzo(a)anthracene	56-55-3	0.176	0.00166		mg/kg	10.30.2019 21:23		1
Benzo(a)pyrene	50-32-8	0.309	0.00166		mg/kg	10.30.2019 21:23		1
Benzo(b)fluoranthene	205-99-2	0.400	0.00831		mg/kg	10.31.2019 10:58	D	5
Benzo(g,h,i)perylene	191-24-2	0.229	0.00166		mg/kg	10.30.2019 21:23		1
Benzo(k)fluoranthene	207-08-9	0.105	0.00166		mg/kg	10.30.2019 21:23		1
Chrysene	218-01-9	0.233	0.00166		mg/kg	10.30.2019 21:23		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	10.30.2019 21:23	U	1
Fluoranthene	206-44-0	0.539	0.00831		mg/kg	10.31.2019 10:58	D	5
Fluorene	86-73-7	0.00524	0.00166		mg/kg	10.30.2019 21:23		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.181	0.00166		mg/kg	10.30.2019 21:23		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	10.30.2019 21:23	U	1
Phenanthrene	85-01-8	0.183	0.00166		mg/kg	10.30.2019 21:23		1
Pyrene	129-00-0	0.681	0.00831		mg/kg	10.31.2019 10:58	D	5
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		87	%	31-130		0.2019 21:23		
2-Fluorobiphenyl		92	%	51-133		0.2019 21:23		
Terphenyl-D14		106	%	46-137	10.30	0.2019 21:23		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B28-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-011 Date Collected: 10.27.2019 14:58

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 10:25 Basis: Wet Weight Seq Number: 3106077

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0513 0.0189 mg/kg 10.31.2019 16:51 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 09:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.02	1.96	mg/kg	10.31.2019 20:29		10
Barium	7440-39-3	93.7	3.92	mg/kg	10.31.2019 20:29		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	10.31.2019 20:29	U	10
Chromium	7440-47-3	6.96	3.92	mg/kg	10.31.2019 20:29		10
Lead	7439-92-1	45.9	1.96	mg/kg	10.31.2019 20:29		10
Selenium	7782-49-2	BRL	1.96	mg/kg	10.31.2019 20:29	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	10.31.2019 20:29	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B28-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-011 Date Collected: 10.27.2019 14:58

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:51 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	10.30.2019 21:40) U	10
Acenaphthylene	208-96-8	BRL	0.0167		mg/kg	10.30.2019 21:40) U	10
Anthracene	120-12-7	0.0206	0.0167		mg/kg	10.30.2019 21:40)	10
Benzo(a)anthracene	56-55-3	0.0999	0.0167		mg/kg	10.30.2019 21:40)	10
Benzo(a)pyrene	50-32-8	0.116	0.0167		mg/kg	10.30.2019 21:40)	10
Benzo(b) fluoranthene	205-99-2	0.191	0.0167		mg/kg	10.30.2019 21:40)	10
Benzo(g,h,i)perylene	191-24-2	0.0595	0.0167		mg/kg	10.30.2019 21:40)	10
Benzo(k)fluoranthene	207-08-9	0.0510	0.0167		mg/kg	10.30.2019 21:40)	10
Chrysene	218-01-9	0.120	0.0167		mg/kg	10.30.2019 21:40)	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	10.30.2019 21:40) U	10
Fluoranthene	206-44-0	0.199	0.0167		mg/kg	10.30.2019 21:40)	10
Fluorene	86-73-7	BRL	0.0167		mg/kg	10.30.2019 21:40) U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0564	0.0167		mg/kg	10.30.2019 21:40)	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	10.30.2019 21:40) U	10
Phenanthrene	85-01-8	0.0929	0.0167		mg/kg	10.30.2019 21:40)	10
Pyrene	129-00-0	0.179	0.0167		mg/kg	10.30.2019 21:40)	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date I	lag	
Nitrobenzene-d5		82	%	31-130		0.2019 21:40		
2-Fluorobiphenyl		82	%	51-133		0.2019 21:40		
Terphenyl-D14		98	%	46-137	10.30	0.2019 21:40		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B22-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-012 Date Collected: 10.27.2019 15:06

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 10:25 Basis: Wet Weight

Seq Number: 3106077 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0734
 0.0185
 mg/kg
 10.31.2019 17:02
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.18	1.92	mg/kg	10.31.2019 20:38		10
Barium	7440-39-3	111	3.85	mg/kg	10.31.2019 20:38		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	10.31.2019 20:38	U	10
Chromium	7440-47-3	9.80	3.85	mg/kg	10.31.2019 20:38		10
Lead	7439-92-1	50.1	1.92	mg/kg	10.31.2019 20:38		10
Selenium	7782-49-2	BRL	1.92	mg/kg	10.31.2019 20:38	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	10.31.2019 20:38	U	10

Seq Number: 3106008

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B22-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-012 Date Collected: 10.27.2019 15:06

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:54 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	F	lag	Dil
Acenaphthene	83-32-9	BRL	0.00832		mg/kg	10.30.2019 21:5	66	U	5
Acenaphthylene	208-96-8	0.0239	0.00832		mg/kg	10.30.2019 21:5	66		5
Anthracene	120-12-7	0.0228	0.00832		mg/kg	10.30.2019 21:5	66		5
Benzo(a)anthracene	56-55-3	0.0688	0.00832		mg/kg	10.30.2019 21:5	66		5
Benzo(a)pyrene	50-32-8	0.101	0.00832		mg/kg	10.30.2019 21:5	66		5
Benzo(b)fluoranthene	205-99-2	0.154	0.00832		mg/kg	10.30.2019 21:5	66		5
Benzo(g,h,i)perylene	191-24-2	0.0664	0.00832		mg/kg	10.30.2019 21:5	66		5
Benzo(k) fluoranthene	207-08-9	0.0454	0.00832		mg/kg	10.30.2019 21:5	66		5
Chrysene	218-01-9	0.0859	0.00832		mg/kg	10.30.2019 21:5	66		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00832		mg/kg	10.30.2019 21:5	66	U	5
Fluoranthene	206-44-0	0.169	0.00832		mg/kg	10.30.2019 21:5	66		5
Fluorene	86-73-7	BRL	0.00832		mg/kg	10.30.2019 21:5	66	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0522	0.00832		mg/kg	10.30.2019 21:5	66		5
Naphthalene	91-20-3	BRL	0.0832		mg/kg	10.30.2019 21:5	66	U	5
Phenanthrene	85-01-8	0.0945	0.00832		mg/kg	10.30.2019 21:5	66		5
Pyrene	129-00-0	0.180	0.00832		mg/kg	10.30.2019 21:5	66		5
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		92	%	31-130		0.2019 21:56			
2-Fluorobiphenyl		89	%	51-133		0.2019 21:56			
Terphenyl-D14		95	%	46-137	10.30	0.2019 21:56			

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B19-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-013 Date Collected: 10.27.2019 15:36

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 09:15 Basis: Wet Weight Seq Number: 3106083

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0190 0.0172 mg/kg 10.31.2019 15:19 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 09:30 Wet Weight Seq Number: 3106129

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.73	1.92	mg/kg	10.31.2019 20:41		10
Barium	7440-39-3	181	3.85	mg/kg	10.31.2019 20:41		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	10.31.2019 20:41	U	10
Chromium	7440-47-3	9.16	3.85	mg/kg	10.31.2019 20:41		10
Lead	7439-92-1	29.7	1.92	mg/kg	10.31.2019 20:41		10
Selenium	7782-49-2	BRL	1.92	mg/kg	10.31.2019 20:41	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	10.31.2019 20:41	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B19-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-013 Date Collected: 10.27.2019 15:36

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 10:57 Basis: Wet Weight

•								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00334		mg/kg	10.30.2019 22:13	U	2
Acenaphthylene	208-96-8	0.00470	0.00334		mg/kg	10.30.2019 22:13		2
Anthracene	120-12-7	0.00577	0.00334		mg/kg	10.30.2019 22:13		2
Benzo(a)anthracene	56-55-3	0.0204	0.00334		mg/kg	10.30.2019 22:13		2
Benzo(a)pyrene	50-32-8	0.0322	0.00334		mg/kg	10.30.2019 22:13		2
Benzo(b) fluoranthene	205-99-2	0.0594	0.00334		mg/kg	10.30.2019 22:13		2
Benzo(g,h,i)perylene	191-24-2	0.0200	0.00334		mg/kg	10.30.2019 22:13		2
Benzo(k)fluoranthene	207-08-9	0.0159	0.00334		mg/kg	10.30.2019 22:13		2
Chrysene	218-01-9	0.0320	0.00334		mg/kg	10.30.2019 22:13		2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00334		mg/kg	10.30.2019 22:13	U	2
Fluoranthene	206-44-0	0.0600	0.00334		mg/kg	10.30.2019 22:13		2
Fluorene	86-73-7	BRL	0.00334		mg/kg	10.30.2019 22:13	U	2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0176	0.00334		mg/kg	10.30.2019 22:13		2
Naphthalene	91-20-3	BRL	0.0334		mg/kg	10.30.2019 22:13	U	2
Phenanthrene	85-01-8	0.0269	0.00334		mg/kg	10.30.2019 22:13		2
Pyrene	129-00-0	0.0598	0.00334		mg/kg	10.30.2019 22:13		2
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date F	lag	
Nitrobenzene-d5		87	%	31-130		0.2019 22:13		
2-Fluorobiphenyl		97	%	51-133		0.2019 22:13		
Terphenyl-D14		108	%	46-137	10.30	0.2019 22:13		

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B25-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-014 Date Collected: 10.27.2019 15:50

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture: Tech:

KCS Analyst: Date Prep: 11.01.2019 14:00 Basis: Wet Weight

SUB: T104704215-19-30 Seq Number: 3106209

RL**Parameter** Cas Number Result Units **Analysis Date** Dil Cyanide, Total 57-12-5 0.0635 0.0583 mg/kg 11.01.2019 15:46 1

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture: Tech:

ANJ Basis: Analyst: Date Prep: 10.31.2019 09:15 Wet Weight

Seq Number: 3106083 SUB: T104704215-19-30

Parameter Cas Number Result RLUnits **Analysis Date** Flag Dil Mercury 0.0461 0.0196 10.31.2019 15:21 7439-97-6 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Basis:

Analyst: Wet Weight Date Prep: 10.31.2019 09:30 Seq Number: 3106129 SUB: T104704215-19-30

Parameter	Cas Number	Result	KL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	10.9	1.92	mg/kg	10.31.2019 20:44		10
Barium	7440-39-3	175	3.85	mg/kg	10.31.2019 20:44		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	10.31.2019 20:44	U	10
Chromium	7440-47-3	9.85	3.85	mg/kg	10.31.2019 20:44		10
Lead	7439-92-1	57.5	1.92	mg/kg	10.31.2019 20:44		10
Selenium	7782-49-2	BRL	1.92	mg/kg	10.31.2019 20:44	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	10.31.2019 20:44	U	10

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B25-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-014 Date Collected: 10.27.2019 15:50

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106060

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 10.31.2019 10:51
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106041

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 10.31.2019 12:25 8.38 pН 12408-02-5 1 Temperature TEMP 21.6 Deg C 10.31.2019 12:25 1

JOZ

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B25-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-014 Date Collected: 10.27.2019 15:50

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 10.31.2019 09:48 Basis: Wet Weight

Seq Number: 3106146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0167	mg/kg	11.01.2019 10:49	U	1
PCB-1221	11104-28-2	BRL	0.0167	mg/kg	11.01.2019 10:49	U	1
PCB-1232	11141-16-5	BRL	0.0167	mg/kg	11.01.2019 10:49	U	1
PCB-1242	53469-21-9	BRL	0.0167	mg/kg	11.01.2019 10:49	U	1
PCB-1248	12672-29-6	BRL	0.0167	mg/kg	11.01.2019 10:49	U	1
PCB-1254	11097-69-1	BRL	0.0167	mg/kg	11.01.2019 10:49	U	1
PCB-1260	11096-82-5	BRL	0.0167	mg/kg	11.01.2019 10:49	U	1

 Surrogate
 Units
 Limits
 Analysis Date
 Flag

 Decachlorobiphenyl
 81
 %
 39-125
 11.01.2019 10:49
 Tetrachloro-m-xylene
 65
 %
 37-124
 11.01.2019 10:49
 Tetrachloro-m-xylene

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B25-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-014 Date Collected: 10.27.2019 15:50

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

DRU % Moisture:

DNE Analyst: Date Prep: 10.30.2019 11:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00832		mg/kg	10.30.2019 22:30) U	5
Acenaphthylene	208-96-8	0.102	0.00832		mg/kg	10.30.2019 22:30)	5
Anthracene	120-12-7	0.0934	0.00832		mg/kg	10.30.2019 22:30)	5
Benzo(a)anthracene	56-55-3	0.372	0.00832		mg/kg	10.30.2019 22:30)	5
Benzo(a)pyrene	50-32-8	0.626	0.00832		mg/kg	10.30.2019 22:30)	5
Benzo(b)fluoranthene	205-99-2	0.840	0.00832		mg/kg	10.30.2019 22:30)	5
Benzo(g,h,i)perylene	191-24-2	0.449	0.00832		mg/kg	10.30.2019 22:30)	5
Benzo(k)fluoranthene	207-08-9	0.223	0.00832		mg/kg	10.30.2019 22:30)	5
Chrysene	218-01-9	0.469	0.00832		mg/kg	10.30.2019 22:30)	5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00832		mg/kg	10.30.2019 22:30) U	5
Fluoranthene	206-44-0	1.01	0.00832		mg/kg	10.30.2019 22:30)	5
Fluorene	86-73-7	0.0145	0.00832		mg/kg	10.30.2019 22:30)	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.346	0.00832		mg/kg	10.30.2019 22:30)	5
Naphthalene	91-20-3	BRL	0.0832		mg/kg	10.30.2019 22:30) U	5
Phenanthrene	85-01-8	0.493	0.00832		mg/kg	10.30.2019 22:30)	5
Pyrene	129-00-0	1.23	0.00832		mg/kg	10.30.2019 22:30)	5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date I	lag	
Nitrobenzene-d5		83	%	31-130	10.30	.2019 22:30		
2-Fluorobiphenyl		95	%	51-133	10.30	.2019 22:30		
Terphenyl-D14		112	%	46-137	10.30	.2019 22:30		

SAD

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B25-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-014 Date Collected: 10.27.2019 15:50

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,1-Dichloroethane	75-34-3	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,1-Dichloroethene	75-35-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,1-Dichloropropene	563-58-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2-Dibromoethane	106-93-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2-Dichloroethane	107-06-2	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,2-Dichloropropane	78-87-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,3-Dichloropropane	142-28-9	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
2,2-Dichloropropane	594-20-7	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
2-Butanone	78-93-3	BRL	1.26	mg/kg	10.30.2019 18:26	U	50
2-Chlorotoluene	95-49-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
2-Hexanone	591-78-6	BRL	3.14	mg/kg	10.30.2019 18:26	U	50
4-Chlorotoluene	106-43-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	3.14	mg/kg	10.30.2019 18:26	U	50
Acetone	67-64-1	BRL	6.28	mg/kg	10.30.2019 18:26	U	50
Benzene	71-43-2	BRL	0.0628	mg/kg	10.30.2019 18:26	U	50
Bromobenzene	108-86-1	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Bromochloromethane	74-97-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Bromodichloromethane	75-27-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Bromoform	75-25-2	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Bromomethane	74-83-9	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Carbon Disulfide	75-15-0	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Carbon Tetrachloride	56-23-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Chlorobenzene	108-90-7	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Chloroethane	75-00-3	BRL	0.628	mg/kg	10.30.2019 18:26	U	50
Chloroform	67-66-3	BRL	0.314	mg/kg	10.30.2019 18:26	U	50

SAD

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B25-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-014 Date Collected: 10.27.2019 15:50

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Dibromochloromethane	124-48-1	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Dibromomethane	74-95-3	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Ethylbenzene	100-41-4	BRL	0.0628	mg/kg	10.30.2019 18:26	U	50
Hexachlorobutadiene	87-68-3	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.26	mg/kg	10.30.2019 18:26	U	50
Isopropylbenzene	98-82-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
m,p-Xylenes	179601-23-1	BRL	0.126	mg/kg	10.30.2019 18:26	U	50
Methylene Chloride	75-09-2	BRL	1.26	mg/kg	10.30.2019 18:26	U	50
MTBE	1634-04-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Naphthalene	91-20-3	BRL	0.628	mg/kg	10.30.2019 18:26	U	50
n-Butylbenzene	104-51-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
n-Propylbenzene	103-65-1	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
o-Xylene	95-47-6	BRL	0.0628	mg/kg	10.30.2019 18:26	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Sec-Butylbenzene	135-98-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Styrene	100-42-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
tert-Butylbenzene	98-06-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Tetrachloroethylene	127-18-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Toluene	108-88-3	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Total Xylenes	1330-20-7	BRL	0.0628	mg/kg	10.30.2019 18:26	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Trichloroethene	79-01-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Trichlorofluoromethane	75-69-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Vinyl Acetate	108-05-4	BRL	0.628	mg/kg	10.30.2019 18:26	U	50
Vinyl Chloride	75-01-4	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
1,3-Butadiene	106-99-0	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Cyclohexane	110-82-7	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Dicyclopentadiene	77-73-6	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Methylcyclohexane	108-87-2	BRL	0.628	mg/kg	10.30.2019 18:26	U	50
n-Hexane	110-54-3	BRL	0.628	mg/kg	10.30.2019 18:26	U	50
4-Ethyltoluene	622-96-8	BRL	0.314	mg/kg	10.30.2019 18:26	U	50
Propene	115-07-1	BRL	0.314	mg/kg	10.30.2019 18:26	U	50

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B25-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-014 Date Collected: 10.27.2019 15:50

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Seq Number: 3105931 SUB: T104704215-19-30

% Recovery									
Surrogate		Units	Limits	Analysis Date	Flag				
Dibromofluoromethane	90	%	53-142	10.30.2019 18:26					
1,2-Dichloroethane-D4	102	%	56-150	10.30.2019 18:26					
Toluene-D8	103	%	70-130	10.30.2019 18:26					
4-Bromofluorobenzene	99	%	68-152	10.30.2019 18:26					

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B21-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-015 Date Collected: 10.27.2019 16:26

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

Seq Number: 3106083 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0309
 0.0172
 mg/kg
 10.31.2019 15:23
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.38	1.89	mg/kg	10.31.2019 20:47		10
Barium	7440-39-3	97.5	3.77	mg/kg	10.31.2019 20:47		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	10.31.2019 20:47	U	10
Chromium	7440-47-3	7.94	3.77	mg/kg	10.31.2019 20:47		10
Lead	7439-92-1	33.8	1.89	mg/kg	10.31.2019 20:47		10
Selenium	7782-49-2	BRL	1.89	mg/kg	10.31.2019 20:47	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	10.31.2019 20:47	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B21-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-015 Date Collected: 10.27.2019 16:26

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:03 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Acenaphthylene	208-96-8	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Anthracene	120-12-7	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Benzo(a)anthracene	56-55-3	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Benzo(a)pyrene	50-32-8	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Benzo(b) fluoranthene	205-99-2	0.0135	0.00832		mg/kg	10.30.2019 22:47		5
Benzo(g,h,i)perylene	191-24-2	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Benzo(k)fluoranthene	207-08-9	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Chrysene	218-01-9	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Fluoranthene	206-44-0	0.0126	0.00832		mg/kg	10.30.2019 22:47		5
Fluorene	86-73-7	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00832		mg/kg	10.30.2019 22:47	U	5
Naphthalene	91-20-3	BRL	0.0832		mg/kg	10.30.2019 22:47	U	5
Phenanthrene	85-01-8	0.0104	0.00832		mg/kg	10.30.2019 22:47		5
Pyrene	129-00-0	0.0112	0.00832		mg/kg	10.30.2019 22:47		5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date F	lag	
Nitrobenzene-d5		105	%	31-130		0.2019 22:47		
2-Fluorobiphenyl		99	%	51-133		0.2019 22:47		
Terphenyl-D14		107	%	46-137	10.30	0.2019 22:47		

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B23-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-016 Date Collected: 10.27.2019 16:40

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 09:15 Basis: Wet Weight Seq Number: 3106083

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0220 0.0196 mg/kg 10.31.2019 15:24 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB Tech:

ADS

Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 09:30 Wet Weight Seq Number: 3106129

SUB: T104704215-19-30

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.68	2.00	mg/kg	10.31.2019 20:50		10
Barium	7440-39-3	146	4.00	mg/kg	10.31.2019 20:50		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	10.31.2019 20:50	U	10
Chromium	7440-47-3	8.28	4.00	mg/kg	10.31.2019 20:50		10
Lead	7439-92-1	25.8	2.00	mg/kg	10.31.2019 20:50		10
Selenium	7782-49-2	BRL	2.00	mg/kg	10.31.2019 20:50	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	10.31.2019 20:50	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B23-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-016 Date Collected: 10.27.2019 16:40

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:06 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	10.30.2019 23:0	4 U	5
Acenaphthylene	208-96-8	0.0460	0.00833		mg/kg	10.30.2019 23:0	4	5
Anthracene	120-12-7	0.0506	0.00833		mg/kg	10.30.2019 23:0	4	5
Benzo(a)anthracene	56-55-3	0.116	0.00833		mg/kg	10.30.2019 23:0	4	5
Benzo(a)pyrene	50-32-8	0.190	0.00833		mg/kg	10.30.2019 23:0	4	5
Benzo(b) fluoranthene	205-99-2	0.273	0.00833		mg/kg	10.30.2019 23:0	4	5
Benzo(g,h,i)perylene	191-24-2	0.112	0.00833		mg/kg	10.30.2019 23:0	4	5
Benzo(k)fluoranthene	207-08-9	0.0821	0.00833		mg/kg	10.30.2019 23:0	4	5
Chrysene	218-01-9	0.149	0.00833		mg/kg	10.30.2019 23:0	4	5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00833		mg/kg	10.30.2019 23:0	4 U	5
Fluoranthene	206-44-0	0.386	0.00833		mg/kg	10.30.2019 23:0	4	5
Fluorene	86-73-7	0.0141	0.00833		mg/kg	10.30.2019 23:0	4	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0881	0.00833		mg/kg	10.30.2019 23:0	4	5
Naphthalene	91-20-3	BRL	0.0833		mg/kg	10.30.2019 23:0	4 U	5
Phenanthrene	85-01-8	0.270	0.00833		mg/kg	10.30.2019 23:0	4	5
Pyrene	129-00-0	0.438	0.00833		mg/kg	10.30.2019 23:0	4	5
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		69	%	31-130		0.2019 23:04		
2-Fluorobiphenyl		83	%	51-133		0.2019 23:04		
Terphenyl-D14		95	%	46-137	10.30	0.2019 23:04		

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B16-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-017 Date Collected: 10.27.2019 17:12

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 09:15 Basis: Wet Weight Seq Number: 3106083

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0625 0.0196 mg/kg 10.31.2019 15:26 1

Analytical Method: Metals, RCRA List, by SW 6020

Prep Method: SW3050B PJB Tech:

% Moisture:

Analyst: DEP Basis: Date Prep: 10.31.2019 09:30 Wet Weight Seq Number: 3106129

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	10.3	1.67	mg/kg	10.31.2019 20:53		10
Barium	7440-39-3	124	3.33	mg/kg	10.31.2019 20:53		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	10.31.2019 20:53	U	10
Chromium	7440-47-3	9.62	3.33	mg/kg	10.31.2019 20:53		10
Lead	7439-92-1	60.8	1.67	mg/kg	10.31.2019 20:53		10
Selenium	7782-49-2	BRL	1.67	mg/kg	10.31.2019 20:53	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	10.31.2019 20:53	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B16-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-017 Date Collected: 10.27.2019 17:12

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

DRU % Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:09 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	è	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00333		mg/kg	10.30.2019 23	3:21	U	2
Acenaphthylene	208-96-8	0.0110	0.00333		mg/kg	10.30.2019 23	3:21		2
Anthracene	120-12-7	0.0147	0.00333		mg/kg	10.30.2019 23	3:21		2
Benzo(a)anthracene	56-55-3	0.0245	0.00333		mg/kg	10.30.2019 23	3:21		2
Benzo(a)pyrene	50-32-8	0.0376	0.00333		mg/kg	10.30.2019 23	3:21		2
Benzo(b) fluoranthene	205-99-2	0.0742	0.00333		mg/kg	10.30.2019 23	3:21		2
Benzo(g,h,i)perylene	191-24-2	0.0242	0.00333		mg/kg	10.30.2019 23	3:21		2
Benzo(k)fluoranthene	207-08-9	0.0169	0.00333		mg/kg	10.30.2019 23	3:21		2
Chrysene	218-01-9	0.0341	0.00333		mg/kg	10.30.2019 23	3:21		2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00333		mg/kg	10.30.2019 23	3:21	U	2
Fluoranthene	206-44-0	0.0572	0.00333		mg/kg	10.30.2019 23	3:21		2
Fluorene	86-73-7	BRL	0.00333		mg/kg	10.30.2019 23	3:21	U	2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0188	0.00333		mg/kg	10.30.2019 23	3:21		2
Naphthalene	91-20-3	BRL	0.0333		mg/kg	10.30.2019 23	3:21	U	2
Phenanthrene	85-01-8	0.0287	0.00333		mg/kg	10.30.2019 23	3:21		2
Pyrene	129-00-0	0.0642	0.00333		mg/kg	10.30.2019 23	3:21		2
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		93	%	31-130		0.2019 23:21			
2-Fluorobiphenyl		97	%	51-133		0.2019 23:21			
Terphenyl-D14		114	%	46-137	10.30	0.2019 23:21			

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B17-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-018 Date Collected: 10.27.2019 17:38

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

Seq Number: 3106083 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0415
 0.0182
 mg/kg
 10.31.2019 15:28
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Seq Number: 3106129 SUB: T104704215-19-30

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 8.71 1.75 10.31.2019 20:56 10 Arsenic 7440-38-2 mg/kg Barium 98.0 7440-39-3 3.51 10.31.2019 20:56 10 mg/kg Cadmium 7440-43-9 BRL 1.75 mg/kg 10.31.2019 20:56 U 10 Chromium 7440-47-3 8.10 3.51 10.31.2019 20:56 10 mg/kg mg/kg 10 Lead 7439-92-1 42.7 1.75 10.31.2019 20:56 Selenium 7782-49-2 BRL 1.75 10.31.2019 20:56 U 10 mg/kg Silver 7440-22-4 BRL 1.75 10.31.2019 20:56 U 10 mg/kg

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B17-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-018 Date Collected: 10.27.2019 17:38

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

> DRU % Moisture:

DNE Analyst: Date Prep: 10.30.2019 11:12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00834		mg/kg	10.30.2019 23:3	3 U	5
Acenaphthylene	208-96-8	0.0166	0.00834		mg/kg	10.30.2019 23:3	3	5
Anthracene	120-12-7	0.0217	0.00834		mg/kg	10.30.2019 23:3	3	5
Benzo(a)anthracene	56-55-3	0.0583	0.00834		mg/kg	10.30.2019 23:3	3	5
Benzo(a)pyrene	50-32-8	0.0835	0.00834		mg/kg	10.30.2019 23:3	3	5
Benzo(b)fluoranthene	205-99-2	0.135	0.00834		mg/kg	10.30.2019 23:3	3	5
Benzo(g,h,i)perylene	191-24-2	0.0500	0.00834		mg/kg	10.30.2019 23:3	3	5
Benzo(k)fluoranthene	207-08-9	0.0474	0.00834		mg/kg	10.30.2019 23:3	3	5
Chrysene	218-01-9	0.0819	0.00834		mg/kg	10.30.2019 23:3	3	5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00834		mg/kg	10.30.2019 23:3	3 U	5
Fluoranthene	206-44-0	0.162	0.00834		mg/kg	10.30.2019 23:3	3	5
Fluorene	86-73-7	BRL	0.00834		mg/kg	10.30.2019 23:3	3 U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0362	0.00834		mg/kg	10.30.2019 23:3	3	5
Naphthalene	91-20-3	BRL	0.0834		mg/kg	10.30.2019 23:3	3 U	5
Phenanthrene	85-01-8	0.105	0.00834		mg/kg	10.30.2019 23:3	3	5
Pyrene	129-00-0	0.181	0.00834		mg/kg	10.30.2019 23:3	3	5
		% Recovery						
Surrogate		·	Units	Limits	Analy	ysis Date 1	lag	
Nitrobenzene-d5		78	%	31-130	10.30	0.2019 23:38		
2-Fluorobiphenyl		101	%	51-133	10.30	0.2019 23:38		
Terphenyl-D14		121	%	46-137	10.30	2019 23:38		

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	78	%	31-130	10.30.2019 23:38	
2-Fluorobiphenyl	101	%	51-133	10.30.2019 23:38	
Terphenyl-D14	121	%	46-137	10.30.2019 23:38	

SAD

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-TB01-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-019 Date Collected: 10.27.2019 00:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,1-Dichloroethane	75-34-3	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,1-Dichloroethene	75-35-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,1-Dichloropropene	563-58-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2-Dibromoethane	106-93-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2-Dichloroethane	107-06-2	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,2-Dichloropropane	78-87-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,3-Dichloropropane	142-28-9	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
2,2-Dichloropropane	594-20-7	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
2-Butanone	78-93-3	BRL	1.00	mg/kg	10.30.2019 18:05	U	50
2-Chlorotoluene	95-49-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
2-Hexanone	591-78-6	BRL	2.50	mg/kg	10.30.2019 18:05	U	50
4-Chlorotoluene	106-43-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.50	mg/kg	10.30.2019 18:05	U	50
Acetone	67-64-1	BRL	5.00	mg/kg	10.30.2019 18:05	U	50
Benzene	71-43-2	BRL	0.0500	mg/kg	10.30.2019 18:05	U	50
Bromobenzene	108-86-1	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Bromochloromethane	74-97-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Bromodichloromethane	75-27-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Bromoform	75-25-2	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Bromomethane	74-83-9	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Carbon Disulfide	75-15-0	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Carbon Tetrachloride	56-23-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Chlorobenzene	108-90-7	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Chloroethane	75-00-3	BRL	0.500	mg/kg	10.30.2019 18:05	U	50
Chloroform	67-66-3	BRL	0.250	mg/kg	10.30.2019 18:05	U	50

SAD

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-TB01-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-019 Date Collected: 10.27.2019 00:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Dibromochloromethane	124-48-1	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Dibromomethane	74-95-3	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Ethylbenzene	100-41-4	BRL	0.0500	mg/kg	10.30.2019 18:05	U	50
Hexachlorobutadiene	87-68-3	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.00	mg/kg	10.30.2019 18:05	U	50
Isopropylbenzene	98-82-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
m,p-Xylenes	179601-23-1	BRL	0.100	mg/kg	10.30.2019 18:05	U	50
Methylene Chloride	75-09-2	BRL	1.00	mg/kg	10.30.2019 18:05	U	50
MTBE	1634-04-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Naphthalene	91-20-3	BRL	0.500	mg/kg	10.30.2019 18:05	U	50
n-Butylbenzene	104-51-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
n-Propylbenzene	103-65-1	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
o-Xylene	95-47-6	BRL	0.0500	mg/kg	10.30.2019 18:05	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Sec-Butylbenzene	135-98-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Styrene	100-42-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
tert-Butylbenzene	98-06-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Tetrachloroethylene	127-18-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Toluene	108-88-3	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Total Xylenes	1330-20-7	BRL	0.0500	mg/kg	10.30.2019 18:05	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Trichloroethene	79-01-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Trichlorofluoromethane	75-69-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Vinyl Acetate	108-05-4	BRL	0.500	mg/kg	10.30.2019 18:05	U	50
Vinyl Chloride	75-01-4	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
1,3-Butadiene	106-99-0	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Cyclohexane	110-82-7	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Dicyclopentadiene	77-73-6	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Methylcyclohexane	108-87-2	BRL	0.500	mg/kg	10.30.2019 18:05	U	50
n-Hexane	110-54-3	BRL	0.500	mg/kg	10.30.2019 18:05	U	50
4-Ethyltoluene	622-96-8	BRL	0.250	mg/kg	10.30.2019 18:05	U	50
Propene	115-07-1	BRL	0.250	mg/kg	10.30.2019 18:05	U	50

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-TB01-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-019 Date Collected: 10.27.2019 00:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	91	%	53-142	10.30.2019 18:05	
1,2-Dichloroethane-D4	99	%	56-150	10.30.2019 18:05	
Toluene-D8	103	%	70-130	10.30.2019 18:05	
4-Bromofluorobenzene	99	%	68-152	10.30.2019 18:05	

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B26-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-020 Date Collected: 10.28.2019 10:15

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

Seq Number: 3106083 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0182
 mg/kg
 10.31.2019 15:30
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 09:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.55	1.72	mg/kg	10.31.2019 20:59		10
Barium	7440-39-3	103	3.45	mg/kg	10.31.2019 20:59		10
Cadmium	7440-43-9	BRL	1.72	mg/kg	10.31.2019 20:59	U	10
Chromium	7440-47-3	6.67	3.45	mg/kg	10.31.2019 20:59		10
Lead	7439-92-1	41.4	1.72	mg/kg	10.31.2019 20:59		10
Selenium	7782-49-2	BRL	1.72	mg/kg	10.31.2019 20:59	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	10.31.2019 20:59	U	10

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B26-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-020 Date Collected: 10.28.2019 10:15

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

DRU % Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00803	0.00334		mg/kg	10.30.2019 23:5	5	2
Acenaphthylene	208-96-8	0.0588	0.00334		mg/kg	10.30.2019 23:5	5	2
Anthracene	120-12-7	0.0124	0.00334		mg/kg	10.30.2019 23:5	5	2
Benzo(a)anthracene	56-55-3	0.0360	0.00334		mg/kg	10.30.2019 23:5	5	2
Benzo(a)pyrene	50-32-8	0.0755	0.00334		mg/kg	10.30.2019 23:5	5	2
Benzo(b)fluoranthene	205-99-2	0.106	0.00334		mg/kg	10.30.2019 23:5	5	2
Benzo(g,h,i)perylene	191-24-2	0.0552	0.00334		mg/kg	10.30.2019 23:5	5	2
Benzo(k)fluoranthene	207-08-9	0.0289	0.00334		mg/kg	10.30.2019 23:5	5	2
Chrysene	218-01-9	0.0479	0.00334		mg/kg	10.30.2019 23:5	5	2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00334		mg/kg	10.30.2019 23:5	5 U	2
Fluoranthene	206-44-0	0.140	0.00334		mg/kg	10.30.2019 23:5	5	2
Fluorene	86-73-7	BRL	0.00334		mg/kg	10.30.2019 23:5	5 U	2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0417	0.00334		mg/kg	10.30.2019 23:5	5	2
Naphthalene	91-20-3	BRL	0.0334		mg/kg	10.30.2019 23:5	5 U	2
Phenanthrene	85-01-8	0.0679	0.00334		mg/kg	10.30.2019 23:5	5	2
Pyrene	129-00-0	0.201	0.00334		mg/kg	10.30.2019 23:5	5	2
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	lag	
Nitrobenzene-d5		79	%	31-130		0.2019 23:55		
2-Fluorobiphenyl		90	%	51-133		0.2019 23:55		
Terphenyl-D14		116	%	46-137	10.30	0.2019 23:55		

ADS

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B24-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-021 Date Collected: 10.28.2019 10:32

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 09:15 Basis: Wet Weight Seq Number: 3106083

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0453 0.0185 mg/kg 10.31.2019 15:32 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 18:00 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	10.3	1.92	mg/kg	11.01.2019 12:31		10
Barium	7440-39-3	160	3.85	mg/kg	11.01.2019 12:31		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.01.2019 12:31	U	10
Chromium	7440-47-3	11.6	3.85	mg/kg	11.01.2019 12:31		10
Lead	7439-92-1	66.9	1.92	mg/kg	11.01.2019 12:31		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.01.2019 12:31	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.01.2019 12:31	U	10

Seq Number: 3106008

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B24-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-021 Date Collected: 10.28.2019 10:32

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:18 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0138	0.00333	mg/kg	10.31.2019 00:11		2
Acenaphthylene	208-96-8	0.211	0.00333	mg/kg	10.31.2019 00:11		2
Anthracene	120-12-7	0.113	0.00333	mg/kg	10.31.2019 00:11		2
Benzo(a)anthracene	56-55-3	0.394	0.00333	mg/kg	10.31.2019 00:11		2
Benzo(a)pyrene	50-32-8	0.814	0.0333	mg/kg	10.31.2019 11:15	D	20
Benzo(b)fluoranthene	205-99-2	0.898	0.0333	mg/kg	10.31.2019 11:15	D	20
Benzo(g,h,i)perylene	191-24-2	0.473	0.00333	mg/kg	10.31.2019 00:11		2
Benzo(k)fluoranthene	207-08-9	0.274	0.00333	mg/kg	10.31.2019 00:11		2
Chrysene	218-01-9	0.523	0.00333	mg/kg	10.31.2019 00:11		2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00333	mg/kg	10.31.2019 00:11	U	2
Fluoranthene	206-44-0	1.49	0.0333	mg/kg	10.31.2019 11:15	D	20
Fluorene	86-73-7	0.0332	0.00333	mg/kg	10.31.2019 00:11		2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.369	0.00333	mg/kg	10.31.2019 00:11		2
Naphthalene	91-20-3	0.140	0.0333	mg/kg	10.31.2019 00:11		2
Phenanthrene	85-01-8	0.891	0.0333	mg/kg	10.31.2019 11:15	D	20
Pyrene	129-00-0	1.78	0.0333	mg/kg	10.31.2019 11:15	D	20
		% Recovery					
Surrogate			Units	Limits Anal	ysis Date Fla	g	

% Recovery									
Surrogate		Units	Limits	Analysis Date	Flag				
Nitrobenzene-d5	83	%	31-130	10.31.2019 00:11					
2-Fluorobiphenyl	94	%	51-133	10.31.2019 00:11					
Terphenyl-D14	126	%	46-137	10.31.2019 00:11					

ADS

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B30-0-102719 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-022 Date Collected: 10.28.2019 11:12

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 09:15 Basis: Wet Weight Seq Number: 3106083

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0249 0.0192 mg/kg 10.31.2019 15:34 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 18:00 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.51	1.85	mg/kg	11.01.2019 12:34		10
Barium	7440-39-3	139	3.70	mg/kg	11.01.2019 12:34		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.01.2019 12:34	U	10
Chromium	7440-47-3	10.4	3.70	mg/kg	11.01.2019 12:34		10
Lead	7439-92-1	40.1	1.85	mg/kg	11.01.2019 12:34		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.01.2019 12:34	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.01.2019 12:34	U	10

Seq Number: 3106011

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B30-0-102719** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-022 Date Collected: 10.28.2019 11:12

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:24 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00334		mg/kg	10.31.2019 00:2	8 U	2
Acenaphthylene	208-96-8	0.00566	0.00334		mg/kg	10.31.2019 00:2	8	2
Anthracene	120-12-7	0.00735	0.00334		mg/kg	10.31.2019 00:2	8	2
Benzo(a)anthracene	56-55-3	0.0235	0.00334		mg/kg	10.31.2019 00:2	8	2
Benzo(a)pyrene	50-32-8	0.0350	0.00334		mg/kg	10.31.2019 00:2	8	2
Benzo(b)fluoranthene	205-99-2	0.0644	0.00334		mg/kg	10.31.2019 00:2	8	2
Benzo(g,h,i)perylene	191-24-2	0.0210	0.00334		mg/kg	10.31.2019 00:2	8	2
Benzo(k) fluoranthene	207-08-9	0.0192	0.00334		mg/kg	10.31.2019 00:2	8	2
Chrysene	218-01-9	0.0335	0.00334		mg/kg	10.31.2019 00:2	8	2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00334		mg/kg	10.31.2019 00:2	8 U	2
Fluoranthene	206-44-0	0.0624	0.00334		mg/kg	10.31.2019 00:2	8	2
Fluorene	86-73-7	BRL	0.00334		mg/kg	10.31.2019 00:2	8 U	2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0175	0.00334		mg/kg	10.31.2019 00:2	8	2
Naphthalene	91-20-3	BRL	0.0334		mg/kg	10.31.2019 00:2	8 U	2
Phenanthrene	85-01-8	0.0281	0.00334		mg/kg	10.31.2019 00:2	8	2
Pyrene	129-00-0	0.0736	0.00334		mg/kg	10.31.2019 00:2	8	2
		% Recovery						
Surrogate		V	Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		78	%	31-130	10.31	.2019 00:28		
2-Fluorobiphenyl		91	%	51-133		.2019 00:28		
Terphenyl-D14		120	%	46-137	10.31	.2019 00:28		

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B34-5.0-5.5-102819 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-023 Date Collected: 10.28.2019 11:05 Sample Depth: 5 - 5.5 ft

Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 09:15 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0196 mg/kg 10.31.2019 15:49 U 1

Analytical Method: Metals, RCRA List, by SW 6020

Analytical Method: Mercury by SW 7471B

ADS

Seq Number: 3106083

Tech:

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 18:00 Wet Weight Seq Number: 3106155

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.45	1.92	mg/kg	11.01.2019 12:37		10
Barium	7440-39-3	104	3.85	mg/kg	11.01.2019 12:37		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.01.2019 12:37	U	10
Chromium	7440-47-3	10.6	3.85	mg/kg	11.01.2019 12:37		10
Lead	7439-92-1	14.1	1.92	mg/kg	11.01.2019 12:37		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.01.2019 12:37	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.01.2019 12:37	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B34-5.0-5.5-102819** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-023 Date Collected: 10.28.2019 11:05 Sample Depth: 5 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:27 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Benzo(a)pyrene	50-32-8	0.00228	0.00167		mg/kg	10.31.2019 00):45		1
Benzo(b) fluoran thene	205-99-2	0.00419	0.00167		mg/kg	10.31.2019 00):45		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Chrysene	218-01-9	0.00191	0.00167		mg/kg	10.31.2019 00):45		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Fluoranthene	206-44-0	0.00314	0.00167		mg/kg	10.31.2019 00):45		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	10.31.2019 00):45	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	10.31.2019 00):45	U	1
Pyrene	129-00-0	0.00388	0.00167		mg/kg	10.31.2019 00):45		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag	;	
Nitrobenzene-d5		93	%	31-130		.2019 00:45			
2-Fluorobiphenyl		109	%	51-133		.2019 00:45			
Terphenyl-D14		138	%	46-137	10.31	.2019 00:45	**		

ADS

Seq Number: 3106083

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102819** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-024 Date Collected: 10.28.2019 11:15

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0185
 mg/kg
 10.31.2019 15:51
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 10.31.2019 18:00

Basis: Wet Weight

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.8	1.72	mg/kg	11.01.2019 12:40		10
Barium	7440-39-3	76.4	3.45	mg/kg	11.01.2019 12:40		10
Cadmium	7440-43-9	BRL	1.72	mg/kg	11.01.2019 12:40	U	10
Chromium	7440-47-3	10.5	3.45	mg/kg	11.01.2019 12:40		10
Lead	7439-92-1	12.6	1.72	mg/kg	11.01.2019 12:40		10
Selenium	7782-49-2	BRL	1.72	mg/kg	11.01.2019 12:40	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	11.01.2019 12:40	U	10

Seq Number: 3106011

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102819** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-024 Date Collected: 10.28.2019 11:15

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Benzo(a)pyrene	50-32-8	0.00234	0.00166		mg/kg	10.31.2019 01:02		1
Benzo(b)fluoranthene	205-99-2	0.00385	0.00166		mg/kg	10.31.2019 01:02		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Chrysene	218-01-9	0.00210	0.00166		mg/kg	10.31.2019 01:02		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Fluoranthene	206-44-0	0.00468	0.00166		mg/kg	10.31.2019 01:02		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166		mg/kg	10.31.2019 01:02	U	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	10.31.2019 01:02	U	1
Phenanthrene	85-01-8	0.00198	0.00166		mg/kg	10.31.2019 01:02		1
Pyrene	129-00-0	0.00575	0.00166		mg/kg	10.31.2019 01:02		1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date F	lag	
Nitrobenzene-d5		91	%	31-130	10.31	.2019 01:02		
2-Fluorobiphenyl		107	%	51-133		.2019 01:02		
Terphenyl-D14		132	%	46-137	10.31	.2019 01:02		

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B33-5.0'-5.5'** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-025 Date Collected: 10.28.2019 11:50 Sample Depth: 5 - 5.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.242
 0.0185
 mg/kg
 10.31.2019 15:53
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106083

Tech:

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.6	1.89	mg/kg	11.01.2019 12:43		10
Barium	7440-39-3	158	3.77	mg/kg	11.01.2019 12:43		10
Cadmium	7440-43-9	2.78	1.89	mg/kg	11.01.2019 12:43		10
Chromium	7440-47-3	14.0	3.77	mg/kg	11.01.2019 12:43		10
Lead	7439-92-1	222	1.89	mg/kg	11.01.2019 12:43		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.01.2019 12:43	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.01.2019 12:43	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B33-5.0'-5.5' Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-025 Date Collected: 10.28.2019 11:50 Sample Depth: 5 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 10.30.2019 11:33 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00333		mg/kg	10.31.2019 01:19	U	2
Acenaphthylene	208-96-8	0.0241	0.00333		mg/kg	10.31.2019 01:19		2
Anthracene	120-12-7	0.0326	0.00333		mg/kg	10.31.2019 01:19		2
Benzo(a)anthracene	56-55-3	0.0745	0.00333		mg/kg	10.31.2019 01:19		2
Benzo(a)pyrene	50-32-8	0.112	0.00333		mg/kg	10.31.2019 01:19		2
Benzo(b)fluoranthene	205-99-2	0.169	0.00333		mg/kg	10.31.2019 01:19		2
Benzo(g,h,i)perylene	191-24-2	0.0510	0.00333		mg/kg	10.31.2019 01:19		2
Benzo(k)fluoranthene	207-08-9	0.0575	0.00333		mg/kg	10.31.2019 01:19		2
Chrysene	218-01-9	0.0967	0.00333		mg/kg	10.31.2019 01:19		2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00333		mg/kg	10.31.2019 01:19	U	2
Fluoranthene	206-44-0	0.191	0.00333		mg/kg	10.31.2019 01:19		2
Fluorene	86-73-7	0.00471	0.00333		mg/kg	10.31.2019 01:19		2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0461	0.00333		mg/kg	10.31.2019 01:19		2
Naphthalene	91-20-3	BRL	0.0333		mg/kg	10.31.2019 01:19	U	2
Phenanthrene	85-01-8	0.0960	0.00333		mg/kg	10.31.2019 01:19		2
Pyrene	129-00-0	0.244	0.00333		mg/kg	10.31.2019 01:19		2
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		92	%	31-130	10.31	.2019 01:19		
2-Fluorobiphenyl		106	%	51-133	10.31	.2019 01:19		
Terphenyl-D14		131	%	46-137	10.31	.2019 01:19		

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	92	%	31-130	10.31.2019 01:19	
2-Fluorobiphenyl	106	%	51-133	10.31.2019 01:19	
Terphenyl-D14	131	%	46-137	10.31.2019 01:19	

ANJ

Seq Number: 3106083

Analyst:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B32-5.0-5.5 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-026 Date Collected: 10.28.2019 13:55 Sample Depth: 5 - 5.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

10.31.2019 09:15

ADS Tech:

> Date Prep: SUB: T104704215-19-30

Basis:

% Moisture:

Wet Weight

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0492 0.0200 mg/kg 10.31.2019 15:54 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB Tech:

Analyst: DEP Basis: Date Prep: 10.31.2019 18:00 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.13	1.85	mg/kg	11.01.2019 12:46		10
Barium	7440-39-3	107	3.70	mg/kg	11.01.2019 12:46		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.01.2019 12:46	U	10
Chromium	7440-47-3	8.20	3.70	mg/kg	11.01.2019 12:46		10
Lead	7439-92-1	62.5	1.85	mg/kg	11.01.2019 12:46		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.01.2019 12:46	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.01.2019 12:46	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B32-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-026 Date Collected: 10.28.2019 13:55 Sample Depth: 5 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:36 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	10.31.2019 01:36	U	1
Acenaphthylene	208-96-8	0.00212	0.00167		mg/kg	10.31.2019 01:36		1
Anthracene	120-12-7	0.00219	0.00167		mg/kg	10.31.2019 01:36		1
Benzo(a)anthracene	56-55-3	0.00468	0.00167		mg/kg	10.31.2019 01:36		1
Benzo(a)pyrene	50-32-8	0.00652	0.00167		mg/kg	10.31.2019 01:36		1
Benzo(b) fluoranthene	205-99-2	0.0113	0.00167		mg/kg	10.31.2019 01:36		1
Benzo(g,h,i)perylene	191-24-2	0.00345	0.00167		mg/kg	10.31.2019 01:36		1
Benzo(k)fluoranthene	207-08-9	0.00328	0.00167		mg/kg	10.31.2019 01:36		1
Chrysene	218-01-9	0.00657	0.00167		mg/kg	10.31.2019 01:36		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	10.31.2019 01:36	U	1
Fluoranthene	206-44-0	0.0103	0.00167		mg/kg	10.31.2019 01:36		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	10.31.2019 01:36	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00278	0.00167		mg/kg	10.31.2019 01:36		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	10.31.2019 01:36	U	1
Phenanthrene	85-01-8	0.00484	0.00167		mg/kg	10.31.2019 01:36		1
Pyrene	129-00-0	0.0123	0.00167		mg/kg	10.31.2019 01:36		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		75	%	31-130		.2019 01:36		
2-Fluorobiphenyl		87	%	51-133		.2019 01:36		
Terphenyl-D14		115	%	46-137	10.31	.2019 01:36		

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: B-FD02-102819 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-027 Date Collected: 10.28.2019 14:05 Sample Depth: 5 - 5.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

Seq Number: 3106083 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 10.31.2019 15:56
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	10.3	1.67	mg/kg	11.01.2019 12:49		10
Barium	7440-39-3	114	3.33	mg/kg	11.01.2019 12:49		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.01.2019 12:49	U	10
Chromium	7440-47-3	4.01	3.33	mg/kg	11.01.2019 12:49		10
Lead	7439-92-1	40.5	1.67	mg/kg	11.01.2019 12:49		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.01.2019 12:49	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.01.2019 12:49	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: B-FD02-102819 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-027 Date Collected: 10.28.2019 14:05 Sample Depth: 5 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:39 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	10.31.2019 01:53	U	1
Acenaphthylene	208-96-8	0.00333	0.00166		mg/kg	10.31.2019 01:53		1
Anthracene	120-12-7	0.00279	0.00166		mg/kg	10.31.2019 01:53		1
Benzo(a)anthracene	56-55-3	0.00975	0.00166		mg/kg	10.31.2019 01:53		1
Benzo(a)pyrene	50-32-8	0.0176	0.00166		mg/kg	10.31.2019 01:53		1
Benzo(b)fluoranthene	205-99-2	0.0260	0.00166		mg/kg	10.31.2019 01:53		1
Benzo(g,h,i)perylene	191-24-2	0.00904	0.00166		mg/kg	10.31.2019 01:53		1
Benzo(k)fluoranthene	207-08-9	0.00721	0.00166		mg/kg	10.31.2019 01:53		1
Chrysene	218-01-9	0.0130	0.00166		mg/kg	10.31.2019 01:53		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	10.31.2019 01:53	U	1
Fluoranthene	206-44-0	0.0258	0.00166		mg/kg	10.31.2019 01:53		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	10.31.2019 01:53	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00772	0.00166		mg/kg	10.31.2019 01:53		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	10.31.2019 01:53	U	1
Phenanthrene	85-01-8	0.00975	0.00166		mg/kg	10.31.2019 01:53		1
Pyrene	129-00-0	0.0358	0.00166		mg/kg	10.31.2019 01:53		1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date F	ag	
Nitrobenzene-d5		75	%	31-130		.2019 01:53		
2-Fluorobiphenyl		88	%	51-133	10.31	.2019 01:53		
Terphenyl-D14		113	%	46-137	10.31	.2019 01:53		

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B31-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-028 Date Collected: 10.28.2019 14:25 Sample Depth: 5 - 5.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.228
 0.0182
 mg/kg
 10.31.2019 16:02
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106083

Tech:

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	17.6	1.96	mg/kg	11.01.2019 12:52		10
Barium	7440-39-3	143	3.92	mg/kg	11.01.2019 12:52		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.01.2019 12:52	U	10
Chromium	7440-47-3	11.4	3.92	mg/kg	11.01.2019 12:52		10
Lead	7439-92-1	98.2	1.96	mg/kg	11.01.2019 12:52		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.01.2019 12:52	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.01.2019 12:52	U	10

Analytical Method: PAHs by 8270D SIM

DRU

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B31-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-028 Date Collected: 10.28.2019 14:25 Sample Depth: 5 - 5.5 ft

Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:42 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00265	0.00166		mg/kg	10.31.2019 02:09		1
Acenaphthylene	208-96-8	0.0436	0.00166		mg/kg	10.31.2019 02:09		1
Anthracene	120-12-7	0.0254	0.00166		mg/kg	10.31.2019 02:09		1
Benzo(a)anthracene	56-55-3	0.115	0.00166		mg/kg	10.31.2019 02:09		1
Benzo(a)pyrene	50-32-8	0.217	0.00166		mg/kg	10.31.2019 02:09		1
Benzo(b) fluoranthene	205-99-2	0.274	0.00166		mg/kg	10.31.2019 02:09		1
Benzo(g,h,i)perylene	191-24-2	0.109	0.00166		mg/kg	10.31.2019 02:09		1
Benzo(k)fluoranthene	207-08-9	0.0810	0.00166		mg/kg	10.31.2019 02:09		1
Chrysene	218-01-9	0.149	0.00166		mg/kg	10.31.2019 02:09		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	10.31.2019 02:09	U	1
Fluoranthene	206-44-0	0.309	0.00166		mg/kg	10.31.2019 02:09		1
Fluorene	86-73-7	0.00748	0.00166		mg/kg	10.31.2019 02:09		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0885	0.00166		mg/kg	10.31.2019 02:09		1
Naphthalene	91-20-3	0.0168	0.0166		mg/kg	10.31.2019 02:09		1
Phenanthrene	85-01-8	0.164	0.00166		mg/kg	10.31.2019 02:09		1
Pyrene	129-00-0	0.439	0.00831		mg/kg	10.31.2019 11:49	D	5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		56	%	31-130		.2019 02:09		
2-Fluorobiphenyl		71	%	51-133		.2019 02:09		
Terphenyl-D14		128	%	46-137	10.31	.2019 02:09		

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B35-5.0-5.5 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-029 Date Collected: 10.28.2019 16:40 Sample Depth: 5 - 5.5 ft

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Analyst: Date Prep: 11.01.2019 14:00 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Cyanide, Total 57-12-5 BRL 0.0588 mg/kg 11.01.2019 15:42 U 1

Analytical Method: Mercury by SW 7471B

ADS Tech:

KCS

Seq Number: 3106209

Seq Number: 3106083

Tech:

ANJ Analyst: Date Prep:

Basis: 10.31.2019 09:15 Wet Weight

SUB: T104704215-19-30

Prep Method: SW7471P

% Moisture:

Parameter Cas Number Result RL Units **Analysis Date** Flag Dil 0.000196 Mercury 0.00022810.31.2019 14:23 7439-97-6

Analytical Method: Metals, RCRA List, by SW 6020

DEP

Tech:

Analyst:

Seq Number: 3106155

PJB

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	13.0	1.89	mg/kg	11.01.2019 12:11		10
Barium	7440-39-3	174	3.77	mg/kg	11.01.2019 12:11		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.01.2019 12:11	U	10
Chromium	7440-47-3	14.1	3.77	mg/kg	11.01.2019 12:11		10
Lead	7439-92-1	29.9	1.89	mg/kg	11.01.2019 12:11		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.01.2019 12:11	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.01.2019 12:11	U	10

10.31.2019 18:00

Date Prep:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B35-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-029 Date Collected: 10.28.2019 16:40 Sample Depth: 5 - 5.5 ft

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106060

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 10.31.2019 11:06
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106041

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag 8.12 SU 10.31.2019 12:25 pН 12408-02-5 1 Temperature TEMP 23.3 Deg C 10.31.2019 12:25 1

JOZ

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B35-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-029 Date Collected: 10.28.2019 16:40 Sample Depth: 5 - 5.5 ft

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 10.31.2019 09:39 Basis: Wet Weight

Seq Number: 3106146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0167	mg/kg	11.01.2019 11:23	U	1
PCB-1221	11104-28-2	BRL	0.0167	mg/kg	11.01.2019 11:23	U	1
PCB-1232	11141-16-5	BRL	0.0167	mg/kg	11.01.2019 11:23	U	1
PCB-1242	53469-21-9	BRL	0.0167	mg/kg	11.01.2019 11:23	U	1
PCB-1248	12672-29-6	BRL	0.0167	mg/kg	11.01.2019 11:23	U	1
PCB-1254	11097-69-1	BRL	0.0167	mg/kg	11.01.2019 11:23	U	1
PCB-1260	11096-82-5	BRL	0.0167	mg/kg	11.01.2019 11:23	U	1

 Surrogate
 Units
 Limits
 Analysis Date
 Flag

 Decachlorobiphenyl
 86
 %
 39-125
 11.01.2019 11:23
 Tetrachloro-m-xylene
 61
 %
 37-124
 11.01.2019 11:23
 Tetrachloro-m-xylene

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B35-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-029 Date Collected: 10.28.2019 16:40 Sample Depth: 5 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:45 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	10.30.2019 17:2	U	10
Acenaphthylene	208-96-8	BRL	0.0167		mg/kg	10.30.2019 17:2	U	10
Anthracene	120-12-7	BRL	0.0167		mg/kg	10.30.2019 17:2	U	10
Benzo(a)anthracene	56-55-3	0.0225	0.0167		mg/kg	10.30.2019 17:2)	10
Benzo(a)pyrene	50-32-8	0.0385	0.0167		mg/kg	10.30.2019 17:2)	10
Benzo(b) fluoranthene	205-99-2	0.0501	0.0167		mg/kg	10.30.2019 17:2)	10
Benzo(g,h,i)perylene	191-24-2	0.0521	0.0167		mg/kg	10.30.2019 17:2)	10
Benzo(k)fluoranthene	207-08-9	BRL	0.0167		mg/kg	10.30.2019 17:2	U	10
Chrysene	218-01-9	0.0343	0.0167		mg/kg	10.30.2019 17:2)	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	10.30.2019 17:2	U	10
Fluoranthene	206-44-0	0.0622	0.0167		mg/kg	10.30.2019 17:2)	10
Fluorene	86-73-7	BRL	0.0167		mg/kg	10.30.2019 17:2	U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0346	0.0167		mg/kg	10.30.2019 17:2)	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	10.30.2019 17:2	U	10
Phenanthrene	85-01-8	0.0182	0.0167		mg/kg	10.30.2019 17:2)	10
Pyrene	129-00-0	0.0733	0.0167		mg/kg	10.30.2019 17:2)	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date 1	lag	
Nitrobenzene-d5		60	%	31-130		0.2019 17:29		
2-Fluorobiphenyl		70	%	51-133		0.2019 17:29		
Terphenyl-D14		88	%	46-137	10.30	0.2019 17:29		

SAD

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B35-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-029 Date Collected: 10.28.2019 16:40 Sample Depth: 5 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 14:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,1-Dichloroethane	75-34-3	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,1-Dichloroethene	75-35-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,1-Dichloropropene	563-58-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2-Dibromoethane	106-93-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2-Dichloroethane	107-06-2	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,2-Dichloropropane	78-87-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,3-Dichloropropane	142-28-9	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
2,2-Dichloropropane	594-20-7	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
2-Butanone	78-93-3	BRL	1.30	mg/kg	10.30.2019 15:15	U	50
2-Chlorotoluene	95-49-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
2-Hexanone	591-78-6	BRL	3.24	mg/kg	10.30.2019 15:15	U	50
4-Chlorotoluene	106-43-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	3.24	mg/kg	10.30.2019 15:15	U	50
Acetone	67-64-1	BRL	6.48	mg/kg	10.30.2019 15:15	U	50
Benzene	71-43-2	BRL	0.0648	mg/kg	10.30.2019 15:15	U	50
Bromobenzene	108-86-1	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Bromochloromethane	74-97-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Bromodichloromethane	75-27-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Bromoform	75-25-2	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Bromomethane	74-83-9	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Carbon Disulfide	75-15-0	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Carbon Tetrachloride	56-23-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Chlorobenzene	108-90-7	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Chloroethane	75-00-3	BRL	0.648	mg/kg	10.30.2019 15:15	U	50
Chloroform	67-66-3	BRL	0.324	mg/kg	10.30.2019 15:15	U	50

SAD

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B35-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-029 Date Collected: 10.28.2019 16:40 Sample Depth: 5 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 14:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Dibromochloromethane	124-48-1	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Dibromomethane	74-95-3	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Ethylbenzene	100-41-4	BRL	0.0648	mg/kg	10.30.2019 15:15	U	50
Hexachlorobutadiene	87-68-3	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.30	mg/kg	10.30.2019 15:15	U	50
Isopropylbenzene	98-82-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
m,p-Xylenes	179601-23-1	BRL	0.130	mg/kg	10.30.2019 15:15	U	50
Methylene Chloride	75-09-2	BRL	1.30	mg/kg	10.30.2019 15:15	U	50
MTBE	1634-04-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Naphthalene	91-20-3	BRL	0.648	mg/kg	10.30.2019 15:15	U	50
n-Butylbenzene	104-51-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
n-Propylbenzene	103-65-1	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
o-Xylene	95-47-6	BRL	0.0648	mg/kg	10.30.2019 15:15	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Sec-Butylbenzene	135-98-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Styrene	100-42-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
tert-Butylbenzene	98-06-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Tetrachloroethylene	127-18-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Toluene	108-88-3	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Total Xylenes	1330-20-7	BRL	0.0648	mg/kg	10.30.2019 15:15	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Trichloroethene	79-01-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Trichlorofluoromethane	75-69-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Vinyl Acetate	108-05-4	BRL	0.648	mg/kg	10.30.2019 15:15	U	50
Vinyl Chloride	75-01-4	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
1,3-Butadiene	106-99-0	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Cyclohexane	110-82-7	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Dicyclopentadiene	77-73-6	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Methylcyclohexane	108-87-2	BRL	0.648	mg/kg	10.30.2019 15:15	U	50
n-Hexane	110-54-3	BRL	0.648	mg/kg	10.30.2019 15:15	U	50
4-Ethyltoluene	622-96-8	BRL	0.324	mg/kg	10.30.2019 15:15	U	50
Propene	115-07-1	BRL	0.324	mg/kg	10.30.2019 15:15	U	50

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B35-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-029 Date Collected: 10.28.2019 16:40 Sample Depth: 5 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 10.30.2019 14:00 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	96	%	53-142	10.30.2019 15:15	
1,2-Dichloroethane-D4	100	%	56-150	10.30.2019 15:15	
Toluene-D8	104	%	70-130	10.30.2019 15:15	
4-Bromofluorobenzene	97	%	68-152	10.30.2019 15:15	

ADS

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B18-2.0-2.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-030 Date Collected: 10.28.2019 17:10 Sample Depth: 2 - 2.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0219
 0.0189
 mg/kg
 10.31.2019 16:04
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Seq Number: 3106083

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	16.4	1.67	mg/kg	11.01.2019 12:55		10
Barium	7440-39-3	65.7	3.33	mg/kg	11.01.2019 12:55		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.01.2019 12:55	U	10
Chromium	7440-47-3	8.37	3.33	mg/kg	11.01.2019 12:55		10
Lead	7439-92-1	25.2	1.67	mg/kg	11.01.2019 12:55		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.01.2019 12:55	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.01.2019 12:55	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B18-2.0-2.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-030 Date Collected: 10.28.2019 17:10 Sample Depth: 2 - 2.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:54 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00334		mg/kg	10.31.2019 02:26	U	2
Acenaphthylene	208-96-8	0.00979	0.00334		mg/kg	10.31.2019 02:26		2
Anthracene	120-12-7	0.00752	0.00334		mg/kg	10.31.2019 02:26		2
Benzo(a)anthracene	56-55-3	0.0276	0.00334		mg/kg	10.31.2019 02:26		2
Benzo(a)pyrene	50-32-8	0.0474	0.00334		mg/kg	10.31.2019 02:26		2
Benzo(b) fluoranthene	205-99-2	0.0698	0.00334		mg/kg	10.31.2019 02:26		2
Benzo(g,h,i)perylene	191-24-2	0.0267	0.00334		mg/kg	10.31.2019 02:26		2
Benzo(k) fluoranthene	207-08-9	0.0190	0.00334		mg/kg	10.31.2019 02:26		2
Chrysene	218-01-9	0.0356	0.00334		mg/kg	10.31.2019 02:26		2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00334		mg/kg	10.31.2019 02:26	U	2
Fluoranthene	206-44-0	0.0757	0.00334		mg/kg	10.31.2019 02:26		2
Fluorene	86-73-7	BRL	0.00334		mg/kg	10.31.2019 02:26	U	2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0218	0.00334		mg/kg	10.31.2019 02:26		2
Naphthalene	91-20-3	BRL	0.0334		mg/kg	10.31.2019 02:26	U	2
Phenanthrene	85-01-8	0.0394	0.00334		mg/kg	10.31.2019 02:26		2
Pyrene	129-00-0	0.105	0.00334		mg/kg	10.31.2019 02:26		2
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		82	%	31-130		.2019 02:26		
2-Fluorobiphenyl		97	%	51-133		.2019 02:26		
Terphenyl-D14		122	%	46-137	10.31	.2019 02:26		

ADS

Seq Number: 3106083

Tech:

Silver

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B18-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-031 Date Collected: 10.28.2019 17:15 Sample Depth: 5 - 2.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0237
 0.0182
 mg/kg
 10.31.2019 16:06
 1

Analytical Method: Metals, RCRA List, by SW 6020

7440-22-4

Tech: PJB

Analyst: DEP Date Prep: 10.31.2019 18:00

Seq Number: 3106155

Prep Method: SW3050B % Moisture:

Basis: Wet Weight SUB: T104704215-19-30

11.01.2019 12:58

mg/kg

U

10

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 9.69 2.00 11.01.2019 12:58 10 Arsenic 7440-38-2 mg/kg Barium 7440-39-3 190 4.00 11.01.2019 12:58 10 mg/kg Cadmium 7440-43-9 BRL 2.00 mg/kg 11.01.2019 12:58 U 10 Chromium 7440-47-3 8.67 4.00 11.01.2019 12:58 10 mg/kg 10 Lead 7439-92-1 38.1 2.00 mg/kg 11.01.2019 12:58 Selenium 7782-49-2 BRL 2.00 11.01.2019 12:58 U 10 mg/kg

BRL

2.00

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B18-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-031 Date Collected: 10.28.2019 17:15 Sample Depth: 5 - 2.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 11:57 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00333		mg/kg	10.31.2019 02:43	U	2
Acenaphthylene	208-96-8	0.0179	0.00333		mg/kg	10.31.2019 02:43		2
Anthracene	120-12-7	0.0165	0.00333		mg/kg	10.31.2019 02:43		2
Benzo(a)anthracene	56-55-3	0.0643	0.00333		mg/kg	10.31.2019 02:43		2
Benzo(a)pyrene	50-32-8	0.115	0.00333		mg/kg	10.31.2019 02:43		2
Benzo(b)fluoranthene	205-99-2	0.179	0.00333		mg/kg	10.31.2019 02:43		2
Benzo(g,h,i)perylene	191-24-2	0.0661	0.00333		mg/kg	10.31.2019 02:43		2
Benzo(k)fluoranthene	207-08-9	0.0389	0.00333		mg/kg	10.31.2019 02:43		2
Chrysene	218-01-9	0.0865	0.00333		mg/kg	10.31.2019 02:43		2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00333		mg/kg	10.31.2019 02:43	U	2
Fluoranthene	206-44-0	0.181	0.00333		mg/kg	10.31.2019 02:43		2
Fluorene	86-73-7	BRL	0.00333		mg/kg	10.31.2019 02:43	U	2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0541	0.00333		mg/kg	10.31.2019 02:43		2
Naphthalene	91-20-3	BRL	0.0333		mg/kg	10.31.2019 02:43	U	2
Phenanthrene	85-01-8	0.0744	0.00333		mg/kg	10.31.2019 02:43		2
Pyrene	129-00-0	0.250	0.00333		mg/kg	10.31.2019 02:43		2
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date F	ag	
Nitrobenzene-d5		68	%	31-130		.2019 02:43		
2-Fluorobiphenyl		86	%	51-133		.2019 02:43		
Terphenyl-D14		130	%	46-137	10.31	.2019 02:43		

ADS

Seq Number: 3106083

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD03-102819** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-032 Date Collected: 10.28.2019 17:20

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 09:15 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 10.31.2019 16:08
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.7	2.00	mg/kg	11.01.2019 13:07		10
Barium	7440-39-3	215	4.00	mg/kg	11.01.2019 13:07		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.01.2019 13:07	U	10
Chromium	7440-47-3	16.6	4.00	mg/kg	11.01.2019 13:07		10
Lead	7439-92-1	15.6	2.00	mg/kg	11.01.2019 13:07		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.01.2019 13:07	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.01.2019 13:07	U	10

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD03-102819** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-032 Date Collected: 10.28.2019 17:20

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 12:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	10.31.2019 03:00	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	10.31.2019 03:00	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	10.31.2019 03:00	U	1
Benzo(a)anthracene	56-55-3	0.00597	0.00166		mg/kg	10.31.2019 03:00		1
Benzo(a)pyrene	50-32-8	0.0106	0.00166		mg/kg	10.31.2019 03:00		1
Benzo(b)fluoranthene	205-99-2	0.0149	0.00166		mg/kg	10.31.2019 03:00		1
Benzo(g,h,i)perylene	191-24-2	0.00603	0.00166		mg/kg	10.31.2019 03:00		1
Benzo(k)fluoranthene	207-08-9	0.00427	0.00166		mg/kg	10.31.2019 03:00		1
Chrysene	218-01-9	0.00728	0.00166		mg/kg	10.31.2019 03:00		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	10.31.2019 03:00	U	1
Fluoranthene	206-44-0	0.0151	0.00166		mg/kg	10.31.2019 03:00		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	10.31.2019 03:00	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00495	0.00166		mg/kg	10.31.2019 03:00		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	10.31.2019 03:00	U	1
Phenanthrene	85-01-8	0.00538	0.00166		mg/kg	10.31.2019 03:00		1
Pyrene	129-00-0	0.0224	0.00166		mg/kg	10.31.2019 03:00		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		91	%	31-130		.2019 03:00		
2-Fluorobiphenyl		105	%	51-133		.2019 03:00		
Terphenyl-D14		133	%	46-137	10.31	.2019 03:00		

Analytical Method: Mercury by SW 7471B

ADS

Seq Number: 3106155

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B18-7.0-7.5 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-033 Date Collected: 10.28.2019 17:30 Sample Depth: 7 - 7.5 ft

Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 10.31.2019 09:15 Basis: Wet Weight Seq Number: 3106083

SUB: T104704215-19-30

Prep Method: SW3050B

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0179 mg/kg 10.31.2019 15:39 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech: Analyst: DEP

Basis: Date Prep: 10.31.2019 18:00 Wet Weight

SUB: T104704215-19-30

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	21.8	1.89	mg/kg	11.01.2019 13:10		10
Barium	7440-39-3	138	3.77	mg/kg	11.01.2019 13:10		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.01.2019 13:10	U	10
Chromium	7440-47-3	11.5	3.77	mg/kg	11.01.2019 13:10		10
Lead	7439-92-1	17.5	1.89	mg/kg	11.01.2019 13:10		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.01.2019 13:10	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.01.2019 13:10	U	10

Tech:

Analytical Method: PAHs by 8270D SIM

DRU

Seq Number: 3106011

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B18-7.0-7.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-033 Date Collected: 10.28.2019 17:30 Sample Depth: 7 - 7.5 ft

Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 12:03 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	10.31.2019 03:17	U	1
Acenaphthylene	208-96-8	0.00688	0.00167	mg/kg	10.31.2019 03:17		1
Anthracene	120-12-7	0.00478	0.00167	mg/kg	10.31.2019 03:17		1
Benzo(a)anthracene	56-55-3	0.0195	0.00167	mg/kg	10.31.2019 03:17		1
Benzo(a)pyrene	50-32-8	0.0353	0.00167	mg/kg	10.31.2019 03:17		1
Benzo(b)fluoranthene	205-99-2	0.0528	0.00167	mg/kg	10.31.2019 03:17		1
Benzo(g,h,i)perylene	191-24-2	0.0210	0.00167	mg/kg	10.31.2019 03:17		1
Benzo(k)fluoranthene	207-08-9	0.0151	0.00167	mg/kg	10.31.2019 03:17		1
Chrysene	218-01-9	0.0250	0.00167	mg/kg	10.31.2019 03:17		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	10.31.2019 03:17	U	1
Fluoranthene	206-44-0	0.0595	0.00167	mg/kg	10.31.2019 03:17		1
Fluorene	86-73-7	BRL	0.00167	mg/kg	10.31.2019 03:17	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0169	0.00167	mg/kg	10.31.2019 03:17		1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	10.31.2019 03:17	U	1
Phenanthrene	85-01-8	0.0260	0.00167	mg/kg	10.31.2019 03:17		1
Pyrene	129-00-0	0.0872	0.00167	mg/kg	10.31.2019 03:17		1
		% Recovery					
Surrogate			Units	Limits Ana	lvsis Date Fla	g	

% Recovery									
Surrogate		Units	Limits	Analysis Date	Flag				
Nitrobenzene-d5	66	%	31-130	10.31.2019 03:17					
2-Fluorobiphenyl	82	%	51-133	10.31.2019 03:17					
Terphenyl-D14	121	%	46-137	10.31.2019 03:17					

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B14-1.0-1.5 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-034 Date Collected: 10.29.2019 08:15 Sample Depth: 1 - 1.5 ft

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Analyst: Date Prep: 11.01.2019 14:00 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW7471P

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Cyanide, Total 57-12-5 BRL 0.0554 mg/kg 11.01.2019 15:48 U 1

Analytical Method: Mercury by SW 7471B

ADS Tech:

KCS

Seq Number: 3106209

Tech:

% Moisture: ANJ Basis: Analyst: Date Prep: 10.31.2019 08:25 Wet Weight

Seq Number: 3106078 SUB: T104704215-19-30

RL Parameter Cas Number Result Units **Analysis Date** Flag Dil Mercury 0.0238 0.0179 10.31.2019 14:01 7439-97-6 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020

DEP Analyst:

Tech:

10.31.2019 18:00 Date Prep:

Seq Number: 3106155

PJB

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	10.9	1.85	mg/kg	11.01.2019 13:13		10
Barium	7440-39-3	200	3.70	mg/kg	11.01.2019 13:13		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.01.2019 13:13	U	10
Chromium	7440-47-3	9.32	3.70	mg/kg	11.01.2019 13:13		10
Lead	7439-92-1	48.7	1.85	mg/kg	11.01.2019 13:13		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.01.2019 13:13	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.01.2019 13:13	U	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B14-1.0-1.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-034 Date Collected: 10.29.2019 08:15 Sample Depth: 1 - 1.5 ft

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106060

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 10.31.2019 11:24
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106041

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 10.31.2019 12:25 8.03 pН 12408-02-5 1 Temperature TEMP 22.6 Deg C 10.31.2019 12:25 1

JOZ

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B14-1.0-1.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-034 Date Collected: 10.29.2019 08:15 Sample Depth: 1 - 1.5 ft

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 10.31.2019 09:51 Basis: Wet Weight

Seq Number: 3106146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0167	mg/kg	11.01.2019 11:35	U	1
PCB-1221	11104-28-2	BRL	0.0167	mg/kg	11.01.2019 11:35	U	1
PCB-1232	11141-16-5	BRL	0.0167	mg/kg	11.01.2019 11:35	U	1
PCB-1242	53469-21-9	BRL	0.0167	mg/kg	11.01.2019 11:35	U	1
PCB-1248	12672-29-6	BRL	0.0167	mg/kg	11.01.2019 11:35	U	1
PCB-1254	11097-69-1	BRL	0.0167	mg/kg	11.01.2019 11:35	U	1
PCB-1260	11096-82-5	BRL	0.0167	mg/kg	11.01.2019 11:35	U	1

 Surrogate
 Units
 Limits
 Analysis Date
 Flag

 Decachlorobiphenyl
 95
 %
 39-125
 11.01.2019 11:35
 Tetrachloro-m-xylene
 50
 %
 37-124
 11.01.2019 11:35
 Tetrachloro-m-xylene

DRU

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B14-1.0-1.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-034 Date Collected: 10.29.2019 08:15 Sample Depth: 1 - 1.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 12:06 Basis: Wet Weight

Seq Number: 3106011 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	10.31.2019 03:33	U	1
Acenaphthylene	208-96-8	0.00704	0.00167		mg/kg	10.31.2019 03:33		1
Anthracene	120-12-7	0.0102	0.00167		mg/kg	10.31.2019 03:33		1
Benzo(a)anthracene	56-55-3	0.0170	0.00167		mg/kg	10.31.2019 03:33		1
Benzo(a)pyrene	50-32-8	0.0157	0.00167		mg/kg	10.31.2019 03:33		1
Benzo(b)fluoranthene	205-99-2	0.0440	0.00167		mg/kg	10.31.2019 03:33		1
Benzo(g,h,i)perylene	191-24-2	0.00841	0.00167		mg/kg	10.31.2019 03:33		1
Benzo(k)fluoranthene	207-08-9	0.0109	0.00167		mg/kg	10.31.2019 03:33		1
Chrysene	218-01-9	0.0228	0.00167		mg/kg	10.31.2019 03:33		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	10.31.2019 03:33	U	1
Fluoranthene	206-44-0	0.0393	0.00167		mg/kg	10.31.2019 03:33		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	10.31.2019 03:33	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00810	0.00167		mg/kg	10.31.2019 03:33		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	10.31.2019 03:33	U	1
Phenanthrene	85-01-8	0.00637	0.00167		mg/kg	10.31.2019 03:33		1
Pyrene	129-00-0	0.0451	0.00167		mg/kg	10.31.2019 03:33		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		86	%	31-130	10.31	.2019 03:33		
2-Fluorobiphenyl		100	%	51-133	10.31	.2019 03:33		
Terphenyl-D14		129	%	46-137	10.31	.2019 03:33		

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B14-1.0-1.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-034 Date Collected: 10.29.2019 08:15 Sample Depth: 1 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,1-Dichloroethane	75-34-3	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,1-Dichloroethene	75-35-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,1-Dichloropropene	563-58-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2-Dibromoethane	106-93-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2-Dichloroethane	107-06-2	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,2-Dichloropropane	78-87-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,3-Dichloropropane	142-28-9	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
2,2-Dichloropropane	594-20-7	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
2-Butanone	78-93-3	BRL	1.07	mg/kg	10.30.2019 18:47	U	50
2-Chlorotoluene	95-49-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
2-Hexanone	591-78-6	BRL	2.68	mg/kg	10.30.2019 18:47	U	50
4-Chlorotoluene	106-43-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.68	mg/kg	10.30.2019 18:47	U	50
Acetone	67-64-1	BRL	5.35	mg/kg	10.30.2019 18:47	U	50
Benzene	71-43-2	BRL	0.0535	mg/kg	10.30.2019 18:47	U	50
Bromobenzene	108-86-1	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Bromochloromethane	74-97-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Bromodichloromethane	75-27-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Bromoform	75-25-2	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Bromomethane	74-83-9	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Carbon Disulfide	75-15-0	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Carbon Tetrachloride	56-23-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Chlorobenzene	108-90-7	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Chloroethane	75-00-3	BRL	0.535	mg/kg	10.30.2019 18:47	U	50
Chloroform	67-66-3	BRL	0.268	mg/kg	10.30.2019 18:47	U	50

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B14-1.0-1.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-034 Date Collected: 10.29.2019 08:15 Sample Depth: 1 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Dibromochloromethane	124-48-1	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Dibromomethane	74-95-3	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Ethylbenzene	100-41-4	BRL	0.0535	mg/kg	10.30.2019 18:47	U	50
Hexachlorobutadiene	87-68-3	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.07	mg/kg	10.30.2019 18:47	U	50
Isopropylbenzene	98-82-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
m,p-Xylenes	179601-23-1	BRL	0.107	mg/kg	10.30.2019 18:47	U	50
Methylene Chloride	75-09-2	BRL	1.07	mg/kg	10.30.2019 18:47	U	50
MTBE	1634-04-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Naphthalene	91-20-3	BRL	0.535	mg/kg	10.30.2019 18:47	U	50
n-Butylbenzene	104-51-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
n-Propylbenzene	103-65-1	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
o-Xylene	95-47-6	BRL	0.0535	mg/kg	10.30.2019 18:47	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Sec-Butylbenzene	135-98-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Styrene	100-42-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
tert-Butylbenzene	98-06-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Tetrachloroethylene	127-18-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Toluene	108-88-3	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Total Xylenes	1330-20-7	BRL	0.0535	mg/kg	10.30.2019 18:47	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Trichloroethene	79-01-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Trichlorofluoromethane	75-69-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Vinyl Acetate	108-05-4	BRL	0.535	mg/kg	10.30.2019 18:47	U	50
Vinyl Chloride	75-01-4	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
1,3-Butadiene	106-99-0	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Cyclohexane	110-82-7	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Dicyclopentadiene	77-73-6	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Methylcyclohexane	108-87-2	BRL	0.535	mg/kg	10.30.2019 18:47	U	50
n-Hexane	110-54-3	BRL	0.535	mg/kg	10.30.2019 18:47	U	50
4-Ethyltoluene	622-96-8	BRL	0.268	mg/kg	10.30.2019 18:47	U	50
Propene	115-07-1	BRL	0.268	mg/kg	10.30.2019 18:47	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B14-1.0-1.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-034 Date Collected: 10.29.2019 08:15 Sample Depth: 1 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Seq Number: 3105931 SUB: T104704215-19-30

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	91	%	53-142	10.30.2019 18:47	
1,2-Dichloroethane-D4	100	%	56-150	10.30.2019 18:47	
Toluene-D8	102	%	70-130	10.30.2019 18:47	
4-Bromofluorobenzene	98	%	68-152	10.30.2019 18:47	

ADS

Seq Number: 3106078

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B14-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-035 Date Collected: 10.29.2019 08:20 Sample Depth: 2.5 - 3 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 08:25 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0169
 mg/kg
 10.31.2019 14:03
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Seq Number: 3106155 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	17.9	1.96	mg/kg	11.01.2019 13:16		10
Barium	7440-39-3	93.5	3.92	mg/kg	11.01.2019 13:16		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.01.2019 13:16	U	10
Chromium	7440-47-3	9.83	3.92	mg/kg	11.01.2019 13:16		10
Lead	7439-92-1	9.49	1.96	mg/kg	11.01.2019 13:16		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.01.2019 13:16	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.01.2019 13:16	U	10

DRU

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B14-2.5-3.0 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-035 Sample Depth: 2.5 - 3 ft Date Collected: 10.29.2019 08:20

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 10.30.2019 12:09 Basis: Wet Weight

Seq Number: 3106011 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00832		mg/kg	10.31.2019 11:32	2 U	5
Acenaphthylene	208-96-8	0.00943	0.00832		mg/kg	10.31.2019 11:3	2	5
Anthracene	120-12-7	0.00853	0.00832		mg/kg	10.31.2019 11:3	2	5
Benzo(a)anthracene	56-55-3	0.0144	0.00832		mg/kg	10.31.2019 11:3	2	5
Benzo(a)pyrene	50-32-8	0.0165	0.00832		mg/kg	10.31.2019 11:3	2	5
Benzo(b)fluoranthene	205-99-2	0.0212	0.00832		mg/kg	10.31.2019 11:3	2	5
Benzo(g,h,i)perylene	191-24-2	0.143	0.00832		mg/kg	10.31.2019 11:3	2	5
Benzo(k)fluoranthene	207-08-9	BRL	0.00832		mg/kg	10.31.2019 11:33	2 U	5
Chrysene	218-01-9	0.0129	0.00832		mg/kg	10.31.2019 11:3	2	5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00832		mg/kg	10.31.2019 11:3	2 U	5
Fluoranthene	206-44-0	0.0318	0.00832		mg/kg	10.31.2019 11:3	2	5
Fluorene	86-73-7	BRL	0.00832		mg/kg	10.31.2019 11:3	2 U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0209	0.00832		mg/kg	10.31.2019 11:3	2	5
Naphthalene	91-20-3	BRL	0.0832		mg/kg	10.31.2019 11:33	2 U	5
Phenanthrene	85-01-8	0.0201	0.00832		mg/kg	10.31.2019 11:33	2	5
Pyrene	129-00-0	0.0343	0.00832		mg/kg	10.31.2019 11:3	2	5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date I	lag	
Nitrobenzene-d5		101	%	31-130	10.31	.2019 11:32		
2-Fluorobiphenyl		99	%	51-133	10.31	.2019 11:32		
Terphenyl-D14		100	%	46-137	10.31	.2019 11:32		

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	101	%	31-130	10.31.2019 11:32	
2-Fluorobiphenyl	99	%	51-133	10.31.2019 11:32	
Terphenyl-D14	100	%	46-137	10.31.2019 11:32	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B14-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-036 Date Collected: 10.29.2019 09:15 Sample Depth: 5 - 5.5 ft

Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 08:25 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0189
 mg/kg
 10.31.2019 14:05
 1

Analytical Method: Metals, RCRA List, by SW 6020

Analytical Method: Mercury by SW 7471B

ADS

Tech:

Tech: PJB

Seq Number: 3106078

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Seq Number: 3106155 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	25.5	1.75	mg/kg	11.01.2019 13:19		10
Barium	7440-39-3	321	3.51	mg/kg	11.01.2019 13:19		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.01.2019 13:19	U	10
Chromium	7440-47-3	16.8	3.51	mg/kg	11.01.2019 13:19		10
Lead	7439-92-1	13.1	1.75	mg/kg	11.01.2019 13:19		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.01.2019 13:19	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.01.2019 13:19	U	10

DRU

Seq Number: 3106011

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B14-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-036 Date Collected: 10.29.2019 09:15 Sample Depth: 5 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 12:12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date]	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	10.31.2019 12:0)5	U	1
Acenaphthylene	208-96-8	0.00422	0.00167		mg/kg	10.31.2019 12:0)5		1
Anthracene	120-12-7	0.00234	0.00167		mg/kg	10.31.2019 12:0)5		1
Benzo(a)anthracene	56-55-3	0.00726	0.00167		mg/kg	10.31.2019 12:0)5		1
Benzo(a)pyrene	50-32-8	0.0162	0.00167		mg/kg	10.31.2019 12:0)5		1
Benzo(b)fluoranthene	205-99-2	0.0181	0.00167		mg/kg	10.31.2019 12:0)5		1
Benzo(g,h,i)perylene	191-24-2	0.0450	0.00167		mg/kg	10.31.2019 12:0)5		1
Benzo(k)fluoranthene	207-08-9	0.00539	0.00167		mg/kg	10.31.2019 12:0)5		1
Chrysene	218-01-9	0.00966	0.00167		mg/kg	10.31.2019 12:0)5		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	10.31.2019 12:0)5	U	1
Fluoranthene	206-44-0	0.0213	0.00167		mg/kg	10.31.2019 12:0)5		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	10.31.2019 12:0)5	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0191	0.00167		mg/kg	10.31.2019 12:0)5		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	10.31.2019 12:0)5	U	1
Phenanthrene	85-01-8	0.0131	0.00167		mg/kg	10.31.2019 12:0)5		1
Pyrene	129-00-0	0.0293	0.00167		mg/kg	10.31.2019 12:0)5		1
		% Recovery							
Surrogate			Units	Limits	Analy	ysis Date	Flag		
Nitrobenzene-d5		86	%	31-130	10.31	.2019 12:05			
2-Fluorobiphenyl		92	%	51-133		.2019 12:05			
Terphenyl-D14		104	%	46-137	10.31	.2019 12:05			

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B16-2.5-3.0 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-037 Date Collected: 10.29.2019 09:50 Sample Depth: 2.5 - 3 ft

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Analyst: Date Prep: 11.01.2019 14:00 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Cyanide, Total 57-12-5 0.144 0.0528 mg/kg 11.01.2019 15:49 1

Analytical Method: Mercury by SW 7471B

ADS Tech:

Seq Number: 3106078

KCS

Seq Number: 3106209

Tech:

ANJ Analyst: Date Prep: 10.31.2019 08:25

10.31.2019 18:00

% Moisture: Basis: Wet Weight

Prep Method: SW7471P

SUB: T104704215-19-30

Parameter Cas Number Result RL Units **Analysis Date** Flag Dil Mercury 0.0416 0.0196 10.31.2019 14:10 7439-97-6 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

DEP Analyst:

Seq Number: 3106155

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.5	1.67	mg/kg	11.01.2019 13:22		10
Barium	7440-39-3	117	3.33	mg/kg	11.01.2019 13:22		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.01.2019 13:22	U	10
Chromium	7440-47-3	11.1	3.33	mg/kg	11.01.2019 13:22		10
Lead	7439-92-1	42.5	1.67	mg/kg	11.01.2019 13:22		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.01.2019 13:22	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.01.2019 13:22	U	10

Date Prep:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B16-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-037 Date Collected: 10.29.2019 09:50 Sample Depth: 2.5 - 3 ft

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106060

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 10.31.2019 11:40
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106041

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 10.31.2019 12:25 8.56 pН 12408-02-5 1 Temperature TEMP 22.9 Deg C 10.31.2019 12:25 1

JOZ

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B16-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-037 Date Collected: 10.29.2019 09:50 Sample Depth: 2.5 - 3 ft

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 10.31.2019 09:54 Basis: Wet Weight

Seq Number: 3106146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0166	mg/kg	11.01.2019 11:58	U	1
PCB-1221	11104-28-2	BRL	0.0166	mg/kg	11.01.2019 11:58	U	1
PCB-1232	11141-16-5	BRL	0.0166	mg/kg	11.01.2019 11:58	U	1
PCB-1242	53469-21-9	BRL	0.0166	mg/kg	11.01.2019 11:58	U	1
PCB-1248	12672-29-6	0.0284	0.0166	mg/kg	11.01.2019 11:58		1
PCB-1254	11097-69-1	BRL	0.0166	mg/kg	11.01.2019 11:58	U	1
PCB-1260	11096-82-5	BRL	0.0166	mg/kg	11.01.2019 11:58	U	1
Commence		% Recovery	TI24	Timite Aug	nd Data Ele		

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	121	%	39-125	11.01.2019 11:58	
Tetrachloro-m-xylene	64	%	37-124	11.01.2019 11:58	

DRU

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B16-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-037 Date Collected: 10.29.2019 09:50 Sample Depth: 2.5 - 3 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 12:15 Basis: Wet Weight

Seq Number: 3106011 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Fla	g Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	10.31.2019 12:2	2 U	10
Acenaphthylene	208-96-8	0.112	0.0167		mg/kg	10.31.2019 12:2	2	10
Anthracene	120-12-7	0.0737	0.0167		mg/kg	10.31.2019 12:2	2	10
Benzo(a)anthracene	56-55-3	0.238	0.0167		mg/kg	10.31.2019 12:2	2	10
Benzo(a)pyrene	50-32-8	0.433	0.0167		mg/kg	10.31.2019 12:2	2	10
Benzo(b) fluoranthene	205-99-2	0.486	0.0167		mg/kg	10.31.2019 12:2	2	10
Benzo(g,h,i)perylene	191-24-2	0.377	0.0167		mg/kg	10.31.2019 12:2	2	10
Benzo(k)fluoranthene	207-08-9	0.146	0.0167		mg/kg	10.31.2019 12:2	2	10
Chrysene	218-01-9	0.326	0.0167		mg/kg	10.31.2019 12:2	2	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	10.31.2019 12:2	2 U	10
Fluoranthene	206-44-0	0.743	0.0167		mg/kg	10.31.2019 12:2	2	10
Fluorene	86-73-7	0.0249	0.0167		mg/kg	10.31.2019 12:2	2	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.263	0.0167		mg/kg	10.31.2019 12:2	2	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	10.31.2019 12:2	2 U	10
Phenanthrene	85-01-8	0.526	0.0167		mg/kg	10.31.2019 12:2	2	10
Pyrene	129-00-0	0.917	0.0167		mg/kg	10.31.2019 12:2	2	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		62	%	31-130		.2019 12:22		
2-Fluorobiphenyl		76	%	51-133		.2019 12:22		
Terphenyl-D14		75	%	46-137	10.31	.2019 12:22		

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B16-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-037 Date Collected: 10.29.2019 09:50 Sample Depth: 2.5 - 3 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,1-Dichloroethane	75-34-3	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,1-Dichloroethene	75-35-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,1-Dichloropropene	563-58-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2-Dibromoethane	106-93-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2-Dichloroethane	107-06-2	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,2-Dichloropropane	78-87-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,3-Dichloropropane	142-28-9	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
2,2-Dichloropropane	594-20-7	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
2-Butanone	78-93-3	BRL	1.07	mg/kg	10.30.2019 19:08	U	50
2-Chlorotoluene	95-49-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
2-Hexanone	591-78-6	BRL	2.68	mg/kg	10.30.2019 19:08	U	50
4-Chlorotoluene	106-43-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.68	mg/kg	10.30.2019 19:08	U	50
Acetone	67-64-1	BRL	5.35	mg/kg	10.30.2019 19:08	U	50
Benzene	71-43-2	BRL	0.0535	mg/kg	10.30.2019 19:08	U	50
Bromobenzene	108-86-1	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Bromochloromethane	74-97-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Bromodichloromethane	75-27-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Bromoform	75-25-2	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Bromomethane	74-83-9	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Carbon Disulfide	75-15-0	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Carbon Tetrachloride	56-23-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Chlorobenzene	108-90-7	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Chloroethane	75-00-3	BRL	0.535	mg/kg	10.30.2019 19:08	U	50
Chloroform	67-66-3	BRL	0.268	mg/kg	10.30.2019 19:08	U	50

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B16-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-037 Date Collected: 10.29.2019 09:50 Sample Depth: 2.5 - 3 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Dibromochloromethane	124-48-1	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Dibromomethane	74-95-3	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Ethylbenzene	100-41-4	BRL	0.0535	mg/kg	10.30.2019 19:08	U	50
Hexachlorobutadiene	87-68-3	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.07	mg/kg	10.30.2019 19:08	U	50
Isopropylbenzene	98-82-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
m,p-Xylenes	179601-23-1	BRL	0.107	mg/kg	10.30.2019 19:08	U	50
Methylene Chloride	75-09-2	BRL	1.07	mg/kg	10.30.2019 19:08	U	50
MTBE	1634-04-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Naphthalene	91-20-3	BRL	0.535	mg/kg	10.30.2019 19:08	U	50
n-Butylbenzene	104-51-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
n-Propylbenzene	103-65-1	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
o-Xylene	95-47-6	BRL	0.0535	mg/kg	10.30.2019 19:08	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Sec-Butylbenzene	135-98-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Styrene	100-42-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
tert-Butylbenzene	98-06-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Tetrachloroethylene	127-18-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Toluene	108-88-3	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Total Xylenes	1330-20-7	BRL	0.0535	mg/kg	10.30.2019 19:08	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Trichloroethene	79-01-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Trichlorofluoromethane	75-69-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Vinyl Acetate	108-05-4	BRL	0.535	mg/kg	10.30.2019 19:08	U	50
Vinyl Chloride	75-01-4	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
1,3-Butadiene	106-99-0	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Cyclohexane	110-82-7	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Dicyclopentadiene	77-73-6	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Methylcyclohexane	108-87-2	BRL	0.535	mg/kg	10.30.2019 19:08	U	50
n-Hexane	110-54-3	BRL	0.535	mg/kg	10.30.2019 19:08	U	50
4-Ethyltoluene	622-96-8	BRL	0.268	mg/kg	10.30.2019 19:08	U	50
Propene	115-07-1	BRL	0.268	mg/kg	10.30.2019 19:08	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B16-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-037 Date Collected: 10.29.2019 09:50 Sample Depth: 2.5 - 3 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Seq Number: 3105931 SUB: T104704215-19-30

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	89	%	53-142	10.30.2019 19:08	
1,2-Dichloroethane-D4	99	%	56-150	10.30.2019 19:08	
Toluene-D8	102	%	70-130	10.30.2019 19:08	
4-Bromofluorobenzene	96	%	68-152	10.30.2019 19:08	

Mercury

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102919** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-038 Date Collected: 10.29.2019 10:00

7439-97-6

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

Tech: KCS % Moisture:

Analyst: KCS Date Prep: 11.01.2019 14:00 Basis: Wet Weight

Seq Number: 3106209 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Cyanide, Total
 57-12-5
 0.109
 0.0631
 mg/kg
 11.01.2019 15:50
 1

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 08:25 Basis: Wet Weight Seq Number: 3106078 SUB: T104704215-19-30

Parameter Cas Number Result RL Units Analysis Date Flag Dil

0.0320

0.0169

10.31.2019 14:12

mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Seq Number: 3106155 SUB: T104704215-19-30

Parameter Cas Number Result RL Dil Units **Analysis Date** Flag 9.24 11.01.2019 13:25 Arsenic 7440-38-2 1.96 10 mg/kg Barium 7440-39-3 101 3.92 11.01.2019 13:25 10 mg/kg Cadmium 7440-43-9 BRL 1.96 11.01.2019 13:25 U 10 mg/kg Chromium 7440-47-3 11.6 3.92 11.01.2019 13:25 10 mg/kg Lead 7439-92-1 31.6 1.96 mg/kg 11.01.2019 13:25 10 Selenium 7782-49-2 BRL 1.96 11.01.2019 13:25 U 10 mg/kg Silver 7440-22-4 BRL 1.96 mg/kg 11.01.2019 13:25 U 10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102919** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-038 Date Collected: 10.29.2019 10:00

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106060

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 10.31.2019 11:57
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106041

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 10.31.2019 12:25 8.45 pН 12408-02-5 1 Temperature TEMP 20.7 Deg C 10.31.2019 12:25 1

JOZ

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102919** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-038 Date Collected: 10.29.2019 10:00

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 10.31.2019 09:57 Basis: Wet Weight

Seq Number: 3106146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0167	mg/kg	11.01.2019 12:09	U	1
PCB-1221	11104-28-2	BRL	0.0167	mg/kg	11.01.2019 12:09	U	1
PCB-1232	11141-16-5	BRL	0.0167	mg/kg	11.01.2019 12:09	U	1
PCB-1242	53469-21-9	BRL	0.0167	mg/kg	11.01.2019 12:09	U	1
PCB-1248	12672-29-6	0.0378	0.0167	mg/kg	11.01.2019 12:09		1
PCB-1254	11097-69-1	BRL	0.0167	mg/kg	11.01.2019 12:09	U	1
PCB-1260	11096-82-5	BRL	0.0167	mg/kg	11.01.2019 12:09	U	1
		0/ Dogovowy					

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	99	%	39-125	11.01.2019 12:09	
Tetrachloro-m-xylene	55	%	37-124	11.01.2019 12:09	

DRU

Seq Number: 3106011

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102919** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-038 Date Collected: 10.29.2019 10:00

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 12:18 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	10.31.2019 12:	39	U	5
Acenaphthylene	208-96-8	0.184	0.00833		mg/kg	10.31.2019 12:	39		5
Anthracene	120-12-7	0.121	0.00833		mg/kg	10.31.2019 12:	39		5
Benzo(a)anthracene	56-55-3	0.338	0.00833		mg/kg	10.31.2019 12:	39		5
Benzo(a)pyrene	50-32-8	0.641	0.00833		mg/kg	10.31.2019 12:	39		5
Benzo(b)fluoranthene	205-99-2	0.766	0.00833		mg/kg	10.31.2019 12:	39		5
Benzo(g,h,i)perylene	191-24-2	0.468	0.00833		mg/kg	10.31.2019 12:	39		5
Benzo(k)fluoranthene	207-08-9	0.178	0.00833		mg/kg	10.31.2019 12:	39		5
Chrysene	218-01-9	0.434	0.00833		mg/kg	10.31.2019 12:	39		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00833		mg/kg	10.31.2019 12:	39	U	5
Fluoranthene	206-44-0	1.04	0.00833		mg/kg	10.31.2019 12:	39		5
Fluorene	86-73-7	0.0441	0.00833		mg/kg	10.31.2019 12:	39		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.329	0.00833		mg/kg	10.31.2019 12:	39		5
Naphthalene	91-20-3	0.136	0.0833		mg/kg	10.31.2019 12:	39		5
Phenanthrene	85-01-8	0.745	0.00833		mg/kg	10.31.2019 12:	39		5
Pyrene	129-00-0	1.27	0.00833		mg/kg	10.31.2019 12:	39		5
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		67	%	31-130	10.31	.2019 12:39			
2-Fluorobiphenyl		80	%	51-133		.2019 12:39			
Terphenyl-D14		83	%	46-137	10.31	.2019 12:39			

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-FD01-102919** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-038 Date Collected: 10.29.2019 10:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Seq Number: 3105931 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,1-Dichloroethane	75-34-3	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,1-Dichloroethene	75-35-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,1-Dichloropropene	563-58-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2-Dibromoethane	106-93-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2-Dichloroethane	107-06-2	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,2-Dichloropropane	78-87-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,3-Dichloropropane	142-28-9	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
2,2-Dichloropropane	594-20-7	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
2-Butanone	78-93-3	BRL	0.996	mg/kg	10.30.2019 19:30	U	50
2-Chlorotoluene	95-49-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
2-Hexanone	591-78-6	BRL	2.49	mg/kg	10.30.2019 19:30	U	50
4-Chlorotoluene	106-43-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.49	mg/kg	10.30.2019 19:30	U	50
Acetone	67-64-1	BRL	4.98	mg/kg	10.30.2019 19:30	U	50
Benzene	71-43-2	BRL	0.0498	mg/kg	10.30.2019 19:30	U	50
Bromobenzene	108-86-1	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Bromochloromethane	74-97-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Bromodichloromethane	75-27-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Bromoform	75-25-2	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Bromomethane	74-83-9	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Carbon Disulfide	75-15-0	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Carbon Tetrachloride	56-23-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Chlorobenzene	108-90-7	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Chloroethane	75-00-3	BRL	0.498	mg/kg	10.30.2019 19:30	U	50
Chloroform	67-66-3	BRL	0.249	mg/kg	10.30.2019 19:30	U	50

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-FD01-102919** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-038 Date Collected: 10.29.2019 10:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Dibromochloromethane	124-48-1	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Dibromomethane	74-95-3	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Ethylbenzene	100-41-4	BRL	0.0498	mg/kg	10.30.2019 19:30	U	50
Hexachlorobutadiene	87-68-3	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.996	mg/kg	10.30.2019 19:30	U	50
Isopropylbenzene	98-82-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
m,p-Xylenes	179601-23-1	BRL	0.0996	mg/kg	10.30.2019 19:30	U	50
Methylene Chloride	75-09-2	BRL	0.996	mg/kg	10.30.2019 19:30	U	50
MTBE	1634-04-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Naphthalene	91-20-3	BRL	0.498	mg/kg	10.30.2019 19:30	U	50
n-Butylbenzene	104-51-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
n-Propylbenzene	103-65-1	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
o-Xylene	95-47-6	BRL	0.0498	mg/kg	10.30.2019 19:30	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Sec-Butylbenzene	135-98-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Styrene	100-42-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
tert-Butylbenzene	98-06-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Tetrachloroethylene	127-18-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Toluene	108-88-3	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Total Xylenes	1330-20-7	BRL	0.0498	mg/kg	10.30.2019 19:30	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Trichloroethene	79-01-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Trichlorofluoromethane	75-69-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Vinyl Acetate	108-05-4	BRL	0.498	mg/kg	10.30.2019 19:30	U	50
Vinyl Chloride	75-01-4	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
1,3-Butadiene	106-99-0	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Cyclohexane	110-82-7	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Dicyclopentadiene	77-73-6	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Methylcyclohexane	108-87-2	BRL	0.498	mg/kg	10.30.2019 19:30	U	50
n-Hexane	110-54-3	BRL	0.498	mg/kg	10.30.2019 19:30	U	50
4-Ethyltoluene	622-96-8	BRL	0.249	mg/kg	10.30.2019 19:30	U	50
Propene	115-07-1	BRL	0.249	mg/kg	10.30.2019 19:30	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-102919** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-038 Date Collected: 10.29.2019 10:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Seq Number: 3105931 SUB: T104704215-19-30

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	88	%	53-142	10.30.2019 19:30	
1,2-Dichloroethane-D4	99	%	56-150	10.30.2019 19:30	
Toluene-D8	102	%	70-130	10.30.2019 19:30	
4-Bromofluorobenzene	97	%	68-152	10.30.2019 19:30	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B16-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-039 Date Collected: 10.29.2019 10:05 Sample Depth: 5 - 5.5 ft

Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 10.31.2019 08:25 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0225
 0.0196
 mg/kg
 10.31.2019 14:14
 1

Analytical Method: Metals, RCRA List, by SW 6020

Analytical Method: Mercury by SW 7471B

ADS

Tech:

Tech: PJB

Seq Number: 3106078

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Seq Number: 3106155 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.2	1.75	mg/kg	11.01.2019 13:28		10
Barium	7440-39-3	171	3.51	mg/kg	11.01.2019 13:28		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.01.2019 13:28	U	10
Chromium	7440-47-3	14.9	3.51	mg/kg	11.01.2019 13:28		10
Lead	7439-92-1	23.7	1.75	mg/kg	11.01.2019 13:28		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.01.2019 13:28	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.01.2019 13:28	U	10

Analyst:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

10.30.2019 12:21

Sample Id: D-B16-5.0-5.5 Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-039 Date Collected: 10.29.2019 10:05 Sample Depth: 5 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

Tech: DRU % Moisture: DNE

Basis: Wet Weight

Date Prep: Seq Number: 3106011 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Fla	g Dil
Acenaphthene	83-32-9	BRL	0.00334		mg/kg	10.31.2019 12:5	6 U	2
Acenaphthylene	208-96-8	0.0490	0.00334		mg/kg	10.31.2019 12:5	6	2
Anthracene	120-12-7	0.0309	0.00334		mg/kg	10.31.2019 12:5	6	2
Benzo(a)anthracene	56-55-3	0.0920	0.00334		mg/kg	10.31.2019 12:5	6	2
Benzo(a)pyrene	50-32-8	0.174	0.00334		mg/kg	10.31.2019 12:5	6	2
Benzo(b) fluoranthene	205-99-2	0.202	0.00334		mg/kg	10.31.2019 12:5	6	2
Benzo(g,h,i)perylene	191-24-2	0.123	0.00334		mg/kg	10.31.2019 12:5	6	2
Benzo(k)fluoranthene	207-08-9	0.0625	0.00334		mg/kg	10.31.2019 12:5	6	2
Chrysene	218-01-9	0.112	0.00334		mg/kg	10.31.2019 12:5	6	2
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00334		mg/kg	10.31.2019 12:5	6 U	2
Fluoranthene	206-44-0	0.276	0.00334		mg/kg	10.31.2019 12:5	6	2
Fluorene	86-73-7	0.00932	0.00334		mg/kg	10.31.2019 12:5	6	2
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0892	0.00334		mg/kg	10.31.2019 12:5	6	2
Naphthalene	91-20-3	0.0357	0.0334		mg/kg	10.31.2019 12:5	6	2
Phenanthrene	85-01-8	0.177	0.00334		mg/kg	10.31.2019 12:5	6	2
Pyrene	129-00-0	0.338	0.00334		mg/kg	10.31.2019 12:5	6	2
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date	Flag	
Nitrobenzene-d5		86	%	31-130		.2019 12:56		
2-Fluorobiphenyl		102	%	51-133		.2019 12:56		
Terphenyl-D14		103	%	46-137	10.31	.2019 12:56		

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B16-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-039 Date Collected: 10.29.2019 10:05 Sample Depth: 5 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

1.1.1.2-Trichlorochane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2.2-Tetrachloroethane 79-34-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.1.2-Tichloroethane 79-00-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.1.1-Dichloroethane 75-34-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.1.1-Dichloroethene 75-35-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.1.1-Dichloroethene 75-35-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.1.1-Dichloroethene 87-61-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.3-Trichlorobenzene 96-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.4-Trichlorobenzene 120-82-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.4-Trichlorobenzene 95-63-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.1-Dibromo-Chloropopane 96-12-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.1-Dibromo-Chloropopane 96-12-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.1-Dibromo-Chloropopane 95-0-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.1-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2.1-Dichloropopane 78-87-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Trimethylbenzene 108-67-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Trimethylbenzene 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Trimethylbenzene 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Dichlorobenzene 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Dichloropopane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Dichlorobenzene 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Trimethylbenzene 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Trimethylbenzene 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Trimethylbenzene 198-48-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3.1-Trimethylbenzene 198-48-8	1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1.1.2-Trichloroethane	1,1,1-Trichloroethane	71-55-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Description	1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1-Dichloropropene 75-35-4 BRL 0.296 mgkg 0.30.2019 19:51 U 50	1,1,2-Trichloroethane	79-00-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1.1-Dichloropropene 563-58-6 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2.3-Trichlorobenzene 87-61-6 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2.3-Trichlorobenzene 120-82-1 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2.4-Trichlorobenzene 120-82-1 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2.4-Trichloropropane 95-63-6 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2Dibromo-3-Chloropropane 96-12-8 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2Dibromo-3-Chloropropane 95-50-1 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2Dibromo-3-Chloropropane 95-50-1 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2Dichlorobenzene 95-50-1 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2Dichlorobenzene 106-62 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.2Dichloropropane 108-67-8 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.3Dichloropropane 142-28-9 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.3Dichloropropane 142-28-9 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.3Dichloropropane 142-28-9 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.3Dichloropropane 142-28-9 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 1.3Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 2.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 2.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 2.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 2.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 2.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 3.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 3.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 3.2-Dichloropropane 594-20-7 BRI. 0.296 mg/kg 0.30.2019 19:51 U 50 3.2-Dichlorop	1,1-Dichloroethane	75-34-3	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,2.3-Trichlorobenzene 87-61-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2.3-Trichloroperopane 96-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2.4-Trinchlorobenzene 120-82-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2.4-Trinchlorobenzene 95-63-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2.4-Dibromo-3-Chloropropane 96-12-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2Dibromochane 106-93-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2Dichlorobenzene 107-06-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2Dichloropropane 78-87-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3Dichlorobenzene 106-67-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3Dichloropropane 54-73-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 54-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 54-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 59-4-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 59-18-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 59-178-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 59-178-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 59-178-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 59-178-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 108-10-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 108-10-1 BRL 0.296 mg/kg 10.30.2019 19:51	1,1-Dichloroethene	75-35-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,2,3-Trichloropropane 96-18-4 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,2,4-Trichlorobenzene 120-82-1 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,2,4-Trinehylbenzene 96-12-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,2-Dibriomo-S-Chloropropane 96-12-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,2-Dibriomo-Schloropropane 96-12-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,2-Dichlorobenzene 106-93-4 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,2-Dichloropropane 107-06-2 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,2-Dichloropropane 178-87-5 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,3-Dichloropropane 18-7-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,3-Dichloropropane 14-2-8-9 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,3-Dichloropropane 14-2-8-9 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,4-Dichloropropane 14-2-8-9 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,4-Dichloropropane 194-28-9 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 3-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 3-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10,30,2019 19:51 U 50 3-Dichloropropane 594-9-8 BRL 0.396 mg/kg 10,30,2019 19:51 U 50 3-Dichloropropane 594-9-8 BRL 0.396 mg/kg 10,30,2019 19:51 U 50 3-Dichloropropane 594-9-8 BRL 0.396 mg/kg 10,30,2019 19:51 U 50 3-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10,30,2	1,1-Dichloropropene	563-58-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,2.4-Trichlorobenzene 120-82-1	1,2,3-Trichlorobenzene	87-61-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,24-Trimethylbenzene 95-63-6 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,2-Dibromo-3-Chloropropane 96-12-8 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,2-Dibromochtane 106-93-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,2-Dichlorochtane 107-06-2 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,2-Dichlorochtane 107-06-2 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,2-Dichlorochtane 108-67-8 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,3-Dichlorochtane 41-73-1 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,3-Dichlorochtane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,3-Dichlorochtane 106-67 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,3-Dichlorochtane 106-67 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,3-Dichlorochtane 106-67 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 1,3-Dichlorochtane 106-67 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 2,2-Dichlorochtane 595-49-8 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 2,-Hexanone 595-49-8 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 4-Methyl-2-Pentanone 106-43-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 5	1,2,3-Trichloropropane	96-18-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,2-Dibromo-3-Chloropropane 96-12-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2-Dibromoethane 106-93-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 108-67-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Dichloropropane 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-10-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 3-Dichloropropane 108-86-1	1,2,4-Trichlorobenzene	120-82-1	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1.2-Dibromoethane 106-93-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2-Dichloroethane 107-06-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.2-Dichloropthane 107-06-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3-Dichloropenzene 108-67-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3-Dichloropenzene 541-73-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3-Dichloropenzene 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.4-Dichloropenzene 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.4-Dichloropenzene 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2.2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 10.30.2019 19:51 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Acetone 67-64-1 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BR	1,2,4-Trimethylbenzene	95-63-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 1.0.3.0.2019 19:51 U 50 1,2-Dichloroethane 107-06-2 BRL 0.296 mg/kg 1.0.3.0.2019 19:51 U 50 1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 1.0.3.0.2019 19:51 U 50 1,3-Dichlorobenzene 108-67-8 BRL 0.296 mg/kg 1.0.3.0.2019 19:51 U 50 1,3-Dichlorobenzene 142-28-9 BRL 0.296 mg/kg 1.0.3.0.2019 19:51 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 1.0.3.0.2019 19:51 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 4-Chlorotoluene 594-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 4-Chlorotoluene 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 50 4-Chlorotoluene 108-10-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 50 4-Chlorotoluene 108-10-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 50 50 50 50 50 50	1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,2-Dichloroethane 107-06-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 78-87-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3,5-Trimethylbenzene 108-67-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 2,2-Dichloropropane 594-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 50 50 50 50 50 50	1,2-Dibromoethane	106-93-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1.2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 0.30.2019 19:51 U 50 1.3.5-Trimethylbenzene 108-67-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.4-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1.4-Dichloropropane 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2.2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2.2-Dichloropropane 78-93-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2.2-Dichloropropane 594-94-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2.2-Dichloropropane 591-78-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2.2-Dichloropropane 591-78-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Methyl-2-Pentanone 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 5-Me	1,2-Dichlorobenzene	95-50-1	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
13,5-Trimethylbenzene 108-67-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 10.30.2019 19:51 U 50 2-Hexanone 95-49-8 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 106-43-4 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2	1,2-Dichloroethane	107-06-2	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 10.30.2019 19:51 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Cetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochlane 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochlane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochlane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochlane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochlane 75-25-2 BRL 0.296	1,2-Dichloropropane	78-87-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
National Properties 142-28-9 BRL 0.296 mg/kg 1.030.2019 19:51 U 50	1,3,5-Trimethylbenzene	108-67-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	1,3-Dichlorobenzene	541-73-1	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 10.30.2019 19:51 U 50 2-Chlorotoluene 95-49-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 Acetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromodichloromethane 75-27-4 BRL 0.29	1,3-Dichloropropane	142-28-9	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
2-Butanone 78-93-3 BRL 1.18 mg/kg 10.30.2019 19:51 U 50 2-Chlorotoluene 95-49-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 Acetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-27-4 BRL 0.296	1,4-Dichlorobenzene	106-46-7	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
2-Chlorotoluene 95-49-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 Acetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296	2,2-Dichloropropane	594-20-7	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
2-Hexanone 591-78-6 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 Acetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BR 0.296	2-Butanone	78-93-3	BRL	1.18	mg/kg	10.30.2019 19:51	U	50
4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 103.02019 19:51 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 Acetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene	2-Chlorotoluene	95-49-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 10.30.2019 19:51 U 50 Acetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 108-90-7	2-Hexanone	591-78-6	BRL	2.96	mg/kg	10.30.2019 19:51	U	50
Acetone 67-64-1 BRL 5.91 mg/kg 10.30.2019 19:51 U 50 Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	4-Chlorotoluene	106-43-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Benzene 71-43-2 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	4-Methyl-2-Pentanone	108-10-1	BRL	2.96	mg/kg	10.30.2019 19:51	U	50
Bromobenzene 108-86-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Acetone	67-64-1	BRL	5.91	mg/kg	10.30.2019 19:51	U	50
Bromochloromethane 74-97-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Benzene	71-43-2	BRL	0.0591	mg/kg	10.30.2019 19:51	U	50
Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Bromobenzene	108-86-1	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Bromoform 75-25-2 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Bromochloromethane	74-97-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Bromomethane 74-83-9 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Bromodichloromethane	75-27-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Bromoform	75-25-2	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Bromomethane	74-83-9	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Chlorobenzene 108-90-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Carbon Disulfide	75-15-0	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
	Carbon Tetrachloride	56-23-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Chloroethane 75-00-3 RRI 0.591 mg/kg 10.30.2019.19-51 II 50	Chlorobenzene	108-90-7	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Chroroculant 15-00-5 BRL 0.5/1 ling/kg 10.50.2019 19.51 U 50	Chloroethane	75-00-3	BRL	0.591	mg/kg	10.30.2019 19:51	U	50
Chloroform 67-66-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Chloroform	67-66-3	BRL	0.296	mg/kg	10.30.2019 19:51	U	50

Seq Number: 3105931

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B16-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-039 Date Collected: 10.29.2019 10:05 Sample Depth: 5 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Chiromethane 74-87-3 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 cis-1.2-Dichloroethene 156-59-2 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 cis-1.3-Dichloropropene 10001-01-5 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 124-48-1 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 74-95-3 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 75-71-8 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 75-71-8 BRL 0.0961 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.0991 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.0991 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.0991 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.0996 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-41-4 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-45-8 BRL 0.096 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-45-8 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-42-5 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-42-5 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-42-5 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-42-5 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-42-5 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-42-5 BRL 0.296 mg/kg 10.30.2019 19.51 U 50 Dibromomethane 100-42-5 BRL 0.296 mg/kg	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichloropropene 10061-01-5 BRI. 0.296 mgkg 10.30.2019 19-51 U 50 Dibromochloromethane 124-48-1 BRI. 0.296 mgkg 10.30.2019 19-51 U 50 Dichlorodifibroomethane 74-95-3 BRI. 0.296 mgkg 10.30.2019 19-51 U 50 Eithylhenzene 100-41-4 BRI. 0.0291 mgkg 10.30.2019 19-51 U 50 Hexachlorobutatine 87-68-3 BRI. 0.0296 mgkg 10.30.2019 19-51 U 50 Hexachlorobutatine 74-88-4 BRI. 0.296 mgkg 10.30.2019 19-51 U 50 Isopropylbenzene 98-82-8 BRI. 0.118 mgkg 10.30.2019 19-51 U 50 Isopropylbenzene 98-82-8 BRI. 0.118 mgkg 10.30.2019 19-51 U 50 Methylene Chloride 75-09-2 BRI. 0.118 mgkg 10.30.2019 19-51 U 50 Mipplemzene 16-3	Chloromethane	74-87-3	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Dibromochloromethane 12448-1 BRL 0.296 mgkg 10.30.2019 19-51 U 50	cis-1,2-Dichloroethene	156-59-2	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Dirbonomethane 74-95-3 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Dichlorodiflutoromethane 75-71-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 100-41-4 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 87-68-3 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 98-82-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 98-82-8 BRI. 0.118 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 98-82-8 BRI. 0.118 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 75-09-2 BRI. 0.118 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 164-04 BRI. 0.118 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 164-04 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 104-51-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 104-51-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 104-51-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 104-51-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 104-51-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 135-98-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 135-98-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 135-98-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 135-98-8 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 127-18-4 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 127-18-4 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 127-18-4 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 130-02-7 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 156-60-5 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 156-60-5 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 156-60-5 BRI. 0.296 mg/kg 10.30.2019 19-51 U 50 Ethylbenzene 156-60-5 BRI. 0.296	cis-1,3-Dichloropropene	10061-01-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Dichlorodifluoromethane 75-71-8 BRL 0.096 mg/kg 0.30.2019 19:51 U 50	Dibromochloromethane	124-48-1	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Ehylbenzene 100-41-4 BRIL 0.0591 mg/kg 0.30.2019 19-51 U 50 Hexachlorobutadiene 87-68-3 BRL 0.296 mg/kg 0.30.2019 19-51 U 50 Iodomethane (Methyl Iodide) 74-88-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Iodomethane (Methyl Iodide) 74-88-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Imp-Xylenes 179601-23-1 BRIL 0.118 mg/kg 0.30.2019 19-51 U 50 Imp-Xylenes 179601-23-1 BRIL 0.118 mg/kg 0.30.2019 19-51 U 50 Methylene Chloride 75-09-2 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Methylene Chloride 91-20-3 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Naphthalene 91-20-3 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Naphthalene 91-20-3 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Naphthalene 103-65-1 BRIL 0.0591 mg/kg 0.30.2019 19-51 U 50 Naphthalene 95-47-6 BRIL 0.0591 mg/kg 0.30.2019 19-51 U 50 P-Cymene (p-Isopropylloluene) 99-87-6 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Sec-Butylhenzene 135-98-8 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Styrene 100-42-5 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Tetra-thoroethylene 127-18-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Tetra-thoroethylene 127-18-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Tolal Xylene 1330-20-7 BRIL 0.0591 mg/kg 0.30.2019 19-51 U 50 Trichlorothene 156-60-5 BRIL 0.0591 mg/kg 0.30.2019 19-51 U 50 Trichlorothene 75-69-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Trichlorothene 75-69-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Trichlorothene 75-69-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Trichlorothene 75-69-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Trichlorothene 75-69-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Trichlorothene 75-69-4 BRIL 0.296 mg/kg 0.30.2019 19-51 U 50 Trichlorothe	Dibromomethane	74-95-3	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Hexachlorobutadiene	Dichlorodifluoromethane	75-71-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Description Part	Ethylbenzene	100-41-4	BRL	0.0591	mg/kg	10.30.2019 19:51	U	50
Suppropylebanzene 98-82-8 BRL 0.296 mg/kg 10.30.2019 19:51 V 50 mg/kg 179601-23-1 BRL 0.118 mg/kg 10.30.2019 19:51 V 50 50 Methylene Chloride 75-09-2 BRL 1.18 mg/kg 10.30.2019 19:51 V 50 50 MTBE 1634-04-4 BRL 0.296 mg/kg 10.30.2019 19:51 V 50 50 Maphthalene 91-20-3 BRL 0.591 mg/kg 10.30.2019 19:51 V 50 50 Maphthalene 104-51-8 BRL 0.296 mg/kg 10.30.2019 19:51 V 50 10.50 Mg/kg 10.30.2019 19:51 V 50 Mg/kg 10.30.2019	Hexachlorobutadiene	87-68-3	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Methylene	Iodomethane (Methyl Iodide)	74-88-4	BRL	1.18	mg/kg	10.30.2019 19:51	U	50
Methylene Chloride 75-09-2 BRL 1.18 mg/kg 10.30.2019 19:51 U 50 MTBE 1634-04-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Naphthalene 91-20-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Butylbenzene 104-51-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 n-Propylbenzene 103-65-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 o-Xylene 95-47-6 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Scyrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Etter-Butylbenzene 98-0-6 BRL 0.296	Isopropylbenzene	98-82-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
MTBE 1634-04-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Naphthalene 91-20-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Butylbenzene 104-51-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 n-Propylbenzene 103-65-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 o-Xylene 95-47-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Sec-Butylbenzene 135-98-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Ettrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Total Xylenes 1330-20-7 BRL	m,p-Xylenes	179601-23-1	BRL	0.118	mg/kg	10.30.2019 19:51	U	50
Naphthalene 91-20-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Butylbenzene 104-51-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 n-Propylbenzene 103-65-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 o-Xylene 95-47-6 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Sec-Butylbenzene 135-98-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 tert-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tolulene 108-88-3 BRL	Methylene Chloride	75-09-2	BRL	1.18	mg/kg	10.30.2019 19:51	U	50
n-Butylbenzene 104-51-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 n-Propylbenzene 103-65-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 o-Xylene 95-47-6 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 Sec-Butylbenzene 135-98-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Sec-Butylbenzene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 tetra-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Totlane 108-88-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Totlat Nylenes 1330-20-7 BRL 0.096 mg/kg 10.30.2019 19:51 U 50 ttans-1,2-dichlorothene 156-60-5 BRL	MTBE	1634-04-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
n-Propylbenzene 103-65-1 BRL 0.296 mg/kg 103.02.019 19:51 U 50 o-Xylene 95-47-6 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Sec-Butylbenzene 135-98-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 tetr-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoroethene 79-01-6 </td <td>Naphthalene</td> <td>91-20-3</td> <td>BRL</td> <td>0.591</td> <td>mg/kg</td> <td>10.30.2019 19:51</td> <td>U</td> <td>50</td>	Naphthalene	91-20-3	BRL	0.591	mg/kg	10.30.2019 19:51	U	50
o-Xylene 95-47-6 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Sec-Butylbenzene 135-98-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 terr-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Toluene 108-88-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloroethene 156-60-5 BRL 0.096 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 <t< td=""><td>n-Butylbenzene</td><td>104-51-8</td><td>BRL</td><td>0.296</td><td>mg/kg</td><td>10.30.2019 19:51</td><td>U</td><td>50</td></t<>	n-Butylbenzene	104-51-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Sec-Butylbenzene 135-98-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 tert-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Toluene 108-88-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane	n-Propylbenzene	103-65-1	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Sec-Butylbenzene 135-98-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 tert-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Toluene 108-88-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 75-69-4	o-Xylene	95-47-6	BRL	0.0591	mg/kg	10.30.2019 19:51	U	50
Styrene 100-42-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 tetr-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Toluene 108-88-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 <	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
tert-Butylbenzene 98-06-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Toluene 108-88-3 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4<	Sec-Butylbenzene	135-98-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Tetrachloroethylene 127-18-4 BRL 0.296 mg/kg 103.02019 19:51 U 50 Toluene 108-88-3 BRL 0.296 mg/kg 103.02019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0	Styrene	100-42-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Toluene 108-88-3 BRL 0.296 mg/kg 103.02019 19:51 U 50 Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7	tert-Butylbenzene	98-06-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Total Xylenes 1330-20-7 BRL 0.0591 mg/kg 10.30.2019 19:51 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 </td <td>Tetrachloroethylene</td> <td>127-18-4</td> <td>BRL</td> <td>0.296</td> <td>mg/kg</td> <td>10.30.2019 19:51</td> <td>U</td> <td>50</td>	Tetrachloroethylene	127-18-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2<	Toluene	108-88-3	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
trans-1,3-dichloropropene 10061-02-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8	Total Xylenes	1330-20-7	BRL	0.0591	mg/kg	10.30.2019 19:51	U	50
Trichloroethene 79-01-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL	trans-1,2-dichloroethene	156-60-5	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Trichlorofluoromethane 75-69-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Vinyl Acetate 108-05-4 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Trichloroethene	79-01-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Vinyl Chloride 75-01-4 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Trichlorofluoromethane	75-69-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
1,3-Butadiene 106-99-0 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Vinyl Acetate	108-05-4	BRL	0.591	mg/kg	10.30.2019 19:51	U	50
Cyclohexane 110-82-7 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Vinyl Chloride	75-01-4	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Dicyclopentadiene 77-73-6 BRL 0.296 mg/kg 10.30.2019 19:51 U 50 Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	1,3-Butadiene	106-99-0	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
Methylcyclohexane 108-87-2 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Cyclohexane	110-82-7	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
n-Hexane 110-54-3 BRL 0.591 mg/kg 10.30.2019 19:51 U 50 4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Dicyclopentadiene	77-73-6	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
4-Ethyltoluene 622-96-8 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	Methylcyclohexane	108-87-2	BRL	0.591	mg/kg	10.30.2019 19:51	U	50
	n-Hexane	110-54-3	BRL	0.591	mg/kg	10.30.2019 19:51	U	50
Propene 115-07-1 BRL 0.296 mg/kg 10.30.2019 19:51 U 50	4-Ethyltoluene	622-96-8	BRL	0.296	mg/kg	10.30.2019 19:51	U	50
	Propene	115-07-1	BRL	0.296	mg/kg	10.30.2019 19:51	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B16-5.0-5.5** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-039 Date Collected: 10.29.2019 10:05 Sample Depth: 5 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 10.30.2019 15:00 Basis: Wet Weight

Seq Number: 3105931 SUB: T104704215-19-30

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	88	%	53-142	10.30.2019 19:51	
1,2-Dichloroethane-D4	100	%	56-150	10.30.2019 19:51	
Toluene-D8	103	%	70-130	10.30.2019 19:51	
4-Bromofluorobenzene	98	%	68-152	10.30.2019 19:51	

Tech:

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B22-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-040 Date Collected: 10.29.2019 10:15 Sample Depth: 2.5 - 3 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 10.31.2019 08:25 Basis: Wet Weight

Seq Number: 3106078 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0189
 mg/kg
 10.31.2019 14:16
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 10.31.2019 18:00 Basis: Wet Weight

Seq Number: 3106155 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.4	1.96	mg/kg	11.01.2019 13:31		10
Barium	7440-39-3	127	3.92	mg/kg	11.01.2019 13:31		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.01.2019 13:31	U	10
Chromium	7440-47-3	13.1	3.92	mg/kg	11.01.2019 13:31		10
Lead	7439-92-1	11.2	1.96	mg/kg	11.01.2019 13:31		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.01.2019 13:31	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.01.2019 13:31	U	10

Tech:

Analytical Method: PAHs by 8270D SIM

DRU

Certificate of Analytical Results 641446

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B22-2.5-3.0** Matrix: Soil Date Received:10.30.2019 10:00

Lab Sample Id: 641446-040 Date Collected: 10.29.2019 10:15 Sample Depth: 2.5 - 3 ft

Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 10.30.2019 12:24 Basis: Wet Weight

Seq Number: 3106011 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	10.31.2019 13:30	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	10.31.2019 13:30	U	1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fla	ıg	
Nitrobenzene-d5		88	%	31-130	10.31	.2019 13:30		
2-Fluorobiphenyl		97	%	51-133		.2019 13:30		
Terphenyl-D14		107	%	46-137	10.31	.2019 13:30		

QC Summary 641446

APS

APS MGP Douglas, AZ

Analytical Method:	Total Cyanide by SW 9012			Prep Method:	E335.4P
Seq Number:	3106209	Matrix:	Solid	Date Prep:	11.01.2019

MB Sample Id: 7689428-1-BLK LCS Sample Id: 7689428-1-BKS

LCS MB Spike LCS Limits Units Analysis Flag **Parameter** Result Amount Result %Rec Date < 0.0298 1.20 1.12 93 85-115 11.01.2019 15:39 Cyanide, Total mg/kg

Analytical Method:Mercury by SW 7471BPrep Method:SW7471PSeq Number:3106078Matrix:SolidDate Prep:10.31.2019

MB Sample Id: 7689296-1-BLK LCS Sample Id: 7689296-1-BKS LCSD Sample Id: 7689296-1-BSD

MB Spike LCS LCS LCSD LCSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date 20 10.31.2019 13:03 Mercury < 0.0185 0.185 0.175 95 0.175 95 80-120 0 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106083
 Matrix:
 Solid
 Date Prep:
 10.31.2019

 MB Sample Id:
 7689315-1-BLK
 LCS Sample Id:
 7689315-1-BKS
 LCSD Sample Id:
 7689315-1-BSD

RPD MR Spike LCS LCS %RPD Units Analysis LCSD LCSD Limite Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec < 0.00384 107 0.221 3 20 10.31.2019 14:19 Mercury 0.200 0.214 111 80-120 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106077
 Matrix:
 Solid
 Date Prep:
 10.31.2019

 MB Sample Id:
 7689331-1-BLK
 LCS Sample Id:
 7689331-1-BSD

RPD MB Spike LCS LCS LCSD LCSD Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 10.31.2019 16:14 80-120 20 Mercury < 0.00384 0.200 0.200 100 0.201 101 0 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106078
 Matrix:
 Solid
 Date Prep:
 10.31.2019

 Parent Sample Id:
 641141-001
 MS Sample Id:
 641141-001 S
 MSD Sample Id:
 641141-001 SD

Parent Spike MS MS Limits %RPD RPD Units Analysis MSD MSD Flag **Parameter** Result %Rec Limit Date Result Amount Result %Rec 10.31.2019 13:09 20 Mercury 0.00435 0.167 0.159 93 0.160 93 75-125 1 mg/kg

Analytical Method:Mercury by SW 7471BPrep Method:SW7471PSeq Number:3106083Matrix:SoilDate Prep:10.31.2019

Parent Sample Id: 641446-029 MS Sample Id: 641446-029 S MSD Sample Id: 641446-029 SD

Spike MS %RPD RPD Parent MS Units MSD MSD Limits Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec 10.31.2019 14:25 < 0.00326 121 0.203 0 20 Mercury 0.169 0.204 122 75-125 mg/kg

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100* (C) / [B] Log Diff = Log(Sample Duplicate) | L

[D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

Final 1.002

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

QC Summary 641446

APS

APS MGP Douglas, AZ

Analytical Method:Mercury by SW 7471BPrep Method:SW7471PSeq Number:3106083Matrix: SoilDate Prep:10.31.2019

Parent Sample Id: 641446-033 MS Sample Id: 641446-033 S MSD Sample Id: 641446-033 SD

RPD **Parent** Spike MS MS Limits %RPD Units Analysis MSD MSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date 0.00875 100 0.202 20 10.31.2019 15:41 0.196 0.205 101 75-125 Mercury 1 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106077
 Matrix:
 Soil
 Date Prep:
 10.31.2019

 Parent Sample Id:
 641446-001
 MS Sample Id:
 641446-001 S
 MSD Sample Id:
 641446-001 SD

Spike Parent MS MS MSD MSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date 10.31.2019 16:19 Mercury 0.0211 0.167 0.186 99 0.186 99 75-125 0 20 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106077
 Matrix:
 Soil
 Date Prep:
 10.31.2019

 Parent Sample Id:
 641446-002
 MS Sample Id:
 641446-002 S
 MSD Sample Id:
 641446-002 SD

Spike **RPD** MS MS %RPD Units Parent MSD **MSD** Limits Analysis Flag **Parameter** Result Result Limit Date Amount %Rec Result %Rec 0.0294 11 20 10.31.2019 16:55 Mercury 0.189 0.195 88 0.217 101 75-125 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

 Seq Number:
 3106129
 Matrix:
 Solid
 Date Prep:
 10.31.2019

 MB Sample Id:
 7689357-1-BLK
 LCS Sample Id:
 7689357-1-BKS
 LCSD Sample Id:
 7689357-1-BSD

MB Spike LCS LCS LCSD LCSD Limits %RPD **RPD** Units Analysis **Parameter** Result Limit Date Result Amount %Rec %Rec Result 10.31.2019 19:36 9.80 98 97 Arsenic < 0.200 10.0 9.70 80-120 20 mg/kg 1 10.31.2019 19:36 98 20 Barium < 0.400 10.0 9.80 9.62 96 80-120 2 mg/kg Cadmium < 0.200 10.0 10.0 100 9.89 99 80-120 20 10.31.2019 19:36 1 mg/kg Chromium < 0.400 10.0 10.0 100 9.87 80-120 1 20 mg/kg 10.31.2019 19:36 Lead < 0.200 10.0 9.75 98 9.72 97 80-120 0 20 10.31.2019 19:36 mg/kg 9.82 98 20 10.31.2019 19:36 Selenium < 0.200 10.0 9.67 97 80-120 2 mg/kg 10.31.2019 19:36 Silver < 0.200 5.00 5.16 103 5.08 102 80-120 2 20 mg/kg

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW 3050BSeq Number:3106155Matrix:SolidDate Prep:10.31.2019

MB Sample Id: 7689359-1-BLK LCS Sample Id: 7689359-1-BKS LCSD Sample Id: 7689359-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Arsenic	< 0.200	10.0	9.74	97	9.86	99	80-120	1	20	mg/kg	11.01.2019 12:05
Barium	< 0.400	10.0	9.73	97	9.70	97	80-120	0	20	mg/kg	11.01.2019 12:05
Cadmium	< 0.200	10.0	9.82	98	9.78	98	80-120	0	20	mg/kg	11.01.2019 12:05
Chromium	< 0.400	10.0	9.79	98	9.77	98	80-120	0	20	mg/kg	11.01.2019 12:05
Lead	< 0.200	10.0	9.70	97	9.79	98	80-120	1	20	mg/kg	11.01.2019 12:05
Selenium	< 0.200	10.0	9.77	98	9.93	99	80-120	2	20	mg/kg	11.01.2019 12:05
Silver	< 0.200	5.00	4.98	100	4.97	99	80-120	0	20	mg/kg	11.01.2019 12:05

MS/MSD Percent Recovery [D] = 100*(C-A) / BRelative Percent Difference RPD = 200* | (C-E) / (C+E) |LCS/LCSD Recovery [D] = 100*(C) / [B]

 $Log \ Diff. = Log(Sample \ Duplicate) - Log(Original \ Sample)$

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec Flag

Flag

QC Summary 641446

APS APS MGP Douglas, AZ

SW3050B Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: Seq Number: 3106129 Matrix: Soil Date Prep: 10.31.2019 Parent Sample Id: 641446-001 MS Sample Id: 641446-001 S MSD Sample Id: 641446-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	9.08	9.62	18.3	96	17.5	91	75-125	4	30	mg/kg	10.31.2019 19:45	
Barium	186	9.62	188	21	184	0	75-125	2	30	mg/kg	10.31.2019 19:45	X
Cadmium	< 1.92	9.62	10.8	112	10.3	111	75-125	5	30	mg/kg	10.31.2019 19:45	
Chromium	10.3	9.62	20.2	103	19.5	99	75-125	4	30	mg/kg	10.31.2019 19:45	
Lead	34.8	9.62	43.7	93	42.0	78	75-125	4	30	mg/kg	10.31.2019 19:45	
Selenium	< 1.92	9.62	10.3	107	10.0	108	75-125	3	30	mg/kg	10.31.2019 19:45	
Silver	<1.92	4.81	5.18	108	4.94	107	75-125	5	30	mg/kg	10.31.2019 19:45	

Analytical Method: Metals, RCRA List, by SW 6020

Prep Method: Seq Number: 3106155 Matrix: Soil Date Prep: 10.31.2019 MS Sample Id: 641446-029 S MSD Sample Id: 641446-029 SD 641446-029 Parent Sample Id:

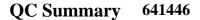
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	13.0	8.62	21.6	100	20.1	84	75-125	7	30	mg/kg	11.01.2019 12:14	
Barium	174	8.62	180	70	168	0	75-125	7	30	mg/kg	11.01.2019 12:14	X
Cadmium	<1.72	8.62	9.35	108	8.73	103	75-125	7	30	mg/kg	11.01.2019 12:14	
Chromium	14.1	8.62	22.8	101	21.3	85	75-125	7	30	mg/kg	11.01.2019 12:14	
Lead	29.9	8.62	38.1	95	35.5	66	75-125	7	30	mg/kg	11.01.2019 12:14	X
Selenium	<1.72	8.62	9.52	110	8.80	104	75-125	8	30	mg/kg	11.01.2019 12:14	
Silver	< 1.72	4.31	4.95	115	4.52	107	75-125	9	30	mg/kg	11.01.2019 12:14	

Analytical Method: Flash Point (CC) SW-846 1010

3106060 Seq Number: Matrix: Solid

MD Sample Id: 641074-003 D 641074-003 Parent Sample Id:

MD %RPD RPD Parent Units Analysis Flag **Parameter** Result Result Limit Date 10.31.2019 10:00 Flash Point >180 >180 0 25 Deg F


Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3106171 Matrix: Soil

MD Sample Id: 641446-014 D Parent Sample Id: 641446-014

MD %RPD RPD **Parent** Units Analysis Flag **Parameter** Result Result Limit Date Paint Filter Pass Pass 0 0 11.01.2019 15:00

SW3050B

APS

APS MGP Douglas, AZ

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3106041

Parent Sample Id: 641446-014 MD Sample Id: 641446-014 D

MD RPD **Parent** %RPD Units Analysis Flag **Parameter** Result Result Limit Date pН 8.38 8.39 0 20 SU 10.31.2019 12:25 0 25 10.31.2019 12:25 21.6 21.6 Deg C Temperature

Matrix: Soil

Analytical Method:PCBs by SW 8082APrep Method:SW3550Seq Number:3106146Matrix:SolidDate Prep:10.31.2019MB Sample Id:7689316-1-BLKLCS Sample Id:7689316-1-BKSLCSD Sample Id:7689316-1-BSD

Spike LCS RPD Units MB LCS Limits %RPD Analysis LCSD LCSD **Parameter** Flag Limit Result Amount Result %Rec Date Result %Rec 10.31.2019 14:20 PCB-1016 < 0.0167 0.167 0.112 67 0.125 76 54-121 11 20 mg/kg 10.31.2019 14:20 PCB-1260 < 0.0167 0.167 0.138 0.144 88 41-126 4 20 mg/kg

LCSD MB LCS MB LCS LCSD Limits Units Analysis Surrogate Flag Flag Flag %Rec %Rec %Rec Date 10.31.2019 14:20 87 Decachlorobiphenyl 93 86 39-125 % 10.31.2019 14:20 % Tetrachloro-m-xylene 67 40 51 37-124

 Analytical Method:
 PCBs by SW 8082A
 Prep Method:
 SW3550

 Seq Number:
 3106146
 Matrix:
 Soil
 Date Prep:
 10.31.2019

 Parent Sample Id:
 641446-029
 MS Sample Id:
 641446-029 S
 MSD Sample Id:
 641446-029 SD

Spike MS %RPD RPD Parent MS MSD **MSD** Limits Units Analysis **Parameter** Limit Date Result Amount Result %Rec Result %Rec 11.01.2019 11:01 PCB-1016 < 0.0166 0.166 0.147 89 0.150 54-121 2 20 mg/kg PCB-1260 < 0.0166 0.166 0.140 84 0.137 83 41-126 2 20 mg/kg 11.01.2019 11:01

MS MS MSD **MSD** Limits Units Analysis Surrogate Flag Flag %Rec %Rec Date 11.01.2019 11:01 Decachlorobiphenyl 80 83 39-125 % 11.01.2019 11:01 Tetrachloro-m-xylene 61 61 37-124 %

Flag

QC Summary 641446

APS APS MGP Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106008Matrix:SolidDate Prep:10.30.2019

MB Sample Id: 7689271-1-BLK LCS Sample Id: 7689271-1-BKS LCSD Sample Id: 7689271-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0274	82	0.0275	83	42-116	0	25	mg/kg	10.30.2019 15:19	
Acenaphthylene	< 0.00167	0.0333	0.0272	82	0.0273	82	42-121	0	25	mg/kg	10.30.2019 15:19	
Anthracene	< 0.00167	0.0333	0.0279	84	0.0280	84	44-120	0	25	mg/kg	10.30.2019 15:19	
Benzo(a)anthracene	< 0.00167	0.0333	0.0279	84	0.0287	86	52-121	3	25	mg/kg	10.30.2019 15:19	
Benzo(a)pyrene	< 0.00167	0.0333	0.0288	86	0.0297	89	50-128	3	25	mg/kg	10.30.2019 15:19	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0301	90	0.0299	90	49-137	1	25	mg/kg	10.30.2019 15:19	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0296	89	0.0305	92	47-132	3	25	mg/kg	10.30.2019 15:19	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0276	83	0.0294	88	48-133	6	25	mg/kg	10.30.2019 15:19	
Chrysene	< 0.00167	0.0333	0.0269	81	0.0279	84	54-113	4	25	mg/kg	10.30.2019 15:19	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0294	88	0.0303	91	48-133	3	25	mg/kg	10.30.2019 15:19	
Fluoranthene	< 0.00167	0.0333	0.0295	89	0.0293	88	54-128	1	25	mg/kg	10.30.2019 15:19	
Fluorene	< 0.00167	0.0333	0.0276	83	0.0276	83	44-118	0	25	mg/kg	10.30.2019 15:19	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0297	89	0.0306	92	49-129	3	25	mg/kg	10.30.2019 15:19	
Naphthalene	< 0.0167	0.0333	0.0269	81	0.0269	81	40-135	0	25	mg/kg	10.30.2019 15:19	
Phenanthrene	< 0.00167	0.0333	0.0282	85	0.0282	85	44-119	0	25	mg/kg	10.30.2019 15:19	
Pyrene	< 0.00167	0.0333	0.0278	83	0.0282	85	50-126	1	25	mg/kg	10.30.2019 15:19	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Nitrobenzene-d5	93		9	91		89		31	-130	%	10.30.2019 15:19	
2-Fluorobiphenyl	95		9	96		94		51	-133	%	10.30.2019 15:19	

97

46-137

97

Terphenyl-D14

100

10.30.2019 15:19

QC Summary 641446

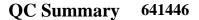
APS APS MGP Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106011Matrix:SolidDate Prep:10.30.2019

MB Sample Id: 7689217-1-BLK LCS Sample Id: 7689217-1-BKS LCSD Sample Id: 7689217-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0236	71	0.0273	82	42-116	15	25	mg/kg	10.30.2019 16:55	
Acenaphthylene	< 0.00167	0.0333	0.0232	70	0.0269	81	42-121	15	25	mg/kg	10.30.2019 16:55	
Anthracene	< 0.00167	0.0333	0.0263	79	0.0280	84	44-120	6	25	mg/kg	10.30.2019 16:55	
Benzo(a)anthracene	< 0.00167	0.0333	0.0283	85	0.0280	84	52-121	1	25	mg/kg	10.30.2019 16:55	
Benzo(a)pyrene	< 0.00167	0.0333	0.0295	89	0.0289	87	50-128	2	25	mg/kg	10.30.2019 16:55	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0295	89	0.0291	87	49-137	1	25	mg/kg	10.30.2019 16:55	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0305	92	0.0297	89	47-132	3	25	mg/kg	10.30.2019 16:55	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0298	89	0.0291	87	48-133	2	25	mg/kg	10.30.2019 16:55	
Chrysene	< 0.00167	0.0333	0.0280	84	0.0273	82	54-113	3	25	mg/kg	10.30.2019 16:55	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0305	92	0.0297	89	48-133	3	25	mg/kg	10.30.2019 16:55	
Fluoranthene	< 0.00167	0.0333	0.0285	86	0.0288	86	54-128	1	25	mg/kg	10.30.2019 16:55	
Fluorene	< 0.00167	0.0333	0.0246	74	0.0278	83	44-118	12	25	mg/kg	10.30.2019 16:55	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0307	92	0.0299	90	49-129	3	25	mg/kg	10.30.2019 16:55	
Naphthalene	< 0.0167	0.0333	0.0225	68	0.0271	81	40-135	19	25	mg/kg	10.30.2019 16:55	
Phenanthrene	< 0.00167	0.0333	0.0265	80	0.0283	85	44-119	7	25	mg/kg	10.30.2019 16:55	
Pyrene	< 0.00167	0.0333	0.0276	83	0.0276	83	50-126	0	25	mg/kg	10.30.2019 16:55	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			mits	Units	Analysis Date	
Nitrobenzene-d5	65		7	76		93		31	-130	%	10.30.2019 16:55	
2-Fluorobiphenyl	68		8	30		96		51	-133	%	10.30.2019 16:55	

96


98

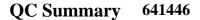
46-137

Terphenyl-D14

90

10.30.2019 16:55

APS APS MGP Douglas, AZ


Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106008Matrix:SoilDate Prep:10.30.2019

Parent Sample Id: 641446-005 MS Sample Id: 641446-005 S

MSD Sample Id: 641446-005 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0269	81	0.0267	80	42-116	1	25	mg/kg	10.30.2019 18:35	
Acenaphthylene	< 0.00167	0.0333	0.0276	83	0.0271	81	42-121	2	25	mg/kg	10.30.2019 18:35	
Anthracene	< 0.00167	0.0333	0.0286	86	0.0284	85	44-120	1	25	mg/kg	10.30.2019 18:35	
Benzo(a)anthracene	0.00156	0.0333	0.0297	85	0.0295	84	52-121	1	25	mg/kg	10.30.2019 18:35	
Benzo(a)pyrene	0.00210	0.0333	0.0314	88	0.0314	88	50-128	0	25	mg/kg	10.30.2019 18:35	
Benzo(b)fluoranthene	0.00294	0.0333	0.0337	92	0.0340	93	49-137	1	25	mg/kg	10.30.2019 18:35	
Benzo(g,h,i)perylene	0.00232	0.0333	0.0335	94	0.0334	93	47-132	0	25	mg/kg	10.30.2019 18:35	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0291	87	0.0286	86	48-133	2	25	mg/kg	10.30.2019 18:35	
Chrysene	0.00178	0.0333	0.0291	82	0.0287	81	54-113	1	25	mg/kg	10.30.2019 18:35	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0302	91	0.0301	90	48-133	0	25	mg/kg	10.30.2019 18:35	
Fluoranthene	0.00205	0.0333	0.0340	96	0.0325	91	54-128	5	25	mg/kg	10.30.2019 18:35	
Fluorene	< 0.00167	0.0333	0.0278	83	0.0275	83	44-118	1	25	mg/kg	10.30.2019 18:35	
Indeno(1,2,3-c,d)Pyrene	0.00180	0.0333	0.0325	92	0.0323	92	49-129	1	25	mg/kg	10.30.2019 18:35	
Naphthalene	< 0.0167	0.0333	0.0260	78	0.0261	78	40-135	0	25	mg/kg	10.30.2019 18:35	
Phenanthrene	< 0.00167	0.0333	0.0300	90	0.0294	88	44-119	2	25	mg/kg	10.30.2019 18:35	
Pyrene	0.00275	0.0333	0.0339	94	0.0323	89	50-126	5	25	mg/kg	10.30.2019 18:35	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	84		89		31-130	%	10.30.2019 18:35
2-Fluorobiphenyl	87		92		51-133	%	10.30.2019 18:35
Terphenyl-D14	96		100		46-137	%	10.30.2019 18:35

APS APS MGP Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:Seq Number:3106011Matrix: SoilDate Prep:

 Seq Number:
 3106011
 Matrix:
 Soil
 Date Prep:
 10.30.2019

 Parent Sample Id:
 641446-029
 MS Sample Id:
 641446-029 SD
 MSD Sample Id:
 641446-029 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.0167	0.0333	0.0217	65	0.0249	75	42-116	14	25	mg/kg	10.30.2019 17:45	
Acenaphthylene	< 0.0167	0.0333	0.0248	74	0.0355	107	42-121	35	25	mg/kg	10.30.2019 17:45	F
Anthracene	< 0.0167	0.0333	0.0288	86	0.0466	140	44-120	47	25	mg/kg	10.30.2019 17:45	XF
Benzo(a)anthracene	0.0225	0.0333	0.0470	74	0.0593	111	52-121	23	25	mg/kg	10.30.2019 17:45	
Benzo(a)pyrene	0.0385	0.0333	0.0625	72	0.0751	110	50-128	18	25	mg/kg	10.30.2019 17:45	
Benzo(b)fluoranthene	0.0501	0.0333	0.0701	60	0.108	174	49-137	43	25	mg/kg	10.30.2019 17:45	XF
Benzo(g,h,i)perylene	0.0521	0.0333	0.0770	75	0.0892	111	47-132	15	25	mg/kg	10.30.2019 17:45	
Benzo(k)fluoranthene	0.0155	0.0333	0.0448	88	0.0635	144	48-133	35	25	mg/kg	10.30.2019 17:45	XF
Chrysene	0.0343	0.0333	0.0535	58	0.121	260	54-113	77	25	mg/kg	10.30.2019 17:45	XF
Dibenz(a,h)Anthracene	< 0.0167	0.0333	0.0331	99	0.0357	107	48-133	8	25	mg/kg	10.30.2019 17:45	
Fluoranthene	0.0622	0.0333	0.0809	56	0.191	387	54-128	81	25	mg/kg	10.30.2019 17:45	XF
Fluorene	< 0.0167	0.0333	0.0228	68	0.0260	78	44-118	13	25	mg/kg	10.30.2019 17:45	
Indeno(1,2,3-c,d)Pyrene	0.0346	0.0333	0.0602	77	0.0720	112	49-129	18	25	mg/kg	10.30.2019 17:45	
Naphthalene	< 0.167	0.0333	0.0188	56	0.0210	63	40-135	11	25	mg/kg	10.30.2019 17:45	
Phenanthrene	0.0182	0.0333	0.0414	70	0.0530	105	44-119	25	25	mg/kg	10.30.2019 17:45	
Pyrene	0.0733	0.0333	0.0906	52	0.186	338	50-126	69	25	mg/kg	10.30.2019 17:45	XF

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	53		62		31-130	%	10.30.2019 17:45
2-Fluorobiphenyl	66		77		51-133	%	10.30.2019 17:45
Terphenyl-D14	90		99		46-137	%	10.30.2019 17:45

SW3550

QC Summary 641446

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: Seq Number: 3105931 Matrix: Solid Date Prep: 10.30.2019

LCS Sample Id: 7689249-1-BKS MB Sample Id: 7689249-1-BLK LCSD Sample Id: 7689249-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0504	101	0.0497	99	72-125	1	25	mg/kg	10.30.2019 12:25	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0481	96	0.0485	97	75-125	1	25	mg/kg	10.30.2019 12:25	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0500	100	0.0489	98	74-125	2	25	mg/kg	10.30.2019 12:25	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0475	95	0.0469	94	75-127	1	25	mg/kg	10.30.2019 12:25	
1,1-Dichloroethane	< 0.00500	0.0500	0.0463	93	0.0471	94	72-125	2	25	mg/kg	10.30.2019 12:25	
1,1-Dichloroethene	< 0.00500	0.0500	0.0498	100	0.0497	99	59-172	0	25	mg/kg	10.30.2019 12:25	
1,1-Dichloropropene	< 0.00500	0.0500	0.0487	97	0.0494	99	75-125	1	25	mg/kg	10.30.2019 12:25	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0501	100	0.0492	98	75-137	2	25	mg/kg	10.30.2019 12:25	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0487	97	0.0484	97	75-125	1	25	mg/kg	10.30.2019 12:25	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0513	103	0.0493	99	75-135	4	25	mg/kg	10.30.2019 12:25	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0512	102	0.0493	99	75-125	4	25	mg/kg	10.30.2019 12:25	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0489	98	0.0484	97	59-125	1	25	mg/kg	10.30.2019 12:25	
1,2-Dibromoethane	< 0.00500	0.0500	0.0467	93	0.0474	95	73-125	1	25	mg/kg	10.30.2019 12:25	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0495	99	0.0483	97	75-125	2	25	mg/kg	10.30.2019 12:25	
1,2-Dichloroethane	< 0.00500	0.0500	0.0452	90	0.0458	92	68-127	1	25	mg/kg	10.30.2019 12:25	
1,2-Dichloropropane	< 0.00500	0.0500	0.0469	94	0.0463	93	74-125	1	25	mg/kg	10.30.2019 12:25	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0527	105	0.0509	102	70-130	3	25	mg/kg	10.30.2019 12:25	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0485	97	0.0479	96	75-125	1	25	mg/kg	10.30.2019 12:25	
1,3-Dichloropropane	< 0.00500	0.0500	0.0476	95	0.0477	95	75-125	0	25	mg/kg	10.30.2019 12:25	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0481	96	0.0479	96	75-125	0	25	mg/kg	10.30.2019 12:25	
2,2-Dichloropropane	< 0.00500	0.0500	0.0496	99	0.0484	97	75-125	2	25	mg/kg	10.30.2019 12:25	
2-Butanone	< 0.0200	0.250	0.224	90	0.214	86	75-125	5	25	mg/kg	10.30.2019 12:25	
2-Chlorotoluene	< 0.00500	0.0500	0.0504	101	0.0493	99	73-125	2	25	mg/kg	10.30.2019 12:25	
2-Hexanone	< 0.0500	0.250	0.233	93	0.217	87	75-125	7	25	mg/kg	10.30.2019 12:25	
4-Chlorotoluene	< 0.00500	0.0500	0.0488	98	0.0488	98	74-125	0	25	mg/kg	10.30.2019 12:25	
4-Methyl-2-Pentanone	< 0.0500	0.250	0.233	93	0.233	93	60-140	0	25	mg/kg	10.30.2019 12:25	
Acetone	< 0.100	0.250	0.228	91	0.200	80	50-150	13	25	mg/kg	10.30.2019 12:25	
Benzene	< 0.00100	0.0500	0.0469	94	0.0472	94	66-142	1	25	mg/kg	10.30.2019 12:25	
Bromobenzene	< 0.00500	0.0500	0.0484	97	0.0484	97	75-125	0	25	mg/kg	10.30.2019 12:25	
Bromochloromethane	< 0.00500	0.0500	0.0454	91	0.0468	94	60-140	3	25	mg/kg	10.30.2019 12:25	
Bromodichloromethane	< 0.00500	0.0500	0.0473	95	0.0477	95	75-125	1	25	mg/kg	10.30.2019 12:25	
Bromoform	< 0.00500	0.0500	0.0483	97	0.0477	99	75-125	3	25	mg/kg	10.30.2019 12:25	
Bromomethane	< 0.00500	0.0500	0.0431	86	0.0436	87	60-140	1	25	mg/kg	10.30.2019 12:25	
Carbon Disulfide	< 0.00500	0.0500	0.0497	99	0.0489	98	60-140	2	25	mg/kg	10.30.2019 12:25	
Carbon Tetrachloride	< 0.00500	0.0500	0.0517	103	0.0519	104	62-125	0	25	mg/kg	10.30.2019 12:25	
Chlorobenzene	< 0.00500	0.0500	0.0478	96	0.0476	95	60-133	0	25	mg/kg	10.30.2019 12:25	
Chloroethane	< 0.0100	0.0500	0.0477	95	0.0476	97	60-140	1	25	mg/kg	10.30.2019 12:25	
Chloroform	< 0.00500	0.0500	0.0477	91	0.0463		74-125	1	25	mg/kg	10.30.2019 12:25	
Chloromethane	< 0.00500	0.0500	0.0437	84	0.0444	89	60-140	6	25		10.30.2019 12:25	
cis-1,2-Dichloroethene	< 0.00500	0.0500	0.0419	93	0.0444	93	75-125	1	25	mg/kg mg/kg	10.30.2019 12:25	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0482	96	0.0489	98	73-125	1	25	mg/kg	10.30.2019 12:25	
Dibromochloromethane	< 0.00500	0.0500	0.0482	98	0.0489	90 99	73-125	1	25	mg/kg	10.30.2019 12:25	
Dibromomethane	< 0.00500	0.0500	0.0450	91	0.0497	92	69-127	1	25		10.30.2019 12:25	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0437	102	0.0400	98	65-135		25	mg/kg	10.30.2019 12:25	
								4		mg/kg	10.30.2019 12:25	
Ethylbenzene	<0.00100	0.0500	0.0484	97 111	0.0481	96 104	75-125 75-125	1	25 25	mg/kg	10.30.2019 12.25	
Hexachlorobutadiene	<0.00500	0.0500	0.0553	111	0.0522	104		6	25	mg/kg	10.30.2019 12:25	
Iodomethane (Methyl Iodide)	<0.0200	0.0500	0.0482	96 101	0.0479		75-125	1	25	mg/kg	10.30.2019 12:25	
Isopropylbenzene	<0.00500	0.0500	0.0504	101	0.0498		75-125	1	25	mg/kg		
m,p-Xylenes	<0.00200	0.100	0.0970	97 100	0.0957	96	75-125	1	25	mg/kg	10.30.2019 12:25 10.30.2019 12:25	
Methylene Chloride	< 0.0200	0.0500	0.0500	100	0.0503	101	75-125	1	25	mg/kg	10.50.2019 12.23	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS APS MGP Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3105931Matrix:SolidDate Prep:10.30.2019MB Sample Id:7689249-1-BLKLCS Sample Id:7689249-1-BKSLCSD Sample Id:7689249-1-BSD

111D Sample 1d. 700724	7-1-DLK		200 000	iipio idi	,00,2.,	2110		200	2 Sump		,2., 1 555	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.00500	0.0500	0.0461	92	0.0481	96	60-140	4	25	mg/kg	10.30.2019 12:25	
Naphthalene	< 0.0100	0.0500	0.0500	100	0.0495	99	70-130	1	25	mg/kg	10.30.2019 12:25	
n-Butylbenzene	< 0.00500	0.0500	0.0530	106	0.0515	103	75-125	3	25	mg/kg	10.30.2019 12:25	
n-Propylbenzene	< 0.00500	0.0500	0.0519	104	0.0506	101	75-125	3	25	mg/kg	10.30.2019 12:25	
o-Xylene	< 0.00100	0.0500	0.0480	96	0.0479	96	75-125	0	25	mg/kg	10.30.2019 12:25	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0544	109	0.0521	104	75-125	4	25	mg/kg	10.30.2019 12:25	
Sec-Butylbenzene	< 0.00500	0.0500	0.0557	111	0.0531	106	75-125	5	25	mg/kg	10.30.2019 12:25	
Styrene	< 0.00500	0.0500	0.0473	95	0.0474	95	75-125	0	25	mg/kg	10.30.2019 12:25	
tert-Butylbenzene	< 0.00500	0.0500	0.0564	113	0.0539	108	75-125	5	25	mg/kg	10.30.2019 12:25	
Tetrachloroethylene	< 0.00500	0.0500	0.0498	100	0.0499	100	71-125	0	25	mg/kg	10.30.2019 12:25	
Toluene	< 0.00500	0.0500	0.0476	95	0.0474	95	59-139	0	25	mg/kg	10.30.2019 12:25	
trans-1,2-dichloroethene	< 0.00500	0.0500	0.0469	94	0.0474	95	75-125	1	25	mg/kg	10.30.2019 12:25	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0482	96	0.0486	97	66-125	1	25	mg/kg	10.30.2019 12:25	
Trichloroethene	< 0.00500	0.0500	0.0474	95	0.0472	94	62-137	0	25	mg/kg	10.30.2019 12:25	
Trichlorofluoromethane	< 0.00500	0.0500	0.0524	105	0.0513	103	67-125	2	25	mg/kg	10.30.2019 12:25	
Vinyl Acetate	< 0.0100	0.250	0.243	97	0.247	99	60-140	2	25	mg/kg	10.30.2019 12:25	
Vinyl Chloride	< 0.00500	0.0500	0.0465	93	0.0485	97	60-140	4	25	mg/kg	10.30.2019 12:25	
1,3-Butadiene	< 0.00500	0.0500	0.0554	111	0.0563	113	70-130	2	25	mg/kg	10.30.2019 12:25	
Cyclohexane	< 0.00500	0.0500	0.0526	105	0.0527	105	70-130	0	25	mg/kg	10.30.2019 12:25	
Dicyclopentadiene	< 0.00500	0.0500	0.0557	111	0.0538	108	70-120	3	25	mg/kg	10.30.2019 12:25	
Methylcyclohexane	< 0.0100	0.0500	0.0535	107	0.0532	106	65-135	1	25	mg/kg	10.30.2019 12:25	
n-Hexane	< 0.0100	0.0500	0.0537	107	0.0526	105	72-125	2	25	mg/kg	10.30.2019 12:25	
4-Ethyltoluene	< 0.00500	0.0500	0.0524	105	0.0513	103	70-130	2	25	mg/kg	10.30.2019 12:25	
Propene	< 0.00500	0.0500	0.0566	113	0.0550	110	70-130	3	25	mg/kg	10.30.2019 12:25	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Dibromofluoromethane	98		g	98		99		53	3-142	%	10.30.2019 12:25	
1,2-Dichloroethane-D4	99		g	99		99		56	5-150	%	10.30.2019 12:25	
Toluene-D8	102		1	01		101		70)-130	%	10.30.2019 12:25	
4-Bromofluorobenzene	100		ç	99		101		68	3-152	%	10.30.2019 12:25	

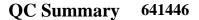
QC Summary 641446

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: Seq Number: 3105931 Matrix: Soil Date Prep: 10.30.2019 MSD Sample Id: 641446-029 SD

MS Sample Id: 641446-029 S Parent Sample Id: 641446-029

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.324	3.24	2.96	91	2.78	86	72-125	6	25	mg/kg	10.30.2019 13:08	
1,1,1-Trichloroethane	< 0.324	3.24	2.96	91	2.93	90	75-125	1	25	mg/kg	10.30.2019 13:08	
1,1,2,2-Tetrachloroethane	< 0.324	3.24	3.09	95	2.82	87	74-125	9	25	mg/kg	10.30.2019 13:08	
1,1,2-Trichloroethane	< 0.324	3.24	2.99	92	2.81	87	75-127	6	25	mg/kg	10.30.2019 13:08	
1,1-Dichloroethane	< 0.324	3.24	2.89	89	2.80	86	72-125	3	25	mg/kg	10.30.2019 13:08	
1,1-Dichloroethene	< 0.324	3.24	3.05	94	2.97	92	59-172	3	25	mg/kg	10.30.2019 13:08	
1,1-Dichloropropene	< 0.324	3.24	3.05	94	3.03	94	75-125	1	25	mg/kg	10.30.2019 13:08	
1,2,3-Trichlorobenzene	< 0.324	3.24	3.14	97	2.89	89	75-137	8	25	mg/kg	10.30.2019 13:08	
1,2,3-Trichloropropane	< 0.324	3.24	3.08	95	2.87	89	75-125	7	25	mg/kg	10.30.2019 13:08	
1,2,4-Trichlorobenzene	< 0.324	3.24	3.14	97	2.94	91	75-135	7	25	mg/kg	10.30.2019 13:08	
1,2,4-Trimethylbenzene	< 0.324	3.24	3.16	98	3.05	94	75-125	4	25	mg/kg	10.30.2019 13:08	
1,2-Dibromo-3-Chloropropane	< 0.324	3.24	2.75	85	2.39	74	59-125	14	25	mg/kg	10.30.2019 13:08	
1,2-Dibromoethane	< 0.324	3.24	3.01	93	2.81	87	73-125	7	25	mg/kg	10.30.2019 13:08	
1,2-Dichlorobenzene	< 0.324	3.24	3.06	94	2.93	90	75-125	4	25	mg/kg	10.30.2019 13:08	
1,2-Dichloroethane	< 0.324	3.24	2.86	88	2.71	84	68-127	5	25	mg/kg	10.30.2019 13:08	
1,2-Dichloropropane	< 0.324	3.24	2.93	90	2.84	88	74-125	3	25	mg/kg	10.30.2019 13:08	
1,3,5-Trimethylbenzene	< 0.324	3.24	3.28	101	3.15	97	70-130	4	25	mg/kg	10.30.2019 13:08	
1,3-Dichlorobenzene	< 0.324	3.24	3.07	95	2.96	91	75-125	4	25	mg/kg	10.30.2019 13:08	
1,3-Dichloropropane	< 0.324	3.24	3.01	93	2.87	89	75-125	5	25	mg/kg	10.30.2019 13:08	
1,4-Dichlorobenzene	< 0.324	3.24	2.98	92	2.93	90	75-125	2	25	mg/kg	10.30.2019 13:08	
2,2-Dichloropropane	< 0.324	3.24	2.95	91	2.95	91	75-125	0	25	mg/kg	10.30.2019 13:08	
2-Butanone	<1.30	16.2	15.0	93	13.4	83	75-125	11	25	mg/kg	10.30.2019 13:08	
2-Chlorotoluene	< 0.324	3.24	3.16	98	3.04	94	73-125	4	25	mg/kg	10.30.2019 13:08	
2-Hexanone	<3.24	16.2	15.2	94	13.6	84	75-125	11	25	mg/kg	10.30.2019 13:08	
4-Chlorotoluene	< 0.324	3.24	3.08	95	2.98	92	74-125	3	25	mg/kg	10.30.2019 13:08	
4-Methyl-2-Pentanone	<3.24	16.2	14.5	90	13.3	82	60-140	9	25	mg/kg	10.30.2019 13:08	
Acetone	< 6.48	16.2	15.2	94	13.1	81	50-150	15	25	mg/kg	10.30.2019 13:08	
Benzene	< 0.0648	3.24	2.95	91	2.90	90	66-142	2	25	mg/kg	10.30.2019 13:08	
Bromobenzene	< 0.324	3.24	3.10	96	2.99	92	75-125	4	25	mg/kg	10.30.2019 13:08	
Bromochloromethane	< 0.324	3.24	2.86	88	2.75	85	60-140	4	25	mg/kg	10.30.2019 13:08	
Bromodichloromethane	< 0.324	3.24	2.80	86	2.63	81	75-125	6	25	mg/kg	10.30.2019 13:08	
Bromoform	< 0.324	3.24	2.66	82	2.38	73	75-125	11	25	mg/kg	10.30.2019 13:08	X
Bromomethane	< 0.324	3.24	0.678	21	0.797	25	60-140	16	25	mg/kg	10.30.2019 13:08	X
Carbon Disulfide	< 0.324	3.24	2.68	83	2.63	81	60-140	2	25	mg/kg	10.30.2019 13:08	
Carbon Tetrachloride	< 0.324	3.24	3.01	93	2.89	89	62-125	4	25	mg/kg	10.30.2019 13:08	
Chlorobenzene	< 0.324	3.24	3.03	94	2.90	90	60-133	4	25	mg/kg	10.30.2019 13:08	
Chloroethane	< 0.648	3.24	1.12	35	1.06	33	60-140	6	25	mg/kg	10.30.2019 13:08	X
Chloroform	< 0.324	3.24	2.86	88	2.77		74-125	3	25	mg/kg	10.30.2019 13:08	
Chloromethane	< 0.324	3.24	2.73	84	2.63	81	60-140	4	25	mg/kg	10.30.2019 13:08	
cis-1,2-Dichloroethene	< 0.324	3.24	2.92	90	2.81	87	75-125	4	25	mg/kg	10.30.2019 13:08	
cis-1,3-Dichloropropene	< 0.324	3.24	3.02	93	2.92		74-125	3	25	mg/kg	10.30.2019 13:08	
Dibromochloromethane	< 0.324	3.24	2.83	87	2.56	79	73-125	10	25	mg/kg	10.30.2019 13:08	
Dibromomethane	< 0.324	3.24	2.91	90	2.73	84	69-127	6	25	mg/kg	10.30.2019 13:08	
Dichlorodifluoromethane	< 0.324	3.24	3.16	98	3.01	93	65-135	5	25	mg/kg	10.30.2019 13:08	
Ethylbenzene	< 0.0648	3.24	3.03	94	2.96	91	75-125	2	25	mg/kg	10.30.2019 13:08	
Hexachlorobutadiene	< 0.324	3.24	3.34	103	3.24	100	75-125	3	25	mg/kg	10.30.2019 13:08	
Iodomethane (Methyl Iodide)	<1.30	3.24	2.94	91	2.81	87	75-125	5	25	mg/kg	10.30.2019 13:08	
Isopropylbenzene	<0.324	3.24	3.13	97	3.09	95	75-125 75-125	1	25	mg/kg	10.30.2019 13:08	
m,p-Xylenes	<0.130	6.48	6.07	94	5.93	93	75-125 75-125		25 25	mg/kg	10.30.2019 13:08	
m,p-Aylenes Methylene Chloride	<0.130	3.24	3.27	94 101	3.18	98	75-125 75-125	2 3	25 25	mg/kg mg/kg	10.30.2019 13:08	
Wienry ione Chioride	\U.213	J.4 4	3.41	101	3.10	20	13-143	3	23	mg/kg		


MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C

Prep Method: SW5035A Seq Number: 3105931 Matrix: Soil Date Prep: 10.30.2019 MS Sample Id: 641446-029 S Parent Sample Id: 641446-029 MSD Sample Id: 641446-029 SD

MTBE <0.324	Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
n-Butylbenzene	MTBE	< 0.324	3.24	2.94	91	2.79	86	60-140	5	25	mg/kg	10.30.2019 13:08	
n-Propylbenzene	Naphthalene	< 0.648	3.24	3.16	98	2.84	88	70-130	11	25	mg/kg	10.30.2019 13:08	
o-Xylene	n-Butylbenzene	< 0.324	3.24	3.27	101	3.21	99	75-125	2	25	mg/kg	10.30.2019 13:08	
p-Cymene (p-Isopropyltoluene) <0.324 3.24 3.39 105 3.26 101 75-125 4 25 mg/kg 10.30.2019 13:08	n-Propylbenzene	< 0.324	3.24	3.25	100	3.12	96	75-125	4	25	mg/kg	10.30.2019 13:08	
p Cymene (p Isopropyreoteche) (0.521	o-Xylene	< 0.0648	3.24	3.01	93	2.91	90	75-125	3	25	mg/kg	10.30.2019 13:08	
	p-Cymene (p-Isopropyltoluene)	< 0.324	3.24	3.39	105	3.26	101	75-125	4	25	mg/kg	10.30.2019 13:08	
Sec-Butylbenzene <0.324 3.24 3.44 106 3.33 103 75-125 3 25 mg/kg 10.30.2019 13:08	Sec-Butylbenzene	< 0.324	3.24	3.44	106	3.33	103	75-125	3	25	mg/kg	10.30.2019 13:08	
Styrene <0.324 3.24 3.00 93 2.90 90 75-125 3 25 mg/kg 10.30.2019 13:08	Styrene	< 0.324	3.24	3.00	93	2.90	90	75-125	3	25	mg/kg	10.30.2019 13:08	
tert-Butylbenzene <0.324 3.24 3.47 107 3.34 103 75-125 4 25 mg/kg 10.30.2019 13:08	tert-Butylbenzene	< 0.324	3.24	3.47	107	3.34	103	75-125	4	25	mg/kg	10.30.2019 13:08	
Tetrachloroethylene <0.324 3.24 3.17 98 3.07 95 71-125 3 25 mg/kg 10.30.2019 13:08	Tetrachloroethylene	< 0.324	3.24	3.17	98	3.07	95	71-125	3	25	mg/kg	10.30.2019 13:08	
Toluene <0.324 3.24 3.01 93 2.92 90 59-139 3 25 mg/kg 10.30.2019 13:08	Toluene	< 0.324	3.24	3.01	93	2.92	90	59-139	3	25	mg/kg	10.30.2019 13:08	
trans-1,2-dichloroethene <0.324 3.24 2.93 90 2.84 88 75-125 3 25 mg/kg 10.30.2019 13:08	trans-1,2-dichloroethene	< 0.324	3.24	2.93	90	2.84	88	75-125	3	25	mg/kg	10.30.2019 13:08	
trans-1,3-dichloropropene <0.324 3.24 3.05 94 2.86 88 66-125 6 25 mg/kg 10.30.2019 13:08	trans-1,3-dichloropropene	< 0.324	3.24	3.05	94	2.86	88	66-125	6	25	mg/kg	10.30.2019 13:08	
Trichloroethene <0.324 3.24 3.00 93 2.97 92 62-137 1 25 mg/kg 10.30.2019 13:08	Trichloroethene	< 0.324	3.24	3.00	93	2.97	92	62-137	1	25	mg/kg	10.30.2019 13:08	
Trichlorofluoromethane <0.324 3.24 2.92 90 2.84 88 67-125 3 25 mg/kg 10.30.2019 13:08	Trichlorofluoromethane	< 0.324	3.24	2.92	90	2.84	88	67-125	3	25	mg/kg	10.30.2019 13:08	
Vinyl Acetate <0.648 16.2 15.2 94 14.3 88 60-140 6 25 mg/kg 10.30.2019 13:08	Vinyl Acetate	< 0.648	16.2	15.2	94	14.3	88	60-140	6	25	mg/kg	10.30.2019 13:08	
Vinyl Chloride <0.324 3.24 2.89 89 2.84 88 60-140 2 25 mg/kg 10.30.2019 13:08	Vinyl Chloride	< 0.324	3.24	2.89	89	2.84	88	60-140	2	25	mg/kg	10.30.2019 13:08	
1,3-Butadiene <0.324 3.24 3.46 107 3.44 106 70-130 1 25 mg/kg 10.30.2019 13:08	1,3-Butadiene	< 0.324	3.24	3.46	107	3.44	106	70-130	1	25	mg/kg	10.30.2019 13:08	
Cyclohexane <0.324 3.24 3.27 101 3.26 101 70-130 0 25 mg/kg 10.30.2019 13:08	Cyclohexane	< 0.324	3.24	3.27	101	3.26	101	70-130	0	25	mg/kg	10.30.2019 13:08	
Dicyclopentadiene <0.324 3.24 3.42 106 3.28 101 70-120 4 25 mg/kg 10.30.2019 13:08	Dicyclopentadiene	< 0.324	3.24	3.42	106	3.28	101	70-120	4	25	mg/kg	10.30.2019 13:08	
Methylcyclohexane <0.648 3.24 3.38 104 3.32 102 65-135 2 25 mg/kg 10.30.2019 13:08	Methylcyclohexane	< 0.648	3.24	3.38	104	3.32	102	65-135	2	25	mg/kg	10.30.2019 13:08	
n-Hexane 0.144 3.24 3.37 100 3.31 98 72-125 2 25 mg/kg 10.30.2019 13:08	n-Hexane	0.144	3.24	3.37	100	3.31	98	72-125	2	25	mg/kg	10.30.2019 13:08	
4-Ethyltoluene <0.324 3.24 3.29 102 3.17 98 70-130 4 25 mg/kg 10.30.2019 13:08	4-Ethyltoluene	< 0.324	3.24	3.29	102	3.17	98	70-130	4	25	mg/kg	10.30.2019 13:08	
Propene <0.324 3.24 3.42 106 3.30 102 70-130 4 25 mg/kg 10.30.2019 13:08	Propene	< 0.324	3.24	3.42	106	3.30	102	70-130	4	25	mg/kg	10.30.2019 13:08	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	97		97		53-142	%	10.30.2019 13:08
1,2-Dichloroethane-D4	102		98		56-150	%	10.30.2019 13:08
Toluene-D8	101		99		70-130	%	10.30.2019 13:08
4-Bromofluorobenzene	103		99		68-152	%	10.30.2019 13:08

XENCO

Chain of Custody

Work Order No: (04 144 6

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334
Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)

Work Order Notes	EST	ANAI VSIS REQUEST	Turn Around	F	APS MGP Douglas A7	oject Name.
ADaPT ☐ Other:	Deliverables: EDD	gaps.com	Email: Judith. Heywood@aps.com	Email:	602-818-0259	топе:
JSP TRRP LevelIV□	Reporting:Level III X Level III PST/US-P TRRP Level IV	Bernice, Kidd@jacobs.com matt.branche@jacobs.com	email		Phoenix, AZ 85072-3999	ty, State ZIP:
	State of Project: Arizona	480-273-4084	Phone		PO Box53999, MS 9303	ddress:
ields RR□ Superfur□	Program: UST/PST☐ PRP☐ Brownfields☐ RR☐ Superfur	Jacobs	Company Name: Jacobs		APS	ompany Name: APS
omments	Work Order Comments	Bernice Kidd Matt Branche	Send results to Matt Branche		oject Manager: Judy Heywood	oject Manager:
Page of	3-620-2000) www.xenco.com	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	550) Phoenix, AZ (480	Hobbs, NM (575-392-7		

Work Order Notes						TAT starts the day recevied by the lab, if received by 4:30pm	Sample Comments											a Sr TI Sn U V Zn
ANALYSIS REQUEST				әр	il Cyani	510T - 41	06/2106						7					Fe Pb Ma Mn Mo Ni K Se Ag SiO2 Na
LYSIS R			ııcλ	idelir	161 - ZL	7 ələihA Hq	90488											Cr Co Cu F
ANA						i4 tnis9												Ca Cr C
						CBs	H - S808								Ø.			B Cd C
	- ()					OV IstoT		~	×	~	>		٠,					Ra Re F
		(Va	Ja 8/) slete	am leto	2HA9 M		×	X	R	X	X	X	A	X	X	X	Ac
				S.	ntaineı	oo to	equing	-	1	1	1	1		-	_	_	1	AS IS
Turn Around	ne X	Rush Yes (An	Jate:	(Yes) No	C/F:+0.2	sted: /.3	Depth	0	0	0	0	0	0	Q	٥	0	0	SRCRA 13PPM Texas 11
Tu	- Routine X	Rush	Due Date:	Wet Ice:	IR ID:HOU-068 Temp:	Total Containers 1.3	Time Sampled	Shal	1100	2211	1134	りれり		1309	1330	1352	1400	13ppi
	05-1B			(Yes) No	IR ID: Temp:	Tota	Date Sampled	Shall 6-22-01	かそとつし	61-22-01	61-27-01	10-27-19	5452-01	4-4-CO)	642-01	10-27-19	6-17-61	8B/
glas, AZ	S.EV.DG		NUTE	Temp Blank:	No	ANN ANN	Matrix	S	S	S	S	S	S	S	S	S	5	.020
APS MGP Douglas, AZ	D3118600.A.CS.EV.DG.05-1B	700735632	MATY BOLANCHE			S: Yes No	fication	6/220	6/tre	6/470	6120	6/2001	6)£20	612	6/220	6/20	61ta	10 2008 / 6020-
Project Name:	Project Number: D	P.O. Number: 7	Sampler's Name:	SAMPLE RECEIPT	Temperature (°C): Received Intact:	Cooler Custody Seals: Sample Custody Seals:	Sample Identification	D-831-0-125-19	D-B32-0-105719	D-833-0-1027/9	D-B34-6-102719	D-827-0-428-0	1829-0-102719	D-1835-0-102719	6/201-0-818-0	D-B20-0-1028-C	D-FD01-1007-1	Total 200 7 / 2040

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be enforced unless previously negotiated. votice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions

Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl

TCLP / SPLP 6010: 8RCRA

Circle Method(s) and Metal(s) to be analyzed

1631 / 245.1 / 7470 / 7471 : Hg

Refinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
MAKINA	Talox	0021.61-62-01	2 Halor	Jan	000/6/0201
r			4	0)
ι.			9		
					Revised Date 051418 Rev. 2018.1

Chain of Custody

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296

Work Order No: (04)446 Page 2 www.xenco.com

Work Order Comments	Program: UST/PST☐ PRF☐ Brownfields☐ RR☐ Superfur☐	State of Project: Arizona	Reporting:Level IIIX Level III□ PST/UST TRRP Level IV□	Deliverables: EDD ☐ ADaPT ☐ Other:	T Work Order Notes							TAT starts the day recevied by the lab, if received by 4:30pm	Sample Comments											
					ANALYSIS REQUEST			Ų				Article pH 14 - To	- 891	≯ 06				x X X		r				
			Bernice. Kidd@jacobs.com matt. branche@jacobs.com		A	(pəv	resei	d HO			Total / CBs	d - 21	808				XXX				4	X	
Bernice Kidd Matt Branche	Jacobs	480-273-4084	Bernice. Kidd matt. branche	@aps.com			(AЯ	9 ВС			s	2HA9 M	IIS 0.	728	X	x	X	X	XX	X	X	X		X
Send results to	Company Name:	Phone	email	E <mark>mail:</mark> Judith.Heywood@aps.com	Turn Around	×	Rush: Y 8代心	ate:	Kes) No		I	ited: / 3	equi		0 1	2	0	h 0	0	2	0	ر ص]	0
O)	0		W.	Email:	Tun	Routine X	Rush:	Due Date:	Wet Ice:	Thermometer ID	IR ID:HOU-068	emp: / / Corrected: / 3	Time	Sampled	851	1506	1536	5320	1626	1646	171	1738	J	Sol
		3	6			,.05-1B		P	(Yes) No		IR ID:	l emb:	Date	Sampled	6-2-01	10-27-19	10-27-19	61-27-01	61-27-01	64620)	10-23-6	G-2201	1	618501
por		99, MS 9303	, 85072-399	59	Jouglas, AZ	1.CS.EV.DG		MYT BRANCETTS	Temp Blank:		Z	No N/A	Vistoria	Mathix	S	S	S	S	S	S	S	S	3	S
ager: Judy Heywood	ame: APS	PO Box53999, MS 9303	IP: Phoenix, AZ 85072-3999	602-818-0259	e: APS MGP Douglas, AZ	ber: D3118600.A.CS.EV.DG.05-1B	r 700735632		SAMPLE RECEIPT	, (°C):		ody Seals: (Yes)	Samulo Idontification	pie identification	D-828-0-105719	6K20-0-228-(5HZ01-0-518-	B25-0-10239	5K201-0-128	-B23-0-102719	8/2020 JUS	6/52010-5/8-	8/201-10SH	618201-928
Project Manager:	Company Name:	Address:	City, State ZIP	Phone:	Project Name:	Project Number:	P.O. Number:	Sampler's Name:	SAMPLE	Temperature (°C)	Received Intact:	Cooler Custody Seals: Sample Custody Seals:	Same	Salli	328-0	D-825	7-B15	228-0	D-821	1-823	1-316	D-8/3-	TOOK.	D-826.

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum character of \$75 no will be annied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously necotiated.

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
men	Fallox	10-29-19-1400 2	Falix	X	102019 1WX
8			4	7	
5			10		
					Revised Date 051418 Rev 2018.

O

Project Manager: Company Name: Address:

Chain of Custody

Work Order No: (04)446

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806) 794-1296

	Hobbs, NM (575-392-7	7550) Phoenix, AZ (480	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	-620-2000) www.xenco.com Page of
			Bernice Kidd	
Judy Heywood		Send results to Matt Branche	Matt Branche	Work Order Comments
APS		Company Name: Jacobs	Jacobs	Program: UST/PST☐ PRH☐ Brownfields☐ RR☐ Superfur☐
PO Box53999, MS 9303		Phone	480-273-4084	State of Project: Arizona
			Bernice. Kidd@jacobs.com	National Nat
Phoenix, AZ 85072-3999		email	matt.branche@jacobs.com	Reporting: Level III PS / JUST TRKP Level IV
OLOG GFG GGG	L			Deliverables: EDD

The same of the sa								1		[
City, State ZIP:	Phoenix, AZ 85072-3999	0	email	Bern	Bernice. Kidd@jacobs.com matt.branche@jacobs.com	acobs.co	티티		Reporting:L	evel II X Level II	II PST/U	Reporting:Level III X Level III PST/US된 TRR본 Level IV
Phone:	602-818-0259		Email: Judith.Heywoo	ood@aps.com	om inci				Deliverables:	: EDD [ADaPT	□ Other:
O TO THE OWNER OF THE OWNER OF THE OWNER O	7 A 20121120 0 0 M 20 A		Trees A second				ANAL Vele DEDITES	PEOLIC	CT.			Work Order Notes
Project Name.	AFS MGF Douglas, AZ		I urn Around				CID LIVE	200	-			
Project Number:	D3118600.A.CS.EV.DG.05-1B		Routine X	_	(
P.O. Number:	700735632	(RU	Rush & OCA	_	Day							
Sampler's Name:	A. Shwartz, W.	Branche pu	Due Date:		6.71		lity					
SAMPLE RECEIPT	EIPT Temp Blank:	(Yes) No Wet Ice:	oe: Yes No	S.			idstir	әрі				
Temperature (°C):	(Thermometer ID	er ID	ıəui			-	yani				
Received Intact:	(Yes /No	IR ID:HOU-068	C/F:+0.2	C.S. co				S lei			!	
Cooler Custody Seals: Sample Custody Seals:	ls: Yes No (N/A)	Temp: // Corrected: /. 3	cted: , 2 _	Of Co	- Alīb	cBs	Faint F	14 - Tol				TAT starts the day recevied by the lab, if received by 4:30pm
Sample Identification	Matrix	Date	Denth			7.50						Sample Comments
oan aidimpo		Sampled Sampled					NS					odulino odulino
618201-0-1280	s 618201-	2501 6-2501	0	X	8							
D-030-0-102019	s 618201-	21116-82-1	0) X	X							
19-13-4-518-15-15-15-15-15-15-15-15-15-15-15-15-15-	8 6180075250	5011 51.82-01	5-5-5) K	X							
1-1-201-102619	(<i>g</i> s	5111 6182-41	1	X	X							
D-833-5.0-	.o.S.S. s	10-28-19 1150	5:03	×	X							
D- B32-5	0-5.5' s	1388	50.55	× -	χ,			7				
D-16002-	-1028r9 s	7405	5.0-55	×	×							
D- B31-5	5.0-5.5 s	1425	5.0-55	X	X	4						
D- 135-	5.0-5.5' S	0.70 M	Sr0.35	X	X	X	X X	X				MS/MSD
D-818-20-25	20-2.5' 5	V 17-10	20-2.5	×	×							
Total 200.7 / 6	Total 200.7 / 6010 200.8 / 6020:	8R(8RCRA 13PPM Texas 11	Sb /	Be	l m	r Co Ci	Fe Pb	Mg Mn Mg	Ni K Se Ag		SiO2 Na Sr Tl Sn U V Zn
Circle Method	Circle Method(s) and Metal(s) to be analyzed		TCLP / SPLP 6010: 8RCF	CRA Sb /	As Ba Be	ပ် ဗ	Co Cu Pb N	Mn Mo	Ni Se Ag TI	0 1	1631	631 / 245.1 / 7470 / 7471 : Hg

Received by: (Signature) Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) 204161-62-01 Date/Time Received by: (Signature) Relinquished by: (Signature) ny Revised Date 051418 Rev. 2018

Date/Time

XENCO

Chain of Custody

Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296

Work Order No: [64 | L | L | [

www.xenco.com

Work Order Comments

State of Project:

Program: UST/PST☐ PRP☐ Brownfield RR☐

Superfur

Reporting:Level II | X | Level III PST/UST TRRP Level IV

ADaPT

Work Order Notes Other:

Deliverables: EDD

Email: Judith. Heywood@aps.com Turn Around

ANALYSIS REQUEST

matt.branche@jacobs.com

Bernice.Kidd@jacobs.com

480-273-4084

Phone

email

Phoenix, AZ 85072-3999

City, State ZIP:

Phone:

602-818-0259

APS MGP Douglas, AZ

PO Box53999, MS 9303

Judy Heywood

roject Manager:

APS

Company Name:

Address:

Jacobs

Company Name: Send results to

Matt Branche Bernice Kidd

9013/9014 - Total Cyanide SW846 Article 7.12 - Ignitability 9095B - Paint Filter 8260B - Total VOCs (MeOH preserved) 6010B/7471A - Total metals (8 RCRA) Number of Containers å Corrected: 13 C/F:+0.2 Yes Routine 8 Bonch Due Date: Rush: X Thermometer ID Wet Ice: IR ID:HOU-068 Temp: / / oN. D3118600.A.CS.EV.DG.05-1B Nes \$ Temp Blank: Yes No N/A 9 A. Shunde 700735632 SAMPLE RECEIPT Cooler Custody Seals:

8085 - PCBs SHA9 MIZ 0758

Depth

Sampled

Sampled

Matrix

Sample Identification

Yes No,

Sample Custody Seals:

Page 131 of 133

Temperature (°C):

Received Intact:

Sampler's Name:

Project Number:

P.O. Number:

Project Name:

Date

5.05

10-25-19 10-28-A

S

RIX NON

S S

003-102819 ナーのナ

402

730

りたろう

10-29-19 10-29-19

S

1-0

,

Rid

S S ഗ S

..30

:

NO 1

720 ノイー

Hd - 85+06

TAT starts the day recevied by the

lab, if received by 4:30pm

Sample Comments

30

0950

0-29.19

5-3,0

1310-

0001

10-29-01

25-30

0820

ソラ

6-62-0

50

5-5 5.30

00

5.0-5

Final 1.002

FDOIL

5101

0.79-19

Circle Method(s) and Metal(s) to be analyzed

200.8 / 6020

Total 200.7 / 6010

1631 / 245.1 / 7470 / 7471 : Hg 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be enforced unless previously negotiated.

6/0001 Received by: (Signature)

0:00

Date/Time

Relinquished by: (Signature)

100h 14-62-0,

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

mon

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Sb As Ba Be TCLP / SPLP 6010: 8RCRA

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Analyst: MDS

Date/ Time Received: 10/30/2019 10:00:00 AM

Work Order #: 641446

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: HOU-068

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		1.3	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping contai	ner/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?		N/A	
#6*Custody Seals Signed and dated?		Yes	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinquish	ned/ received?	Yes	
#10 Chain of Custody agrees with sample la	abels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated	test(s)?	Yes	
#16 All samples received within hold time?		Yes	
#17 Subcontract of sample(s)?		No	
#18 Water VOC samples have zero headsp	ace?	N/A	

Checklist completed by:	Asia Ro Monica Shakhshir	Date: 10/30/2019	
Checklist reviewed by:	(mint Daraway)		

PH Device/Lot#:

Date: 10/30/2019

Analytical Report 641801

for

APS

Project Manager: Judy Heywood

APS MPG Douglas, AZ D3118600.A.CS>EV.DG.05-1B 11.21.2019

Collected By: Client

4147 Greenbriar Dr. Stafford, TX 77477

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

11.21.2019

Project Manager: Judy Heywood

APS P.O. Box 53999 Mail Station 8376 Phoenix, AZ 85072

Reference: XENCO Report No(s): 641801

APS MPG Douglas, AZ Project Address: Miami, AZ

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 641801. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 641801 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

CASE NARRATIVE

Client Name: APS

Project Name: APS MPG Douglas, AZ

Project ID: Report Date: 11.21.2019 D3118600.A.CS>EV.DG.(Work Order Number(s): 641801

Date Received: 11.01.2019

Sample receipt non conformances and comments:

Revised report due to TCLP Metals Analysis added to sample ID: D-B11-2.5-3.0 sample Work Order number 641801-022 Analysis requested by Matthew Branche via email on 11/17/2019 @ 12:02pm

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3106302 PAHs by 8270D SIM

Phenanthrene Relative Percent Difference (RPD) between matrix spike and duplicate was above quality control limits.

Samples in the analytical batch are: 641801-023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038, -040, -041

Lab Sample ID 641801-026 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Fluoranthene recovered below QC limits in the Matrix Spike. Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Indeno(1,2,3-c,d)Pyrene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Phenanthrene recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641801-023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038, -040, -041.

The Laboratory Control Sample for Chrysene, Pyrene, Benzo(a)pyrene, Benzo(b)fluoranthene, Fluoranthene, Benzo(a)anthracene, Indeno(1,2,3-c,d)Pyrene, Benzo(g,h,i)perylene, Phenanthrene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3106405 Total Metals by SW6020A

Lab Sample ID 641801-026 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Arsenic, Barium, Chromium, Lead recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate, Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641801- $02\hat{6}$, -030, -031, -032, -033, -034, -035, -036, -037, -038, -040, -041, -042, -043.

The Laboratory Control Sample for Arsenic, Chromium, Barium, Lead is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3106408 Metals, RCRA List, by SW 6020

Lab Sample ID 641801-018 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium recovered above OC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641801-007, -008, -009, -010, -011, -012, -013, -016, -017, -018, -019, -020, -021, -022, -023, -024, -025, -027, -028, -029.

The Laboratory Control Sample for Barium is within laboratory Control Limits, therefore the data was accepted.

Final 1.003

CASE NARRATIVE

Client Name: APS

Project Name: APS MPG Douglas, AZ

 Project ID:
 D3118600.A.CS>EV.DG.(
 Report Date:
 11.21.2019

 Work Order Number(s):
 641801
 Date Received:
 11.01.2019

Batch: LBA-3106445 PCBs by SW 8082A

Surrogate Decachlorobiphenyl recovered above QC limits. Matrix interferences is suspected; data

confirmed by re-analysis.

Samples affected are: 641882-004 S,641801-021.

Flagging Criteria

Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

Sample Cross Reference 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D-B16-7.5-8.0	S	10.29.2019 10:40	7.5 - 8.0	641801-001
D-B16-10.0-10.5	S	10.29.2019 10:50	10.0 - 10.5	641801-002
D-B16-15.0-15.5	S	10.29.2019 12:00	15.0 - 15.5	641801-003
D-FD02-102919	S	10.29.2019 12:15		641801-004
D-B16-19.5-20.0	S	10.29.2019 12:20	19.5 - 20.0	641801-005
D-B28-5.0-5.5	S	10.29.2019 12:45	5.0 - 5.5	641801-006
D-FD03-102919	S	10.29.2019 12:55		641801-007
D-B14-7.5-8.0	S	10.29.2019 13:10	7.5 - 8.0	641801-008
D-B14-10.0-10.5	S	10.29.2019 13:15	10.0 - 10.5	641801-009
D-B14-15.0-15.5	S	10.29.2019 13:45	15.0 - 15.5	641801-010
D-B14-19.5-20.0	S	10.29.2019 13:55	19.5 - 20.0	641801-011
D-B22-5.0-5.5	S	10.29.2019 14:35	5.0 - 5.5	641801-012
D-B22-7.5-8.0	S	10.29.2019 14:50	7.5 - 8.0	641801-013
D-B22-15.0-15.5	S	10.29.2019 15:10	15.0 - 15.5	641801-016
D-B28-10.0-10.5	S	10.29.2019 15:55	10.0 - 10.5	641801-017
D-B28-15.0-15.5	S	10.29.2019 16:15	15.0 - 15.5	641801-018
D-B28-19.5-20.0	S	10.29.2019 16:25	19.5 - 20.0	641801-019
D-B22-10.0-10.5	S	10.29.2019 14:55	10.0 - 10.5	641801-020
D-B11-1.0-1.5	S	10.30.2019 09:15	1.0 - 1.5	641801-021
D-B11-2.5-3.0	S	10.30.2019 09:30	2.5 - 3.0	641801-022
D-B11-5.0-5.5	S	10.30.2019 09:45	5.0 - 5.5	641801-023
D-B11-7.5-8.0	S	10.30.2019 09:50	7.5 - 8.0	641801-024
D-B11-10.0-10.5	S	10.30.2019 09:55	10.0 - 10.5	641801-025
D-B20-2.5-3.0	S	10.30.2019 10:00	2.5 - 3.0	641801-026
D-B11-15.0-15.5	S	10.30.2019 10:05	15.0 - 15.5	641801-027
D-B11-19.5-20.0	S	10.30.2019 10:20	19.5 - 20.0	641801-028
D-B20-5.0-5.5	S	10.30.2019 10:35	5.0 - 5.5	641801-029
D-B17-2.5-3.0	S	10.30.2019 10:50	2.5 - 3.0	641801-030
D-B17-5.0-5.5	S	10.30.2019 10:55	5.0 - 5.5	641801-031
D-B17-7.5-8.0	S	10.30.2019 11:40	7.5 - 8.0	641801-032
D-B17-10.0-10.5	S	10.30.2019 11:45	10.0 - 10.5	641801-033
D-B17-15.0-15.5	S	10.30.2019 11:55	15.0 - 15.5	641801-034
D-B17-19.5-20.0	S	10.30.2019 12:00	19.5 - 20.0	641801-035
D-B24-2.5-3.0	S	10.30.2019 14:50	2.5 - 3.0	641801-036
D-B24-5.0-5.5	S	10.30.2019 15:00	5.0 - 5.5	641801-037
D-B24-7.5-8.0	S	10.30.2019 15:10	7.5 - 8.0	641801-038
D-B24-15.0-15.5	S	10.30.2019 15:50	15.0 - 15.5	641801-040
D-B25-2.5-3.0	S	10.30.2019 16:20	2.5 - 3.0	641801-041
D-B25-5.0-5.5	S	10.30.2019 16:30	5.0 - 5.5	641801-042
D-B25-7.5-8.0	S	10.30.2019 16:55	7.5 - 8.0	641801-043
D-B28-10.0-10.5	S	10.29.2019 15:55	10.0 - 10.5	Not Analyzed
Trip Blank	W	10.30.2019 00:00		Not Analyzed
D-B24-10.0-10.5	S	10.30.2019 15:40	10.0 - 10.5	Not Analyzed
20.0 20.0	5	10.00.2017 10.10	10.0 10.0	1.0011111111111111111111111111111111111

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-001 Date Collected: 10.29.2019 10:40 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 10:05 Basis: Dry Weight

Seq Number: 3106373 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0277
 0.0200
 mg/kg
 11.04.2019 14:04
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture: 0

Analyst: DEP Date Prep: 11.04.2019 09:50 Basis: Dry Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	13.4	1.85	mg/kg	11.04.2019 13:31		10
Barium	7440-39-3	123	3.70	mg/kg	11.04.2019 13:31		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.04.2019 13:31	U	10
Chromium	7440-47-3	19.9	3.70	mg/kg	11.04.2019 13:31		10
Lead	7439-92-1	28.7	1.85	mg/kg	11.04.2019 13:31		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.04.2019 13:31	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.04.2019 13:31	U	10

JOZ

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-001 Date Collected: 10.29.2019 10:40 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:09 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	11.04.2019 18:1	3 U	10
Acenaphthylene	208-96-8	0.390	0.0167		mg/kg	11.04.2019 18:1	3	10
Anthracene	120-12-7	0.257	0.0167		mg/kg	11.04.2019 18:1	3	10
Benzo(a)anthracene	56-55-3	0.830	0.0167		mg/kg	11.04.2019 18:1	3	10
Benzo(a)pyrene	50-32-8	1.31	0.0167		mg/kg	11.04.2019 18:1	3	10
Benzo(b)fluoranthene	205-99-2	1.41	0.0167		mg/kg	11.04.2019 18:1	3	10
Benzo(g,h,i)perylene	191-24-2	1.39	0.0167		mg/kg	11.04.2019 18:1	3	10
Benzo(k)fluoranthene	207-08-9	0.363	0.0167		mg/kg	11.04.2019 18:1	3	10
Chrysene	218-01-9	0.975	0.0167		mg/kg	11.04.2019 18:1	3	10
Dibenz(a,h)Anthracene	53-70-3	0.171	0.0167		mg/kg	11.04.2019 18:1	3	10
Fluoranthene	206-44-0	2.54	0.0167		mg/kg	11.04.2019 18:1	3	10
Fluorene	86-73-7	0.102	0.0167		mg/kg	11.04.2019 18:1	3	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.944	0.0167		mg/kg	11.04.2019 18:1	3	10
Naphthalene	91-20-3	0.321	0.167		mg/kg	11.04.2019 18:1	3	10
Phenanthrene	85-01-8	1.67	0.0167		mg/kg	11.04.2019 18:1	3	10
Pyrene	129-00-0	3.16	0.0167		mg/kg	11.04.2019 18:1	3	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date 1	lag	
Nitrobenzene-d5		101	%	31-130		1.2019 18:18		
2-Fluorobiphenyl		96	%	51-133		.2019 18:18		
Terphenyl-D14		112	%	46-137	11.04	.2019 18:18		

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B16-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-001 Date Collected: 10.29.2019 10:40 Sample Depth: 7.5 - 8.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,1-Dichloroethane	75-34-3	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,1-Dichloroethene	75-35-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,1-Dichloropropene	563-58-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2-Dibromoethane	106-93-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2-Dichloroethane	107-06-2	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,2-Dichloropropane	78-87-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,3-Dichloropropane	142-28-9	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
2,2-Dichloropropane	594-20-7	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
2-Butanone	78-93-3	BRL	1.17	mg/kg	11.01.2019 15:35	U	50
2-Chlorotoluene	95-49-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
2-Hexanone	591-78-6	BRL	2.91	mg/kg	11.01.2019 15:35	U	50
4-Chlorotoluene	106-43-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.91	mg/kg	11.01.2019 15:35	U	50
Acetone	67-64-1	BRL	5.83	mg/kg	11.01.2019 15:35	U	50
Benzene	71-43-2	BRL	0.0583	mg/kg	11.01.2019 15:35	U	50
Bromobenzene	108-86-1	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Bromochloromethane	74-97-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Bromodichloromethane	75-27-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Bromoform	75-25-2	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Bromomethane	74-83-9	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Carbon Disulfide	75-15-0	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Carbon Tetrachloride	56-23-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Chlorobenzene	108-90-7	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Chloroethane	75-00-3	BRL	0.583	mg/kg	11.01.2019 15:35	U	50
Chloroform	67-66-3	BRL	0.291	mg/kg	11.01.2019 15:35	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B16-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-001 Date Collected: 10.29.2019 10:40 Sample Depth: 7.5 - 8.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Dibromochloromethane	124-48-1	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Dibromomethane	74-95-3	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Ethylbenzene	100-41-4	BRL	0.0583	mg/kg	11.01.2019 15:35	U	50
Hexachlorobutadiene	87-68-3	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.17	mg/kg	11.01.2019 15:35	U	50
Isopropylbenzene	98-82-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
m,p-Xylenes	179601-23-1	BRL	0.117	mg/kg	11.01.2019 15:35	U	50
Methylene Chloride	75-09-2	BRL	1.17	mg/kg	11.01.2019 15:35	U	50
MTBE	1634-04-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Naphthalene	91-20-3	BRL	0.583	mg/kg	11.01.2019 15:35	U	50
n-Butylbenzene	104-51-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
n-Propylbenzene	103-65-1	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
o-Xylene	95-47-6	BRL	0.0583	mg/kg	11.01.2019 15:35	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Sec-Butylbenzene	135-98-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Styrene	100-42-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
tert-Butylbenzene	98-06-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Tetrachloroethylene	127-18-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Toluene	108-88-3	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Total Xylenes	1330-20-7	BRL	0.0583	mg/kg	11.01.2019 15:35	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Trichloroethene	79-01-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Trichlorofluoromethane	75-69-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Vinyl Acetate	108-05-4	BRL	0.583	mg/kg	11.01.2019 15:35	U	50
Vinyl Chloride	75-01-4	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
1,3-Butadiene	106-99-0	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Cyclohexane	110-82-7	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Dicyclopentadiene	77-73-6	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Methylcyclohexane	108-87-2	BRL	0.583	mg/kg	11.01.2019 15:35	U	50
n-Hexane	110-54-3	BRL	0.583	mg/kg	11.01.2019 15:35	U	50
4-Ethyltoluene	622-96-8	BRL	0.291	mg/kg	11.01.2019 15:35	U	50
Propene	115-07-1	BRL	0.291	mg/kg	11.01.2019 15:35	U	50

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-001 Date Collected: 10.29.2019 10:40 Sample Depth: 7.5 - 8.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	96	%	53-142	11.01.2019 15:35	
1,2-Dichloroethane-D4	102	%	56-150	11.01.2019 15:35	
Toluene-D8	105	%	70-130	11.01.2019 15:35	
4-Bromofluorobenzene	97	%	68-152	11.01.2019 15:35	

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B16-10.0-10.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-002 Date Collected: 10.29.2019 10:50 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0179 mg/kg 11.04.2019 13:44 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106337

DEP Analyst: Date Prep: 11.04.2019 09:50

Basis: Dry Weight SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 20.1 1.92 11.04.2019 13:34 10 Arsenic 7440-38-2 mg/kg Barium 203 7440-39-3 3.85 11.04.2019 13:34 10 mg/kg Cadmium 7440-43-9 BRL 1.92 mg/kg 11.04.2019 13:34 U 10 Chromium 7440-47-3 37.0 3.85 11.04.2019 13:34 10 mg/kg 10 Lead 7439-92-1 14.7 1.92 mg/kg 11.04.2019 13:34 Selenium 7782-49-2 BRL 1.92 11.04.2019 13:34 U 10 mg/kg Silver 7440-22-4 BRL 1.92 11.04.2019 13:34 U 10 mg/kg

JOZ

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-002 Date Collected: 10.29.2019 10:50 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00831		mg/kg	11.04.2019 18:35	U	5
Acenaphthylene	208-96-8	0.0573	0.00831		mg/kg	11.04.2019 18:35		5
Anthracene	120-12-7	0.0388	0.00831		mg/kg	11.04.2019 18:35		5
Benzo(a)anthracene	56-55-3	0.103	0.00831		mg/kg	11.04.2019 18:35		5
Benzo(a)pyrene	50-32-8	0.169	0.00831		mg/kg	11.04.2019 18:35		5
Benzo(b)fluoranthene	205-99-2	0.184	0.00831		mg/kg	11.04.2019 18:35		5
Benzo(g,h,i)perylene	191-24-2	0.189	0.00831		mg/kg	11.04.2019 18:35		5
Benzo(k)fluoranthene	207-08-9	0.0487	0.00831		mg/kg	11.04.2019 18:35		5
Chrysene	218-01-9	0.116	0.00831		mg/kg	11.04.2019 18:35		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00831		mg/kg	11.04.2019 18:35	U	5
Fluoranthene	206-44-0	0.344	0.00831		mg/kg	11.04.2019 18:35		5
Fluorene	86-73-7	0.0190	0.00831		mg/kg	11.04.2019 18:35		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.126	0.00831		mg/kg	11.04.2019 18:35		5
Naphthalene	91-20-3	BRL	0.0831		mg/kg	11.04.2019 18:35	U	5
Phenanthrene	85-01-8	0.303	0.00831		mg/kg	11.04.2019 18:35		5
Pyrene	129-00-0	0.418	0.00831		mg/kg	11.04.2019 18:35		5
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fla	ag	
Nitrobenzene-d5		94	%	31-130	11.04	.2019 18:35		
2-Fluorobiphenyl		97	%	51-133	11.04	.2019 18:35		
Terphenyl-D14		106	%	46-137	11.04	.2019 18:35		

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B16-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-002 Date Collected: 10.29.2019 10:50 Sample Depth: 10.0 - 10.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

I.I.1.2-Tetrachbrorechane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2.2-Tertachloroethane	1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1.1.2-Trichloroethane	1,1,1-Trichloroethane	71-55-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1.1-Dichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1.1-Dichloroethene 75-35-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.1-Dichloropropene 563-58-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2.3-Trichlorobenzene 363-58-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2.3-Trichloropropane 96-18-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2.4-Trichlorobenzene 120-82-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2.4-Trichlorobenzene 120-82-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2.4-Trimethylbenzene 95-63-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2Dibromo-Schloropropane 96-12-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2Dibromo-Schloropropane 96-12-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3Dichloropropane 142-28-9 BRL 0.296 mg/kg	1,1,2-Trichloroethane	79-00-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,1-Dichlonopropene 563-58-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.3-Trichlorobenzene 87-61-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.3-Trichlorobenzene 120-82-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.4-Trichlorobenzene 120-82-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.4-Trichlorobenzene 55-63-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.1-Dichloropropane 95-63-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.1-Dichlorobenzene 106-93-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.1-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.1-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.1-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.1-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3.5-Trimethylbenzene 541-73-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichlorobenzene 594-9-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-9-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloroblene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloroblene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloroblene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloroblene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloroblene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloroblene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloroblene	1,1-Dichloroethane	75-34-3	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,2.3-Trichlorobenzene 87-61-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.3-Trichloroptopane 96-18-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.4-Trichloroptopane 95-63-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.4-Trinchlynernen 95-63-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2.4-Dibromo-3-Chloroptopane 96-12-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2-Dibromochane 106-93-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2-Dibromochane 107-06-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,2-Dichloroptopane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloroptopane 108-67-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloroptopane 108-67-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloroptopane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloroptopane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloroptopane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichlorobenzene 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichloroptopane 78-93-3 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,2-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,2-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,2-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,2-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,2-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,2-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,3-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,3-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3,4-Dichloroptopane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50	1,1-Dichloroethene	75-35-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,2,3-Trichloropropane 96-18-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2,4-Trichlorobenzene 120,82-1 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2,4-Trimethylbenzene 95-63-6 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dibromo-3-Chloropropane 96-12-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dibromoethane 106-93-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichlorobenzene 95-60-1 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 54-17-3 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2,2-Dichloropropane 594-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2,2-Dichloropropane 594-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2,2-Dichloropropane 594-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 3,0-Dichloropropane 142-28 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 106-43-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 106-43-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 106-43-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 74-83-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 75-27-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Me	1,1-Dichloropropene	563-58-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,2,4-Trichlorobenzene 120,82-1 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2,4-Trimethylbenzene 95-63-6 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dibromo-3-Chloropropane 96-12-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dibromo-thane 106-93-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichlorothane 107-06-2 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 108-67-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2-Butanone 78-93-3 BRL 1,18 mg/kg 11,01,2019 15:56 U 50 2-Butanone 591-78-6 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 106-43-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 106-43-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Methyl-2-Pentanone 108-86-1 BRL 0.996 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-27-4 BRL 0.0950 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-15-0 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-15-0 BR	1,2,3-Trichlorobenzene	87-61-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,2,4-Trimethylbenzene 95-63-6 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dibromor-3-Chloropropane 96-12-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichlorobenzene 106-93-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichlorocethane 107-06-2 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,4-Dichloropropane 106-46-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2-Butanone 78-93-3 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2-Butanone 95-49-8 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 2-Hexanone 95-19-86 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Cherotoluene 106-43-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 4-Cetone 67-64-1 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11,01,2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11,01,2019 15:5	1,2,3-Trichloropropane	96-18-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1.2-Dibromo-3-Chloropropane 96-12-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2-Dibromoethane 106-93-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 108-67-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 3-Dichloropropane 594-8 BRL 0.296 mg/kg 11.01.2019 15	1,2,4-Trichlorobenzene	120-82-1	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1.2-Dibromoethane 106-93-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2-Dichloroethane 107-06-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2-Dichloropthane 178-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropthane 108-67-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropthane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropthane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropthane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.4-Dichlorobenzene 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dithloropthane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dithloropthane 594-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Dithloropthane 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 0.996 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochlane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochlane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochlane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Ca	1,2,4-Trimethylbenzene	95-63-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,2-Dichlorobenzene 95-50-1 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 1,2-Dichloropenane 78-87-5 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 1,3-Dichloropropane 78-87-5 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 1,3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 1,3-Dichloropropane 164-28-9 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Benzonechlane 74-97-5 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Bromochlane 74-83-9 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Bromochlane 75-27-4 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Bromochlane 75-25-2 BRL 0.296 mg/kg 1.01.2019 15:56 U 50 Bromoc	1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1.2-Dichloroethane 107-06-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.3-Dichloropropane 106-46-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 5	1,2-Dibromoethane	106-93-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,2-Dichloropropane 78-87-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3,5-Trimethylbenzene 541-73-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-10-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-86-1 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 75	1,2-Dichlorobenzene	95-50-1	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,3,5-Trimethylbenzene 108-67-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 95-49-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BR	1,2-Dichloroethane	107-06-2	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,3-Dichlorobenzene 541-73-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1,4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2,2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochloromethane 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 5-Mariomochlo	1,2-Dichloropropane	78-87-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1.3-Dichloropropane 142-28-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 1.4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2.2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2.3-Butanone 78-93-3 BRL 1.18 mg/kg 11.01.2019 15:56 U 50 2.4-Exanone 95-49-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2.4-Hexanone 591-78-6 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-9	1,3,5-Trimethylbenzene	108-67-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,4-Dichlorobenzene 106-46-7 BRL 0.296 mg/kg 11,01.2019 15:56 U 50	1,3-Dichlorobenzene	541-73-1	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
2.2-Dichloropropane 594-20-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Butanone 78-93-3 BRL 1.18 mg/kg 11.01.2019 15:56 U 50 2-Chlorotoluene 95-49-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296<	1,3-Dichloropropane	142-28-9	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
2-Butanone 78-93-3 BRL 1.18 mg/kg 11.01.2019 15:56 U 50 2-Chlorotoluene 95-49-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296	1,4-Dichlorobenzene	106-46-7	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
2-Chlorotoluene 95-49-8 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 2-Hexanone 591-78-6 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296	2,2-Dichloropropane	594-20-7	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
2-Hexanone 591-78-6 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroebenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3	2-Butanone	78-93-3	BRL	1.18	mg/kg	11.01.2019 15:56	U	50
4-Chlorotoluene 106-43-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.2	2-Chlorotoluene	95-49-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
4-Methyl-2-Pentanone 108-10-1 BRL 2.96 mg/kg 11.01.2019 15:56 U 50 Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 </td <td>2-Hexanone</td> <td>591-78-6</td> <td>BRL</td> <td>2.96</td> <td>mg/kg</td> <td>11.01.2019 15:56</td> <td>U</td> <td>50</td>	2-Hexanone	591-78-6	BRL	2.96	mg/kg	11.01.2019 15:56	U	50
Acetone 67-64-1 BRL 5.92 mg/kg 11.01.2019 15:56 U 50 Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296	4-Chlorotoluene	106-43-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Benzene 71-43-2 BRL 0.0592 mg/kg 11.01.2019 15:56 U 50 Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL <td< td=""><td>4-Methyl-2-Pentanone</td><td>108-10-1</td><td>BRL</td><td>2.96</td><td>mg/kg</td><td>11.01.2019 15:56</td><td>U</td><td>50</td></td<>	4-Methyl-2-Pentanone	108-10-1	BRL	2.96	mg/kg	11.01.2019 15:56	U	50
Bromobenzene 108-86-1 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Acetone	67-64-1	BRL	5.92	mg/kg	11.01.2019 15:56	U	50
Bromochloromethane 74-97-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Benzene	71-43-2	BRL	0.0592	mg/kg	11.01.2019 15:56	U	50
Bromodichloromethane 75-27-4 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Bromobenzene	108-86-1	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Bromoform 75-25-2 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Bromochloromethane	74-97-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Bromomethane 74-83-9 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Bromodichloromethane	75-27-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Carbon Disulfide 75-15-0 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Bromoform	75-25-2	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Carbon Tetrachloride 56-23-5 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Bromomethane	74-83-9	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Chlorobenzene 108-90-7 BRL 0.296 mg/kg 11.01.2019 15:56 U 50 Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Carbon Disulfide	75-15-0	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Chloroethane 75-00-3 BRL 0.592 mg/kg 11.01.2019 15:56 U 50	Carbon Tetrachloride	56-23-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
	Chlorobenzene	108-90-7	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Chloroform 67-66-3 BRL 0.296 mg/kg 11.01.2019 15:56 U 50	Chloroethane	75-00-3	BRL	0.592	mg/kg	11.01.2019 15:56	U	50
	Chloroform	67-66-3	BRL	0.296	mg/kg	11.01.2019 15:56	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B16-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-002 Date Collected: 10.29.2019 10:50 Sample Depth: 10.0 - 10.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Dibromochloromethane	124-48-1	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Dibromomethane	74-95-3	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Ethylbenzene	100-41-4	BRL	0.0592	mg/kg	11.01.2019 15:56	U	50
Hexachlorobutadiene	87-68-3	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.18	mg/kg	11.01.2019 15:56	U	50
Isopropylbenzene	98-82-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
m,p-Xylenes	179601-23-1	BRL	0.118	mg/kg	11.01.2019 15:56	U	50
Methylene Chloride	75-09-2	BRL	1.18	mg/kg	11.01.2019 15:56	U	50
MTBE	1634-04-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Naphthalene	91-20-3	BRL	0.592	mg/kg	11.01.2019 15:56	U	50
n-Butylbenzene	104-51-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
n-Propylbenzene	103-65-1	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
o-Xylene	95-47-6	BRL	0.0592	mg/kg	11.01.2019 15:56	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Sec-Butylbenzene	135-98-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Styrene	100-42-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
tert-Butylbenzene	98-06-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Tetrachloroethylene	127-18-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Toluene	108-88-3	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Total Xylenes	1330-20-7	BRL	0.0592	mg/kg	11.01.2019 15:56	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Trichloroethene	79-01-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Trichlorofluoromethane	75-69-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Vinyl Acetate	108-05-4	BRL	0.592	mg/kg	11.01.2019 15:56	U	50
Vinyl Chloride	75-01-4	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
1,3-Butadiene	106-99-0	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Cyclohexane	110-82-7	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Dicyclopentadiene	77-73-6	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Methylcyclohexane	108-87-2	BRL	0.592	mg/kg	11.01.2019 15:56	U	50
n-Hexane	110-54-3	BRL	0.592	mg/kg	11.01.2019 15:56	U	50
4-Ethyltoluene	622-96-8	BRL	0.296	mg/kg	11.01.2019 15:56	U	50
Propene	115-07-1	BRL	0.296	mg/kg	11.01.2019 15:56	U	50

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-002 Date Collected: 10.29.2019 10:50 Sample Depth: 10.0 - 10.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	-	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	94	%	53-142	11.01.2019 15:56	
1,2-Dichloroethane-D4	99	%	56-150	11.01.2019 15:56	
Toluene-D8	103	%	70-130	11.01.2019 15:56	
4-Bromofluorobenzene	98	%	68-152	11.01.2019 15:56	

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B16-15.0-15.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-003 Date Collected: 10.29.2019 12:00 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0182 mg/kg 11.04.2019 13:49 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106337

DEP Analyst: Date Prep: 11.04.2019 09:50

Prep Method: SW3050B

% Moisture: Basis:

Dry Weight SUB: T104704215-19-30

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 23.0 11.04.2019 13:43 10 Arsenic 7440-38-2 1.96 mg/kg Barium 284 7440-39-3 3.92 11.04.2019 13:43 10 mg/kg Cadmium 7440-43-9 BRL 1.96 mg/kg 11.04.2019 13:43 U 10 Chromium 7440-47-3 129 3.92 11.04.2019 13:43 10 mg/kg 10 Lead 7439-92-1 15.4 1.96 mg/kg 11.04.2019 13:43 Selenium 7782-49-2 BRL 1.96 11.04.2019 13:43 U 10 mg/kg Silver 7440-22-4 BRL 1.96 11.04.2019 13:43 U 10 mg/kg

JOZ

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-003 Date Collected: 10.29.2019 12:00 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 20:1	14	U	1
Acenaphthylene	208-96-8	0.0368	0.00167		mg/kg	11.04.2019 20:1	14		1
Anthracene	120-12-7	0.0245	0.00167		mg/kg	11.04.2019 20:1	14		1
Benzo(a)anthracene	56-55-3	0.0722	0.00167		mg/kg	11.04.2019 20:1	14		1
Benzo(a)pyrene	50-32-8	0.130	0.00167		mg/kg	11.04.2019 20:1	14		1
Benzo(b) fluoranthene	205-99-2	0.136	0.00167		mg/kg	11.04.2019 20:1	14		1
Benzo(g,h,i)perylene	191-24-2	0.113	0.00167		mg/kg	11.04.2019 20:1	14		1
Benzo(k)fluoranthene	207-08-9	0.0417	0.00167		mg/kg	11.04.2019 20:1	14		1
Chrysene	218-01-9	0.0877	0.00167		mg/kg	11.04.2019 20:1	14		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 20:1	14	U	1
Fluoranthene	206-44-0	0.221	0.00167		mg/kg	11.04.2019 20:1	14		1
Fluorene	86-73-7	0.00932	0.00167		mg/kg	11.04.2019 20:1	14		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0802	0.00167		mg/kg	11.04.2019 20:1	14		1
Naphthalene	91-20-3	0.0279	0.0167		mg/kg	11.04.2019 20:1	14		1
Phenanthrene	85-01-8	0.152	0.00167		mg/kg	11.04.2019 20:1	14		1
Pyrene	129-00-0	0.281	0.00167		mg/kg	11.04.2019 20:1	14		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		93	%	31-130	11.04	1.2019 20:14			
2-Fluorobiphenyl		95	%	51-133		1.2019 20:14			
Terphenyl-D14		110	%	46-137	11.04	1.2019 20:14			

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B16-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-003 Date Collected: 10.29.2019 12:00 Sample Depth: 15.0 - 15.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,1-Dichloroethane	75-34-3	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,1-Dichloroethene	75-35-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,1-Dichloropropene	563-58-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2-Dibromoethane	106-93-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2-Dichloroethane	107-06-2	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,2-Dichloropropane	78-87-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,3-Dichloropropane	142-28-9	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
2,2-Dichloropropane	594-20-7	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
2-Butanone	78-93-3	BRL	1.07	mg/kg	11.01.2019 16:18	U	50
2-Chlorotoluene	95-49-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
2-Hexanone	591-78-6	BRL	2.67	mg/kg	11.01.2019 16:18	U	50
4-Chlorotoluene	106-43-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.67	mg/kg	11.01.2019 16:18	U	50
Acetone	67-64-1	BRL	5.34	mg/kg	11.01.2019 16:18	U	50
Benzene	71-43-2	BRL	0.0534	mg/kg	11.01.2019 16:18	U	50
Bromobenzene	108-86-1	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Bromochloromethane	74-97-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Bromodichloromethane	75-27-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Bromoform	75-25-2	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Bromomethane	74-83-9	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Carbon Disulfide	75-15-0	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Carbon Tetrachloride	56-23-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Chlorobenzene	108-90-7	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Chloroethane	75-00-3	BRL	0.534	mg/kg	11.01.2019 16:18	U	50
Chloroform	67-66-3	BRL	0.267	mg/kg	11.01.2019 16:18	U	50

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B16-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-003 Date Collected: 10.29.2019 12:00 Sample Depth: 15.0 - 15.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Dibromochloromethane	124-48-1	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Dibromomethane	74-95-3	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Ethylbenzene	100-41-4	BRL	0.0534	mg/kg	11.01.2019 16:18	U	50
Hexachlorobutadiene	87-68-3	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.07	mg/kg	11.01.2019 16:18	U	50
Isopropylbenzene	98-82-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
m,p-Xylenes	179601-23-1	BRL	0.107	mg/kg	11.01.2019 16:18	U	50
Methylene Chloride	75-09-2	BRL	1.07	mg/kg	11.01.2019 16:18	U	50
MTBE	1634-04-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Naphthalene	91-20-3	BRL	0.534	mg/kg	11.01.2019 16:18	U	50
n-Butylbenzene	104-51-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
n-Propylbenzene	103-65-1	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
o-Xylene	95-47-6	BRL	0.0534	mg/kg	11.01.2019 16:18	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Sec-Butylbenzene	135-98-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Styrene	100-42-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
tert-Butylbenzene	98-06-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Tetrachloroethylene	127-18-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Toluene	108-88-3	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Total Xylenes	1330-20-7	BRL	0.0534	mg/kg	11.01.2019 16:18	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Trichloroethene	79-01-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Trichlorofluoromethane	75-69-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Vinyl Acetate	108-05-4	BRL	0.534	mg/kg	11.01.2019 16:18	U	50
Vinyl Chloride	75-01-4	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
1,3-Butadiene	106-99-0	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Cyclohexane	110-82-7	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Dicyclopentadiene	77-73-6	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Methylcyclohexane	108-87-2	BRL	0.534	mg/kg	11.01.2019 16:18	U	50
n-Hexane	110-54-3	BRL	0.534	mg/kg	11.01.2019 16:18	U	50
4-Ethyltoluene	622-96-8	BRL	0.267	mg/kg	11.01.2019 16:18	U	50
Propene	115-07-1	BRL	0.267	mg/kg	11.01.2019 16:18	U	50

SAD

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B16-15.0-15.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-003 Sample Depth: 15.0 - 15.5 Date Collected: 10.29.2019 12:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Basis:

Analyst: Date Prep: 11.01.2019 15:00 Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	92	%	53-142	11.01.2019 16:18	
1,2-Dichloroethane-D4	98	%	56-150	11.01.2019 16:18	
Toluene-D8	104	%	70-130	11.01.2019 16:18	
4-Bromofluorobenzene	96	%	68-152	11.01.2019 16:18	

ADS

Seq Number: 3106337

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-FD02-102919 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-004 Date Collected: 10.29.2019 12:15

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0169 mg/kg 11.04.2019 13:51 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Date Prep: 11.04.2019 09:50

Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.9	1.79	mg/kg	11.04.2019 13:46		10
Barium	7440-39-3	180	3.57	mg/kg	11.04.2019 13:46		10
Cadmium	7440-43-9	BRL	1.79	mg/kg	11.04.2019 13:46	U	10
Chromium	7440-47-3	48.8	3.57	mg/kg	11.04.2019 13:46		10
Lead	7439-92-1	10.0	1.79	mg/kg	11.04.2019 13:46		10
Selenium	7782-49-2	BRL	1.79	mg/kg	11.04.2019 13:46	U	10
Silver	7440-22-4	BRL	1.79	mg/kg	11.04.2019 13:46	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD02-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-004 Date Collected: 10.29.2019 12:15

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:18 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 20:31	U	1
Acenaphthylene	208-96-8	0.0175	0.00167		mg/kg	11.04.2019 20:31		1
Anthracene	120-12-7	0.0130	0.00167		mg/kg	11.04.2019 20:31		1
Benzo(a)anthracene	56-55-3	0.0406	0.00167		mg/kg	11.04.2019 20:31		1
Benzo(a)pyrene	50-32-8	0.0676	0.00167		mg/kg	11.04.2019 20:31		1
Benzo(b)fluoranthene	205-99-2	0.0674	0.00167		mg/kg	11.04.2019 20:31		1
Benzo(g,h,i)perylene	191-24-2	0.0560	0.00167		mg/kg	11.04.2019 20:31		1
Benzo(k)fluoranthene	207-08-9	0.0269	0.00167		mg/kg	11.04.2019 20:31		1
Chrysene	218-01-9	0.0460	0.00167		mg/kg	11.04.2019 20:31		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 20:31	U	1
Fluoranthene	206-44-0	0.127	0.00167		mg/kg	11.04.2019 20:31		1
Fluorene	86-73-7	0.00482	0.00167		mg/kg	11.04.2019 20:31		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0401	0.00167		mg/kg	11.04.2019 20:31		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 20:31	U	1
Phenanthrene	85-01-8	0.0837	0.00167		mg/kg	11.04.2019 20:31		1
Pyrene	129-00-0	0.155	0.00167		mg/kg	11.04.2019 20:31		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		109	%	31-130	11.04	1.2019 20:31		
2-Fluorobiphenyl		108	%	51-133	11.04	1.2019 20:31		
Terphenyl-D14		112	%	46-137	11.04	.2019 20:31		

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-FD02-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-004 Date Collected: 10.29.2019 12:15

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,1-Dichloroethane	75-34-3	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,1-Dichloroethene	75-35-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,1-Dichloropropene	563-58-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2-Dibromoethane	106-93-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2-Dichloroethane	107-06-2	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,2-Dichloropropane	78-87-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,3-Dichloropropane	142-28-9	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
2,2-Dichloropropane	594-20-7	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
2-Butanone	78-93-3	BRL	1.04	mg/kg	11.01.2019 16:40	U	50
2-Chlorotoluene	95-49-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
2-Hexanone	591-78-6	BRL	2.60	mg/kg	11.01.2019 16:40	U	50
4-Chlorotoluene	106-43-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.60	mg/kg	11.01.2019 16:40	U	50
Acetone	67-64-1	BRL	5.20	mg/kg	11.01.2019 16:40	U	50
Benzene	71-43-2	BRL	0.0520	mg/kg	11.01.2019 16:40	U	50
Bromobenzene	108-86-1	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Bromochloromethane	74-97-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Bromodichloromethane	75-27-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Bromoform	75-25-2	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Bromomethane	74-83-9	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Carbon Disulfide	75-15-0	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Carbon Tetrachloride	56-23-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Chlorobenzene	108-90-7	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Chloroethane	75-00-3	BRL	0.520	mg/kg	11.01.2019 16:40	U	50
Chloroform	67-66-3	BRL	0.260	mg/kg	11.01.2019 16:40	U	50

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-FD02-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-004 Date Collected: 10.29.2019 12:15

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Dibromochloromethane	124-48-1	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Dibromomethane	74-95-3	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Ethylbenzene	100-41-4	BRL	0.0520	mg/kg	11.01.2019 16:40	U	50
Hexachlorobutadiene	87-68-3	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.04	mg/kg	11.01.2019 16:40	U	50
Isopropylbenzene	98-82-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
m,p-Xylenes	179601-23-1	BRL	0.104	mg/kg	11.01.2019 16:40	U	50
Methylene Chloride	75-09-2	BRL	1.04	mg/kg	11.01.2019 16:40	U	50
MTBE	1634-04-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Naphthalene	91-20-3	BRL	0.520	mg/kg	11.01.2019 16:40	U	50
n-Butylbenzene	104-51-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
n-Propylbenzene	103-65-1	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
o-Xylene	95-47-6	BRL	0.0520	mg/kg	11.01.2019 16:40	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Sec-Butylbenzene	135-98-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Styrene	100-42-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
tert-Butylbenzene	98-06-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Tetrachloroethylene	127-18-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Toluene	108-88-3	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Total Xylenes	1330-20-7	BRL	0.0520	mg/kg	11.01.2019 16:40	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Trichloroethene	79-01-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Trichlorofluoromethane	75-69-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Vinyl Acetate	108-05-4	BRL	0.520	mg/kg	11.01.2019 16:40	U	50
Vinyl Chloride	75-01-4	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
1,3-Butadiene	106-99-0	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Cyclohexane	110-82-7	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Dicyclopentadiene	77-73-6	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Methylcyclohexane	108-87-2	BRL	0.520	mg/kg	11.01.2019 16:40	U	50
n-Hexane	110-54-3	BRL	0.520	mg/kg	11.01.2019 16:40	U	50
4-Ethyltoluene	622-96-8	BRL	0.260	mg/kg	11.01.2019 16:40	U	50
Propene							

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD02-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-004 Date Collected: 10.29.2019 12:15

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	93	%	53-142	11.01.2019 16:40	
1,2-Dichloroethane-D4	100	%	56-150	11.01.2019 16:40	
Toluene-D8	104	%	70-130	11.01.2019 16:40	
4-Bromofluorobenzene	97	%	68-152	11.01.2019 16:40	

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B16-19.5-20.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-005 Date Collected: 10.29.2019 12:20 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0200 mg/kg 11.04.2019 13:53 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106337

DEP Analyst: Date Prep: 11.04.2019 09:50 Basis:

Dry Weight SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 17.7 1.89 11.04.2019 13:49 10 Arsenic 7440-38-2 mg/kg Barium 7440-39-3 181 3.77 11.04.2019 13:49 10 mg/kg Cadmium 7440-43-9 BRL 1.89 mg/kg 11.04.2019 13:49 U 10 Chromium 7440-47-3 37.5 3.77 11.04.2019 13:49 10 mg/kg 10 Lead 7439-92-1 9.81 1.89 mg/kg 11.04.2019 13:49 Selenium 7782-49-2 BRL 1.89 11.04.2019 13:49 U 10 mg/kg Silver 7440-22-4 BRL 1.89 11.04.2019 13:49 U 10 mg/kg

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-005 Date Collected: 10.29.2019 12:20 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:21 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 20:48	U	1
Acenaphthylene	208-96-8	0.0241	0.00166		mg/kg	11.04.2019 20:48		1
Anthracene	120-12-7	0.0168	0.00166		mg/kg	11.04.2019 20:48		1
Benzo(a)anthracene	56-55-3	0.0505	0.00166		mg/kg	11.04.2019 20:48		1
Benzo(a)pyrene	50-32-8	0.0851	0.00166		mg/kg	11.04.2019 20:48		1
Benzo(b)fluoranthene	205-99-2	0.100	0.00166		mg/kg	11.04.2019 20:48		1
Benzo(g,h,i)perylene	191-24-2	0.0731	0.00166		mg/kg	11.04.2019 20:48		1
Benzo(k)fluoranthene	207-08-9	0.0245	0.00166		mg/kg	11.04.2019 20:48		1
Chrysene	218-01-9	0.0589	0.00166		mg/kg	11.04.2019 20:48		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 20:48	U	1
Fluoranthene	206-44-0	0.157	0.00166		mg/kg	11.04.2019 20:48		1
Fluorene	86-73-7	0.00625	0.00166		mg/kg	11.04.2019 20:48		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0509	0.00166		mg/kg	11.04.2019 20:48		1
Naphthalene	91-20-3	0.0188	0.0166		mg/kg	11.04.2019 20:48		1
Phenanthrene	85-01-8	0.113	0.00166		mg/kg	11.04.2019 20:48		1
Pyrene	129-00-0	0.191	0.00166		mg/kg	11.04.2019 20:48		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date I	lag	
Nitrobenzene-d5		109	%	31-130		1.2019 20:48		
2-Fluorobiphenyl		107	%	51-133		1.2019 20:48		
Terphenyl-D14		116	%	46-137	11.04	1.2019 20:48		

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B16-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-005 Date Collected: 10.29.2019 12:20 Sample Depth: 19.5 - 20.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,1-Dichloroethane	75-34-3	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,1-Dichloroethene	75-35-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,1-Dichloropropene	563-58-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2-Dibromoethane	106-93-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2-Dichloroethane	107-06-2	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,2-Dichloropropane	78-87-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,3-Dichloropropane	142-28-9	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
2,2-Dichloropropane	594-20-7	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
2-Butanone	78-93-3	BRL	1.10	mg/kg	11.01.2019 17:01	U	50
2-Chlorotoluene	95-49-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
2-Hexanone	591-78-6	BRL	2.75	mg/kg	11.01.2019 17:01	U	50
4-Chlorotoluene	106-43-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.75	mg/kg	11.01.2019 17:01	U	50
Acetone	67-64-1	BRL	5.49	mg/kg	11.01.2019 17:01	U	50
Benzene	71-43-2	BRL	0.0549	mg/kg	11.01.2019 17:01	U	50
Bromobenzene	108-86-1	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Bromochloromethane	74-97-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Bromodichloromethane	75-27-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Bromoform	75-25-2	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Bromomethane	74-83-9	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Carbon Disulfide	75-15-0	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Carbon Tetrachloride	56-23-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Chlorobenzene	108-90-7	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Chloroethane	75-00-3	BRL	0.549	mg/kg	11.01.2019 17:01	U	50
Chloroform	67-66-3	BRL	0.275	mg/kg	11.01.2019 17:01	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B16-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-005 Date Collected: 10.29.2019 12:20 Sample Depth: 19.5 - 20.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Dibromochloromethane	124-48-1	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Dibromomethane	74-95-3	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Ethylbenzene	100-41-4	BRL	0.0549	mg/kg	11.01.2019 17:01	U	50
Hexachlorobutadiene	87-68-3	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.10	mg/kg	11.01.2019 17:01	U	50
Isopropylbenzene	98-82-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
m,p-Xylenes	179601-23-1	BRL	0.110	mg/kg	11.01.2019 17:01	U	50
Methylene Chloride	75-09-2	BRL	1.10	mg/kg	11.01.2019 17:01	U	50
MTBE	1634-04-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Naphthalene	91-20-3	BRL	0.549	mg/kg	11.01.2019 17:01	U	50
n-Butylbenzene	104-51-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
n-Propylbenzene	103-65-1	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
o-Xylene	95-47-6	BRL	0.0549	mg/kg	11.01.2019 17:01	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Sec-Butylbenzene	135-98-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Styrene	100-42-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
tert-Butylbenzene	98-06-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Tetrachloroethylene	127-18-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Toluene	108-88-3	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Total Xylenes	1330-20-7	BRL	0.0549	mg/kg	11.01.2019 17:01	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Trichloroethene	79-01-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Trichlorofluoromethane	75-69-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Vinyl Acetate	108-05-4	BRL	0.549	mg/kg	11.01.2019 17:01	U	50
Vinyl Chloride	75-01-4	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
1,3-Butadiene	106-99-0	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Cyclohexane	110-82-7	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Dicyclopentadiene	77-73-6	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Methylcyclohexane	108-87-2	BRL	0.549	mg/kg	11.01.2019 17:01	U	50
n-Hexane	110-54-3	BRL	0.549	mg/kg	11.01.2019 17:01	U	50
4-Ethyltoluene	622-96-8	BRL	0.275	mg/kg	11.01.2019 17:01	U	50
Propene	115-07-1	BRL	0.275	mg/kg	11.01.2019 17:01	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B16-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-005 Date Collected: 10.29.2019 12:20 Sample Depth: 19.5 - 20.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Seq Number: 3106167 SUB: T104704215-19-30

% Recovery Surrogate Units Limits **Analysis Date** Flag Dibromofluoromethane 90 % 53-142 11.01.2019 17:01 1,2-Dichloroethane-D4 100 % 56-150 11.01.2019 17:01 Toluene-D8 104 70-130 11.01.2019 17:01 4-Bromofluorobenzene 97 68-152 11.01.2019 17:01

KCS

ADS

57-12-5

Analyst:

Cyanide, Total

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

11.01.2019 14:00

0.0576

Sample Id: D-B28-5.0-5.5 Matrix: Soil Date Received:11.01.2019 09:30

Sample Depth: 5.0 - 5.5 Lab Sample Id: 641801-006 Date Collected: 10.29.2019 12:45

Date Prep:

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

mg/kg

KCS Tech:

> Basis: Wet Weight

> > 11.01.2019 15:55

Dil

1

U

Seq Number: 3106209 SUB: T104704215-19-30 **Parameter** Cas Number Result RL Units **Analysis Date**

Prep Method: SW7471P Analytical Method: Mercury by SW 7471B

% Moisture:

BRL

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight

Seq Number: 3106373 SUB: T104704215-19-30

Parameter Cas Number Result RL Units **Analysis Date** Flag Dil BRL 0.0185 11.04.2019 13:55 U Mercury 7439-97-6 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: Basis: Dry Weight Date Prep: 11.04.2019 09:50

Seq Number: 3106337 SUB: T104704215-19-30

Parameter Cas Number Result RL Dil Units **Analysis Date** Flag 11.04.2019 13:52 Arsenic 7440-38-2 16.1 1.89 10 mg/kg Barium 7440-39-3 84.3 3.77 11.04.2019 13:52 10 mg/kg Cadmium 7440-43-9 BRL 1.89 11.04.2019 13:52 U 10 mg/kg Chromium 7440-47-3 9.30 3.77 11.04.2019 13:52 10 mg/kg Lead 7439-92-1 10.9 1.89 mg/kg 11.04.2019 13:52 10 Selenium 7782-49-2 BRL 1.89 11.04.2019 13:52 U 10 mg/kg Silver 7440-22-4 BRL 1.89 mg/kg 11.04.2019 13:52 U 10

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-006 Date Collected: 10.29.2019 12:45 Sample Depth: 5.0 - 5.5

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106372

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.04.2019 11:16
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.31 pН 12408-02-5 1 Temperature TEMP 25.9 11.04.2019 12:44 1 Deg C

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-006 Date Collected: 10.29.2019 12:45 Sample Depth: 5.0 - 5.5

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:09 Basis: Wet Weight

Seq Number: 3106445 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0166	mg/kg	11.05.2019 11:25	U	1
PCB-1221	11104-28-2	BRL	0.0166	mg/kg	11.05.2019 11:25	U	1
PCB-1232	11141-16-5	BRL	0.0166	mg/kg	11.05.2019 11:25	U	1
PCB-1242	53469-21-9	BRL	0.0166	mg/kg	11.05.2019 11:25	U	1
PCB-1248	12672-29-6	BRL	0.0166	mg/kg	11.05.2019 11:25	U	1
PCB-1254	11097-69-1	BRL	0.0166	mg/kg	11.05.2019 11:25	U	1
PCB-1260	11096-82-5	BRL	0.0166	mg/kg	11.05.2019 11:25	U	1

% Recovery

Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	120	%	39-125	11.05.2019 11:25	
Tetrachloro-m-xylene	80	%	37-124	11.05.2019 11:25	

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-006 Date Collected: 10.29.2019 12:45 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 11:50 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.05.2019 17:22	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.05.2019 17:22	U	1
Anthracene	120-12-7	0.00206	0.00167		mg/kg	11.05.2019 17:22		1
Benzo(a)anthracene	56-55-3	0.0104	0.00167		mg/kg	11.05.2019 17:22		1
Benzo(a)pyrene	50-32-8	0.0177	0.00167		mg/kg	11.05.2019 17:22		1
Benzo(b)fluoranthene	205-99-2	0.0291	0.00167		mg/kg	11.05.2019 17:22		1
Benzo(g,h,i)perylene	191-24-2	0.0201	0.00167		mg/kg	11.05.2019 17:22		1
Benzo(k)fluoranthene	207-08-9	0.00705	0.00167		mg/kg	11.05.2019 17:22		1
Chrysene	218-01-9	0.0148	0.00167		mg/kg	11.05.2019 17:22		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.05.2019 17:22	U	1
Fluoranthene	206-44-0	0.0261	0.00167		mg/kg	11.05.2019 17:22		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.05.2019 17:22	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0158	0.00167		mg/kg	11.05.2019 17:22		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.05.2019 17:22	U	1
Phenanthrene	85-01-8	0.0110	0.00167		mg/kg	11.05.2019 17:22		1
Pyrene	129-00-0	0.0216	0.00167		mg/kg	11.05.2019 17:22		1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		110	%	31-130	11.05	5.2019 17:22		
2-Fluorobiphenyl		111	%	51-133	11.05	5.2019 17:22		
Terphenyl-D14		108	%	46-137	11.05	5.2019 17:22		

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B28-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-006 Date Collected: 10.29.2019 12:45 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,1-Dichloroethane	75-34-3	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,1-Dichloroethene	75-35-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,1-Dichloropropene	563-58-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2-Dibromoethane	106-93-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2-Dichloroethane	107-06-2	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,2-Dichloropropane	78-87-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,3-Dichloropropane	142-28-9	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
2,2-Dichloropropane	594-20-7	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
2-Butanone	78-93-3	BRL	1.04	mg/kg	11.01.2019 17:23	U	50
2-Chlorotoluene	95-49-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
2-Hexanone	591-78-6	BRL	2.59	mg/kg	11.01.2019 17:23	U	50
4-Chlorotoluene	106-43-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.59	mg/kg	11.01.2019 17:23	U	50
Acetone	67-64-1	BRL	5.18	mg/kg	11.01.2019 17:23	U	50
Benzene	71-43-2	BRL	0.0518	mg/kg	11.01.2019 17:23	U	50
Bromobenzene	108-86-1	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Bromochloromethane	74-97-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Bromodichloromethane	75-27-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Bromoform	75-25-2	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Bromomethane	74-83-9	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Carbon Disulfide	75-15-0	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Carbon Tetrachloride	56-23-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Chlorobenzene	108-90-7	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Chloroethane	75-00-3	BRL	0.518	mg/kg	11.01.2019 17:23	U	50
Chloroform	67-66-3	BRL	0.259	mg/kg	11.01.2019 17:23	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B28-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-006 Date Collected: 10.29.2019 12:45 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Chloromethane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichlorpropene 10061-01-5 BRL 0.259 mgks 1.01.2019 17:23 U 50 Dibromochloromethane 124-48-1 BRL 0.259 mgks 1.01.2019 17:23 U 50 Dichlorodifluoromethane 73-51-8 BRL 0.259 mgks 1.01.2019 17:23 U 50 Ethylbenzene 100-41-4 BRL 0.0518 mgks 1.01.2019 17:23 U 50 Hexachlorobutadine 73-68-3 BRL 0.0518 mgks 1.01.2019 17:23 U 50 Idodomethane (Methyl Iodide) 74-88-4 BRL 0.104 mgks 1.01.2019 17:23 U 50 Isopropylbenzene 98-82-8 BRL 0.104 mgks 1.01.2019 17:23 U 50 Isopropylbenzene 98-82-8 BRL 0.104 mgks 1.01.2019 17:23 U 50 Mchylbenzene 163-40-4 BRL 0.129 mgks 1.01.2019 17:23 U 50 50 50 50 50	Chloromethane	74-87-3	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Dibromochlarone thane 12448-1 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 74-95-3 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 75-71-8 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 100-41-4 BRL 0.0518 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 100-41-4 BRL 0.0518 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 87-68-3 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 08-82-8 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 08-82-8 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.104 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.104 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Dibromochlarone 075-09-2 BRL 0.259 mg/kg 11.01.2019 17.23	cis-1,2-Dichloroethene	156-59-2	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Dibriomomethane 74-95-3 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Dichlorodifluoromethane 75-71-8 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Dichlorodifluoromethane 87-68-3 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Dichlorodifluoromethane 87-68-3 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Dichlorodifluoromethane 75-70-2 BRL 0.104 mgkg 1.01.2019 17:23 U 50 Dichlorodifluoromethane 75-69-2 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Methylene Chloride 75-09-2 BRL 0.104 mgkg 1.01.2019 17:23 U 50 Methylene Chloride 75-09-2 BRL 0.104 mgkg 1.01.2019 17:23 U 50 Methylene Chloride 75-09-2 BRL 0.104 mgkg 1.01.2019 17:23 U 50 MIBE 1634-044 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Maphthalene 91-20-3 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Naphthalene 104-51-8 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Naphthalene 104-51-8 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Naphthalene 95-47-6 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Sec-Butylbenzene 130-60-5 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihylene 127-18-4 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihene 156-60-5 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihene 156-60-5 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihene 156-60-5 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihene 156-60-5 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihene 156-60-5 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihene 156-60-5 BRL 0.259 mgkg 1.01.2019 17:23 U 50 Tetrachlorodihene 156-60-5 BRL 0	cis-1,3-Dichloropropene	10061-01-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Dichlorodifiloromethane 75-71-8 BRL 0.259 mgks 1.01.2019 17:23 0 50 1.0	Dibromochloromethane	124-48-1	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Ethylbenzene 100-41-4 BRI. 0.0518 mg/se 10.10219 17.23 0 0.0518 10.0019	Dibromomethane	74-95-3	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Persentinorobutatiene	Dichlorodifluoromethane	75-71-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Indomethane (Methyl Iodide) 74-88-4 BRI. 1.04 mg/kg 1.101.2019 17:23 U 50 1.05 1	Ethylbenzene	100-41-4	BRL	0.0518	mg/kg	11.01.2019 17:23	U	50
Borpopylbenzene 98-82-8 BRL 0.259 mg/kg 1.01.2019 17.23 U 50 mg/kg 1.01.2019 17.23 U 50 mg/kg 1.01.2019 17.23 U 50 Methylene Chloride 75-09-2 BRL 0.104 mg/kg 1.01.2019 17.23 U 50 Methylene Chloride 75-09-2 BRL 0.518 mg/kg 1.10.12019 17.23 U 50 Methylene Chloride 91-20-3 BRL 0.518 mg/kg 1.10.12019 17.23 U 50 mg/kg 1.01.2019 17.23 U 50 mg/kg 1.	Hexachlorobutadiene	87-68-3	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
mp-Xylenes 179601-23-1 BRL 0.104 mg/kg 11.01.2019 17.23 U 50 Methylene Chloride 75-09-2 BRL 1.04 mg/kg 11.01.2019 17.23 U 50 MTBE 1634-04-4 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Naphthalene 91-20-3 BRL 0.518 mg/kg 11.01.2019 17.23 U 50 n-Butylbenzene 104-51-8 BRL 0.529 mg/kg 11.01.2019 17.23 U 50 n-Propylbenzene 103-65-1 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 o-Xylene 95-47-6 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 p-Cymene (p-Isopropyltoluen) 99-87-6 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Sec-Butylbenzene 190-42-5 BRL 0.259 mg/kg 11.01.2019 17.23 U 50 Styrene 100-42-5 BRL 0	Iodomethane (Methyl Iodide)	74-88-4	BRL	1.04	mg/kg	11.01.2019 17:23	U	50
Methylene Chloride 75-09-2 BRL 1.04 mg/kg 11.01.2019 17:23 U 50 MTBE 1634-04-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Naphthalene 91-20-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Butylbenzene 104-51-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 o-Xylene 95-47-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Scy-Butylbenzene 95-47-6 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 Scy-Butylbenzene 95-87-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Scy-Butylbenzene 130-6-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Styrene 10-042-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 tetr-Butylbenzene 127-18-4 BRL 0.259 <td>Isopropylbenzene</td> <td>98-82-8</td> <td>BRL</td> <td>0.259</td> <td>mg/kg</td> <td>11.01.2019 17:23</td> <td>U</td> <td>50</td>	Isopropylbenzene	98-82-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
MTBE 1634-04-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Naphthalene 91-20-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Butylbenzene 104-51-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 or-Yopplbenzene 103-65-1 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 C-Yylene 95-47-6 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 p-Cymene (p-Isopropyltoluene 99-87-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Styrene 100-42-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Ettr-Huylbenzene 100-42-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Tetrackloroethylene 127-18-4 BRL	m,p-Xylenes	179601-23-1	BRL	0.104	mg/kg	11.01.2019 17:23	U	50
Naphthalene 91-20-3 BRL 0.518 mg/kg 1.01.2019 17:23 U 50 n-Butylbenzene 104-51-8 BRL 0.259 mg/kg 1.01.2019 17:23 U 50 o-Xylene 95-47-6 BRL 0.0518 mg/kg 1.01.2019 17:23 U 50 p-Cymene (p-Isopropyltoluene 99-87-6 BRL 0.0518 mg/kg 1.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mg/kg 1.01.2019 17:23 U 50 Styrene 1004-2-5 BRL 0.259 mg/kg 1.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 1.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 1.01.2019 17:23 U 50 Tertachloroethylene 127-18-4 BRL 0.259 mg/kg 1.01.2019 17:23 U 50 Tolulene 1330-20-7 BRL <	Methylene Chloride	75-09-2	BRL	1.04	mg/kg	11.01.2019 17:23	U	50
n-Butylbenzene 104-51-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 n-Propylbenzene 103-65-1 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 o-Xylene 95-47-6 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Sec-Butylbenzene 100-42-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Tertarchloroethylene 127-18-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6	MTBE	1634-04-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
n-Propylbenzene 103-65-1 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 o-Xylene 95-47-6 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Styrene 100-42-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Tetrachloroethylene 127-18-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 1066-0-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4	Naphthalene	91-20-3	BRL	0.518	mg/kg	11.01.2019 17:23	U	50
o-Xylene 95-47-6 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Styrene 100-42-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Tetrachloroethylene 127-18-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Toluene 108-88-3 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Toluene 133-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 79-01-6 <t< td=""><td>n-Butylbenzene</td><td>104-51-8</td><td>BRL</td><td>0.259</td><td>mg/kg</td><td>11.01.2019 17:23</td><td>U</td><td>50</td></t<>	n-Butylbenzene	104-51-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Sec-Butylbenzene 135-98-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Styrene 100-42-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Tetrachloroethylene 127-18-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Toluene 108-88-3 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 1006-10-2-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-	n-Propylbenzene	103-65-1	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
See-Butylbenzene 135-98-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Styrene 100-42-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Tetrachloroethylene 127-18-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Toluene 108-88-3 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Cholride 75-69-4	o-Xylene	95-47-6	BRL	0.0518	mg/kg	11.01.2019 17:23	U	50
Styrene 100-42-5 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 tert-Butylbenzene 98-06-6 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 Tetrachloroethylene 127-18-4 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 Toluene 108-88-3 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRIL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 10061-02-6 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRIL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
tert-Butylbenzene 98-06-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Tetrachloroethylene 127-18-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Toluene 108-88-3 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Lj-Butdiene 106-99-0 <td>Sec-Butylbenzene</td> <td>135-98-8</td> <td>BRL</td> <td>0.259</td> <td>mg/kg</td> <td>11.01.2019 17:23</td> <td>U</td> <td>50</td>	Sec-Butylbenzene	135-98-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Tetrachloroethylene 127-18-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Toluene 108-88-3 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7	Styrene	100-42-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Toluene 108-88-3 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloroptopene 10061-02-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7	tert-Butylbenzene	98-06-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Total Xylenes 1330-20-7 BRL 0.0518 mg/kg 11.01.2019 17:23 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 <td>Tetrachloroethylene</td> <td>127-18-4</td> <td>BRL</td> <td>0.259</td> <td>mg/kg</td> <td>11.01.2019 17:23</td> <td>U</td> <td>50</td>	Tetrachloroethylene	127-18-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 L;3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 BRL 0.259 mg/kg 11.01.2019 17:	Toluene	108-88-3	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
trans-1,3-dichloropropene 10061-02-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichloroethene 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8	Total Xylenes	1330-20-7	BRL	0.0518	mg/kg	11.01.2019 17:23	U	50
Trichloroethene 79-01-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL	trans-1,2-dichloroethene	156-60-5	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Trichlorofluoromethane 75-69-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Vinyl Acetate 108-05-4 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	Trichloroethene	79-01-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Vinyl Chloride 75-01-4 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	Trichlorofluoromethane	75-69-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
1,3-Butadiene 106-99-0 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	Vinyl Acetate	108-05-4	BRL	0.518	mg/kg	11.01.2019 17:23	U	50
Cyclohexane 110-82-7 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	Vinyl Chloride	75-01-4	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Dicyclopentadiene 77-73-6 BRL 0.259 mg/kg 11.01.2019 17:23 U 50 Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	1,3-Butadiene	106-99-0	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
Methylcyclohexane 108-87-2 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	Cyclohexane	110-82-7	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
n-Hexane 110-54-3 BRL 0.518 mg/kg 11.01.2019 17:23 U 50 4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	Dicyclopentadiene	77-73-6	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
4-Ethyltoluene 622-96-8 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	Methylcyclohexane	108-87-2	BRL	0.518	mg/kg	11.01.2019 17:23	U	50
·	n-Hexane	110-54-3	BRL	0.518	mg/kg	11.01.2019 17:23	U	50
Propene 115-07-1 BRL 0.259 mg/kg 11.01.2019 17:23 U 50	4-Ethyltoluene	622-96-8	BRL	0.259	mg/kg	11.01.2019 17:23	U	50
	Propene	115-07-1	BRL	0.259	mg/kg	11.01.2019 17:23	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-006 Date Collected: 10.29.2019 12:45 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	92	%	53-142	11.01.2019 17:23	
1,2-Dichloroethane-D4	101	%	56-150	11.01.2019 17:23	
Toluene-D8	105	%	70-130	11.01.2019 17:23	
4-Bromofluorobenzene	95	%	68-152	11.01.2019 17:23	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-FD03-102919 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-007 Date Collected: 10.29.2019 12:55

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture: Tech:

KCS Analyst: Date Prep: 11.01.2019 14:00 Basis: Wet Weight

Seq Number: 3106209 SUB: T104704215-19-30

Parameter Cas Number Result RL Units **Analysis Date** Dil Cyanide, Total 57-12-5 BRL 0.0594 mg/kg 11.01.2019 15:56 U 1

Prep Method: SW7471P Analytical Method: Mercury by SW 7471B

% Moisture: **ADS** Tech:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight

Seq Number: 3106373 SUB: T104704215-19-30

Parameter Cas Number Result RL Units **Analysis Date** Flag Dil BRL 0.0167 11.04.2019 13:57 U Mercury 7439-97-6 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Basis:

Analyst: Wet Weight Date Prep: 11.04.2019 11:30 Seq Number: 3106408 SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag 1.72 11.04.2019 21:40 Arsenic 7440-38-2 23.1 10 mg/kg Barium 7440-39-3 110 3.45 11.04.2019 21:40 10 mg/kg Cadmium 7440-43-9 BRL 1.72 11.04.2019 21:40 U 10 mg/kg Chromium 7440-47-3 11.6 3.45 11.04.2019 21:40 10 mg/kg Lead 7439-92-1 18.2 1.72 mg/kg 11.04.2019 21:40 10 Selenium 7782-49-2 BRL 1.72 11.04.2019 21:40 U 10 mg/kg Silver 7440-22-4 BRL 1.72 mg/kg 11.04.2019 21:40 U 10

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD03-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-007 Date Collected: 10.29.2019 12:55

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106372

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilFlash Point>180Deg F11.04.2019 11:341

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.14 pН 12408-02-5 1 Temperature TEMP 25.3 11.04.2019 12:44 1 Deg C

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD03-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-007 Date Collected: 10.29.2019 12:55

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

JOZ % Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:12 Basis: Wet Weight

Seq Number: 3106445 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0333	mg/kg	11.05.2019 11:47	U	2
PCB-1221	11104-28-2	BRL	0.0333	mg/kg	11.05.2019 11:47	U	2
PCB-1232	11141-16-5	BRL	0.0333	mg/kg	11.05.2019 11:47	U	2
PCB-1242	53469-21-9	BRL	0.0333	mg/kg	11.05.2019 11:47	U	2
PCB-1248	12672-29-6	BRL	0.0333	mg/kg	11.05.2019 11:47	U	2
PCB-1254	11097-69-1	BRL	0.0333	mg/kg	11.05.2019 11:47	U	2
PCB-1260	11096-82-5	BRL	0.0333	mg/kg	11.05.2019 11:47	U	2

 Surrogate
 Units
 Limits
 Analysis Date
 Flag

 Decachlorobiphenyl
 116
 %
 39-125
 11.05.2019 11:47

 Tetrachloro-m-xylene
 79
 %
 37-124
 11.05.2019 11:47

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD03-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-007 Date Collected: 10.29.2019 12:55

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:27 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 21:21	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.04.2019 21:21	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.04.2019 21:21	U	1
Benzo(a)anthracene	56-55-3	0.00596	0.00167		mg/kg	11.04.2019 21:21		1
Benzo(a)pyrene	50-32-8	0.00826	0.00167		mg/kg	11.04.2019 21:21		1
Benzo(b)fluoranthene	205-99-2	0.0119	0.00167		mg/kg	11.04.2019 21:21		1
Benzo(g,h,i)perylene	191-24-2	0.00581	0.00167		mg/kg	11.04.2019 21:21		1
Benzo(k)fluoranthene	207-08-9	0.00307	0.00167		mg/kg	11.04.2019 21:21		1
Chrysene	218-01-9	0.00764	0.00167		mg/kg	11.04.2019 21:21		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 21:21	U	1
Fluoranthene	206-44-0	0.0125	0.00167		mg/kg	11.04.2019 21:21		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.04.2019 21:21	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00471	0.00167		mg/kg	11.04.2019 21:21		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 21:21	U	1
Phenanthrene	85-01-8	0.00619	0.00167		mg/kg	11.04.2019 21:21		1
Pyrene	129-00-0	0.0131	0.00167		mg/kg	11.04.2019 21:21		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		89	%	31-130	11.04	.2019 21:21		
2-Fluorobiphenyl		105	%	51-133	11.04	.2019 21:21		
Terphenyl-D14		111	%	46-137	11.04	.2019 21:21		

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-FD03-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-007 Date Collected: 10.29.2019 12:55

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,1-Dichloroethane	75-34-3	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,1-Dichloroethene	75-35-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,1-Dichloropropene	563-58-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2-Dibromoethane	106-93-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2-Dichloroethane	107-06-2	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,2-Dichloropropane	78-87-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,3-Dichloropropane	142-28-9	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
2,2-Dichloropropane	594-20-7	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
2-Butanone	78-93-3	BRL	0.906	mg/kg	11.01.2019 17:45	U	50
2-Chlorotoluene	95-49-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
2-Hexanone	591-78-6	BRL	2.26	mg/kg	11.01.2019 17:45	U	50
4-Chlorotoluene	106-43-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.26	mg/kg	11.01.2019 17:45	U	50
Acetone	67-64-1	BRL	4.53	mg/kg	11.01.2019 17:45	U	50
Benzene	71-43-2	BRL	0.0453	mg/kg	11.01.2019 17:45	U	50
Bromobenzene	108-86-1	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Bromochloromethane	74-97-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Bromodichloromethane	75-27-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Bromoform	75-25-2	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Bromomethane	74-83-9	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Carbon Disulfide	75-15-0	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Carbon Tetrachloride	56-23-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Chlorobenzene	108-90-7	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Chloroethane	75-00-3	BRL	0.453	mg/kg	11.01.2019 17:45	U	50
Chloroform	67-66-3	BRL	0.226	mg/kg	11.01.2019 17:45	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-FD03-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-007 Date Collected: 10.29.2019 12:55

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Dibromochloromethane	124-48-1	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Dibromomethane	74-95-3	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Ethylbenzene	100-41-4	BRL	0.0453	mg/kg	11.01.2019 17:45	U	50
Hexachlorobutadiene	87-68-3	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.906	mg/kg	11.01.2019 17:45	U	50
Isopropylbenzene	98-82-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
m,p-Xylenes	179601-23-1	BRL	0.0906	mg/kg	11.01.2019 17:45	U	50
Methylene Chloride	75-09-2	BRL	0.906	mg/kg	11.01.2019 17:45	U	50
MTBE	1634-04-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Naphthalene	91-20-3	BRL	0.453	mg/kg	11.01.2019 17:45	U	50
n-Butylbenzene	104-51-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
n-Propylbenzene	103-65-1	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
o-Xylene	95-47-6	BRL	0.0453	mg/kg	11.01.2019 17:45	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Sec-Butylbenzene	135-98-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Styrene	100-42-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
tert-Butylbenzene	98-06-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Tetrachloroethylene	127-18-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Toluene	108-88-3	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Total Xylenes	1330-20-7	BRL	0.0453	mg/kg	11.01.2019 17:45	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Trichloroethene	79-01-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Trichlorofluoromethane	75-69-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Vinyl Acetate	108-05-4	BRL	0.453	mg/kg	11.01.2019 17:45	U	50
Vinyl Chloride	75-01-4	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
1,3-Butadiene	106-99-0	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Cyclohexane	110-82-7	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Dicyclopentadiene	77-73-6	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Methylcyclohexane	108-87-2	BRL	0.453	mg/kg	11.01.2019 17:45	U	50
n-Hexane	110-54-3	BRL	0.453	mg/kg	11.01.2019 17:45	U	50
4-Ethyltoluene	622-96-8	BRL	0.226	mg/kg	11.01.2019 17:45	U	50
Propene	115-07-1	BRL	0.226	mg/kg	11.01.2019 17:45	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD03-102919** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-007 Date Collected: 10.29.2019 12:55

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	91	%	53-142	11.01.2019 17:45	
1,2-Dichloroethane-D4	100	%	56-150	11.01.2019 17:45	
Toluene-D8	104	%	70-130	11.01.2019 17:45	
4-Bromofluorobenzene	96	%	68-152	11.01.2019 17:45	

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B14-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-008 Date Collected: 10.29.2019 13:10 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 10:05 Basis: Dry Weight

Seq Number: 3106373 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0174
 0.0172
 mg/kg
 11.04.2019 13:59
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.04.2019 11:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	21.3	1.89	mg/kg	11.04.2019 21:43		10
Barium	7440-39-3	247	3.77	mg/kg	11.04.2019 21:43		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.04.2019 21:43	U	10
Chromium	7440-47-3	16.0	3.77	mg/kg	11.04.2019 21:43		10
Lead	7439-92-1	23.2	1.89	mg/kg	11.04.2019 21:43		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.04.2019 21:43	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.04.2019 21:43	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B14-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-008 Date Collected: 10.29.2019 13:10 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	11.04.2019 18::	51	U	5
Acenaphthylene	208-96-8	0.0694	0.00833		mg/kg	11.04.2019 18:	51		5
Anthracene	120-12-7	0.0886	0.00833		mg/kg	11.04.2019 18:	51		5
Benzo(a)anthracene	56-55-3	0.274	0.00833		mg/kg	11.04.2019 18:	51		5
Benzo(a)pyrene	50-32-8	0.301	0.00833		mg/kg	11.04.2019 18:	51		5
Benzo(b) fluoranthene	205-99-2	0.382	0.00833		mg/kg	11.04.2019 18:	51		5
Benzo(g,h,i)perylene	191-24-2	0.344	0.00833		mg/kg	11.04.2019 18:	51		5
Benzo(k)fluoranthene	207-08-9	0.128	0.00833		mg/kg	11.04.2019 18::	51		5
Chrysene	218-01-9	0.269	0.00833		mg/kg	11.04.2019 18::	51		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00833		mg/kg	11.04.2019 18::	51	U	5
Fluoranthene	206-44-0	0.639	0.00833		mg/kg	11.04.2019 18::	51		5
Fluorene	86-73-7	BRL	0.00833		mg/kg	11.04.2019 18::	51	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.219	0.00833		mg/kg	11.04.2019 18::	51		5
Naphthalene	91-20-3	BRL	0.0833		mg/kg	11.04.2019 18::	51	U	5
Phenanthrene	85-01-8	0.370	0.00833		mg/kg	11.04.2019 18::	51		5
Pyrene	129-00-0	0.584	0.00833		mg/kg	11.04.2019 18:	51		5
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		64	%	31-130		1.2019 18:51			
2-Fluorobiphenyl		66	%	51-133		1.2019 18:51			
Terphenyl-D14		83	%	46-137	11.04	1.2019 18:51			

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B14-10.0-10.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-009 Date Collected: 10.29.2019 13:15 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0172 mg/kg 11.04.2019 14:01 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	24.8	2.00	mg/kg	11.04.2019 21:46		10
Barium	7440-39-3	160	4.00	mg/kg	11.04.2019 21:46		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.04.2019 21:46	U	10
Chromium	7440-47-3	16.4	4.00	mg/kg	11.04.2019 21:46		10
Lead	7439-92-1	20.7	2.00	mg/kg	11.04.2019 21:46		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.04.2019 21:46	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.04.2019 21:46	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B14-10.0-10.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-009 Sample Depth: 10.0 - 10.5 Date Collected: 10.29.2019 13:15

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 11.04.2019 07:33 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 21:38	U	1
Acenaphthylene	208-96-8	0.102	0.00167		mg/kg	11.04.2019 21:38		1
Anthracene	120-12-7	0.0437	0.00167		mg/kg	11.04.2019 21:38		1
Benzo(a)anthracene	56-55-3	0.131	0.00167		mg/kg	11.04.2019 21:38		1
Benzo(a)pyrene	50-32-8	0.159	0.00167		mg/kg	11.04.2019 21:38		1
Benzo(b)fluoranthene	205-99-2	0.223	0.00167		mg/kg	11.04.2019 21:38		1
Benzo(g,h,i)perylene	191-24-2	0.157	0.00167		mg/kg	11.04.2019 21:38		1
Benzo(k)fluoranthene	207-08-9	0.0745	0.00167		mg/kg	11.04.2019 21:38		1
Chrysene	218-01-9	0.138	0.00167		mg/kg	11.04.2019 21:38		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 21:38	U	1
Fluoranthene	206-44-0	0.292	0.00167		mg/kg	11.04.2019 21:38		1
Fluorene	86-73-7	0.00366	0.00167		mg/kg	11.04.2019 21:38		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0959	0.00167		mg/kg	11.04.2019 21:38		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 21:38	U	1
Phenanthrene	85-01-8	0.148	0.00167		mg/kg	11.04.2019 21:38		1
Pyrene	129-00-0	0.293	0.00167		mg/kg	11.04.2019 21:38		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		87	%	31-130	11.04	.2019 21:38		
2-Fluorobiphenyl		99	%	51-133	11.04	1.2019 21:38		
Terphenyl-D14		109	%	46-137	11.04	.2019 21:38		

% Recovery									
Surrogate		Units	Limits	Analysis Date	Flag				
Nitrobenzene-d5	87	%	31-130	11.04.2019 21:38					
2-Fluorobiphenyl	99	%	51-133	11.04.2019 21:38					
Terphenyl-D14	109	%	46-137	11.04.2019 21:38					

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B14-15.0-15.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-010 Date Collected: 10.29.2019 13:45 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0169 mg/kg 11.04.2019 14:03 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

ADS

Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	24.5	1.67	mg/kg	11.04.2019 21:49		10
Barium	7440-39-3	185	3.33	mg/kg	11.04.2019 21:49		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.04.2019 21:49	U	10
Chromium	7440-47-3	23.5	3.33	mg/kg	11.04.2019 21:49		10
Lead	7439-92-1	14.0	1.67	mg/kg	11.04.2019 21:49		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.04.2019 21:49	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.04.2019 21:49	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B14-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-010 Date Collected: 10.29.2019 13:45 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:36 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	F	lag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 21:5	4	U	1
Acenaphthylene	208-96-8	0.0475	0.00166		mg/kg	11.04.2019 21:5	4		1
Anthracene	120-12-7	0.00412	0.00166		mg/kg	11.04.2019 21:5	4		1
Benzo(a)anthracene	56-55-3	0.0104	0.00166		mg/kg	11.04.2019 21:5	4		1
Benzo(a)pyrene	50-32-8	0.0123	0.00166		mg/kg	11.04.2019 21:5	4		1
Benzo(b) fluoranthene	205-99-2	0.0181	0.00166		mg/kg	11.04.2019 21:5	4		1
Benzo(g,h,i)perylene	191-24-2	0.0135	0.00166		mg/kg	11.04.2019 21:5	4		1
Benzo(k)fluoranthene	207-08-9	0.00480	0.00166		mg/kg	11.04.2019 21:5	4		1
Chrysene	218-01-9	0.0101	0.00166		mg/kg	11.04.2019 21:5	4		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 21:5	4	U	1
Fluoranthene	206-44-0	0.0260	0.00166		mg/kg	11.04.2019 21:5	4		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.04.2019 21:5	4	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00740	0.00166		mg/kg	11.04.2019 21:5	4		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.04.2019 21:5	4	U	1
Phenanthrene	85-01-8	0.0160	0.00166		mg/kg	11.04.2019 21:5	4		1
Pyrene	129-00-0	0.0237	0.00166		mg/kg	11.04.2019 21:5	4		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		91	%	31-130		.2019 21:54			
2-Fluorobiphenyl		106	%	51-133		1.2019 21:54			
Terphenyl-D14		107	%	46-137	11.04	1.2019 21:54			

ADS

Seq Number: 3106373

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B14-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-011 Date Collected: 10.29.2019 13:55 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 10:05 Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0167
 mg/kg
 11.04.2019 14:17
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Tech:

Analyst: DEP Date Prep: 11.04.2019 11:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	17.8	1.75	mg/kg	11.04.2019 21:52		10
Barium	7440-39-3	209	3.51	mg/kg	11.04.2019 21:52		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.04.2019 21:52	U	10
Chromium	7440-47-3	32.2	3.51	mg/kg	11.04.2019 21:52		10
Lead	7439-92-1	10.6	1.75	mg/kg	11.04.2019 21:52		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.04.2019 21:52	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.04.2019 21:52	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B14-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-011 Date Collected: 10.29.2019 13:55 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:39 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 22:11	U	1
Acenaphthylene	208-96-8	0.0137	0.00166		mg/kg	11.04.2019 22:11		1
Anthracene	120-12-7	0.00306	0.00166		mg/kg	11.04.2019 22:11		1
Benzo(a)anthracene	56-55-3	0.00723	0.00166		mg/kg	11.04.2019 22:11		1
Benzo(a)pyrene	50-32-8	0.0107	0.00166		mg/kg	11.04.2019 22:11		1
Benzo(b) fluoranthene	205-99-2	0.0146	0.00166		mg/kg	11.04.2019 22:11		1
Benzo(g,h,i)perylene	191-24-2	0.0184	0.00166		mg/kg	11.04.2019 22:11		1
Benzo(k)fluoranthene	207-08-9	0.00468	0.00166		mg/kg	11.04.2019 22:11		1
Chrysene	218-01-9	0.00799	0.00166		mg/kg	11.04.2019 22:11		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 22:11	U	1
Fluoranthene	206-44-0	0.0190	0.00166		mg/kg	11.04.2019 22:11		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.04.2019 22:11	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00855	0.00166		mg/kg	11.04.2019 22:11		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.04.2019 22:11	U	1
Phenanthrene	85-01-8	0.0114	0.00166		mg/kg	11.04.2019 22:11		1
Pyrene	129-00-0	0.0218	0.00166		mg/kg	11.04.2019 22:11		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		98	%	31-130	11.04	1.2019 22:11		
2-Fluorobiphenyl		112	%	51-133		1.2019 22:11		
Terphenyl-D14		111	%	46-137	11.04	1.2019 22:11		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B22-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-012 Date Collected: 10.29.2019 14:35 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 10:05 Basis: Dry Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0263
 0.0167
 mg/kg
 11.04.2019 14:19
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.04.2019 11:30

Seq Number: 3106408

ADS

Seq Number: 3106373

Tech:

Prep Method: SW3050B % Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	25.8	1.92	mg/kg	11.04.2019 21:55		10
Barium	7440-39-3	245	3.85	mg/kg	11.04.2019 21:55		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.04.2019 21:55	U	10
Chromium	7440-47-3	9.75	3.85	mg/kg	11.04.2019 21:55		10
Lead	7439-92-1	117	1.92	mg/kg	11.04.2019 21:55		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.04.2019 21:55	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.04.2019 21:55	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B22-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-012 Date Collected: 10.29.2019 14:35 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:42 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Fla	g Dil
Acenaphthene	83-32-9	BRL	0.0166		mg/kg	11.04.2019 19:0	8 U	10
Acenaphthylene	208-96-8	0.0325	0.0166		mg/kg	11.04.2019 19:0	8	10
Anthracene	120-12-7	0.0276	0.0166		mg/kg	11.04.2019 19:0	8	10
Benzo(a)anthracene	56-55-3	0.0907	0.0166		mg/kg	11.04.2019 19:0	8	10
Benzo(a)pyrene	50-32-8	0.113	0.0166		mg/kg	11.04.2019 19:0	8	10
Benzo(b) fluoranthene	205-99-2	0.164	0.0166		mg/kg	11.04.2019 19:0	8	10
Benzo(g,h,i)perylene	191-24-2	0.101	0.0166		mg/kg	11.04.2019 19:0	8	10
Benzo(k) fluoranthene	207-08-9	0.0368	0.0166		mg/kg	11.04.2019 19:0	8	10
Chrysene	218-01-9	0.106	0.0166		mg/kg	11.04.2019 19:0	8	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0166		mg/kg	11.04.2019 19:0	8 U	10
Fluoranthene	206-44-0	0.244	0.0166		mg/kg	11.04.2019 19:0	8	10
Fluorene	86-73-7	BRL	0.0166		mg/kg	11.04.2019 19:0	8 U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0811	0.0166		mg/kg	11.04.2019 19:0	8	10
Naphthalene	91-20-3	BRL	0.166		mg/kg	11.04.2019 19:0	8 U	10
Phenanthrene	85-01-8	0.162	0.0166		mg/kg	11.04.2019 19:0	8	10
Pyrene	129-00-0	0.252	0.0166		mg/kg	11.04.2019 19:0	8	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		95	%	31-130		1.2019 19:08		
2-Fluorobiphenyl		97	%	51-133		1.2019 19:08		
Terphenyl-D14		103	%	46-137	11.04	1.2019 19:08		

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B22-7.5-8.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-013 Date Collected: 10.29.2019 14:50 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0172 mg/kg 11.04.2019 14:21 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	16.7	2.00	mg/kg	11.04.2019 21:58		10
Barium	7440-39-3	150	4.00	mg/kg	11.04.2019 21:58		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.04.2019 21:58	U	10
Chromium	7440-47-3	13.6	4.00	mg/kg	11.04.2019 21:58		10
Lead	7439-92-1	25.7	2.00	mg/kg	11.04.2019 21:58		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.04.2019 21:58	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.04.2019 21:58	U	10

Seq Number: 3106384

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B22-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-013 Date Collected: 10.29.2019 14:50 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:45 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	F	lag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 22:2	28	U	1
Acenaphthylene	208-96-8	0.0103	0.00167		mg/kg	11.04.2019 22:2	28		1
Anthracene	120-12-7	0.00711	0.00167		mg/kg	11.04.2019 22:2	28		1
Benzo(a)anthracene	56-55-3	0.0199	0.00167		mg/kg	11.04.2019 22:2	28		1
Benzo(a)pyrene	50-32-8	0.0248	0.00167		mg/kg	11.04.2019 22:2	28		1
Benzo(b)fluoranthene	205-99-2	0.0379	0.00167		mg/kg	11.04.2019 22:2	28		1
Benzo(g,h,i)perylene	191-24-2	0.0167	0.00167		mg/kg	11.04.2019 22:2	28		1
Benzo(k) fluoranthene	207-08-9	0.0122	0.00167		mg/kg	11.04.2019 22:2	28		1
Chrysene	218-01-9	0.0253	0.00167		mg/kg	11.04.2019 22:2	28		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 22:2	28	U	1
Fluoranthene	206-44-0	0.0625	0.00167		mg/kg	11.04.2019 22:2	28		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.04.2019 22:2	28	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0143	0.00167		mg/kg	11.04.2019 22:2	28		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 22:2	28	U	1
Phenanthrene	85-01-8	0.0539	0.00167		mg/kg	11.04.2019 22:2	28		1
Pyrene	129-00-0	0.0640	0.00167		mg/kg	11.04.2019 22:2	28		1
		% Recovery							
Surrogate		·	Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		85	%	31-130	11.04	1.2019 22:28			
2-Fluorobiphenyl		105	%	51-133		1.2019 22:28			
Terphenyl-D14		116	%	46-137	11.04	1.2019 22:28			

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B22-15.0-15.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-016 Date Collected: 10.29.2019 15:10 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0192 mg/kg 11.04.2019 14:23 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106408

ADS

Tech:

Analyst: DEP Date Prep: 11.04.2019 11:30

SUB: T104704215-19-30

Wet Weight

Prep Method: SW3050B

% Moisture:

Basis:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	25.0	1.85	mg/kg	11.04.2019 22:01		10
Barium	7440-39-3	212	3.70	mg/kg	11.04.2019 22:01		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.04.2019 22:01	U	10
Chromium	7440-47-3	63.0	3.70	mg/kg	11.04.2019 22:01		10
Lead	7439-92-1	21.6	1.85	mg/kg	11.04.2019 22:01		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.04.2019 22:01	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.04.2019 22:01	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B22-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-016 Date Collected: 10.29.2019 15:10 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:48 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 22:44	U	1
Acenaphthylene	208-96-8	0.00408	0.00166		mg/kg	11.04.2019 22:44		1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.04.2019 22:44	U	1
Benzo(a)anthracene	56-55-3	0.00361	0.00166		mg/kg	11.04.2019 22:44		1
Benzo(a)pyrene	50-32-8	0.00418	0.00166		mg/kg	11.04.2019 22:44		1
Benzo(b)fluoranthene	205-99-2	0.00699	0.00166		mg/kg	11.04.2019 22:44		1
Benzo(g,h,i)perylene	191-24-2	0.00283	0.00166		mg/kg	11.04.2019 22:44		1
Benzo(k)fluoranthene	207-08-9	0.00222	0.00166		mg/kg	11.04.2019 22:44		1
Chrysene	218-01-9	0.00456	0.00166		mg/kg	11.04.2019 22:44		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 22:44	U	1
Fluoranthene	206-44-0	0.0104	0.00166		mg/kg	11.04.2019 22:44		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.04.2019 22:44	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00238	0.00166		mg/kg	11.04.2019 22:44		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.04.2019 22:44	U	1
Phenanthrene	85-01-8	0.00921	0.00166		mg/kg	11.04.2019 22:44		1
Pyrene	129-00-0	0.0109	0.00166		mg/kg	11.04.2019 22:44		1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		94	%	31-130	11.04	.2019 22:44		
2-Fluorobiphenyl		114	%	51-133	11.04	.2019 22:44		
Terphenyl-D14		116	%	46-137	11.04	.2019 22:44		

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B28-10.0-10.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-017 Date Collected: 10.29.2019 15:55 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0185 mg/kg 11.04.2019 14:25 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.21	2.00	mg/kg	11.04.2019 22:04		10
Barium	7440-39-3	94.4	4.00	mg/kg	11.04.2019 22:04		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.04.2019 22:04	U	10
Chromium	7440-47-3	10.3	4.00	mg/kg	11.04.2019 22:04		10
Lead	7439-92-1	9.89	2.00	mg/kg	11.04.2019 22:04		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.04.2019 22:04	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.04.2019 22:04	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-017 Date Collected: 10.29.2019 15:55 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:51 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Acenaphthylene	208-96-8	0.00284	0.00165		mg/kg	11.04.2019 23:0		1
Anthracene	120-12-7	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Benzo(b) fluoranthene	205-99-2	0.00248	0.00165		mg/kg	11.04.2019 23:0		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Chrysene	218-01-9	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Fluoranthene	206-44-0	0.00246	0.00165		mg/kg	11.04.2019 23:0		1
Fluorene	86-73-7	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00165		mg/kg	11.04.2019 23:0	U	1
Naphthalene	91-20-3	BRL	0.0165		mg/kg	11.04.2019 23:0	U	1
Phenanthrene	85-01-8	0.00169	0.00165		mg/kg	11.04.2019 23:0		1
Pyrene	129-00-0	0.00246	0.00165		mg/kg	11.04.2019 23:0		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date I	lag	
Nitrobenzene-d5		88	%	31-130		1.2019 23:01		
2-Fluorobiphenyl		105	%	51-133		1.2019 23:01		
Terphenyl-D14		112	%	46-137	11.04	1.2019 23:01		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B28-15.0-15.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-018 Date Collected: 10.29.2019 16:15 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0169 mg/kg 11.04.2019 13:35 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

ADS

Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Seq Number: 3106408

Wet Weight SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.2	1.67	mg/kg	11.04.2019 21:19		10
Barium	7440-39-3	82.8	3.33	mg/kg	11.04.2019 21:19		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.04.2019 21:19	U	10
Chromium	7440-47-3	12.0	3.33	mg/kg	11.04.2019 21:19		10
Lead	7439-92-1	11.2	1.67	mg/kg	11.04.2019 21:19		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.04.2019 21:19	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.04.2019 21:19	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-018 Date Collected: 10.29.2019 16:15 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 07:54 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Benzo(b) fluoranthene	205-99-2	0.00201	0.00166		mg/kg	11.04.2019 13:0	2	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Chrysene	218-01-9	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Fluoranthene	206-44-0	0.00233	0.00166		mg/kg	11.04.2019 13:0	2	1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.04.2019 13:0	2 U	1
Phenanthrene	85-01-8	BRL	0.00166		mg/kg	11.04.2019 13:0	2 U	1
Pyrene	129-00-0	0.00257	0.00166		mg/kg	11.04.2019 13:0	2	1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date 1	lag	
Nitrobenzene-d5		107	%	31-130		.2019 13:02		
2-Fluorobiphenyl		102	%	51-133		1.2019 13:02		
Terphenyl-D14		109	%	46-137	11.04	1.2019 13:02		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-019 Date Collected: 10.29.2019 16:25 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 10:05 Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0200
 mg/kg
 11.04.2019 14:27
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106373

Tech:

Analyst: DEP Date Prep: 11.04.2019 11:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.1	1.75	mg/kg	11.04.2019 22:07		10
Barium	7440-39-3	129	3.51	mg/kg	11.04.2019 22:07		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.04.2019 22:07	U	10
Chromium	7440-47-3	20.7	3.51	mg/kg	11.04.2019 22:07		10
Lead	7439-92-1	17.7	1.75	mg/kg	11.04.2019 22:07		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.04.2019 22:07	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.04.2019 22:07	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B28-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-019 Date Collected: 10.29.2019 16:25 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 08:03 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Acenaphthylene	208-96-8	0.00283	0.00166		mg/kg	11.04.2019 23:18		1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Chrysene	218-01-9	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Fluoranthene	206-44-0	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.04.2019 23:18	U	1
Phenanthrene	85-01-8	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
Pyrene	129-00-0	BRL	0.00166		mg/kg	11.04.2019 23:18	U	1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	ag	
Nitrobenzene-d5		77	%	31-130		.2019 23:18		
2-Fluorobiphenyl		91	%	51-133		.2019 23:18		
Terphenyl-D14		94	%	46-137	11.04	.2019 23:18		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B22-10.0-10.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-020 Date Collected: 10.29.2019 14:55 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 10:05 Basis: Dry Weight Seq Number: 3106373

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0189 mg/kg 11.04.2019 14:29 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

ADS

Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight Seq Number: 3106408

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	22.0	2.00	mg/kg	11.04.2019 22:15		10
Barium	7440-39-3	146	4.00	mg/kg	11.04.2019 22:15		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.04.2019 22:15	U	10
Chromium	7440-47-3	22.6	4.00	mg/kg	11.04.2019 22:15		10
Lead	7439-92-1	32.3	2.00	mg/kg	11.04.2019 22:15		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.04.2019 22:15	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.04.2019 22:15	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B22-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-020 Date Collected: 10.29.2019 14:55 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 08:06 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00835		mg/kg	11.04.2019 19:25	U	5
Acenaphthylene	208-96-8	BRL	0.00835		mg/kg	11.04.2019 19:25	U	5
Anthracene	120-12-7	BRL	0.00835		mg/kg	11.04.2019 19:25	U	5
Benzo(a)anthracene	56-55-3	0.0247	0.00835		mg/kg	11.04.2019 19:25		5
Benzo(a)pyrene	50-32-8	0.0282	0.00835		mg/kg	11.04.2019 19:25		5
Benzo(b)fluoranthene	205-99-2	0.0419	0.00835		mg/kg	11.04.2019 19:25		5
Benzo(g,h,i)perylene	191-24-2	0.0237	0.00835		mg/kg	11.04.2019 19:25		5
Benzo(k)fluoranthene	207-08-9	0.00974	0.00835		mg/kg	11.04.2019 19:25		5
Chrysene	218-01-9	0.0288	0.00835		mg/kg	11.04.2019 19:25		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00835		mg/kg	11.04.2019 19:25	U	5
Fluoranthene	206-44-0	0.0597	0.00835		mg/kg	11.04.2019 19:25		5
Fluorene	86-73-7	BRL	0.00835		mg/kg	11.04.2019 19:25	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0189	0.00835		mg/kg	11.04.2019 19:25		5
Naphthalene	91-20-3	BRL	0.0835		mg/kg	11.04.2019 19:25	U	5
Phenanthrene	85-01-8	0.0395	0.00835		mg/kg	11.04.2019 19:25		5
Pyrene	129-00-0	0.0591	0.00835		mg/kg	11.04.2019 19:25		5
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fla	ıg	
Nitrobenzene-d5		72	%	31-130	11.04	1.2019 19:25		
2-Fluorobiphenyl		83	%	51-133	11.04	1.2019 19:25		
Terphenyl-D14		102	%	46-137	11.04	1.2019 19:25		

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-1.0-1.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-021 Date Collected: 10.30.2019 09:15 Sample Depth: 1.0 - 1.5

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture:

Analyst: KCS Date Prep: 11.01.2019 14:00 Basis: Wet Weight

Seq Number: 3106209 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Cyanide, Total
 57-12-5
 0.650
 0.0583
 mg/kg
 11.01.2019 15:57
 1

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

Seq Number: 3106366 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0312
 0.0200
 mg/kg
 11.04.2019 15:03
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.04.2019 11:30 Basis:

Seq Number: 3106408 SUB: T104704215-19-30

Parameter Cas Number Result RL Dil Units **Analysis Date** Flag 12.9 11.04.2019 22:18 Arsenic 7440-38-2 1.89 10 mg/kg Barium 7440-39-3 125 3.77 11.04.2019 22:18 10 mg/kg Cadmium 7440-43-9 BRL 1.89 11.04.2019 22:18 U 10 mg/kg 11.04.2019 22:18 Chromium 7440-47-3 11.2 3.77 10 mg/kg Lead 7439-92-1 93.2 1.89 mg/kg 11.04.2019 22:18 10 Selenium 7782-49-2 BRL 1.89 11.04.2019 22:18 U 10 mg/kg Silver 7440-22-4 BRL 1.89 mg/kg 11.04.2019 22:18 U 10

Wet Weight

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-1.0-1.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-021 Date Collected: 10.30.2019 09:15 Sample Depth: 1.0 - 1.5

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106372

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.04.2019 11:51
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag 7.72 SU 11.04.2019 12:44 pН 12408-02-5 1 Temperature TEMP 25.7 11.04.2019 12:44 1 Deg C

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-1.0-1.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-021 Date Collected: 10.30.2019 09:15 Sample Depth: 1.0 - 1.5

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:15 Basis: Wet Weight

Seq Number: 3106445 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0333	mg/kg	11.05.2019 11:59	U	2
PCB-1221	11104-28-2	BRL	0.0333	mg/kg	11.05.2019 11:59	U	2
PCB-1232	11141-16-5	BRL	0.0333	mg/kg	11.05.2019 11:59	U	2
PCB-1242	53469-21-9	BRL	0.0333	mg/kg	11.05.2019 11:59	U	2
PCB-1248	12672-29-6	BRL	0.0333	mg/kg	11.05.2019 11:59	U	2
PCB-1254	11097-69-1	BRL	0.0333	mg/kg	11.05.2019 11:59	U	2
PCB-1260	11096-82-5	BRL	0.0333	mg/kg	11.05.2019 11:59	U	2

% Recovery

Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	235	%	39-125	11.05.2019 11:59	**
Tetrachloro-m-xylene	74	%	37-124	11.05.2019 11:59	

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-1.0-1.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-021 Date Collected: 10.30.2019 09:15 Sample Depth: 1.0 - 1.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 08:09 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	11.04.2019 19:	41	U	5
Acenaphthylene	208-96-8	0.212	0.00833		mg/kg	11.04.2019 19:	41		5
Anthracene	120-12-7	0.0609	0.00833		mg/kg	11.04.2019 19:	41		5
Benzo(a)anthracene	56-55-3	0.232	0.00833		mg/kg	11.04.2019 19:	41		5
Benzo(a)pyrene	50-32-8	0.390	0.00833		mg/kg	11.04.2019 19:	41		5
Benzo(b) fluoranthene	205-99-2	0.575	0.00833		mg/kg	11.04.2019 19:	41		5
Benzo(g,h,i)perylene	191-24-2	0.390	0.00833		mg/kg	11.04.2019 19:	41		5
Benzo(k)fluoranthene	207-08-9	0.168	0.00833		mg/kg	11.04.2019 19:	41		5
Chrysene	218-01-9	0.370	0.00833		mg/kg	11.04.2019 19:	41		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00833		mg/kg	11.04.2019 19:	41	U	5
Fluoranthene	206-44-0	0.759	0.00833		mg/kg	11.04.2019 19:	41		5
Fluorene	86-73-7	0.0223	0.00833		mg/kg	11.04.2019 19:	41		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.317	0.00833		mg/kg	11.04.2019 19:	41		5
Naphthalene	91-20-3	BRL	0.0833		mg/kg	11.04.2019 19:	41	U	5
Phenanthrene	85-01-8	0.497	0.00833		mg/kg	11.04.2019 19:	41		5
Pyrene	129-00-0	0.759	0.00833		mg/kg	11.04.2019 19:	41		5
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		82	%	31-130		.2019 19:41			
2-Fluorobiphenyl		87	%	51-133		.2019 19:41			
Terphenyl-D14		104	%	46-137	11.04	1.2019 19:41			

SAD

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B11-1.0-1.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-021 Date Collected: 10.30.2019 09:15 Sample Depth: 1.0 - 1.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,1-Dichloroethane	75-34-3	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,1-Dichloroethene	75-35-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,1-Dichloropropene	563-58-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2-Dibromoethane	106-93-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2-Dichloroethane	107-06-2	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,2-Dichloropropane	78-87-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,3-Dichloropropane	142-28-9	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
2,2-Dichloropropane	594-20-7	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
2-Butanone	78-93-3	BRL	1.05	mg/kg	11.01.2019 18:06	U	50
2-Chlorotoluene	95-49-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
2-Hexanone	591-78-6	BRL	2.63	mg/kg	11.01.2019 18:06	U	50
4-Chlorotoluene	106-43-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.63	mg/kg	11.01.2019 18:06	U	50
Acetone	67-64-1	BRL	5.26	mg/kg	11.01.2019 18:06	U	50
Benzene	71-43-2	BRL	0.0526	mg/kg	11.01.2019 18:06	U	50
Bromobenzene	108-86-1	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Bromochloromethane	74-97-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Bromodichloromethane	75-27-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Bromoform	75-25-2	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Bromomethane	74-83-9	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Carbon Disulfide	75-15-0	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Carbon Tetrachloride	56-23-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Chlorobenzene	108-90-7	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Chloroethane	75-00-3	BRL	0.526	mg/kg	11.01.2019 18:06	U	50
Chloroform	67-66-3	BRL	0.263	mg/kg	11.01.2019 18:06	U	50

SAD

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B11-1.0-1.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-021 Date Collected: 10.30.2019 09:15 Sample Depth: 1.0 - 1.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Chloromethane 74-87-3 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichlorpropene 10061-01-5 BRIL 0.263 mgkg 11.01.2019 18:06 U 50 Dibromochloromethane 124-48-1 BRIL 0.263 mgkg 11.01.2019 18:06 U 50 Dichlorodifloromethane 74-95-3 BRI 0.263 mgkg 11.01.2019 18:06 U 50 Ethylbenzene 100-414 BRIL 0.023 mgkg 11.01.2019 18:06 U 50 Hexachlorobutadien 87-8-3 BRIL 0.026 mgkg 11.01.2019 18:06 U 50 Isopropylbenzene 98-82-8 BRIL 0.105 mgkg 11.01.2019 18:06 U 50 Mchtylene Cluride 75-69-2 BRIL 0.105 mgkg 11.01.2019 18:06 U 50 MTBE 1634-04-4 BRIL 0.105 mgkg 11.01.2019 18:06 U 50 Maphthalene 91-20-3 BRIL 0.263 mgkg 11.01.2019 18:06 U 50 n-Propylbenzene 103-51 BR	Chloromethane	74-87-3	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Dibromochlaren 12448-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Dibromochlaren 74-95-3 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-41-4 BRL 0.0526 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-41-4 BRL 0.0526 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-41-4 BRL 0.0526 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-41-4 BRL 0.0526 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-41-4 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 98-82-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 75-09-2 BRL 0.105 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 1564-04 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 1564-04 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 103-65-1 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-42-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-42-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen 100-42-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ethyllcen/cen/cen/cen/cen/cen/cen/cen/cen/cen/	cis-1,2-Dichloroethene	156-59-2	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Dichoromethane 74-95-3 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Dichorodifiloromethane 75-71-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 100-041-4 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 87-68-3 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 98-82-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 98-82-8 BRL 0.065 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 179601-23-1 BRL 0.105 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 163-04-4 BRL 0.105 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 104-51-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 104-51-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 104-51-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 104-51-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 104-51-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 104-51-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 104-51-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 135-98-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 135-98-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 127-18-4 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 127-18-4 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 127-18-4 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 127-18-4 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 133-92-7 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 156-60-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 156-60-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 156-60-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 156-60-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhbenzene 156-60-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Ehiyhben	cis-1,3-Dichloropropene	10061-01-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Dichlorodifluoromethane 75.71-8 BRL 0.263 mg/kg 1.01.2019 18:06 U 50	Dibromochloromethane	124-48-1	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Ethylbenzene 100-41-4	Dibromomethane	74-95-3	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Hexachlorobutadiene	Dichlorodifluoromethane	75-71-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Decomption Part P	Ethylbenzene	100-41-4	BRL	0.0526	mg/kg	11.01.2019 18:06	U	50
BRL 0.263	Hexachlorobutadiene	87-68-3	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
m.pXylenes 179601-23-1 BRL 0.105 mg/kg 11.01.2019 18:06 U 50 Methylene Chloride 75-09-2 BRL 1.05 mg/kg 11.01.2019 18:06 U 50 MTBE 1634-04-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Naphthalene 91-20-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Butylbenzene 104-51-8 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Propylbenzene 103-65-1 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 e-Yylene 95-47-6 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 Sec-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 terr-Butylbenzene 98-06-6 BRL 0.263 <td>Iodomethane (Methyl Iodide)</td> <td>74-88-4</td> <td>BRL</td> <td>1.05</td> <td>mg/kg</td> <td>11.01.2019 18:06</td> <td>U</td> <td>50</td>	Iodomethane (Methyl Iodide)	74-88-4	BRL	1.05	mg/kg	11.01.2019 18:06	U	50
Methylene Chloride 75-09-2 BRL 1.05 mg/kg 11.01.2019 18:06 U 50 MTBE 1634-04-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Naphthalene 91-20-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Butylbenzene 104-51-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 o-Xylene 95-47-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 Sec-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Etter-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Teter-Butylbenzene 127-18-4 BRL	Isopropylbenzene	98-82-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
MTBE 1634-04-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Naphthalene 91-20-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Butylbenzene 104-51-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 o-Yoppelbenzene 103-65-1 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 o-Xylene 95-47-6 BRL 0.0263 mg/kg 11.01.2019 18:06 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.0263 mg/kg 11.01.2019 18:06 U 50 Sce-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Itertachylorenzene 198-06-6 BRL 0.	m,p-Xylenes	179601-23-1	BRL	0.105	mg/kg	11.01.2019 18:06	U	50
Naphthalene 91-20-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Butylbenzene 104-51-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 n-Propylbenzene 103-65-1 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 o-Xylene 95-47-6 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 p-Cymene (p-Isopropyloluene) 99-87-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Sec-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tolulene 1038-83-3 BRL	Methylene Chloride	75-09-2	BRL	1.05	mg/kg	11.01.2019 18:06	U	50
n-Butylbenzene 104-51-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 n-Propylbenzene 103-65-1 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 o-Xylene 95-47-6 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 p-Cymene (p-Isopropyltoluen) 99-87-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Sec-Butylbenzene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 tert-Butylbenzene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-	MTBE	1634-04-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
n-Propylbenzene 103-65-1 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 o-Xylene 95-47-6 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 p-Cymene (p-Isopropyloluene) 99-87-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 See-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.0263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 79-01	Naphthalene	91-20-3	BRL	0.526	mg/kg	11.01.2019 18:06	U	50
o-Xylene 95-47-6 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Sec-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 138-8-3 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6	n-Butylbenzene	104-51-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Sec-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Toluene 108-88-3 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane <	n-Propylbenzene	103-65-1	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Sec-Butylbenzene 135-98-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Styrene 100-42-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Toluene 108-88-3 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-09-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4	o-Xylene	95-47-6	BRL	0.0526	mg/kg	11.01.2019 18:06	U	50
Styrene 100-42-5 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Toluene 108-88-3 BRL 0.263 mg/kg 1.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 1.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
tert-Butylbenzene 98-06-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Toluene 108-88-3 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 L3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 H-Ethyltoluene 622-96-8 BRL 0.526 mg/kg 11.01.2019 18:06 U 50	Sec-Butylbenzene	135-98-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Tetrachloroethylene 127-18-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Toluene 108-88-3 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7	Styrene	100-42-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Toluene 108-88-3 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7	tert-Butylbenzene	98-06-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Total Xylenes 1330-20-7 BRL 0.0526 mg/kg 11.01.2019 18:06 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 <td>Tetrachloroethylene</td> <td>127-18-4</td> <td>BRL</td> <td>0.263</td> <td>mg/kg</td> <td>11.01.2019 18:06</td> <td>U</td> <td>50</td>	Tetrachloroethylene	127-18-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 110-54-3<	Toluene	108-88-3	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
trans-1,3-dichloropropene 10061-02-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 <td< td=""><td>Total Xylenes</td><td>1330-20-7</td><td>BRL</td><td>0.0526</td><td>mg/kg</td><td>11.01.2019 18:06</td><td>U</td><td>50</td></td<>	Total Xylenes	1330-20-7	BRL	0.0526	mg/kg	11.01.2019 18:06	U	50
Trichloroethene 79-01-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL	trans-1,2-dichloroethene	156-60-5	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Trichlorofluoromethane 75-69-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Vinyl Acetate 108-05-4 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Trichloroethene	79-01-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Vinyl Chloride 75-01-4 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Trichlorofluoromethane	75-69-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
1,3-Butadiene 106-99-0 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Vinyl Acetate	108-05-4	BRL	0.526	mg/kg	11.01.2019 18:06	U	50
Cyclohexane 110-82-7 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Vinyl Chloride	75-01-4	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Dicyclopentadiene 77-73-6 BRL 0.263 mg/kg 11.01.2019 18:06 U 50 Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	1,3-Butadiene	106-99-0	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
Methylcyclohexane 108-87-2 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Cyclohexane	110-82-7	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
n-Hexane 110-54-3 BRL 0.526 mg/kg 11.01.2019 18:06 U 50 4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Dicyclopentadiene	77-73-6	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
4-Ethyltoluene 622-96-8 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	Methylcyclohexane	108-87-2	BRL	0.526	mg/kg	11.01.2019 18:06	U	50
,	n-Hexane	110-54-3	BRL	0.526	mg/kg	11.01.2019 18:06	U	50
Propene 115-07-1 BRL 0.263 mg/kg 11.01.2019 18:06 U 50	4-Ethyltoluene	622-96-8	BRL	0.263	mg/kg	11.01.2019 18:06	U	50
	Propene	115-07-1	BRL	0.263	mg/kg	11.01.2019 18:06	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-1.0-1.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-021 Date Collected: 10.30.2019 09:15 Sample Depth: 1.0 - 1.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	88	%	53-142	11.01.2019 18:06	
1,2-Dichloroethane-D4	99	%	56-150	11.01.2019 18:06	
Toluene-D8	104	%	70-130	11.01.2019 18:06	
4-Bromofluorobenzene	97	%	68-152	11.01.2019 18:06	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-022 Date Collected: 10.30.2019 09:30 Sample Depth: 2.5 - 3.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

Seq Number: 3106366 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0478
 0.0172
 mg/kg
 11.04.2019 15:05
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.04.2019 11:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	18.9	1.85	mg/kg	11.04.2019 22:21		10
Barium	7440-39-3	83.3	3.70	mg/kg	11.04.2019 22:21		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.04.2019 22:21	U	10
Chromium	7440-47-3	16.1	3.70	mg/kg	11.04.2019 22:21		10
Lead	7439-92-1	420	1.85	mg/kg	11.04.2019 22:21		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.04.2019 22:21	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.04.2019 22:21	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-022 Date Collected: 10.30.2019 09:30 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.04.2019 08:12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date]	Flag	Dil
Acenaphthene	83-32-9	0.0266	0.0167		mg/kg	11.04.2019 19:5	58		10
Acenaphthylene	208-96-8	1.14	0.0167		mg/kg	11.04.2019 19:5	58		10
Anthracene	120-12-7	0.275	0.0167		mg/kg	11.04.2019 19:5	58		10
Benzo(a)anthracene	56-55-3	1.10	0.0167		mg/kg	11.04.2019 19:5	58		10
Benzo(a)pyrene	50-32-8	1.66	0.0167		mg/kg	11.04.2019 19:5	58		10
Benzo(b) fluoranthene	205-99-2	2.90	0.0167		mg/kg	11.04.2019 19:5	58		10
Benzo(g,h,i)perylene	191-24-2	1.59	0.0167		mg/kg	11.04.2019 19:5	58		10
Benzo(k) fluoranthene	207-08-9	0.729	0.0167		mg/kg	11.04.2019 19:5	58		10
Chrysene	218-01-9	1.79	0.0167		mg/kg	11.04.2019 19:5	58		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.04.2019 19:5	58	U	10
Fluoranthene	206-44-0	3.32	0.0334		mg/kg	11.05.2019 11:3	30	D	20
Fluorene	86-73-7	0.127	0.0167		mg/kg	11.04.2019 19:5	58		10
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.37	0.0167		mg/kg	11.04.2019 19:5	58		10
Naphthalene	91-20-3	0.421	0.167		mg/kg	11.04.2019 19:5	58		10
Phenanthrene	85-01-8	2.41	0.0167		mg/kg	11.04.2019 19:5	58		10
Pyrene	129-00-0	3.20	0.0167		mg/kg	11.04.2019 19:5	58		10
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		99	%	31-130	11.04	1.2019 19:58			
2-Fluorobiphenyl		96	%	51-133		.2019 19:58			
Terphenyl-D14		117	%	46-137	11.04	1.2019 19:58			

SAD

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B11-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-022 Date Collected: 10.30.2019 09:30 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,1-Dichloroethane	75-34-3	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,1-Dichloroethene	75-35-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,1-Dichloropropene	563-58-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2-Dibromoethane	106-93-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2-Dichloroethane	107-06-2	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,2-Dichloropropane	78-87-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,3-Dichloropropane	142-28-9	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
2,2-Dichloropropane	594-20-7	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
2-Butanone	78-93-3	BRL	1.06	mg/kg	11.01.2019 18:28	U	50
2-Chlorotoluene	95-49-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
2-Hexanone	591-78-6	BRL	2.65	mg/kg	11.01.2019 18:28	U	50
4-Chlorotoluene	106-43-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.65	mg/kg	11.01.2019 18:28	U	50
Acetone	67-64-1	BRL	5.31	mg/kg	11.01.2019 18:28	U	50
Benzene	71-43-2	BRL	0.0531	mg/kg	11.01.2019 18:28	U	50
Bromobenzene	108-86-1	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Bromochloromethane	74-97-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Bromodichloromethane	75-27-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Bromoform	75-25-2	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Bromomethane	74-83-9	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Carbon Disulfide	75-15-0	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Carbon Tetrachloride	56-23-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Chlorobenzene	108-90-7	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Chloroethane	75-00-3	BRL	0.531	mg/kg	11.01.2019 18:28	U	50
Chloroform	67-66-3	BRL	0.265	mg/kg	11.01.2019 18:28	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B11-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-022 Date Collected: 10.30.2019 09:30 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Dibromochloromethane	124-48-1	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Dibromomethane	74-95-3	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Ethylbenzene	100-41-4	BRL	0.0531	mg/kg	11.01.2019 18:28	U	50
Hexachlorobutadiene	87-68-3	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.06	mg/kg	11.01.2019 18:28	U	50
Isopropylbenzene	98-82-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
m,p-Xylenes	179601-23-1	BRL	0.106	mg/kg	11.01.2019 18:28	U	50
Methylene Chloride	75-09-2	BRL	1.06	mg/kg	11.01.2019 18:28	U	50
MTBE	1634-04-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Naphthalene	91-20-3	BRL	0.531	mg/kg	11.01.2019 18:28	U	50
n-Butylbenzene	104-51-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
n-Propylbenzene	103-65-1	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
o-Xylene	95-47-6	BRL	0.0531	mg/kg	11.01.2019 18:28	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Sec-Butylbenzene	135-98-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Styrene	100-42-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
tert-Butylbenzene	98-06-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Tetrachloroethylene	127-18-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Toluene	108-88-3	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Total Xylenes	1330-20-7	BRL	0.0531	mg/kg	11.01.2019 18:28	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Trichloroethene	79-01-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Trichlorofluoromethane	75-69-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Vinyl Acetate	108-05-4	BRL	0.531	mg/kg	11.01.2019 18:28	U	50
Vinyl Chloride	75-01-4	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
1,3-Butadiene	106-99-0	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Cyclohexane	110-82-7	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Dicyclopentadiene	77-73-6	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Methylcyclohexane	108-87-2	BRL	0.531	mg/kg	11.01.2019 18:28	U	50
n-Hexane	110-54-3	BRL	0.531	mg/kg	11.01.2019 18:28	U	50
4-Ethyltoluene	622-96-8	BRL	0.265	mg/kg	11.01.2019 18:28	U	50
Propene	115-07-1	BRL	0.265	mg/kg	11.01.2019 18:28	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-022 Date Collected: 10.30.2019 09:30 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	90	%	53-142	11.01.2019 18:28	
1,2-Dichloroethane-D4	100	%	56-150	11.01.2019 18:28	
Toluene-D8	104	%	70-130	11.01.2019 18:28	
4-Bromofluorobenzene	94	%	68-152	11.01.2019 18:28	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B11-2.5-3.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-022 Date Collected: 10.30.2019 09:30 Sample Depth: 2.5 - 3.0

Date Prep:

Analytical Method: TCLP Mercury by SW 1311/7470A

Prep Method: SW7470P % Moisture:

Tech:

ADS

11.19.2019 10:10

Analyst: ANJ Seq Number: 3107924

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Mercury	7439-97-6	BRL	0.000200	mg/L	11.19.2019 13:54	U	1

Analytical Method: TCLP Metal by SW 1311/6010C

Prep Method: SW3010A

% Moisture:

MLI Tech:

Analyst:

Date Prep: 11.19.2019 09:50

Seq Number: 3107971

DEP

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	BRL	0.100	mg/L	11.19.2019 15:14	U	1
Barium	7440-39-3	0.594	0.0500	mg/L	11.19.2019 15:14		1
Cadmium	7440-43-9	BRL	0.0500	mg/L	11.19.2019 15:14	U	1
Chromium	7440-47-3	BRL	0.0500	mg/L	11.19.2019 15:14	U	1
Lead	7439-92-1	0.128	0.0750	mg/L	11.19.2019 15:14		1
Selenium	7782-49-2	0.456	0.150	mg/L	11.19.2019 15:14		1
Silver	7440-22-4	BRL	0.150	mg/L	11.19.2019 15:14	U	1

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B11-5.0-5.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-023 Date Collected: 10.30.2019 09:45 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0182 mg/kg 11.04.2019 15:07 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	19.5	2.00	mg/kg	11.04.2019 22:24		10
Barium	7440-39-3	300	4.00	mg/kg	11.04.2019 22:24		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.04.2019 22:24	U	10
Chromium	7440-47-3	17.8	4.00	mg/kg	11.04.2019 22:24		10
Lead	7439-92-1	141	2.00	mg/kg	11.04.2019 22:24		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.04.2019 22:24	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.04.2019 22:24	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-023 Date Collected: 10.30.2019 09:45 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:09 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Fla	g Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	11.01.2019 18:5	55 U	10
Acenaphthylene	208-96-8	0.189	0.0167		mg/kg	11.01.2019 18:5	55	10
Anthracene	120-12-7	0.0337	0.0167		mg/kg	11.01.2019 18:5	55	10
Benzo(a)anthracene	56-55-3	0.132	0.0167		mg/kg	11.01.2019 18:5	55	10
Benzo(a)pyrene	50-32-8	0.215	0.0167		mg/kg	11.01.2019 18:5	55	10
Benzo(b) fluoranthene	205-99-2	0.388	0.0167		mg/kg	11.01.2019 18:5	55	10
Benzo(g,h,i)perylene	191-24-2	0.303	0.0167		mg/kg	11.01.2019 18:5	55	10
Benzo(k)fluoranthene	207-08-9	0.0912	0.0167		mg/kg	11.01.2019 18:5	55	10
Chrysene	218-01-9	0.230	0.0167		mg/kg	11.01.2019 18:5	55	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.01.2019 18:5	5 U	10
Fluoranthene	206-44-0	0.435	0.0167		mg/kg	11.01.2019 18:5	55	10
Fluorene	86-73-7	BRL	0.0167		mg/kg	11.01.2019 18:5	55 U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.234	0.0167		mg/kg	11.01.2019 18:5	55	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	11.01.2019 18:5	55 U	10
Phenanthrene	85-01-8	0.261	0.0167		mg/kg	11.01.2019 18:5	5	10
Pyrene	129-00-0	0.436	0.0167		mg/kg	11.01.2019 18:5	55	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		86	%	31-130		.2019 18:55		
2-Fluorobiphenyl		90	%	51-133		.2019 18:55		
Terphenyl-D14		98	%	46-137	11.01	1.2019 18:55		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B11-7.5-8.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-024 Date Collected: 10.30.2019 09:50 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits **Analysis Date** Dil Mercury 7439-97-6 0.0216 0.0172 mg/kg 11.04.2019 15:09 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106408

ADS

Tech:

DEP Analyst: Date Prep: 11.04.2019 11:30 Basis:

SUB: T104704215-19-30

Wet Weight

Prep Method: SW3050B

% Moisture:

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 20.7 11.04.2019 22:27 10 Arsenic 7440-38-2 1.69 mg/kg Barium 225 7440-39-3 3.39 11.04.2019 22:27 10 mg/kg Cadmium 7440-43-9 BRL 1.69 mg/kg 11.04.2019 22:27 U 10 Chromium 19.7 3.39 11.04.2019 22:27 10 7440-47-3 mg/kg 11.04.2019 22:27 10 Lead 7439-92-1 158 1.69 mg/kg Selenium 7782-49-2 BRL 1.69 11.04.2019 22:27 U 10 mg/kg Silver 7440-22-4 BRL 1.69 11.04.2019 22:27 U 10 mg/kg

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-024 Date Collected: 10.30.2019 09:50 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Fl	lag	Dil
Acenaphthene	83-32-9	BRL	0.00834		mg/kg	11.01.2019 19:1	2 1	U	5
Acenaphthylene	208-96-8	0.202	0.00834		mg/kg	11.01.2019 19:1	2		5
Anthracene	120-12-7	0.0472	0.00834		mg/kg	11.01.2019 19:1	2		5
Benzo(a)anthracene	56-55-3	0.175	0.00834		mg/kg	11.01.2019 19:1	2		5
Benzo(a)pyrene	50-32-8	0.280	0.00834		mg/kg	11.01.2019 19:1	2		5
Benzo(b) fluoranthene	205-99-2	0.465	0.00834		mg/kg	11.01.2019 19:1	2		5
Benzo(g,h,i)perylene	191-24-2	0.309	0.00834		mg/kg	11.01.2019 19:1	2		5
Benzo(k)fluoranthene	207-08-9	0.103	0.00834		mg/kg	11.01.2019 19:1	2		5
Chrysene	218-01-9	0.302	0.00834		mg/kg	11.01.2019 19:1	2		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00834		mg/kg	11.01.2019 19:1	2 1	U	5
Fluoranthene	206-44-0	0.625	0.00834		mg/kg	11.01.2019 19:1	2		5
Fluorene	86-73-7	0.0232	0.00834		mg/kg	11.01.2019 19:1	2		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.252	0.00834		mg/kg	11.01.2019 19:1	2		5
Naphthalene	91-20-3	BRL	0.0834		mg/kg	11.01.2019 19:1	2 1	U	5
Phenanthrene	85-01-8	0.446	0.00834		mg/kg	11.01.2019 19:1	2		5
Pyrene	129-00-0	0.606	0.00834		mg/kg	11.01.2019 19:1	2		5
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		94	%	31-130		.2019 19:12			
2-Fluorobiphenyl		96	%	51-133		.2019 19:12			
Terphenyl-D14		98	%	46-137	11.01	.2019 19:12			

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-025 Date Collected: 10.30.2019 09:55 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0182
 mg/kg
 11.04.2019 15:11
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106366

Tech:

Analyst: DEP Date Prep: 11.04.2019 11:30

Seq Number: 3106408

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	23.5	1.79	mg/kg	11.04.2019 22:30		10
Barium	7440-39-3	126	3.57	mg/kg	11.04.2019 22:30		10
Cadmium	7440-43-9	BRL	1.79	mg/kg	11.04.2019 22:30	U	10
Chromium	7440-47-3	30.2	3.57	mg/kg	11.04.2019 22:30		10
Lead	7439-92-1	63.7	1.79	mg/kg	11.04.2019 22:30		10
Selenium	7782-49-2	BRL	1.79	mg/kg	11.04.2019 22:30	U	10
Silver	7440-22-4	BRL	1.79	mg/kg	11.04.2019 22:30	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-025 Date Collected: 10.30.2019 09:55 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00832		mg/kg	11.01.2019 19:29	U	5
Acenaphthylene	208-96-8	0.104	0.00832		mg/kg	11.01.2019 19:29		5
Anthracene	120-12-7	0.0270	0.00832		mg/kg	11.01.2019 19:29		5
Benzo(a)anthracene	56-55-3	0.105	0.00832		mg/kg	11.01.2019 19:29		5
Benzo(a)pyrene	50-32-8	0.161	0.00832		mg/kg	11.01.2019 19:29		5
Benzo(b)fluoranthene	205-99-2	0.258	0.00832		mg/kg	11.01.2019 19:29		5
Benzo(g,h,i)perylene	191-24-2	0.174	0.00832		mg/kg	11.01.2019 19:29		5
Benzo(k)fluoranthene	207-08-9	0.0642	0.00832		mg/kg	11.01.2019 19:29		5
Chrysene	218-01-9	0.167	0.00832		mg/kg	11.01.2019 19:29		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00832		mg/kg	11.01.2019 19:29	U	5
Fluoranthene	206-44-0	0.347	0.00832		mg/kg	11.01.2019 19:29		5
Fluorene	86-73-7	0.0135	0.00832		mg/kg	11.01.2019 19:29		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.142	0.00832		mg/kg	11.01.2019 19:29		5
Naphthalene	91-20-3	BRL	0.0832		mg/kg	11.01.2019 19:29	U	5
Phenanthrene	85-01-8	0.242	0.00832		mg/kg	11.01.2019 19:29		5
Pyrene	129-00-0	0.344	0.00832		mg/kg	11.01.2019 19:29		5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fla	ag	
Nitrobenzene-d5		94	%	31-130	11.01	.2019 19:29		
2-Fluorobiphenyl		100	%	51-133	11.01	.2019 19:29		
Terphenyl-D14		109	%	46-137	11.01	.2019 19:29		

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B20-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-026 Date Collected: 10.30.2019 10:00 Sample Depth: 2.5 - 3.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

Seq Number: 3106366 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0707
 0.0185
 mg/kg
 11.04.2019 14:50
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.04.2019 15:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.7	1.72	mg/kg	11.05.2019 00:00		10
Barium	7440-39-3	180	3.45	mg/kg	11.05.2019 00:00		10
Cadmium	7440-43-9	2.20	1.72	mg/kg	11.05.2019 00:00		10
Chromium	7440-47-3	13.1	3.45	mg/kg	11.05.2019 00:00		10
Lead	7439-92-1	107	1.72	mg/kg	11.05.2019 00:00		10
Selenium	7782-49-2	BRL	1.72	mg/kg	11.05.2019 00:00	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	11.05.2019 00:00	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B20-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-026 Date Collected: 10.30.2019 10:00 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:18 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	11.01.2019 19:45	U	10
Acenaphthylene	208-96-8	BRL	0.0167		mg/kg	11.01.2019 19:45	U	10
Anthracene	120-12-7	BRL	0.0167		mg/kg	11.01.2019 19:45	U	10
Benzo(a)anthracene	56-55-3	0.0502	0.0167		mg/kg	11.01.2019 19:45		10
Benzo(a)pyrene	50-32-8	0.0716	0.0167		mg/kg	11.01.2019 19:45		10
Benzo(b)fluoranthene	205-99-2	0.0991	0.0167		mg/kg	11.01.2019 19:45		10
Benzo(g,h,i)perylene	191-24-2	0.0538	0.0167		mg/kg	11.01.2019 19:45		10
Benzo(k)fluoranthene	207-08-9	0.0371	0.0167		mg/kg	11.01.2019 19:45		10
Chrysene	218-01-9	0.0711	0.0167		mg/kg	11.01.2019 19:45		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.01.2019 19:45	U	10
Fluoranthene	206-44-0	0.119	0.0167		mg/kg	11.01.2019 19:45		10
Fluorene	86-73-7	BRL	0.0167		mg/kg	11.01.2019 19:45	U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0454	0.0167		mg/kg	11.01.2019 19:45		10
Naphthalene	91-20-3	BRL	0.167		mg/kg	11.01.2019 19:45	U	10
Phenanthrene	85-01-8	0.0505	0.0167		mg/kg	11.01.2019 19:45		10
Pyrene	129-00-0	0.111	0.0167		mg/kg	11.01.2019 19:45		10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fla	ag	
Nitrobenzene-d5		117	%	31-130	11.01	.2019 19:45		
2-Fluorobiphenyl		122	%	51-133	11.01	.2019 19:45		
Terphenyl-D14		130	%	46-137	11.01	.2019 19:45		

ADS

Seq Number: 3106366

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B11-15.0-15.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-027 Date Collected: 10.30.2019 10:05 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0175 mg/kg 11.04.2019 15:24 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight Seq Number: 3106408

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	21.1	1.82	mg/kg	11.04.2019 22:33		10
Barium	7440-39-3	120	3.64	mg/kg	11.04.2019 22:33		10
Cadmium	7440-43-9	BRL	1.82	mg/kg	11.04.2019 22:33	U	10
Chromium	7440-47-3	8.53	3.64	mg/kg	11.04.2019 22:33		10
Lead	7439-92-1	17.8	1.82	mg/kg	11.04.2019 22:33		10
Selenium	7782-49-2	BRL	1.82	mg/kg	11.04.2019 22:33	U	10
Silver	7440-22-4	BRL	1.82	mg/kg	11.04.2019 22:33	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-027 Date Collected: 10.30.2019 10:05 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:21 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.01.2019 20:30	5 U	1
Acenaphthylene	208-96-8	0.0106	0.00166		mg/kg	11.01.2019 20:30	5	1
Anthracene	120-12-7	0.00256	0.00166		mg/kg	11.01.2019 20:30	5	1
Benzo(a)anthracene	56-55-3	0.00820	0.00166		mg/kg	11.01.2019 20:30	j	1
Benzo(a)pyrene	50-32-8	0.0126	0.00166		mg/kg	11.01.2019 20:30	5	1
Benzo(b) fluoranthene	205-99-2	0.0192	0.00166		mg/kg	11.01.2019 20:30	5	1
Benzo(g,h,i)perylene	191-24-2	0.0129	0.00166		mg/kg	11.01.2019 20:30	j	1
Benzo(k)fluoranthene	207-08-9	0.00639	0.00166		mg/kg	11.01.2019 20:30	ō	1
Chrysene	218-01-9	0.0120	0.00166		mg/kg	11.01.2019 20:30	ō	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.01.2019 20:30	5 U	1
Fluoranthene	206-44-0	0.0273	0.00166		mg/kg	11.01.2019 20:30	ō	1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.01.2019 20:30	5 U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0105	0.00166		mg/kg	11.01.2019 20:30	j.	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.01.2019 20:30	5 U	1
Phenanthrene	85-01-8	0.0217	0.00166		mg/kg	11.01.2019 20:30	5	1
Pyrene	129-00-0	0.0284	0.00166		mg/kg	11.01.2019 20:30	5	1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date I	lag	
Nitrobenzene-d5		107	%	31-130	11.01	.2019 20:36		
2-Fluorobiphenyl		108	%	51-133		.2019 20:36		
Terphenyl-D14		113	%	46-137	11.01	.2019 20:36		

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B11-19.5-20.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-028 Date Collected: 10.30.2019 10:20 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0175 mg/kg 11.04.2019 15:12 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	16.4	1.96	mg/kg	11.04.2019 22:36		10
Barium	7440-39-3	76.4	3.92	mg/kg	11.04.2019 22:36		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.04.2019 22:36	U	10
Chromium	7440-47-3	11.8	3.92	mg/kg	11.04.2019 22:36		10
Lead	7439-92-1	16.4	1.96	mg/kg	11.04.2019 22:36		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.04.2019 22:36	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.04.2019 22:36	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B11-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-028 Date Collected: 10.30.2019 10:20 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:24 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.01.2019 20:52	U	1
Acenaphthylene	208-96-8	0.0104	0.00167		mg/kg	11.01.2019 20:52		1
Anthracene	120-12-7	0.00327	0.00167		mg/kg	11.01.2019 20:52		1
Benzo(a)anthracene	56-55-3	0.00982	0.00167		mg/kg	11.01.2019 20:52		1
Benzo(a)pyrene	50-32-8	0.0154	0.00167		mg/kg	11.01.2019 20:52		1
Benzo(b) fluoranthene	205-99-2	0.0205	0.00167		mg/kg	11.01.2019 20:52		1
Benzo(g,h,i)perylene	191-24-2	0.0141	0.00167		mg/kg	11.01.2019 20:52		1
Benzo(k)fluoranthene	207-08-9	0.00677	0.00167		mg/kg	11.01.2019 20:52		1
Chrysene	218-01-9	0.0134	0.00167		mg/kg	11.01.2019 20:52		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.01.2019 20:52	U	1
Fluoranthene	206-44-0	0.0343	0.00167		mg/kg	11.01.2019 20:52		1
Fluorene	86-73-7	0.00231	0.00167		mg/kg	11.01.2019 20:52		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0114	0.00167		mg/kg	11.01.2019 20:52		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.01.2019 20:52	U	1
Phenanthrene	85-01-8	0.0288	0.00167		mg/kg	11.01.2019 20:52		1
Pyrene	129-00-0	0.0378	0.00167		mg/kg	11.01.2019 20:52		1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		105	%	31-130	11.01	.2019 20:52		
2-Fluorobiphenyl		106	%	51-133	11.01	.2019 20:52		
Terphenyl-D14		115	%	46-137	11.01	.2019 20:52		

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B20-5.0-5.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-029 Date Collected: 10.30.2019 10:35 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.08110.0172 mg/kg 11.04.2019 15:14 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 11:30 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	21.0	1.79	mg/kg	11.04.2019 22:39		10
Barium	7440-39-3	96.3	3.57	mg/kg	11.04.2019 22:39		10
Cadmium	7440-43-9	BRL	1.79	mg/kg	11.04.2019 22:39	U	10
Chromium	7440-47-3	12.4	3.57	mg/kg	11.04.2019 22:39		10
Lead	7439-92-1	112	1.79	mg/kg	11.04.2019 22:39		10
Selenium	7782-49-2	BRL	1.79	mg/kg	11.04.2019 22:39	U	10
Silver	7440-22-4	BRL	1.79	mg/kg	11.04.2019 22:39	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B20-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-029 Date Collected: 10.30.2019 10:35 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:27 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	11.04.2019 11:39	U	5
Acenaphthylene	208-96-8	0.142	0.00833		mg/kg	11.04.2019 11:39		5
Anthracene	120-12-7	0.0822	0.00833		mg/kg	11.04.2019 11:39		5
Benzo(a)anthracene	56-55-3	0.660	0.00833		mg/kg	11.04.2019 11:39		5
Benzo(a)pyrene	50-32-8	1.34	0.00833		mg/kg	11.04.2019 11:39		5
Benzo(b)fluoranthene	205-99-2	1.34	0.00833		mg/kg	11.04.2019 11:39		5
Benzo(g,h,i)perylene	191-24-2	1.57	0.00833		mg/kg	11.04.2019 11:39		5
Benzo(k)fluoranthene	207-08-9	0.398	0.00833		mg/kg	11.04.2019 11:39		5
Chrysene	218-01-9	0.833	0.00833		mg/kg	11.04.2019 11:39		5
Dibenz(a,h)Anthracene	53-70-3	0.175	0.00833		mg/kg	11.04.2019 11:39		5
Fluoranthene	206-44-0	1.62	0.00833		mg/kg	11.04.2019 11:39		5
Fluorene	86-73-7	0.0148	0.00833		mg/kg	11.04.2019 11:39		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.08	0.00833		mg/kg	11.04.2019 11:39		5
Naphthalene	91-20-3	BRL	0.0833		mg/kg	11.04.2019 11:39	U	5
Phenanthrene	85-01-8	0.559	0.00833		mg/kg	11.04.2019 11:39		5
Pyrene	129-00-0	2.20	0.0167		mg/kg	11.04.2019 15:32	D	10
		% Recovery						
Surrogate		·	Units	Limits	Analy	ysis Date F	ag	
Nitrobenzene-d5		85	%	31-130	11.04	1.2019 11:39		
2-Fluorobiphenyl		92	%	51-133		.2019 11:39		
Terphenyl-D14		112	%	46-137	11.04	1.2019 11:39		

ADS

Seq Number: 3106366

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-030 Date Collected: 10.30.2019 10:50 Sample Depth: 2.5 - 3.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0282
 0.0189
 mg/kg
 11.04.2019 15:20
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.04.2019 15:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.6	1.72	mg/kg	11.05.2019 00:21		10
Barium	7440-39-3	86.3	3.45	mg/kg	11.05.2019 00:21		10
Cadmium	7440-43-9	BRL	1.72	mg/kg	11.05.2019 00:21	U	10
Chromium	7440-47-3	10.1	3.45	mg/kg	11.05.2019 00:21		10
Lead	7439-92-1	43.6	1.72	mg/kg	11.05.2019 00:21		10
Selenium	7782-49-2	BRL	1.72	mg/kg	11.05.2019 00:21	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	11.05.2019 00:21	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-030 Date Collected: 10.30.2019 10:50 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0413	0.0167		mg/kg	11.04.2019 11:56		10
Acenaphthylene	208-96-8	0.808	0.0167		mg/kg	11.04.2019 11:56		10
Anthracene	120-12-7	0.610	0.0167		mg/kg	11.04.2019 11:56		10
Benzo(a)anthracene	56-55-3	2.71	0.0167		mg/kg	11.04.2019 11:56		10
Benzo(a)pyrene	50-32-8	5.31	0.167		mg/kg	11.04.2019 16:55	D	100
Benzo(b)fluoranthene	205-99-2	4.89	0.167		mg/kg	11.04.2019 16:55	D	100
Benzo(g,h,i)perylene	191-24-2	6.71	0.167		mg/kg	11.04.2019 16:55	D	100
Benzo(k)fluoranthene	207-08-9	1.37	0.0167		mg/kg	11.04.2019 11:56		10
Chrysene	218-01-9	3.29	0.0167		mg/kg	11.04.2019 11:56		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.04.2019 11:56	U	10
Fluoranthene	206-44-0	8.61	0.167		mg/kg	11.04.2019 16:55	D	100
Fluorene	86-73-7	0.210	0.0167		mg/kg	11.04.2019 11:56		10
Indeno(1,2,3-c,d)Pyrene	193-39-5	4.31	0.167		mg/kg	11.04.2019 16:55	D	100
Naphthalene	91-20-3	0.405	0.167		mg/kg	11.04.2019 11:56		10
Phenanthrene	85-01-8	4.56	0.167		mg/kg	11.04.2019 16:55	D	100
Pyrene	129-00-0	10.6	0.167		mg/kg	11.04.2019 16:55	D	100
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fla	g	
Nitrobenzene-d5		80	%	31-130	11.04	1.2019 11:56		
2-Fluorobiphenyl		84	%	51-133		1.2019 11:56		
Terphenyl-D14		113	%	46-137	11.04	1.2019 11:56		

KCS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-031 Date Collected: 10.30.2019 10:55 Sample Depth: 5.0 - 5.5

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

Analyst: KCS Date Prep: 11.01.2019 14:00 Basis: Wet Weight

Seq Number: 3106209 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Cyanide, Total
 57-12-5
 0.204
 0.0588
 mg/kg
 11.01.2019 15:59
 1

Analytical Method: Mercury by SW 7471B

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

Seq Number: 3106366 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0475
 0.0192
 mg/kg
 11.04.2019 15:22
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.04.2019 15:15 Basis: Wet Weight

Seq Number: 3106405 SUB: T104704215-19-30

RL **Parameter** Cas Number Result Dil Units **Analysis Date** Flag 7.44 11.05.2019 00:24 Arsenic 7440-38-2 1.96 10 mg/kg Barium 7440-39-3 86.1 3.92 11.05.2019 00:24 10 mg/kg Cadmium 7440-43-9 BRL 1.96 11.05.2019 00:24 U 10 mg/kg Chromium 7440-47-3 5.51 3.92 11.05.2019 00:24 10 mg/kg Lead 7439-92-1 20.3 1.96 mg/kg 11.05.2019 00:24 10 Selenium 7782-49-2 BRL 1.96 mg/kg 11.05.2019 00:24 U 10 Silver 7440-22-4 BRL 1.96 mg/kg 11.05.2019 00:24 U 10

Prep Method: SW7471P

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-031 Date Collected: 10.30.2019 10:55 Sample Depth: 5.0 - 5.5

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106372

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.04.2019 12:10
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter RL Cas Number Result Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.48 pН 12408-02-5 1 Temperature TEMP 25.8 11.04.2019 12:44 1 Deg C

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-031 Date Collected: 10.30.2019 10:55 Sample Depth: 5.0 - 5.5

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:18 Basis: Wet Weight

Seq Number: 3106445 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0833	mg/kg	11.05.2019 12:10	U	5
PCB-1221	11104-28-2	BRL	0.0833	mg/kg	11.05.2019 12:10	U	5
PCB-1232	11141-16-5	BRL	0.0833	mg/kg	11.05.2019 12:10	U	5
PCB-1242	53469-21-9	BRL	0.0833	mg/kg	11.05.2019 12:10	U	5
PCB-1248	12672-29-6	BRL	0.0833	mg/kg	11.05.2019 12:10	U	5
PCB-1254	11097-69-1	BRL	0.0833	mg/kg	11.05.2019 12:10	U	5
PCB-1260	11096-82-5	BRL	0.0833	mg/kg	11.05.2019 12:10	U	5

% RecoverySurrogateUnitsLimitsAnalysis DateFlagDecachlorobiphenyl123%39-12511.05.2019 12:10

 Decachlorobiphenyl
 123
 %
 39-125
 11.05.2019 12:10

 Tetrachloro-m-xylene
 67
 %
 37-124
 11.05.2019 12:10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-031 Date Collected: 10.30.2019 10:55 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:42 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.0668		mg/kg	11.05.2019 12:3	36	U	20
Acenaphthylene	208-96-8	0.414	0.0668		mg/kg	11.05.2019 12:3	36		20
Anthracene	120-12-7	0.0833	0.0668		mg/kg	11.05.2019 12:3	36		20
Benzo(a)anthracene	56-55-3	0.295	0.0668		mg/kg	11.05.2019 12:3	36		20
Benzo(a)pyrene	50-32-8	0.544	0.0668		mg/kg	11.05.2019 12:3	36		20
Benzo(b) fluoranthene	205-99-2	0.576	0.0668		mg/kg	11.05.2019 12:3	36		20
Benzo(g,h,i)perylene	191-24-2	0.636	0.0668		mg/kg	11.05.2019 12:3	36		20
Benzo(k) fluoranthene	207-08-9	0.177	0.0668		mg/kg	11.05.2019 12:3	36		20
Chrysene	218-01-9	0.351	0.0668		mg/kg	11.05.2019 12:3	36		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0668		mg/kg	11.05.2019 12:3	36	U	20
Fluoranthene	206-44-0	1.09	0.0668		mg/kg	11.05.2019 12:	36		20
Fluorene	86-73-7	BRL	0.0668		mg/kg	11.05.2019 12:	36	U	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.451	0.0668		mg/kg	11.05.2019 12:	36		20
Naphthalene	91-20-3	BRL	0.668		mg/kg	11.05.2019 12:	36	U	20
Phenanthrene	85-01-8	0.808	0.0668		mg/kg	11.05.2019 12:	36		20
Pyrene	129-00-0	1.32	0.0668		mg/kg	11.05.2019 12:3	36		20
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		81	%	31-130		5.2019 12:36			
2-Fluorobiphenyl		70	%	51-133		5.2019 12:36			
Terphenyl-D14		73	%	46-137	11.05	5.2019 12:36			

SAD

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B17-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-031 Date Collected: 10.30.2019 10:55 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,1-Dichloroethane	75-34-3	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,1-Dichloroethene	75-35-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,1-Dichloropropene	563-58-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2-Dibromoethane	106-93-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2-Dichloroethane	107-06-2	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,2-Dichloropropane	78-87-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,3-Dichloropropane	142-28-9	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
2,2-Dichloropropane	594-20-7	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
2-Butanone	78-93-3	BRL	1.08	mg/kg	11.01.2019 18:49	U	50
2-Chlorotoluene	95-49-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
2-Hexanone	591-78-6	BRL	2.70	mg/kg	11.01.2019 18:49	U	50
4-Chlorotoluene	106-43-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.70	mg/kg	11.01.2019 18:49	U	50
Acetone	67-64-1	BRL	5.40	mg/kg	11.01.2019 18:49	U	50
Benzene	71-43-2	BRL	0.0540	mg/kg	11.01.2019 18:49	U	50
Bromobenzene	108-86-1	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Bromochloromethane	74-97-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Bromodichloromethane	75-27-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Bromoform	75-25-2	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Bromomethane	74-83-9	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Carbon Disulfide	75-15-0	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Carbon Tetrachloride	56-23-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Chlorobenzene	108-90-7	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Chloroethane	75-00-3	BRL	0.540	mg/kg	11.01.2019 18:49	U	50
Chloroform	67-66-3	BRL	0.270	mg/kg	11.01.2019 18:49	U	50

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B17-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-031 Date Collected: 10.30.2019 10:55 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

Chloromethame	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichloropropene 10061-01-5 BRIL 0.270 mgkg 11.01.2019 18:49 U 50 Dibromomethane 124-48-1 BRL 0.270 mgkg 11.01.2019 18:49 U 50 Dichiorondifluoromethane 74-95-3 BRI 0.270 mgkg 11.01.2019 18:49 U 50 Ehlybbenzene 100-41-4 BRL 0.0240 mgkg 11.01.2019 18:49 U 50 Edhybbenzene 100-41-4 BRL 0.0540 mgkg 11.01.2019 18:49 U 50 Iodomethane (Methyl Iodide) 74-88-4 BRL 0.08 mgkg 11.01.2019 18:49 U 50 Iodomethane (Methyl Iodide) 74-88-4 BRL 0.108 mgkg 11.01.2019 18:49 U 50 Iodomethane (Methyl Iodide) 74-88-4 BRL 0.108 mgkg 11.01.2019 18:49 U 50 Iodomethane (Methyl Iodide) 74-88-4 BRL 0.108 mgkg 11.01.2019 18:49 U 50 Methylene Col	Chloromethane	74-87-3	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Dibromochloromethane 12448-1 BRL 0.270 mgkg 11.01.2019 18:49 U 50 Dibromomethane 74-95-3 BRL 0.270 mgkg 11.01.2019 18:49 U 50 Ethylbenzene 100-41-4 BRL 0.270 mgkg 11.01.2019 18:49 U 50 Hexachlorobutadiene 87-68-3 BRL 0.270 mgkg 11.01.2019 18:49 U 50 Idodomethane (Methyl Iodide) 74-88-4 BRL 0.270 mgkg 11.01.2019 18:49 U 50 Isopropylbenzene 98-82-8 BRL 0.108 mgkg 11.01.2019 18:49 U 50 Isopropylbenzene 98-82-8 BRL 0.108 mgkg 11.01.2019 18:49 U 50 Isopropylbenzene 98-82-8 BRL 0.108 mgkg 11.01.2019 18:49 U 50 MrDer Jack 153-04-4 BRL 0.270 mgkg 11.01.2019 18:49 U 50 MrDer Jack 163-4 BRL	cis-1,2-Dichloroethene	156-59-2	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Dichromomethane	cis-1,3-Dichloropropene	10061-01-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Dichlorodifluoromethane 75-71-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Dibromochloromethane	124-48-1	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Ethylbenzene 100-41-4 BRL 0.0540 mg/kg 11.01.2019 18.49 U 50 Hexachlorobutadiene 87-68-3 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Isopropylbenzene 98-82-8 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Isopropylbenzene 179601-23-1 BRL 0.108 mg/kg 11.01.2019 18.49 U 50 Methylene Chloride 75-09-2 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Methylene Chloride 75-09-2 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Maphihalene 91-20-3 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Naphihalene 91-20-3 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Naphihalene 104-51-8 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Naphylbenzene 104-51-8 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Naphylbenzene 55-47-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 98-80-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 98-80-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 127-18-4 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 127-18-4 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 130-20-7 BRL 0.0540 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropylboluene) 130-20-7 BRL 0.0540 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropene) 100-10-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropene) 100-10-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropene) 100-10-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 O-Cylene (p-Isopropene) 100-10-6 BRL 0	Dibromomethane	74-95-3	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Hexachlorobutadiene	Dichlorodifluoromethane	75-71-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
December 1964 1964 1964 1964 1965 196	Ethylbenzene	100-41-4	BRL	0.0540	mg/kg	11.01.2019 18:49	U	50
Sopropylbenzene 98-82-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 50 50 50 50 50 50	Hexachlorobutadiene	87-68-3	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
m.pXylenes 179601-23-1 BRL 0.108 mg/kg 11.01.2019 18:49 U 50 Methylene Chloride 75-09-2 BRL 1.08 mg/kg 11.01.2019 18:49 U 50 MTBE 1634-04-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Naphthalene 91-20-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Butlylbenzene 104-51-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 n-Propylbenzene 103-65-1 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-47-6 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 Sce-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 130-29-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 terr-Butylbenzene 98-06-6 BRL 0.270 <td>Iodomethane (Methyl Iodide)</td> <td>74-88-4</td> <td>BRL</td> <td>1.08</td> <td>mg/kg</td> <td>11.01.2019 18:49</td> <td>U</td> <td>50</td>	Iodomethane (Methyl Iodide)	74-88-4	BRL	1.08	mg/kg	11.01.2019 18:49	U	50
Methylene Chloride 75-09-2 BRL 1.08 mg/kg 11.01.2019 18:49 U 50 MTBE 1634-04-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Naphthalene 91-20-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Butylbenzene 104-51-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 n-Propylbenzene 103-65-1 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-47-6 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Sce-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tert-Butylbenzene 198-06-6 BRL	Isopropylbenzene	98-82-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
MTBE 1634-04-4 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Naphthalene 91-20-3 BRL 0.540 mg/kg 11.01.2019 18.49 U 50 n-Butylbenzene 104-51-8 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 o-Nylene 95-47-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Sce-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18.49 U 50 Sturi-Butylbenzene 138-0-6 BRL 0.270	m,p-Xylenes	179601-23-1	BRL	0.108	mg/kg	11.01.2019 18:49	U	50
Naphthalene 91-20-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Butylbenzene 104-51-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-47-6 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-47-6 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Sce-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tetr-Butylbenzene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tetr-Butylbenzene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tetr-Butylbenzene 1330-20-7 BRL	Methylene Chloride	75-09-2	BRL	1.08	mg/kg	11.01.2019 18:49	U	50
n-Butylbenzene 104-51-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-47-6 BRL 0.070 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-47-6 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-87-6 BRL 0.070 mg/kg 11.01.2019 18:49 U 50 Sec-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene (p-Isopropyloluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene (not 2-15) 10.01-2019 18:49 U 50	MTBE	1634-04-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
n-Propylbenzene 103-65-1 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 o-Xylene 95-47-6 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Sec-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tert-Butylbenzene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tertachloroethylene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tertachloroethylene 138-8-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tertachloroethylene 138-8-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tertachloroethene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trans-1,3-dichloropropene 108-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-09-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 108-05-4 BRL	Naphthalene	91-20-3	BRL	0.540	mg/kg	11.01.2019 18:49	U	50
o-Xylene 95-47-6 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Sec-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tetr-Butylbenzene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tetrachloroethylene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Toluene 108-88-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloroptopene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4	n-Butylbenzene	104-51-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Sec-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tert-Butylbenzene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tetrachloroethylene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Totulene 108-88-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorothuene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4<	n-Propylbenzene	103-65-1	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Sec-Butylbenzene 135-98-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tert-Butylbenzene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tetrachloroethylene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Toluene 108-88-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 <td>o-Xylene</td> <td>95-47-6</td> <td>BRL</td> <td>0.0540</td> <td>mg/kg</td> <td>11.01.2019 18:49</td> <td>U</td> <td>50</td>	o-Xylene	95-47-6	BRL	0.0540	mg/kg	11.01.2019 18:49	U	50
Styrene 100-42-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 tert-Butylbenzene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tetrachloroethylene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Toluene 108-88-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
tert-Butylbenzene 98-06-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Tetrachloroethylene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Toluene 108-88-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-01-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50	Sec-Butylbenzene	135-98-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Tetrachloroethylene 127-18-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Toluene 108-88-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7	Styrene	100-42-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Toluene 108-88-3 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 U 5	tert-Butylbenzene	98-06-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Total Xylenes 1330-20-7 BRL 0.0540 mg/kg 11.01.2019 18:49 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 U 5	Tetrachloroethylene	127-18-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 1,3-Butadiene 106-99-0 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 HRL 0.270 mg/kg 11.01.2019 18	Toluene	108-88-3	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
trans-1,3-dichloropropene 10061-02-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 1,3-Butadiene 106-99-0 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.540 mg/kg 11.01.2019 18:49 U 50	Total Xylenes	1330-20-7	BRL	0.0540	mg/kg	11.01.2019 18:49	U	50
Trichloroethene 79-01-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 1,3-Butadiene 106-99-0 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL	trans-1,2-dichloroethene	156-60-5	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Trichlorofluoromethane 75-69-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Vinyl Acetate 108-05-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 1,3-Butadiene 106-99-0 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Vinyl Acetate 108-05-4 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 1,3-Butadiene 106-99-0 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Trichloroethene	79-01-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Vinyl Chloride 75-01-4 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 1,3-Butadiene 106-99-0 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Trichlorofluoromethane	75-69-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
1,3-Butadiene 106-99-0 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Vinyl Acetate	108-05-4	BRL	0.540	mg/kg	11.01.2019 18:49	U	50
Cyclohexane 110-82-7 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Vinyl Chloride	75-01-4	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Dicyclopentadiene 77-73-6 BRL 0.270 mg/kg 11.01.2019 18:49 U 50 Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	1,3-Butadiene	106-99-0	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
Methylcyclohexane 108-87-2 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Cyclohexane	110-82-7	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
n-Hexane 110-54-3 BRL 0.540 mg/kg 11.01.2019 18:49 U 50 4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Dicyclopentadiene	77-73-6	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
4-Ethyltoluene 622-96-8 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	Methylcyclohexane	108-87-2	BRL	0.540	mg/kg	11.01.2019 18:49	U	50
	n-Hexane	110-54-3	BRL	0.540	mg/kg	11.01.2019 18:49	U	50
Propene 115-07-1 BRL 0.270 mg/kg 11.01.2019 18:49 U 50	4-Ethyltoluene	622-96-8	BRL	0.270	mg/kg	11.01.2019 18:49	U	50
	Propene	115-07-1	BRL	0.270	mg/kg	11.01.2019 18:49	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-031 Date Collected: 10.30.2019 10:55 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	88	%	53-142	11.01.2019 18:49	
1,2-Dichloroethane-D4	98	%	56-150	11.01.2019 18:49	
Toluene-D8	105	%	70-130	11.01.2019 18:49	
4-Bromofluorobenzene	93	%	68-152	11.01.2019 18:49	

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B17-7.5-8.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-032 Date Collected: 10.30.2019 11:40 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits **Analysis Date** Dil Mercury 7439-97-6 0.0224 0.0185 mg/kg 11.04.2019 15:33 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106405

DEP Analyst: Date Prep: 11.04.2019 15:15

Basis: Wet Weight SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 17.3 1.79 11.05.2019 00:27 10 Arsenic 7440-38-2 mg/kg Barium 96.3 7440-39-3 3.57 11.05.2019 00:27 10 mg/kg Cadmium 7440-43-9 BRL 1.79 mg/kg 11.05.2019 00:27 U 10 Chromium 7440-47-3 12.1 3.57 11.05.2019 00:27 10 mg/kg mg/kg 10 Lead 7439-92-1 37.7 1.79 11.05.2019 00:27 Selenium 7782-49-2 BRL 1.79 11.05.2019 00:27 U 10 mg/kg Silver 7440-22-4 BRL 1.79 11.05.2019 00:27 U 10 mg/kg

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-032 Date Collected: 10.30.2019 11:40 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:36 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0270	0.0167		mg/kg	11.01.2019 21:20	5	10
Acenaphthylene	208-96-8	0.689	0.0167		mg/kg	11.01.2019 21:20	5	10
Anthracene	120-12-7	0.316	0.0167		mg/kg	11.01.2019 21:20	5	10
Benzo(a)anthracene	56-55-3	1.27	0.0167		mg/kg	11.01.2019 21:20	5	10
Benzo(a)pyrene	50-32-8	2.33	0.0167		mg/kg	11.01.2019 21:20	5	10
Benzo(b) fluoranthene	205-99-2	2.37	0.0167		mg/kg	11.01.2019 21:20	5	10
Benzo(g,h,i)perylene	191-24-2	1.84	0.0167		mg/kg	11.01.2019 21:20	5	10
Benzo(k) fluoranthene	207-08-9	0.799	0.0167		mg/kg	11.01.2019 21:20	5	10
Chrysene	218-01-9	1.60	0.0167		mg/kg	11.01.2019 21:20	5	10
Dibenz(a,h)Anthracene	53-70-3	0.210	0.0167		mg/kg	11.01.2019 21:20	5	10
Fluoranthene	206-44-0	4.63	0.0834		mg/kg	11.04.2019 11:22	3 D	50
Fluorene	86-73-7	0.159	0.0167		mg/kg	11.01.2019 21:20	5	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.35	0.0167		mg/kg	11.01.2019 21:20	5	10
Naphthalene	91-20-3	0.967	0.167		mg/kg	11.01.2019 21:20	5	10
Phenanthrene	85-01-8	3.16	0.0167		mg/kg	11.01.2019 21:20	5	10
Pyrene	129-00-0	5.80	0.0834		mg/kg	11.04.2019 11:2	3 D	50
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date I	lag	
Nitrobenzene-d5		123	%	31-130		.2019 21:26		
2-Fluorobiphenyl		105	%	51-133		.2019 21:26		
Terphenyl-D14		125	%	46-137	11.01	.2019 21:26		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B17-10.0-10.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-033 Date Collected: 10.30.2019 11:45 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0179 mg/kg 11.04.2019 15:35 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

ADS

Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 15:15 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	19.4	1.92	mg/kg	11.05.2019 00:30		10
Barium	7440-39-3	237	3.85	mg/kg	11.05.2019 00:30		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.05.2019 00:30	U	10
Chromium	7440-47-3	11.4	3.85	mg/kg	11.05.2019 00:30		10
Lead	7439-92-1	15.7	1.92	mg/kg	11.05.2019 00:30		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.05.2019 00:30	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.05.2019 00:30	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-10.0-10.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-033 Date Collected: 10.30.2019 11:45 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:39 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	e	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00836		mg/kg	11.04.2019 1	2:12	U	5
Acenaphthylene	208-96-8	0.204	0.00836		mg/kg	11.04.2019 12	2:12		5
Anthracene	120-12-7	0.0934	0.00836		mg/kg	11.04.2019 1	2:12		5
Benzo(a)anthracene	56-55-3	0.409	0.00836		mg/kg	11.04.2019 12	2:12		5
Benzo(a)pyrene	50-32-8	0.747	0.00836		mg/kg	11.04.2019 12	2:12		5
Benzo(b)fluoranthene	205-99-2	0.714	0.00836		mg/kg	11.04.2019 1	2:12		5
Benzo(g,h,i)perylene	191-24-2	0.964	0.00836		mg/kg	11.04.2019 12	2:12		5
Benzo(k)fluoranthene	207-08-9	0.246	0.00836		mg/kg	11.04.2019 12	2:12		5
Chrysene	218-01-9	0.503	0.00836		mg/kg	11.04.2019 12	2:12		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00836		mg/kg	11.04.2019 12	2:12	U	5
Fluoranthene	206-44-0	1.48	0.00836		mg/kg	11.04.2019 12	2:12		5
Fluorene	86-73-7	0.0533	0.00836		mg/kg	11.04.2019 12	2:12		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.633	0.00836		mg/kg	11.04.2019 12	2:12		5
Naphthalene	91-20-3	0.294	0.0836		mg/kg	11.04.2019 12	2:12		5
Phenanthrene	85-01-8	1.10	0.00836		mg/kg	11.04.2019 12	2:12		5
Pyrene	129-00-0	1.77	0.0167		mg/kg	11.04.2019 1	7:12	D	10
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		100	%	31-130		1.2019 12:12			
2-Fluorobiphenyl		103	%	51-133		1.2019 12:12			
Terphenyl-D14		121	%	46-137	11.04	1.2019 12:12			

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B17-15.0-15.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-034 Date Collected: 10.30.2019 11:55 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0169 mg/kg 11.04.2019 15:37 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 15:15 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	16.7	1.67	mg/kg	11.05.2019 00:33		10
Barium	7440-39-3	250	3.33	mg/kg	11.05.2019 00:33		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.05.2019 00:33	U	10
Chromium	7440-47-3	7.87	3.33	mg/kg	11.05.2019 00:33		10
Lead	7439-92-1	10.8	1.67	mg/kg	11.05.2019 00:33		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.05.2019 00:33	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.05.2019 00:33	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-034 Date Collected: 10.30.2019 11:55 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:42 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	:	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 12	2:46	U	1
Acenaphthylene	208-96-8	0.00837	0.00167		mg/kg	11.04.2019 12	2:46		1
Anthracene	120-12-7	0.00471	0.00167		mg/kg	11.04.2019 12	2:46		1
Benzo(a)anthracene	56-55-3	0.0191	0.00167		mg/kg	11.04.2019 12	2:46		1
Benzo(a)pyrene	50-32-8	0.0318	0.00167		mg/kg	11.04.2019 12	2:46		1
Benzo(b)fluoranthene	205-99-2	0.0330	0.00167		mg/kg	11.04.2019 12	2:46		1
Benzo(g,h,i)perylene	191-24-2	0.0285	0.00167		mg/kg	11.04.2019 12	2:46		1
Benzo(k)fluoranthene	207-08-9	0.0109	0.00167		mg/kg	11.04.2019 12	2:46		1
Chrysene	218-01-9	0.0220	0.00167		mg/kg	11.04.2019 12	2:46		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 12	2:46	U	1
Fluoranthene	206-44-0	0.0671	0.00167		mg/kg	11.04.2019 12	2:46		1
Fluorene	86-73-7	0.00211	0.00167		mg/kg	11.04.2019 12	2:46		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0209	0.00167		mg/kg	11.04.2019 12	2:46		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 12	2:46	U	1
Phenanthrene	85-01-8	0.0485	0.00167		mg/kg	11.04.2019 12	2:46		1
Pyrene	129-00-0	0.0815	0.00167		mg/kg	11.04.2019 12	2:46		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		98	%	31-130		1.2019 12:46			
2-Fluorobiphenyl		99	%	51-133		1.2019 12:46			
Terphenyl-D14		106	%	46-137	11.04	1.2019 12:46			

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B17-19.5-20.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-035 Date Collected: 10.30.2019 12:00 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0172 mg/kg 11.04.2019 15:42 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 15:15 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	17.1	2.00	mg/kg	11.05.2019 00:36		10
Barium	7440-39-3	131	4.00	mg/kg	11.05.2019 00:36		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.05.2019 00:36	U	10
Chromium	7440-47-3	23.3	4.00	mg/kg	11.05.2019 00:36		10
Lead	7439-92-1	7.38	2.00	mg/kg	11.05.2019 00:36		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.05.2019 00:36	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.05.2019 00:36	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B17-19.5-20.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-035 Date Collected: 10.30.2019 12:00 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:45 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 13:52	U	1
Acenaphthylene	208-96-8	0.00175	0.00167		mg/kg	11.04.2019 13:52		1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.04.2019 13:52	U	1
Benzo(a)anthracene	56-55-3	0.00405	0.00167		mg/kg	11.04.2019 13:52		1
Benzo(a)pyrene	50-32-8	0.00705	0.00167		mg/kg	11.04.2019 13:52		1
Benzo(b) fluoranthene	205-99-2	0.00759	0.00167		mg/kg	11.04.2019 13:52		1
Benzo(g,h,i)perylene	191-24-2	0.00731	0.00167		mg/kg	11.04.2019 13:52		1
Benzo(k)fluoranthene	207-08-9	0.00238	0.00167		mg/kg	11.04.2019 13:52		1
Chrysene	218-01-9	0.00454	0.00167		mg/kg	11.04.2019 13:52		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 13:52	U	1
Fluoranthene	206-44-0	0.0130	0.00167		mg/kg	11.04.2019 13:52		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.04.2019 13:52	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00508	0.00167		mg/kg	11.04.2019 13:52		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 13:52	U	1
Phenanthrene	85-01-8	0.00783	0.00167		mg/kg	11.04.2019 13:52		1
Pyrene	129-00-0	0.0161	0.00167		mg/kg	11.04.2019 13:52		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		66	%	31-130		1.2019 13:52		
2-Fluorobiphenyl		69	%	51-133		1.2019 13:52		
Terphenyl-D14		108	%	46-137	11.04	1.2019 13:52		

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B24-2.5-3.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-036 Date Collected: 10.30.2019 14:50 Sample Depth: 2.5 - 3.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0200 mg/kg 11.04.2019 15:44 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.04.2019 15:15 Wet Weight Seq Number: 3106405

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.3	1.85	mg/kg	11.05.2019 00:39		10
Barium	7440-39-3	110	3.70	mg/kg	11.05.2019 00:39		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.05.2019 00:39	U	10
Chromium	7440-47-3	8.67	3.70	mg/kg	11.05.2019 00:39		10
Lead	7439-92-1	9.28	1.85	mg/kg	11.05.2019 00:39		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.05.2019 00:39	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.05.2019 00:39	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-036 Date Collected: 10.30.2019 14:50 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:48 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 14	:09	U	1
Acenaphthylene	208-96-8	0.00570	0.00166		mg/kg	11.04.2019 14	:09		1
Anthracene	120-12-7	0.00289	0.00166		mg/kg	11.04.2019 14	:09		1
Benzo(a)anthracene	56-55-3	0.0102	0.00166		mg/kg	11.04.2019 14	:09		1
Benzo(a)pyrene	50-32-8	0.0233	0.00166		mg/kg	11.04.2019 14	:09		1
Benzo(b) fluoranthene	205-99-2	0.0232	0.00166		mg/kg	11.04.2019 14	:09		1
Benzo(g,h,i)perylene	191-24-2	0.0306	0.00166		mg/kg	11.04.2019 14	:09		1
Benzo(k) fluoranthene	207-08-9	0.00672	0.00166		mg/kg	11.04.2019 14	:09		1
Chrysene	218-01-9	0.0134	0.00166		mg/kg	11.04.2019 14	:09		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 14	:09	U	1
Fluoranthene	206-44-0	0.0416	0.00166		mg/kg	11.04.2019 14	:09		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.04.2019 14	:09	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0178	0.00166		mg/kg	11.04.2019 14	:09		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.04.2019 14	:09	U	1
Phenanthrene	85-01-8	0.0270	0.00166		mg/kg	11.04.2019 14	:09		1
Pyrene	129-00-0	0.0514	0.00166		mg/kg	11.04.2019 14	:09		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		91	%	31-130		1.2019 14:09			
2-Fluorobiphenyl		89	%	51-133		1.2019 14:09			
Terphenyl-D14		100	%	46-137	11.04	1.2019 14:09			

ADS

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-037 Date Collected: 10.30.2019 15:00 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0196
 mg/kg
 11.04.2019 15:46
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Seq Number: 3106366

Analyst: DEP Date Prep: 11.04.2019 15:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	41.6	1.72	mg/kg	11.05.2019 00:41		10
Barium	7440-39-3	174	3.45	mg/kg	11.05.2019 00:41		10
Cadmium	7440-43-9	BRL	1.72	mg/kg	11.05.2019 00:41	U	10
Chromium	7440-47-3	12.4	3.45	mg/kg	11.05.2019 00:41		10
Lead	7439-92-1	13.2	1.72	mg/kg	11.05.2019 00:41		10
Selenium	7782-49-2	BRL	1.72	mg/kg	11.05.2019 00:41	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	11.05.2019 00:41	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B24-5.0-5.5 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-037 Sample Depth: 5.0 - 5.5 Date Collected: 10.30.2019 15:00

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 11.01.2019 16:51 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00243	0.00167		mg/kg	11.04.2019 14:26		1
Acenaphthylene	208-96-8	0.0434	0.00167		mg/kg	11.04.2019 14:26		1
Anthracene	120-12-7	0.0211	0.00167		mg/kg	11.04.2019 14:26		1
Benzo(a)anthracene	56-55-3	0.0630	0.00167		mg/kg	11.04.2019 14:26		1
Benzo(a)pyrene	50-32-8	0.150	0.00167		mg/kg	11.04.2019 14:26		1
Benzo(b)fluoranthene	205-99-2	0.147	0.00167		mg/kg	11.04.2019 14:26		1
Benzo(g,h,i)perylene	191-24-2	0.163	0.00167		mg/kg	11.04.2019 14:26		1
Benzo(k)fluoranthene	207-08-9	0.0434	0.00167		mg/kg	11.04.2019 14:26		1
Chrysene	218-01-9	0.0875	0.00167		mg/kg	11.04.2019 14:26		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 14:26	U	1
Fluoranthene	206-44-0	0.278	0.00167		mg/kg	11.04.2019 14:26		1
Fluorene	86-73-7	0.00674	0.00167		mg/kg	11.04.2019 14:26		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.108	0.00167		mg/kg	11.04.2019 14:26		1
Naphthalene	91-20-3	0.0302	0.0167		mg/kg	11.04.2019 14:26		1
Phenanthrene	85-01-8	0.187	0.00167		mg/kg	11.04.2019 14:26		1
Pyrene	129-00-0	0.362	0.00833		mg/kg	11.04.2019 17:28	D	5
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		87	%	31-130	11.04	.2019 14:26		
2-Fluorobiphenyl		93	%	51-133	11.04	.2019 14:26		
Terphenyl-D14		106	%	46-137	11.04	.2019 14:26		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-038 Date Collected: 10.30.2019 15:10 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0167
 mg/kg
 11.04.2019 15:48
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106366

Tech:

Analyst: DEP Date Prep: 11.04.2019 15:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.1	1.82	mg/kg	11.05.2019 00:44		10
Barium	7440-39-3	87.8	3.64	mg/kg	11.05.2019 00:44		10
Cadmium	7440-43-9	BRL	1.82	mg/kg	11.05.2019 00:44	U	10
Chromium	7440-47-3	7.56	3.64	mg/kg	11.05.2019 00:44		10
Lead	7439-92-1	22.9	1.82	mg/kg	11.05.2019 00:44		10
Selenium	7782-49-2	BRL	1.82	mg/kg	11.05.2019 00:44	U	10
Silver	7440-22-4	BRL	1.82	mg/kg	11.05.2019 00:44	U	10

Tech:

Analytical Method: PAHs by 8270D SIM

JOZ

Seq Number: 3106302

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B24-7.5-8.0 Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-038 Sample Depth: 7.5 - 8.0 Date Collected: 10.30.2019 15:10

Prep Method: SW3550

% Moisture:

DNE Analyst: Date Prep: 11.01.2019 16:54 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0281	0.0167		mg/kg	11.04.2019 14:42		10
Acenaphthylene	208-96-8	0.407	0.0167		mg/kg	11.04.2019 14:42		10
Anthracene	120-12-7	0.172	0.0167		mg/kg	11.04.2019 14:42		10
Benzo(a)anthracene	56-55-3	0.491	0.0167		mg/kg	11.04.2019 14:42		10
Benzo(a)pyrene	50-32-8	1.18	0.0167		mg/kg	11.04.2019 14:42		10
Benzo(b) fluoranthene	205-99-2	1.24	0.0167		mg/kg	11.04.2019 14:42		10
Benzo(g,h,i)perylene	191-24-2	1.16	0.0167		mg/kg	11.04.2019 14:42		10
Benzo(k) fluoranthene	207-08-9	0.308	0.0167		mg/kg	11.04.2019 14:42		10
Chrysene	218-01-9	0.707	0.0167		mg/kg	11.04.2019 14:42		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.04.2019 14:42	U	10
Fluoranthene	206-44-0	2.30	0.0167		mg/kg	11.04.2019 14:42		10
Fluorene	86-73-7	0.0514	0.0167		mg/kg	11.04.2019 14:42		10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.801	0.0167		mg/kg	11.04.2019 14:42		10
Naphthalene	91-20-3	0.321	0.167		mg/kg	11.04.2019 14:42		10
Phenanthrene	85-01-8	1.47	0.0167		mg/kg	11.04.2019 14:42		10
Pyrene	129-00-0	2.78	0.0167		mg/kg	11.04.2019 14:42		10
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fla	ıg	
Nitrobenzene-d5		110	%	31-130	11.04	1.2019 14:42		

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	110	%	31-130	11.04.2019 14:42	
2-Fluorobiphenyl	113	%	51-133	11.04.2019 14:42	
Terphenyl-D14	121	%	46-137	11.04.2019 14:42	

ADS

Seq Number: 3106366

Seq Number: 3106405

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-040 Date Collected: 10.30.2019 15:50 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture: 0

Analyst: ANJ Date Prep: 11.04.2019 12:00 Basis: Dry Weight

SUB: T104704215-19-30

Prep Method: SW3050B

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.04.2019 15:50
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.04.2019 15:15

Date Prep: 11.04.2019 15:15 Basis: Wet Weight

SUB: T104704215-19-30

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	16.4	1.96	mg/kg	11.05.2019 00:47		10
Barium	7440-39-3	290	3.92	mg/kg	11.05.2019 00:47		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.05.2019 00:47	U	10
Chromium	7440-47-3	5.00	3.92	mg/kg	11.05.2019 00:47		10
Lead	7439-92-1	11.7	1.96	mg/kg	11.05.2019 00:47		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.05.2019 00:47	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.05.2019 00:47	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-15.0-15.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-040 Date Collected: 10.30.2019 15:50 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 16:57 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	e	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	11.04.2019 1	4:59	U	10
Acenaphthylene	208-96-8	0.196	0.0167		mg/kg	11.04.2019 1	4:59		10
Anthracene	120-12-7	0.149	0.0167		mg/kg	11.04.2019 1	4:59		10
Benzo(a)anthracene	56-55-3	0.386	0.0167		mg/kg	11.04.2019 1	4:59		10
Benzo(a)pyrene	50-32-8	0.877	0.0167		mg/kg	11.04.2019 1	4:59		10
Benzo(b) fluoranthene	205-99-2	0.858	0.0167		mg/kg	11.04.2019 1	4:59		10
Benzo(g,h,i)perylene	191-24-2	0.746	0.0167		mg/kg	11.04.2019 1	4:59		10
Benzo(k)fluoranthene	207-08-9	0.247	0.0167		mg/kg	11.04.2019 1	4:59		10
Chrysene	218-01-9	0.521	0.0167		mg/kg	11.04.2019 1	4:59		10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.04.2019 1	4:59	U	10
Fluoranthene	206-44-0	1.72	0.0167		mg/kg	11.04.2019 1	4:59		10
Fluorene	86-73-7	0.0535	0.0167		mg/kg	11.04.2019 1	4:59		10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.538	0.0167		mg/kg	11.04.2019 1	4:59		10
Naphthalene	91-20-3	0.257	0.167		mg/kg	11.04.2019 1	4:59		10
Phenanthrene	85-01-8	1.30	0.0167		mg/kg	11.04.2019 1	4:59		10
Pyrene	129-00-0	2.08	0.0167		mg/kg	11.04.2019 1	4:59		10
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		87	%	31-130		.2019 14:59			
2-Fluorobiphenyl		89	%	51-133		.2019 14:59			
Terphenyl-D14		98	%	46-137	11.04	.2019 14:59			

KCS

ANJ

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B25-2.5-3.0 Matrix: Soil Date Received:11.01.2019 09:30

Sample Depth: 2.5 - 3.0 Lab Sample Id: 641801-041 Date Collected: 10.30.2019 16:20

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Analyst: Date Prep: 11.01.2019 14:00 Basis: Wet Weight

Seq Number: 3106209 SUB: T104704215-19-30

Parameter Cas Number Result RL Units **Analysis Date** Dil Cyanide, Total 57-12-5 BRL 0.0577 mg/kg 11.01.2019 16:00 U 1

Analytical Method: Mercury by SW 7471B

Prep Method: SW7471P **ADS** Tech:

% Moisture:

Analyst: Date Prep: 11.04.2019 12:00 Basis: Dry Weight Seq Number: 3106366 SUB: T104704215-19-30

Parameter Cas Number Result RL Units **Analysis Date** Flag Dil BRL 0.0192 11.04.2019 15:52 U Mercury 7439-97-6 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: Basis: Wet Weight Date Prep: 11.04.2019 15:15

Seq Number: 3106405 SUB: T104704215-19-30

RL **Parameter** Cas Number Result Dil Units **Analysis Date** Flag 14.8 1.85 11.05.2019 00:56 Arsenic 7440-38-2 10 mg/kg Barium 7440-39-3 174 3.70 11.05.2019 00:56 10 mg/kg Cadmium 7440-43-9 BRL 1.85 11.05.2019 00:56 U 10 mg/kg Chromium 7440-47-3 11.9 3.70 11.05.2019 00:56 10 mg/kg Lead 7439-92-1 9.12 1.85 mg/kg 11.05.2019 00:56 10 Selenium 7782-49-2 BRL 1.85 mg/kg 11.05.2019 00:56 U 10 Silver 7440-22-4 BRL 1.85 mg/kg 11.05.2019 00:56 U 10

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-041 Date Collected: 10.30.2019 16:20 Sample Depth: 2.5 - 3.0

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106372

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.04.2019 12:26
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106171

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.01.2019 15:001

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.44 pН 12408-02-5 1 Temperature TEMP 25.0 11.04.2019 12:44 1 Deg C

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-041 Date Collected: 10.30.2019 16:20 Sample Depth: 2.5 - 3.0

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:21 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0167	mg/kg	11.05.2019 11:36	U	1
PCB-1221	11104-28-2	BRL	0.0167	mg/kg	11.05.2019 11:36	U	1
PCB-1232	11141-16-5	BRL	0.0167	mg/kg	11.05.2019 11:36	U	1
PCB-1242	53469-21-9	BRL	0.0167	mg/kg	11.05.2019 11:36	U	1
PCB-1248	12672-29-6	BRL	0.0167	mg/kg	11.05.2019 11:36	U	1
PCB-1254	11097-69-1	BRL	0.0167	mg/kg	11.05.2019 11:36	U	1
PCB-1260	11096-82-5	BRL	0.0167	mg/kg	11.05.2019 11:36	U	1
		% Recovery					

Surrogate	70 Recovery	Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	117	%	39-125	11.05.2019 11:36	
Tetrachloro-m-xylene	65	%	37-124	11.05.2019 11:36	

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-041 Date Collected: 10.30.2019 16:20 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 17:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 15:16	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.04.2019 15:16	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.04.2019 15:16	U	1
Benzo(a)anthracene	56-55-3	0.00274	0.00167		mg/kg	11.04.2019 15:16		1
Benzo(a)pyrene	50-32-8	0.00357	0.00167		mg/kg	11.04.2019 15:16		1
Benzo(b)fluoranthene	205-99-2	0.00531	0.00167		mg/kg	11.04.2019 15:16		1
Benzo(g,h,i)perylene	191-24-2	0.00299	0.00167		mg/kg	11.04.2019 15:16		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.04.2019 15:16	U	1
Chrysene	218-01-9	0.00320	0.00167		mg/kg	11.04.2019 15:16		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 15:16	U	1
Fluoranthene	206-44-0	0.00662	0.00167		mg/kg	11.04.2019 15:16		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.04.2019 15:16	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00250	0.00167		mg/kg	11.04.2019 15:16		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 15:16	U	1
Phenanthrene	85-01-8	0.00288	0.00167		mg/kg	11.04.2019 15:16		1
Pyrene	129-00-0	0.00658	0.00167		mg/kg	11.04.2019 15:16		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		82	%	31-130	11.04	1.2019 15:16		
2-Fluorobiphenyl		85	%	51-133		.2019 15:16		
Terphenyl-D14		95	%	46-137	11.04	1.2019 15:16		

SAD

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B25-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-041 Date Collected: 10.30.2019 16:20 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,1-Dichloroethane	75-34-3	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,1-Dichloroethene	75-35-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,1-Dichloropropene	563-58-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2-Dibromoethane	106-93-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2-Dichloroethane	107-06-2	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,2-Dichloropropane	78-87-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,3-Dichloropropane	142-28-9	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
2,2-Dichloropropane	594-20-7	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
2-Butanone	78-93-3	BRL	0.901	mg/kg	11.01.2019 19:10	U	50
2-Chlorotoluene	95-49-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
2-Hexanone	591-78-6	BRL	2.25	mg/kg	11.01.2019 19:10	U	50
4-Chlorotoluene	106-43-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.25	mg/kg	11.01.2019 19:10	U	50
Acetone	67-64-1	BRL	4.50	mg/kg	11.01.2019 19:10	U	50
Benzene	71-43-2	BRL	0.0450	mg/kg	11.01.2019 19:10	U	50
Bromobenzene	108-86-1	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Bromochloromethane	74-97-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Bromodichloromethane	75-27-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Bromoform	75-25-2	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Bromomethane	74-83-9	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Carbon Disulfide	75-15-0	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Carbon Tetrachloride	56-23-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Chlorobenzene	108-90-7	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Chloroethane	75-00-3	BRL	0.450	mg/kg	11.01.2019 19:10	U	50
Chloroform	67-66-3	BRL	0.225	mg/kg	11.01.2019 19:10	U	50

SAD

Seq Number: 3106167

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B25-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-041 Date Collected: 10.30.2019 16:20 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Dibromochloromethane	124-48-1	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Dibromomethane	74-95-3	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Ethylbenzene	100-41-4	BRL	0.0450	mg/kg	11.01.2019 19:10	U	50
Hexachlorobutadiene	87-68-3	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.901	mg/kg	11.01.2019 19:10	U	50
Isopropylbenzene	98-82-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
m,p-Xylenes	179601-23-1	BRL	0.0901	mg/kg	11.01.2019 19:10	U	50
Methylene Chloride	75-09-2	BRL	0.901	mg/kg	11.01.2019 19:10	U	50
MTBE	1634-04-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Naphthalene	91-20-3	BRL	0.450	mg/kg	11.01.2019 19:10	U	50
n-Butylbenzene	104-51-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
n-Propylbenzene	103-65-1	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
o-Xylene	95-47-6	BRL	0.0450	mg/kg	11.01.2019 19:10	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Sec-Butylbenzene	135-98-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Styrene	100-42-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
tert-Butylbenzene	98-06-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Tetrachloroethylene	127-18-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Toluene	108-88-3	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Total Xylenes	1330-20-7	BRL	0.0450	mg/kg	11.01.2019 19:10	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Trichloroethene	79-01-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Trichlorofluoromethane	75-69-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Vinyl Acetate	108-05-4	BRL	0.450	mg/kg	11.01.2019 19:10	U	50
Vinyl Chloride	75-01-4	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
1,3-Butadiene	106-99-0	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Cyclohexane	110-82-7	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Dicyclopentadiene	77-73-6	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Methylcyclohexane	108-87-2	BRL	0.450	mg/kg	11.01.2019 19:10	U	50
n-Hexane	110-54-3	BRL	0.450	mg/kg	11.01.2019 19:10	U	50
4-Ethyltoluene	622-96-8	BRL	0.225	mg/kg	11.01.2019 19:10	U	50
Propene	115-07-1	BRL	0.225	mg/kg	11.01.2019 19:10	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-2.5-3.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-041 Date Collected: 10.30.2019 16:20 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.01.2019 15:00 Basis: Wet Weight

	% Recovery				
Surrogate	· ·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	91	%	53-142	11.01.2019 19:10	
1,2-Dichloroethane-D4	100	%	56-150	11.01.2019 19:10	
Toluene-D8	105	%	70-130	11.01.2019 19:10	
4-Bromofluorobenzene	93	%	68-152	11.01.2019 19:10	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-042 Date Collected: 10.30.2019 16:30 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 08:30 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0179
 mg/kg
 11.05.2019 12:25
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106454

Tech:

Analyst: DEP Date Prep: 11.04.2019 15:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	50.3	1.67	mg/kg	11.05.2019 00:59		10
Barium	7440-39-3	126	3.33	mg/kg	11.05.2019 00:59		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.05.2019 00:59	U	10
Chromium	7440-47-3	14.0	3.33	mg/kg	11.05.2019 00:59		10
Lead	7439-92-1	13.8	1.67	mg/kg	11.05.2019 00:59		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.05.2019 00:59	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.05.2019 00:59	U	10

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-5.0-5.5** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-042 Date Collected: 10.30.2019 16:30 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 17:03 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.04.2019 17:45	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.04.2019 17:45	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.04.2019 17:45	U	1
Benzo(a)anthracene	56-55-3	0.00294	0.00167		mg/kg	11.04.2019 17:45		1
Benzo(a)pyrene	50-32-8	0.00501	0.00167		mg/kg	11.04.2019 17:45		1
Benzo(b)fluoranthene	205-99-2	0.00680	0.00167		mg/kg	11.04.2019 17:45		1
Benzo(g,h,i)perylene	191-24-2	0.00672	0.00167		mg/kg	11.04.2019 17:45		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.04.2019 17:45	U	1
Chrysene	218-01-9	0.00407	0.00167		mg/kg	11.04.2019 17:45		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.04.2019 17:45	U	1
Fluoranthene	206-44-0	0.0119	0.00167		mg/kg	11.04.2019 17:45		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.04.2019 17:45	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00452	0.00167		mg/kg	11.04.2019 17:45		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.04.2019 17:45	U	1
Phenanthrene	85-01-8	0.00425	0.00167		mg/kg	11.04.2019 17:45		1
Pyrene	129-00-0	0.0125	0.00167		mg/kg	11.04.2019 17:45		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		63	%	31-130		.2019 17:45		
2-Fluorobiphenyl		66	%	51-133	11.04	.2019 17:45		
Terphenyl-D14		104	%	46-137	11.04	.2019 17:45		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-043 Date Collected: 10.30.2019 16:55 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 08:30 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0185
 mg/kg
 11.05.2019 12:19
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106454

Tech:

Analyst: DEP Date Prep: 11.04.2019 15:15 Basis: Wet Weight

Seq Number: 3106405 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	22.2	1.67	mg/kg	11.05.2019 01:02		10
Barium	7440-39-3	89.3	3.33	mg/kg	11.05.2019 01:02		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.05.2019 01:02	U	10
Chromium	7440-47-3	12.1	3.33	mg/kg	11.05.2019 01:02		10
Lead	7439-92-1	15.2	1.67	mg/kg	11.05.2019 01:02		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.05.2019 01:02	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.05.2019 01:02	U	10

Analytical Method: FOC By ASTM D2974

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106488

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilFraction Organic CarbonFOC2.500.0100%11.05.2019 15:45+1

JOZ

Tech:

Certificate of Analytical Results 641801

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B25-7.5-8.0** Matrix: Soil Date Received:11.01.2019 09:30

Lab Sample Id: 641801-043 Date Collected: 10.30.2019 16:55 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.01.2019 17:06 Basis: Wet Weight

Seq Number: 3106302 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.04.2019 18:01	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.04.2019 18:01	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.04.2019 18:01	U	1
Benzo(a)anthracene	56-55-3	0.00205	0.00166		mg/kg	11.04.2019 18:01		1
Benzo(a)pyrene	50-32-8	0.00301	0.00166		mg/kg	11.04.2019 18:01		1
Benzo(b)fluoranthene	205-99-2	0.00432	0.00166		mg/kg	11.04.2019 18:01		1
Benzo(g,h,i)perylene	191-24-2	0.00412	0.00166		mg/kg	11.04.2019 18:01		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	11.04.2019 18:01	U	1
Chrysene	218-01-9	0.00258	0.00166		mg/kg	11.04.2019 18:01		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.04.2019 18:01	U	1
Fluoranthene	206-44-0	0.00518	0.00166		mg/kg	11.04.2019 18:01		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.04.2019 18:01	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00286	0.00166		mg/kg	11.04.2019 18:01		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.04.2019 18:01	U	1
Phenanthrene	85-01-8	0.00243	0.00166		mg/kg	11.04.2019 18:01		1
Pyrene	129-00-0	0.00549	0.00166		mg/kg	11.04.2019 18:01		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		70	%	31-130	11.04	1.2019 18:01		
2-Fluorobiphenyl		73	%	51-133	11.04	1.2019 18:01		
Terphenyl-D14		108	%	46-137	11.04	1.2019 18:01		

APS

APS MPG Douglas, AZ

Analytical Method:	Total Cyanide by SW 9012		Prep Method:	E335.4P
Seq Number:	3106209	Matrix: Solid	Date Prep:	11.01.2019

MB Sample Id: 7689428-1-BLK LCS Sample Id: 7689428-1-BKS

LCS MB Spike LCS Limits Units Analysis Flag **Parameter** Result Amount Result %Rec Date < 0.0298 1.20 1.12 93 85-115 11.01.2019 15:39 Cyanide, Total mg/kg

Analytical Method:Mercury by SW 7471BPrep Method:SW7471PSeq Number:3106373Matrix:SolidDate Prep:11.04.2019

MB Sample Id: 7689496-1-BLK LCS Sample Id: 7689496-1-BSD

Spike MB LCS LCS LCSD LCSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec %Rec Limit Date Result 20 11.04.2019 13:31 Mercury < 0.00326 0.169 0.183 108 0.175 104 80-120 4 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106366
 Matrix:
 Solid
 Date Prep:
 11.04.2019

 MB Sample Id:
 7689523-1-BLK
 LCS Sample Id:
 7689523-1-BKS
 LCSD Sample Id:
 7689523-1-BSD

Spike **RPD** MR LCS LCS %RPD Units Analysis LCSD LCSD Limite Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec < 0.00356 101 80-120 0 20 11.04.2019 14:46 Mercury 0.185 0.187 0.187 101 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106454
 Matrix:
 Solid
 Date Prep:
 11.05.2019

 MB Sample Id:
 7689615-1-BLK
 LCS Sample Id:
 7689615-1-BSD

RPD MB Spike LCS LCS LCSD LCSD Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 11.05.2019 11:21 94 80-120 20 Mercury < 0.00384 0.200 0.18894 0.188 0 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106373
 Matrix:
 Soil
 Date Prep:
 11.04.2019

 Parent Sample Id:
 641801-001
 MS Sample Id:
 641801-001 S
 MSD Sample Id:
 641801-001 SD

Parent Spike MS MS Limits %RPD RPD Units Analysis MSD MSD Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec 11.04.2019 14:06 20 Mercury 0.0277 0.200 0.235 104 0.232102 75-125 1 mg/kg

Analytical Method:Mercury by SW 7471BPrep Method:SW7471PSeq Number:3106373Matrix:SoilDate Prep:11.04.2019

Parent Sample Id: 641801-018 MS Sample Id: 641801-018 S MSD Sample Id: 641801-018 SD

Spike %RPD RPD MS MS Units Parent MSD MSD Limits Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec 11.04.2019 13:36 0.00771 104 2 20 Mercury 0.179 0.193 0.196 103 75-125 mg/kg

Final 1.003

APS

APS MPG Douglas, AZ

MSD

MSD

Limits

RPD

Units

Analysis

%RPD

Analytical Method:	Mercury by SW 7471B		Prep Method:	SW7471P
Seq Number:	3106366	Matrix: Soil	Date Prep:	11.04.2019

MS

Parent

Spike

MS Sample Id: 641801-026 S MSD Sample Id: 641801-026 SD Parent Sample Id: 641801-026 MS

Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date 0.0707 0.172 0.241 99 0.247 20 11.04.2019 14:52 103 75-125 2 Mercury mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Seq Number: 3106366 Matrix: Soil Date Prep: 11.04.2019 641801-027 S 641801-027 MS Sample Id: MSD Sample Id: 641801-027 SD Parent Sample Id:

Parent Spike MS MS MSD MSD Limits %RPD RPD Units Analysis **Parameter** Flag %Rec Result Amount Result Result %Rec Limit Date 20 11.04.2019 15:26 Mercury 0.00395 0.179 0.188 103 0.190 104 75-125 1 mg/kg

SW7471P Analytical Method: Mercury by SW 7471B Prep Method:

3106454 Seq Number: Matrix: Sludge Date Prep: 11.05.2019 MS Sample Id: 641483-001 S MSD Sample Id: 641483-001 SD Parent Sample Id: 641483-001

Spike **RPD Parent** MS MS %RPD Units Analysis MSD **MSD** Limite Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec < 0.00377 0 20 11.05.2019 11:57 Mercury 0.196 0.189 96 0.189 98 75-125 mg/kg

SW7471P Analytical Method: Mercury by SW 7471B Prep Method:

Seg Number: 3106454 Matrix: Sludge Date Prep: 11.05.2019 Parent Sample Id: 641491-001 MS Sample Id: 641491-001 S MSD Sample Id: 641491-001 SD

RPD Parent Spike MS MS MSD MSD Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 11.05.2019 11:27 20 Mercury 0.00920 0.200 0.208 99 0.202 96 75-125 3 mg/kg

Metals, RCRA List, by SW 6020 SW3050B **Analytical Method:** Prep Method:

Seq Number: 3106337 Matrix: Solid Date Prep: 11.04.2019 LCS Sample Id: LCSD Sample Id: 7689510-1-BSD MB Sample Id: 7689510-1-BLK 7689510-1-BKS

MB Spike LCS LCS Limits %RPD RPD Units Analysis LCSD LCSD Flag **Parameter** Result %Rec Limit Date Result Amount Result %Rec 11.04.2019 12:09 Arsenic < 0.0617 10.0 9.89 99 9.89 99 80-120 0 20 mg/kg Barium < 0.0347 10.0 10.0 100 9.86 99 80-120 20 11.04.2019 12:09 1 mg/kg Cadmium < 0.0116 10.0 9.81 98 9.86 99 80-120 1 20 mg/kg 11.04.2019 12:09 Chromium < 0.0271 10.0 9.59 96 9 66 97 80-120 1 20 mg/kg 11.04.2019 12:09 11.04.2019 12:09 Lead < 0.0194 10.0 9.87 99 9.86 99 80-120 0 20 mg/kg Selenium < 0.0496 10.0 10.0 100 9.89 99 80-120 1 20 mg/kg 11.04.2019 12:09 Silver < 0.0159 5.00 4.80 96 4.84 80-120 1 20 mg/kg 11.04.2019 12:09

APSAPS MPG Douglas, AZ

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW3050BSeq Number:3106408Matrix:SolidDate Prep:11.04.2019MB Sample Id:7689550-1-BLKLCS Sample Id:7689550-1-BKSLCSD Sample Id:7689550-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.200	10.0	10.1	101	10.3	103	80-120	2	20	mg/kg	11.04.2019 21:13	
Barium	< 0.400	10.0	10.3	103	10.1	101	80-120	2	20	mg/kg	11.04.2019 21:13	
Cadmium	< 0.200	10.0	10.5	105	10.2	102	80-120	3	20	mg/kg	11.04.2019 21:13	
Chromium	< 0.400	10.0	10.3	103	10.1	101	80-120	2	20	mg/kg	11.04.2019 21:13	
Lead	< 0.200	10.0	10.4	104	10.2	102	80-120	2	20	mg/kg	11.04.2019 21:13	
Selenium	< 0.200	10.0	10.4	104	10.4	104	80-120	0	20	mg/kg	11.04.2019 21:13	
Silver	< 0.200	5.00	5.32	106	5.15	103	80-120	3	20	mg/kg	11.04.2019 21:13	

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

 Seq Number:
 3106405
 Matrix:
 Solid
 Date Prep:
 11.04.2019

 MB Sample Id:
 7689571-1-BLK
 LCS Sample Id:
 7689571-1-BKS
 LCSD Sample Id:
 7689571-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.200	10.0	10.4	104	10.3	103	80-120	1	20	mg/kg	11.04.2019 23:54	
Barium	< 0.400	10.0	10.2	102	10.1	101	80-120	1	20	mg/kg	11.04.2019 23:54	
Cadmium	< 0.200	10.0	10.4	104	10.4	104	80-120	0	20	mg/kg	11.04.2019 23:54	
Chromium	< 0.400	10.0	10.2	102	10.2	102	80-120	0	20	mg/kg	11.04.2019 23:54	
Lead	< 0.200	10.0	10.3	103	10.2	102	80-120	1	20	mg/kg	11.04.2019 23:54	
Selenium	< 0.200	10.0	10.4	104	10.6	106	80-120	2	20	mg/kg	11.04.2019 23:54	
Silver	< 0.200	5.00	5.29	106	5.26	105	80-120	1	20	mg/kg	11.04.2019 23:54	

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW 3050BSeq Number:3106337Matrix:SoilDate Prep:11.04.2019Parent Sample Id:641402-001MS Sample Id:641402-001 SMSD Sample Id:641402-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	6.20	12.4	21.3	122	20.8	118	75-125	2	30	mg/kg	11.04.2019 12:18	
Barium	163	12.4	211	387	206	347	75-125	2	30	mg/kg	11.04.2019 12:18	X
Cadmium	0.533	12.4	14.2	110	14.4	112	75-125	1	30	mg/kg	11.04.2019 12:18	
Chromium	21.0	12.4	38.4	140	38.4	140	75-125	0	30	mg/kg	11.04.2019 12:18	X
Lead	12.3	12.4	28.7	132	28.3	129	75-125	1	30	mg/kg	11.04.2019 12:18	X
Selenium	1.04	12.4	15.4	116	14.8	111	75-125	4	30	mg/kg	11.04.2019 12:18	
Silver	< 0.197	6.21	6.54	105	6.52	105	75-125	0	30	mg/kg	11.04.2019 12:18	

LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APSAPS MPG Douglas, AZ

Analytical Method:	Metals, RCRA List, by SW 6020)		Prep Method:	SW3050B
Seq Number:	3106408	Matrix:	Soil	Date Prep:	11.04.2019
Parent Sample Id:	641801-018	MS Sample Id:	641801-018 S	MSD Sample Id:	641801-018 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	14.2	9.43	25.5	120	22.7	100	75-125	12	30	mg/kg	11.04.2019 21:22	
Barium	82.8	9.43	102	204	90.4	90	75-125	12	30	mg/kg	11.04.2019 21:22	X
Cadmium	< 1.89	9.43	9.85	104	9.04	107	75-125	9	30	mg/kg	11.04.2019 21:22	
Chromium	12.0	9.43	23.4	121	21.2	109	75-125	10	30	mg/kg	11.04.2019 21:22	
Lead	11.2	9.43	22.6	121	20.0	104	75-125	12	30	mg/kg	11.04.2019 21:22	
Selenium	< 1.89	9.43	10.4	110	9.11	108	75-125	13	30	mg/kg	11.04.2019 21:22	
Silver	<1.89	4.72	4.60	97	4.13	97	75-125	11	30	mg/kg	11.04.2019 21:22	

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method:

 Seq Number:
 3106405
 Matrix:
 Soil
 Date Prep:
 11.04.2019

 Parent Sample Id:
 641801-026
 MS Sample Id:
 641801-026 S
 MSD Sample Id:
 641801-026 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	11.7	9.26	23.7	130	23.6	129	75-125	0	30	mg/kg	11.05.2019 00:03	X
Barium	180	9.26	216	389	216	389	75-125	0	30	mg/kg	11.05.2019 00:03	X
Cadmium	2.20	9.26	12.8	114	12.5	111	75-125	2	30	mg/kg	11.05.2019 00:03	
Chromium	13.1	9.26	26.0	139	25.4	133	75-125	2	30	mg/kg	11.05.2019 00:03	X
Lead	107	9.26	136	313	135	302	75-125	1	30	mg/kg	11.05.2019 00:03	X
Selenium	< 1.85	9.26	11.2	121	10.8	117	75-125	4	30	mg/kg	11.05.2019 00:03	
Silver	<1.85	4.63	5.15	111	5.05	109	75-125	2	30	mg/kg	11.05.2019 00:03	

Analytical Method: TCLP Mercury by SW 1311/7470A Prep Method: SW7470P

 Seq Number:
 3107924
 Matrix:
 Water
 Date Prep:
 11.19.2019

 MB Sample Id:
 7690601-1-BLK
 LCS Sample Id:
 7690601-1-BKS
 LCSD Sample Id:
 7690601-1-BSD

RPD MB LCS LCS %RPD Spike Limits LCSD Units Analysis LCSD Flag **Parameter** Result Amount Result %Rec Limit Date %Rec Result < 0.0000263 11.19.2019 12:53 Mercury 0.00200 0.00190 95 0.00188 80-120 20 mg/L

Analytical Method: TCLP Mercury by SW 1311/7470A Prep Method: SW7470P

 Seq Number:
 3107924
 Matrix:
 Ground Water
 Date Prep:
 11.19.2019

 Parent Sample Id:
 643302-001
 MS Sample Id:
 643302-001 S
 MSD Sample Id:
 643302-001 SD

MS %RPD RPD **Parent** Spike MS MSD MSD Limits Units Analysis Flag **Parameter** Limit Result Amount Result %Rec Result %Rec Date 11.19.2019 13:02 Mercury < 0.0000263 0.00200 0.00176 88 0.00179 90 75-125 2 20 mg/L

SW3050B

APSAPS MPG Douglas, AZ

Analytical Method:	TCLP Metal by SW 1311/6010	C		Prep Method:	SW3010A
Seq Number:	3107971	Matrix:	Water	Date Prep:	11.19.2019
MB Sample Id:	7690617-1-BLK	LCS Sample Id:	7690617-1-BKS	LCSD Sample Id:	7690617-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.00550	1.00	0.985	99	0.982	98	75-125	0	20	mg/L	11.19.2019 14:32	
Barium	< 0.00135	1.00	0.975	98	0.972	97	75-125	0	20	mg/L	11.19.2019 14:32	
Cadmium	< 0.00243	1.00	0.987	99	0.982	98	75-125	1	20	mg/L	11.19.2019 14:32	
Chromium	< 0.000811	1.00	1.02	102	1.02	102	75-125	0	20	mg/L	11.19.2019 14:32	
Lead	< 0.00237	1.00	1.03	103	1.02	102	75-125	1	20	mg/L	11.19.2019 14:32	
Selenium	< 0.00439	1.00	0.978	98	0.975	98	75-125	0	20	mg/L	11.19.2019 14:32	
Silver	< 0.00559	0.500	0.499	100	0.498	100	75-125	0	20	mg/L	11.19.2019 14:32	

Analytical Method:TCLP Metal by SW 1311/6010CPrep Method:SW3010ASeq Number:3107971Matrix:Waste WaterDate Prep:11.19.2019

Parent Sample Id: 643160-001 MS Sample Id: 643160-001 S MSD Sample Id: 643160-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.0200	1.00	1.02	102	1.03	103	75-125	1	20	mg/L	11.19.2019 14:44	
Barium	0.0686	1.00	1.09	102	1.09	102	75-125	0	20	mg/L	11.19.2019 14:44	
Cadmium	< 0.00243	1.00	1.05	105	1.06	106	75-125	1	20	mg/L	11.19.2019 14:44	
Chromium	< 0.0100	1.00	1.06	106	1.05	105	75-125	1	20	mg/L	11.19.2019 14:44	
Lead	< 0.0150	1.00	1.04	104	1.04	104	75-125	0	20	mg/L	11.19.2019 14:44	
Selenium	0.0688	1.00	1.15	108	1.14	107	75-125	1	20	mg/L	11.19.2019 14:44	
Silver	< 0.0300	0.500	0.541	108	0.541	108	75-125	0	20	mg/L	11.19.2019 14:44	

Analytical Method: FOC By ASTM D2974

Seq Number: 3106488 Matrix: Solid

MB Sample Id: 3106488-1-BLK

ParameterMB ResultUnits DateAnalysis DateFlagFraction Organic CarbonBRL% 11.05.2019 15:45

Analytical Method: FOC By ASTM D2974

Seq Number: 3106488 Matrix: Soil

Parent Sample Id: 641801-043 MD Sample Id: 641801-043 D

MD %RPD RPD **Parent** Units Analysis Flag **Parameter** Result Result Limit Date Fraction Organic Carbon 2.50 2.30 8 25 % 11.05.2019 15:45

Analytical Method: Flash Point (CC) SW-846 1010

Seq Number: 3106372 Matrix: Product

Parent Sample Id: 641388-001 MD Sample Id: 641388-001 D

MD %RPD RPD Units Analysis **Parent** Flag **Parameter** Result Result Limit Date 11.04.2019 10:26 Flash Point 146 148 1 25 Deg F

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B]

[D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result

E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS

APS MPG Douglas, AZ

Analytical Method: Flash Point (CC) SW-846 1010

Seq Number: 3106372 Matrix: Sludge

Parent Sample Id: 641758-001 MD Sample Id: 641758-001 D

MD RPD **Parent** %RPD Units Analysis Flag **Parameter** Result Result Limit Date Flash Point >180 >180 0 25 11.04.2019 13:30 Deg F

Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3106171 Matrix: Soil

Parent Sample Id: 641446-014 MD Sample Id: 641446-014 D

Parent MD %RPD **RPD** Units Analysis **Parameter** Flag Result Result Limit Date 0 11.01.2019 15:00 Paint Filter Pass Pass 0

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3106345 Matrix: Soil

Parent Sample Id: 641801-006 MD Sample Id: 641801-006 D

%RPD **RPD** Parent MD Units Analysis Flag **Parameter** Result Result Limit Date 11.04.2019 12:44 8.31 8.32 0 20 SU pН 25.9 25.9 0 25 Deg C 11.04.2019 12:44 Temperature

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3106345 Matrix: Soil

Parent Sample Id: 641882-012 MD Sample Id: 641882-012 D

MD %RPD RPD Parent Units Analysis Flag **Parameter** Result Result Limit Date 11.04.2019 12:44 8.30 8.31 20 SUpН 0 11.04.2019 12:44 25.1 25.0 0 25 Deg C Temperature

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

 Seq Number:
 3106445
 Matrix:
 Solid
 Date Prep:
 11.04.2019

 MB Sample Id:
 7689522-1-BLK
 LCS Sample Id:
 7689522-1-BKS
 LCSD Sample Id:
 7689522-1-BSD

LCS LCS %RPD **RPD** MB Spike LCSD LCSD Limits Units Analysis Flag **Parameter** %Rec Limit Result Amount Result Result %Rec Date PCB-1016 < 0.0167 0.167 0.116 69 0.118 71 54-121 2 20 mg/kg 11.05.2019 11:02 41-126 11.05.2019 11:02 PCB-1260 < 0.0167 0.167 0.159 95 0.161 96 1 20 mg/kg

MBMB LCS LCS LCSD Limits Units Analysis LCSD **Surrogate** %Rec Flag %Rec Flag %Rec Flag Date 11.05.2019 11:02 Decachlorobiphenyl 114 119 119 39-125 % 11.05.2019 11:02 58 37-124 % Tetrachloro-m-xylene 51 59

APSAPS MPG Douglas, AZ

 Analytical Method:
 PCBs by SW 8082A
 Prep Method:
 SW3550

 Seq Number:
 3106445
 Matrix:
 Soil
 Date Prep:
 11.04.2019

 Parent Sample Id:
 641882-004
 MS Sample Id:
 641882-004 S
 MSD Sample Id:
 641882-004 SD

RPD **Parent** Spike MS MS Limits %RPD Units Analysis MSD MSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date PCB-1016 < 0.0333 0.167 94 0.154 2 20 11.05.2019 12:33 0.157 92 54-121 mg/kg 2 20 11.05.2019 12:33 PCB-1260 < 0.0333 0.167 0.157 94 0.154 41-126 mg/kg 92

MSD MS MS MSD Limits Units Analysis **Surrogate** %Rec Flag Flag Date %Rec 11.05.2019 12:33 Decachlorobiphenyl 196 ** 123 39-125 % 11.05.2019 12:33 Tetrachloro-m-xylene 87 89 37-124 %

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106302Matrix:SolidDate Prep:11.01.2019MB Sample Id:7689445-1-BLKLCS Sample Id:7689445-1-BKSLCSD Sample Id:7689445-1-BSD

MB Spike LCS LCS LCSD LCSD Limits %RPD **RPD** Units Analysis Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date 11.01.2019 17:32 0.0333 < 0.00167 0.0288 86 0.0277 42-116 25 Acenaphthene 83 4 mg/kg 11.01.2019 17:32 Acenaphthylene < 0.00167 0.0333 0.0279 84 0.0268 80 42-121 4 25 mg/kg 0.0333 0.0285 86 0.0274 82 44-120 4 25 11.01.2019 17:32 Anthracene < 0.00167 mg/kg 11.01.2019 17:32 Benzo(a)anthracene < 0.00167 0.0333 0.0305 92 0.0301 90 52-121 1 25 mg/kg 11.01.2019 17:32 0.033391 0.0299 90 50-128 2 25 < 0.00167 0.0304 mg/kg Benzo(a)pyrene 11.01.2019 17:32 25 Benzo(b)fluoranthene < 0.00167 0.0333 0.0332 100 0.0337 101 49-137 1 mg/kg 0.0333 0.0297 89 0.0292 47-132 2 25 11.01.2019 17:32 Benzo(g,h,i)perylene < 0.00167 88 mg/kg 11.01.2019 17:32 Benzo(k)fluoranthene < 0.00167 0.0333 0.0291 87 0.0295 89 48-133 25 1 mg/kg 11.01.2019 17:32 0.0333 89 0.0294 54-113 25 < 0.00167 0.029888 1 mg/kg Chrysene 11.01.2019 17:32 Dibenz(a,h)Anthracene < 0.00167 0.0333 0.032297 0.0316 95 48-133 2 25 mg/kg Fluoranthene 0.0333 0.0315 95 0.0310 93 54-128 2 25 11.01.2019 17:32 < 0.00167 mg/kg 11.01.2019 17:32 Fluorene < 0.00167 0.0333 0.0289 87 0.0279 84 44-118 4 25 mg/kg 0.0310 2 25 11.01.2019 17:32 Indeno(1,2,3-c,d)Pyrene 0.0333 0.0316 95 93 49-129 < 0.00167 mg/kg 11.01.2019 17:32 85 5 25 Naphthalene < 0.0167 0.0333 0.0282 0.0268 80 40-135 mg/kg 11.01.2019 17:32 0.0333 0.0297 89 0.0287 86 44-119 3 25 Phenanthrene < 0.00167 mg/kg 25 mg/kg 11.01.2019 17:32 Pyrene < 0.00167 0.0333 0.0300 90 0.0294 88 50-126 MB LCS LCSD MB LCS LCSD Limits Units Analysis **Surrogate** Flag Flag Flag %Rec Date %Rec %Rec 11.01.2019 17:32 98 Nitrobenzene-d5 100 107 31-130 %

Terphenyl-D14 112 112 107 46-137 % 11.01.2019 17:32

99

106

2-Fluorobiphenyl

102

LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

11.01.2019 17:32

51-133

%

APS APS MPG Douglas, AZ

Analytical Method: PAHs by 8270D SIM SW3550 Prep Method: Seq Number: 3106384 Matrix: Solid Date Prep: 11.04.2019

LCS Sample Id: 7689442-1-BKS MB Sample Id: 7689442-1-BLK

113

LCSI	D Sample	e Id: 7689	442-1-BSD	
%RPD	RPD Limit	Units	Analysis Date	Flag

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Fla
Acenaphthene	< 0.00167	0.0333	0.0280	84	0.0291	87	42-116	4	25	mg/kg	11.04.2019 10:50	
Acenaphthylene	< 0.00167	0.0333	0.0274	82	0.0285	86	42-121	4	25	mg/kg	11.04.2019 10:50	
Anthracene	< 0.00167	0.0333	0.0284	85	0.0298	89	44-120	5	25	mg/kg	11.04.2019 10:50	
Benzo(a)anthracene	< 0.00167	0.0333	0.0307	92	0.0308	92	52-121	0	25	mg/kg	11.04.2019 10:50	
Benzo(a)pyrene	< 0.00167	0.0333	0.0321	96	0.0315	95	50-128	2	25	mg/kg	11.04.2019 10:50	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0348	105	0.0341	102	49-137	2	25	mg/kg	11.04.2019 10:50	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0331	99	0.0324	97	47-132	2	25	mg/kg	11.04.2019 10:50	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0311	93	0.0309	93	48-133	1	25	mg/kg	11.04.2019 10:50	
Chrysene	< 0.00167	0.0333	0.0302	91	0.0301	90	54-113	0	25	mg/kg	11.04.2019 10:50	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0333	100	0.0331	99	48-133	1	25	mg/kg	11.04.2019 10:50	
Fluoranthene	< 0.00167	0.0333	0.0306	92	0.0312	94	54-128	2	25	mg/kg	11.04.2019 10:50	
Fluorene	< 0.00167	0.0333	0.0283	85	0.0295	89	44-118	4	25	mg/kg	11.04.2019 10:50	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0335	101	0.0331	99	49-129	1	25	mg/kg	11.04.2019 10:50	
Naphthalene	< 0.0167	0.0333	0.0272	82	0.0280	84	40-135	3	25	mg/kg	11.04.2019 10:50	
Phenanthrene	< 0.00167	0.0333	0.0292	88	0.0303	91	44-119	4	25	mg/kg	11.04.2019 10:50	
Pyrene	< 0.00167	0.0333	0.0299	90	0.0298	89	50-126	0	25	mg/kg	11.04.2019 10:50	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Nitrobenzene-d5	104		10	04		109		31	-130	%	11.04.2019 10:50	
2-Fluorobiphenyl	107		10	06		112		51	-133	%	11.04.2019 10:50	

113

46-137

112

Terphenyl-D14

11.04.2019 10:50

APS APS MPG Douglas, AZ

Analytical Method: PAHs by 8270D SIM SW3550 Prep Method: Seq Number: 3106513 Matrix: Solid Date Prep: 11.05.2019 LCSD Sample Id: 7689597-1-BSD

LCS Sample Id: 7689597-1-BKS MB Sample Id: 7689597-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Acenaphthene	< 0.00167	0.0333	0.0296	89	0.0306	92	42-116	3	25	mg/kg	11.05.2019 16:33
Acenaphthylene	< 0.00167	0.0333	0.0286	86	0.0294	88	42-121	3	25	mg/kg	11.05.2019 16:33
Anthracene	< 0.00167	0.0333	0.0301	90	0.0304	91	44-120	1	25	mg/kg	11.05.2019 16:33
Benzo(a)anthracene	< 0.00167	0.0333	0.0311	93	0.0318	95	52-121	2	25	mg/kg	11.05.2019 16:33
Benzo(a)pyrene	< 0.00167	0.0333	0.0319	96	0.0319	96	50-128	0	25	mg/kg	11.05.2019 16:33
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0336	101	0.0339	102	49-137	1	25	mg/kg	11.05.2019 16:33
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0320	96	0.0335	101	47-132	5	25	mg/kg	11.05.2019 16:33
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0318	95	0.0341	102	48-133	7	25	mg/kg	11.05.2019 16:33
Chrysene	< 0.00167	0.0333	0.0308	92	0.0314	94	54-113	2	25	mg/kg	11.05.2019 16:33
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0330	99	0.0346	104	48-133	5	25	mg/kg	11.05.2019 16:33
Fluoranthene	< 0.00167	0.0333	0.0325	98	0.0328	98	54-128	1	25	mg/kg	11.05.2019 16:33
Fluorene	< 0.00167	0.0333	0.0299	90	0.0310	93	44-118	4	25	mg/kg	11.05.2019 16:33
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0329	99	0.0344	103	49-129	4	25	mg/kg	11.05.2019 16:33
Naphthalene	< 0.0167	0.0333	0.0284	85	0.0295	89	40-135	4	25	mg/kg	11.05.2019 16:33
Phenanthrene	< 0.00167	0.0333	0.0311	93	0.0321	96	44-119	3	25	mg/kg	11.05.2019 16:33
Pyrene	< 0.00167	0.0333	0.0311	93	0.0317	95	50-126	2	25	mg/kg	11.05.2019 16:33

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	114		115		114		31-130	%	11.05.2019 16:33
2-Fluorobiphenyl	118		115		117		51-133	%	11.05.2019 16:33
Terphenyl-D14	118		117		119		46-137	%	11.05.2019 16:33

Flag

APS APS MPG Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106302Matrix:SoilDate Prep:11.01.2019

Parent Sample Id: 641801-026 MS Sample Id: 641801-026 S MSD Sample Id: 641801-026 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.0166	0.0332	0.0240	72	0.0243	73	42-116	1	25	mg/kg	11.01.2019 20:02	
Acenaphthylene	< 0.0122	0.0332	0.0324	98	0.0338	101	42-121	4	25	mg/kg	11.01.2019 20:02	
Anthracene	0.0127	0.0332	0.0339	64	0.0347	66	44-120	2	25	mg/kg	11.01.2019 20:02	
Benzo(a)anthracene	0.0502	0.0332	0.0615	34	0.0624	37	52-121	1	25	mg/kg	11.01.2019 20:02	X
Benzo(a)pyrene	0.0716	0.0332	0.0797	24	0.0807	27	50-128	1	25	mg/kg	11.01.2019 20:02	X
Benzo(b)fluoranthene	0.0991	0.0332	0.0955	0	0.105	18	49-137	9	25	mg/kg	11.01.2019 20:02	X
Benzo(g,h,i)perylene	0.0538	0.0332	0.0607	21	0.0592	16	47-132	3	25	mg/kg	11.01.2019 20:02	X
Benzo(k)fluoranthene	0.0371	0.0332	0.0553	55	0.0585	64	48-133	6	25	mg/kg	11.01.2019 20:02	
Chrysene	0.0711	0.0332	0.0739	8	0.0838	38	54-113	13	25	mg/kg	11.01.2019 20:02	X
Dibenz(a,h)Anthracene	< 0.0166	0.0332	0.0279	84	0.0285	85	48-133	2	25	mg/kg	11.01.2019 20:02	
Fluoranthene	0.119	0.0332	0.115	0	0.139	60	54-128	19	25	mg/kg	11.01.2019 20:02	X
Fluorene	< 0.0166	0.0332	0.0245	74	0.0243	73	44-118	1	25	mg/kg	11.01.2019 20:02	
Indeno(1,2,3-c,d)Pyrene	0.0454	0.0332	0.0569	35	0.0574	36	49-129	1	25	mg/kg	11.01.2019 20:02	X
Naphthalene	< 0.166	0.0332	0.0274	83	0.0279	84	40-135	2	25	mg/kg	11.01.2019 20:02	
Phenanthrene	0.0505	0.0332	0.0663	48	0.0934	128	44-119	34	25	mg/kg	11.01.2019 20:02	XF
Pyrene	0.111	0.0332	0.110	0	0.122	33	50-126	10	25	mg/kg	11.01.2019 20:02	X
G			M	IS I	MS	MSD) MSI	D Li	imits	Units	Analysis	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	110		87		31-130	%	11.01.2019 20:02
2-Fluorobiphenyl	111		88		51-133	%	11.01.2019 20:02
Terphenyl-D14	111		89		46-137	%	11.01.2019 20:02

APS APS MPG Douglas, AZ

Analytical Method: PAHs by 8270D SIM

 Seq Number:
 3106384
 Matrix:
 Soil
 Date Prep:
 11.04.2019

 Parent Sample Id:
 641801-018
 MS Sample Id:
 641801-018 S
 MSD Sample Id:
 641801-018 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00166	0.0333	0.0280	84	0.0269	81	42-116	4	25	mg/kg	11.04.2019 13:19	
Acenaphthylene	< 0.00166	0.0333	0.0275	83	0.0269	81	42-121	2	25	mg/kg	11.04.2019 13:19	
Anthracene	< 0.00166	0.0333	0.0294	88	0.0289	87	44-120	2	25	mg/kg	11.04.2019 13:19	
Benzo(a)anthracene	0.00112	0.0333	0.0322	93	0.0320	93	52-121	1	25	mg/kg	11.04.2019 13:19	
Benzo(a)pyrene	0.00133	0.0333	0.0333	96	0.0331	95	50-128	1	25	mg/kg	11.04.2019 13:19	
Benzo(b)fluoranthene	0.00201	0.0333	0.0366	104	0.0360	102	49-137	2	25	mg/kg	11.04.2019 13:19	
Benzo(g,h,i)perylene	< 0.00132	0.0333	0.0242	73	0.0238	71	47-132	2	25	mg/kg	11.04.2019 13:19	
Benzo(k)fluoranthene	< 0.00166	0.0333	0.0318	95	0.0313	94	48-133	2	25	mg/kg	11.04.2019 13:19	
Chrysene	0.00115	0.0333	0.0318	92	0.0316	91	54-113	1	25	mg/kg	11.04.2019 13:19	
Dibenz(a,h)Anthracene	< 0.00166	0.0333	0.0271	81	0.0270	81	48-133	0	25	mg/kg	11.04.2019 13:19	
Fluoranthene	0.00233	0.0333	0.0353	99	0.0329	92	54-128	7	25	mg/kg	11.04.2019 13:19	
Fluorene	< 0.00166	0.0333	0.0282	85	0.0277	83	44-118	2	25	mg/kg	11.04.2019 13:19	
Indeno(1,2,3-c,d)Pyrene	< 0.00126	0.0333	0.0273	82	0.0269	81	49-129	1	25	mg/kg	11.04.2019 13:19	
Naphthalene	< 0.0166	0.0333	0.0272	82	0.0263	79	40-135	3	25	mg/kg	11.04.2019 13:19	
Phenanthrene	0.00148	0.0333	0.0318	91	0.0308	88	44-119	3	25	mg/kg	11.04.2019 13:19	
Pyrene	0.00257	0.0333	0.0343	95	0.0328	91	50-126	4	25	mg/kg	11.04.2019 13:19	
					*C		3.503		•.	·		

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	110		103		31-130	%	11.04.2019 13:19
2-Fluorobiphenyl	108		100		51-133	%	11.04.2019 13:19
Terphenyl-D14	111		109		46-137	%	11.04.2019 13:19

SW3550

Prep Method:

APS APS MPG Douglas, AZ

Prep Method: SW5035A Analytical Method: Volatiles by SW 8260C Matrix: Solid Seq Number: 3106167 Date Prep: 11.01.2019 LCSD Sample Id: 7689418-1-BSD

MB Sample Id: 7689418-1-BLK LCS Sample Id: 7689418-1-BKS

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0474	95	0.0474	95	72-125	0	25	mg/kg	11.01.2019 10:08	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0487	97	0.0475	95	75-125	2	25	mg/kg	11.01.2019 10:08	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0496	99	0.0506	101	74-125	2	25	mg/kg	11.01.2019 10:08	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0488	98	0.0485	97	75-127	1	25	mg/kg	11.01.2019 10:08	
1,1-Dichloroethane	< 0.00500	0.0500	0.0500	100	0.0487	97	72-125	3	25	mg/kg	11.01.2019 10:08	
1,1-Dichloroethene	< 0.00500	0.0500	0.0504	101	0.0485	97	59-172	4	25	mg/kg	11.01.2019 10:08	
1,1-Dichloropropene	< 0.00500	0.0500	0.0525	105	0.0514	103	75-125	2	25	mg/kg	11.01.2019 10:08	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0488	98	0.0509	102	75-137	4	25	mg/kg	11.01.2019 10:08	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0482	96	0.0494	99	75-125	2	25	mg/kg	11.01.2019 10:08	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0501	100	0.0509	102	75-135	2	25	mg/kg	11.01.2019 10:08	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0490	98	0.0491	98	75-125	0	25	mg/kg	11.01.2019 10:08	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0460	92	0.0463	93	59-125	1	25	mg/kg	11.01.2019 10:08	
1,2-Dibromoethane	< 0.00500	0.0500	0.0487	97	0.0486	97	73-125	0	25	mg/kg	11.01.2019 10:08	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0488	98	0.0495	99	75-125	1	25	mg/kg	11.01.2019 10:08	
1,2-Dichloroethane	< 0.00500	0.0500	0.0462	92	0.0457	91	68-127	1	25	mg/kg	11.01.2019 10:08	
1,2-Dichloropropane	< 0.00500	0.0500	0.0492	98	0.0480	96	74-125	2	25	mg/kg	11.01.2019 10:08	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0531	106	0.0537	107	70-130	1	25	mg/kg	11.01.2019 10:08	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0493	99	0.0489	98	75-125	1	25	mg/kg	11.01.2019 10:08	
1,3-Dichloropropane	< 0.00500	0.0500	0.0497	99	0.0506	101	75-125	2	25	mg/kg	11.01.2019 10:08	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0485	97	0.0487	97	75-125	0	25	mg/kg	11.01.2019 10:08	
2,2-Dichloropropane	< 0.00500	0.0500	0.0498	100	0.0475	95	75-125	5	25	mg/kg	11.01.2019 10:08	
2-Butanone	< 0.0200	0.250	0.207	83	0.200	80	75-125	3	25	mg/kg	11.01.2019 10:08	
2-Chlorotoluene	< 0.00500	0.0500	0.0514	103	0.0514	103	73-125	0	25	mg/kg	11.01.2019 10:08	
2-Hexanone	< 0.0500	0.250	0.220	88	0.221	88	75-125	0	25	mg/kg	11.01.2019 10:08	
4-Chlorotoluene	< 0.00500	0.0500	0.0507	101	0.0505	101	74-125	0	25	mg/kg	11.01.2019 10:08	
4-Methyl-2-Pentanone	< 0.0500	0.250	0.229	92	0.224	90	60-140	2	25	mg/kg	11.01.2019 10:08	
Acetone	< 0.100	0.250	0.158	63	0.155	62	50-150	2	25	mg/kg	11.01.2019 10:08	
Benzene	< 0.00100	0.0500	0.0482	96	0.0475	95	66-142	1	25	mg/kg	11.01.2019 10:08	
Bromobenzene	< 0.00500	0.0500	0.0509	102	0.0516	103	75-125	1	25	mg/kg	11.01.2019 10:08	
Bromochloromethane	< 0.00500	0.0500	0.0468	94	0.0461	92	60-140	2	25	mg/kg	11.01.2019 10:08	
Bromodichloromethane	< 0.00500	0.0500	0.0474	95	0.0469	94	75-125	1	25	mg/kg	11.01.2019 10:08	
Bromoform	< 0.00500	0.0500	0.0491	98	0.0490	98	75-125	0	25	mg/kg	11.01.2019 10:08	
Bromomethane	< 0.00500	0.0500	0.0417	83	0.0391	78	60-140	6	25	mg/kg	11.01.2019 10:08	
Carbon Disulfide	< 0.00500	0.0500	0.0537	107	0.0513	103	60-140	5	25	mg/kg	11.01.2019 10:08	
Carbon Tetrachloride	< 0.00500	0.0500	0.0515	103	0.0503	101	62-125	2	25	mg/kg	11.01.2019 10:08	
Chlorobenzene	< 0.00500	0.0500	0.0483	97	0.0481	96	60-133	0	25	mg/kg	11.01.2019 10:08	
Chloroethane	< 0.0100	0.0500	0.0443	89	0.0402	80	60-140	10	25	mg/kg	11.01.2019 10:08	
Chloroform	< 0.00500	0.0500	0.0471	94	0.0462	92	74-125	2	25	mg/kg	11.01.2019 10:08	
Chloromethane	< 0.00500	0.0500	0.0471	94	0.0470	94	60-140	0	25	mg/kg	11.01.2019 10:08	
cis-1,2-Dichloroethene	< 0.00500	0.0500	0.0471	94	0.0457	91	75-125	3	25	mg/kg	11.01.2019 10:08	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0510	102	0.0493	99	74-125	3	25	mg/kg	11.01.2019 10:08	
Dibromochloromethane	< 0.00500	0.0500	0.0480	96	0.0485	97	73-125	1	25	mg/kg	11.01.2019 10:08	
Dibromomethane	< 0.00500	0.0500	0.0479	96	0.0475	95	69-127	1	25	mg/kg	11.01.2019 10:08	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0656	131	0.0610	122	65-135	7	25	mg/kg	11.01.2019 10:08	
Ethylbenzene	< 0.00100	0.0500	0.0488	98	0.0483	97	75-125	1	25	mg/kg	11.01.2019 10:08	
Hexachlorobutadiene	< 0.00500	0.0500	0.0535	107	0.0546	109	75-125	2	25	mg/kg	11.01.2019 10:08	
Iodomethane (Methyl Iodide)	< 0.0200	0.0500	0.0406	81	0.0387	77	75-125	5	25	mg/kg	11.01.2019 10:08	
Isopropylbenzene	< 0.00500	0.0500	0.0502	100	0.0499	100	75-125	1	25	mg/kg	11.01.2019 10:08	
m,p-Xylenes	< 0.00200	0.100	0.0978	98	0.0973	97	75-125	1	25	mg/kg	11.01.2019 10:08	
Methylene Chloride	< 0.0200	0.0500	0.0503	101	0.0482	96	75-125	4	25	mg/kg	11.01.2019 10:08	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS APS MPG Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: 3106167 Seq Number: Matrix: Solid Date Prep: 11.01.2019 LCSD Sample Id: 7689418-1-BSD

LCS Sample Id: 7689418-1-BKS MB Sample Id: 7689418-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.00500	0.0500	0.0455	91	0.0452	90	60-140	1	25	mg/kg	11.01.2019 10:08	
Naphthalene	< 0.0100	0.0500	0.0501	100	0.0525	105	70-130	5	25	mg/kg	11.01.2019 10:08	
n-Butylbenzene	< 0.00500	0.0500	0.0515	103	0.0508	102	75-125	1	25	mg/kg	11.01.2019 10:08	
n-Propylbenzene	< 0.00500	0.0500	0.0530	106	0.0531	106	75-125	0	25	mg/kg	11.01.2019 10:08	
o-Xylene	< 0.00100	0.0500	0.0488	98	0.0482	96	75-125	1	25	mg/kg	11.01.2019 10:08	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0495	99	0.0499	100	75-125	1	25	mg/kg	11.01.2019 10:08	
Sec-Butylbenzene	< 0.00500	0.0500	0.0518	104	0.0522	104	75-125	1	25	mg/kg	11.01.2019 10:08	
Styrene	< 0.00500	0.0500	0.0491	98	0.0485	97	75-125	1	25	mg/kg	11.01.2019 10:08	
tert-Butylbenzene	< 0.00500	0.0500	0.0562	112	0.0566	113	75-125	1	25	mg/kg	11.01.2019 10:08	
Tetrachloroethylene	< 0.00500	0.0500	0.0513	103	0.0517	103	71-125	1	25	mg/kg	11.01.2019 10:08	
Toluene	< 0.00500	0.0500	0.0471	94	0.0473	95	59-139	0	25	mg/kg	11.01.2019 10:08	
trans-1,2-dichloroethene	< 0.00500	0.0500	0.0484	97	0.0476	95	75-125	2	25	mg/kg	11.01.2019 10:08	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0506	101	0.0506	101	66-125	0	25	mg/kg	11.01.2019 10:08	
Trichloroethene	< 0.00500	0.0500	0.0450	90	0.0446	89	62-137	1	25	mg/kg	11.01.2019 10:08	
Trichlorofluoromethane	< 0.00500	0.0500	0.0491	98	0.0453	91	67-125	8	25	mg/kg	11.01.2019 10:08	
Vinyl Acetate	< 0.0100	0.250	0.208	83	0.203	81	60-140	2	25	mg/kg	11.01.2019 10:08	
Vinyl Chloride	< 0.00500	0.0500	0.0483	97	0.0472	94	60-140	2	25	mg/kg	11.01.2019 10:08	
1,3-Butadiene	< 0.00500	0.0500	0.0575	115	0.0557	111	70-130	3	25	mg/kg	11.01.2019 10:08	
Cyclohexane	< 0.00500	0.0500	0.0504	101	0.0488	98	70-130	3	25	mg/kg	11.01.2019 10:08	
Dicyclopentadiene	< 0.00500	0.0500	0.0461	92	0.0468	94	70-120	2	25	mg/kg	11.01.2019 10:08	
Methylcyclohexane	< 0.0100	0.0500	0.0515	103	0.0507	101	65-135	2	25	mg/kg	11.01.2019 10:08	
n-Hexane	< 0.0100	0.0500	0.0483	97	0.0464	93	72-125	4	25	mg/kg	11.01.2019 10:08	
4-Ethyltoluene	< 0.00500	0.0500	0.0527	105	0.0525	105	70-130	0	25	mg/kg	11.01.2019 10:08	
Propene	< 0.00500	0.0500	0.0357	71	0.0351	70	70-130	2	25	mg/kg	11.01.2019 10:08	

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	96		99		97		53-142	%	11.01.2019 10:08
1,2-Dichloroethane-D4	99		99		101		56-150	%	11.01.2019 10:08
Toluene-D8	104		99		100		70-130	%	11.01.2019 10:08
4-Bromofluorobenzene	97		100		103		68-152	%	11.01.2019 10:08

LCS = Laboratory Control Sample A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS APS MPG Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: Date Prep: Seq Number: 3106167 Matrix: Solid 11.01.2019

MS Sample Id: 641658-002 S Parent Sample Id: 641658-002

Parent Sample Id: 641658	-002		MS Sar	nple Id:	641658-002 S			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00501	0.0501	0.0423	84	72-125	mg/kg	11.01.2019 14:31	
1,1,1-Trichloroethane	< 0.00501	0.0501	0.0408	81	75-125	mg/kg	11.01.2019 14:31	
1,1,2,2-Tetrachloroethane	< 0.00501	0.0501	0.0461	92	74-125	mg/kg	11.01.2019 14:31	
1,1,2-Trichloroethane	< 0.00501	0.0501	0.0428	85	75-127	mg/kg	11.01.2019 14:31	
1,1-Dichloroethane	< 0.00501	0.0501	0.0445	89	72-125	mg/kg	11.01.2019 14:31	
1,1-Dichloroethene	< 0.00501	0.0501	0.0432	86	59-172	mg/kg	11.01.2019 14:31	
1,1-Dichloropropene	< 0.00501	0.0501	0.0432	86	75-125	mg/kg	11.01.2019 14:31	
1,2,3-Trichlorobenzene	< 0.00501	0.0501	0.0376	75	75-137	mg/kg	11.01.2019 14:31	
1,2,3-Trichloropropane	< 0.00501	0.0501	0.0435	87	75-125	mg/kg	11.01.2019 14:31	
1,2,4-Trichlorobenzene	< 0.00501	0.0501	0.0396	79	75-135	mg/kg	11.01.2019 14:31	
1,2,4-Trimethylbenzene	< 0.00501	0.0501	0.0409	82	75-125	mg/kg	11.01.2019 14:31	
1,2-Dibromo-3-Chloropropane	< 0.00501	0.0501	0.0432	86	59-125	mg/kg	11.01.2019 14:31	
1,2-Dibromoethane	< 0.00501	0.0501	0.0419	84	73-125	mg/kg	11.01.2019 14:31	
1,2-Dichlorobenzene	< 0.00501	0.0501	0.0419	84	75-125	mg/kg	11.01.2019 14:31	
1,2-Dichloroethane	< 0.00501	0.0501	0.0414	83	68-127	mg/kg	11.01.2019 14:31	
1,2-Dichloropropane	< 0.00501	0.0501	0.0415	83	74-125	mg/kg	11.01.2019 14:31	
1,3,5-Trimethylbenzene	< 0.00501	0.0501	0.0447	89	70-130	mg/kg	11.01.2019 14:31	
1,3-Dichlorobenzene	< 0.00501	0.0501	0.0407	81	75-125	mg/kg	11.01.2019 14:31	
1,3-Dichloropropane	< 0.00501	0.0501	0.0432	86	75-125	mg/kg	11.01.2019 14:31	
1,4-Dichlorobenzene	< 0.00501	0.0501	0.0403	80	75-125	mg/kg	11.01.2019 14:31	
2,2-Dichloropropane	< 0.00501	0.0501	0.0425	85	75-125	mg/kg	11.01.2019 14:31	
2-Butanone	< 0.0200	0.251	0.176	70	75-125	mg/kg	11.01.2019 14:31	X
2-Chlorotoluene	< 0.00501	0.0501	0.0429	86	73-125	mg/kg	11.01.2019 14:31	
2-Hexanone	< 0.0501	0.251	0.185	74	75-125	mg/kg	11.01.2019 14:31	X
4-Chlorotoluene	< 0.00501	0.0501	0.0416	83	74-125	mg/kg	11.01.2019 14:31	
4-Methyl-2-Pentanone	< 0.0501	0.251	0.202	80	60-140	mg/kg	11.01.2019 14:31	
Acetone	< 0.100	0.251	0.144	57	50-150	mg/kg	11.01.2019 14:31	
Benzene	< 0.00100	0.0501	0.0407	81	66-142	mg/kg	11.01.2019 14:31	
Bromobenzene	< 0.00501	0.0501	0.0424	85	75-125	mg/kg	11.01.2019 14:31	
Bromochloromethane	< 0.00501	0.0501	0.0431	86	60-140	mg/kg	11.01.2019 14:31	
Bromodichloromethane	< 0.00501	0.0501	0.0406	81	75-125	mg/kg	11.01.2019 14:31	
Bromoform	< 0.00501	0.0501	0.0419	84	75-125	mg/kg	11.01.2019 14:31	
Bromomethane	< 0.00501	0.0501	0.0430	86	60-140	mg/kg	11.01.2019 14:31	
Carbon Disulfide	< 0.00501	0.0501	0.0444	89	60-140	mg/kg	11.01.2019 14:31	
Carbon Tetrachloride	< 0.00501	0.0501	0.0426	85	62-125	mg/kg	11.01.2019 14:31	
Chlorobenzene	< 0.00501	0.0501	0.0401	80	60-133	mg/kg	11.01.2019 14:31	
Chloroethane	< 0.0100	0.0501	0.0420	84	60-140	mg/kg	11.01.2019 14:31	
Chloroform	< 0.00501	0.0501	0.0422	84	74-125	mg/kg	11.01.2019 14:31	
Chloromethane	< 0.00501	0.0501	0.0504	101	60-140	mg/kg	11.01.2019 14:31	
cis-1,2-Dichloroethene	< 0.00501	0.0501	0.0422	84	75-125	mg/kg	11.01.2019 14:31	
cis-1,3-Dichloropropene	< 0.00501	0.0501	0.0417	83	74-125	mg/kg	11.01.2019 14:31	
Dibromochloromethane	< 0.00501	0.0501	0.0416	83	73-125	mg/kg	11.01.2019 14:31	
Dibromomethane	< 0.00501	0.0501	0.0423	84	69-127	mg/kg	11.01.2019 14:31	
Dichlorodifluoromethane	< 0.00501	0.0501	0.0653	130	65-135	mg/kg	11.01.2019 14:31	
Ethylbenzene	< 0.00100	0.0501	0.0395	79	75-125	mg/kg	11.01.2019 14:31	
Hexachlorobutadiene	< 0.00501	0.0501	0.0416	83	75-125	mg/kg	11.01.2019 14:31	
Iodomethane (Methyl Iodide)	< 0.0200	0.0501	0.0354	71	75-125	mg/kg	11.01.2019 14:31	X
Isopropylbenzene	< 0.00501	0.0501	0.0411	82	75-125	mg/kg	11.01.2019 14:31	
m,p-Xylenes	< 0.00200	0.100	0.0789	79	75-125	mg/kg	11.01.2019 14:31	
Methylene Chloride	< 0.00423	0.0501	0.0506	101	75-125	mg/kg	11.01.2019 14:31	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\label{eq:c-A} \begin{split} [D] &= 100*(C-A) \, / \, B \\ RPD &= 200* \, | \, (C-E) \, / \, (C+E) \, | \\ [D] &= 100*(C) \, / \, [B] \\ Log \ Diff. &= Log(Sample \ Duplicate) \, - \ Log(Original \ Sample) \end{split}$$

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

$\begin{array}{c} \textbf{APS} \\ \textbf{APS MPG Douglas, AZ} \end{array}$

Analytical Method:Volatiles by SW 8260CPrep Method:SW 5035ASeq Number:3106167Matrix:SolidDate Prep:11.01.2019

Parent Sample Id: 641658-002 MS Sample Id: 641658-002 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
MTBE	< 0.00501	0.0501	0.0436	87	60-140	mg/kg	11.01.2019 14:31	
Naphthalene	< 0.0100	0.0501	0.0405	81	70-130	mg/kg	11.01.2019 14:31	
n-Butylbenzene	< 0.00501	0.0501	0.0412	82	75-125	mg/kg	11.01.2019 14:31	
n-Propylbenzene	< 0.00501	0.0501	0.0429	86	75-125	mg/kg	11.01.2019 14:31	
o-Xylene	< 0.00100	0.0501	0.0414	83	75-125	mg/kg	11.01.2019 14:31	
p-Cymene (p-Isopropyltoluene)	< 0.00501	0.0501	0.0404	81	75-125	mg/kg	11.01.2019 14:31	
Sec-Butylbenzene	< 0.00501	0.0501	0.0422	84	75-125	mg/kg	11.01.2019 14:31	
Styrene	< 0.00501	0.0501	0.0401	80	75-125	mg/kg	11.01.2019 14:31	
tert-Butylbenzene	< 0.00501	0.0501	0.0465	93	75-125	mg/kg	11.01.2019 14:31	
Tetrachloroethylene	< 0.00501	0.0501	0.0411	82	71-125	mg/kg	11.01.2019 14:31	
Toluene	< 0.00501	0.0501	0.0397	79	59-139	mg/kg	11.01.2019 14:31	
trans-1,2-dichloroethene	< 0.00501	0.0501	0.0421	84	75-125	mg/kg	11.01.2019 14:31	
trans-1,3-dichloropropene	< 0.00501	0.0501	0.0418	83	66-125	mg/kg	11.01.2019 14:31	
Trichloroethene	< 0.00501	0.0501	0.0363	72	62-137	mg/kg	11.01.2019 14:31	
Trichlorofluoromethane	< 0.00501	0.0501	0.0463	92	67-125	mg/kg	11.01.2019 14:31	
Vinyl Acetate	< 0.0100	0.251	0.0907	36	60-140	mg/kg	11.01.2019 14:31	X
Vinyl Chloride	< 0.00501	0.0501	0.0503	100	60-140	mg/kg	11.01.2019 14:31	
1,3-Butadiene	< 0.00501	0.0501	0.0510	102	70-130	mg/kg	11.01.2019 14:31	
Cyclohexane	< 0.00501	0.0501	0.0412	82	70-130	mg/kg	11.01.2019 14:31	
Dicyclopentadiene	< 0.00501	0.0501	0.0390	78	70-120	mg/kg	11.01.2019 14:31	
Methylcyclohexane	< 0.0100	0.0501	0.0414	83	65-135	mg/kg	11.01.2019 14:31	
n-Hexane	< 0.0100	0.0501	0.0363	72	72-125	mg/kg	11.01.2019 14:31	
4-Ethyltoluene	< 0.00501	0.0501	0.0424	85	70-130	mg/kg	11.01.2019 14:31	
Propene	< 0.00501	0.0501	0.0315	63	70-130	mg/kg	11.01.2019 14:31	X

Surrogate	MS MS %Rec Flag		alysis Pate
Dibromofluoromethane	104	53-142 % 11.01.20	19 14:31
1,2-Dichloroethane-D4	102	56-150 % 11.01.20	19 14:31
Toluene-D8	101	70-130 % 11.01.20	19 14:31
4-Bromofluorobenzene	102	68-152 % 11.01.20	19 14:31

Chain of Custody

Work Order No: 14/12

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334

Midiand,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1286

Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-448-8800) Tampa,FL (813-620-2000)

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-33-4900) Allanta, GA (7/0-449-8800) Tampa.FL (813-620-2000)	www.yenco.com Page of
Project Manager: Ju	Judy Heywood	Send results to	Cidd	
Company Name: APS	Š	Company Name:	Jacobs	
Address: PC	PO Box53999, MS 9303	Phone	480-273-4084	State of Project: Arizona
City, State ZIP: Ph	Phoenix, AZ 85072-3999	email	Bernice Kidd@jacobs.com matt.branche@jacobs.com	Lev
Phone: 60	602-818-0259	Email: Judith.Heywood@aps.com	Daps.com	Other
Project Name: AP	APS MGP Douglas, AZ	Turn Around	ANAI VIE	
Project Number: D3	D3118600.A.CS.EV.DG.05-1B	Routine 2	Distriction of the control of the co	Work Croer Notes
P.O. Number: 70	700735632	~ .		
Sampler's Name: AS	Shumby M. Brancho	Due Date:	eserv	
SAMPLE RECEIPT	Temp Blank: Yes No	Wet ice: Yes No	OH pr	
Temperature (°C):		ō	lgnit	
Received Intact:	-jo-	C/F:+ 0.2	ter	
Sample Custody Seals:	Yes No N/A Z'O	Corrected: 2,2 - co	Paint Fi	TAT starts the day received by the
Sample Identification	Matrix Date Sampled	Time Depth Number	8270 SII 6010B/7 8260B - 8082 - P 9095B - 9045B -	Sample Comments
D-13110-7.5) s 10-29-19 i	040 75-80 3	×	
D-1316-10.0	0-10.5 s i lo	050 10.0-10.5 3	××	
D-1316-150	55 s	2 1551-071 00	×××	
. [-	, 2	5 1 2	× × ×	
77 510 - 12	3-20.0 s 1/2	20 14.5.20 3	×××	
V- 128-50	0-S.S.' s 12	12 2.025 1	XXXXXXXX	
V- F003-10	107919 8 17	4 - 55	XXXXXXX	
1-24-45	13	10 7.58.0	XXIIIIII	
0-24-100	105 5 13	5 100-105	X X . .	
D-1014-15.0-	5.5 15 1 1	345 150 KS	XXX	
Total 200.7 / 6010	200.8 / 6020: 8RCRA	13PPM Texas 11 Al	Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb N	Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Tl Sn U V Zn
Circle Method(s) a	Circle Method(s) and Metal(s) to be analyzed TCLP	TCLP / SPLP 6010: BRCRA	Cd Cr Co Cu Pb Mn N	TI U 1631 / 245.1 / 7470 /
otice: Signature of this docun	otice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco,	valid purchase order from client	company to Xenco, its affiliates and subcontractors. It assign	
Xenco. A minimum charge o	Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will	way responsibility for any losse ge of \$5 for each sample submit		ricumstances beyond the control
		Or or he can make a minimum a continue	_	THE PROPERTY AND

Relinquished by: (Signature)

Received by: (Signature)

205154718-01

Date/Time

Relinquished by: (Signature)

Received by: (Signature)

Date/Time

Revised Date C51418 Rev. 2018 1

Chain of Custody

Work Order No: (1-1/1)

www.xenco.com

Page

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334

Midland,TX (432-704-5440) EL Paso,TX (815)585-3443 Lubbock,TX (806)794-1296

Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)

一 こう ズクジェイン	1	Sample id		Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name: A	P.O. Number: 700	Project Number: D31	Project Name: APS	Prione: 602	ate ZIP:		Address: PO	Company Name: APS	
	20,0 s 10-24.19	Matrix		Yes No N/A	Yes No N/A	Yes No		Temp Blank: Yes No	Shunte, M. Branche	700735632	D3118600.A.CS.EV.DG.05-1B	APS MGP Douglas, AZ	602-818-0259	Phoenix, AZ 85072-3999	:	PO Box53999, MS 9303	, or	Judy Heywood
1425 < > 55	119 1 355 119.520	 	-	10 Kik		ID:HOU-068 C/F:+0.2	Thermometer ID	Wet fce: Yes		Rush: X48	Routine	Turn Around	Email: Judith.H	email		Phone	Company Name	Send results to
\(\frac{1}{2}\)		Num 8270 6010E 8260E 8082 - 9095E SW84	3/74 3 - 1 - PC 3 - F	I PAI	Hs - Ti	otal	(Med	DH p	8 RCF	(A)		ANALYSIS REQUEST	Email: Judith. Heywood@aps.com	matt.branche@jacobs.com	Remine Kidd Discohe com	480-273-4084	Name: Jacobs	ults to Matt Branche
		9013/Sample Comments	lab, if received by 4:30pm	TAT	otal	Cy	anid	e				QUEST Work Order Notes	Deliverables: EDD	Reporting:Level III Level III PST/US-D TRRP Level IV	_		Program: UST/PST PRH Brownfield RR Superfur	Work Order Comments

of service. Xenco will be liable only for the co- of Xenco. A minimum charge of \$75.00 will be	of service. Xerco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such lof Xerco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xerco, but not analyzed. These terms we	r any losses or expenses incurre ple submitted to Xenco, but not a	ume any responsibility for any losses or expenses incursed by the client it such losses are due to circumstances beyond the contribute. There is such losses are due to circumstances beyond the contribute of \$5 for each sample submitted to Xerico, but not analyzed. These terms will be enforced unless previously negotiated.	actors. It assigns standard terms and conditions liosses are due to circumstances beyond the control will be enforced unless previously neoditated.	
Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)		
om			remiquistion by, (Signature)	neceived by: (Signature)	Date/Time
	ナジスクス	11 12 to 12 to 12 to 1	2 F 8/ FV	(" ")	W1 12 12 12
3			1 1 1 1 1 1	X 1 JURG	W1111 01.70
			4		
			6		
					Rouged Care Office Boy Office

etce: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors, it assigns standard terms and conditions

8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U

Ag SiO2 Na Sr Ti Sn U V Zn

MS/MSD

D-B22

31-051 rega or

1631 / 245.1 / 7470 / 7471 : Hg

Total 200.7 / 6010

200.8 / 6020:

8-19.5-20.0

0-155

10,010,515

27.0

19.5.20

X0155

10.0-10.5 s

9

S

1450

28.0

150.65

22

25

<u>2</u>

1029

6

ON FOU

3.01-0.01

Circle Method(s) and Metal(s) to be analyzed

Chain of Custody

Work Order No:

Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296

Sample Custody Seals: Phone: P.O. Number: Received Intact: Sampler's Name: Project Number: Project Name: Company Name: Project Manager: service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. City, State ZIP: Address: SAMPLE RECEIPT emperature (°C): ooler Custody Seals: Relinquished by: (Signature) ce: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Total 200.7 / 6010 Circle Method(s) and Metal(s) to be analyzed Sample Identification 511-10.0-10.0 B20-50-5.5 B17-25-3.0 150-25-30 19.5-20.0 D3118600.A.CS.EV.DG.05-1B 700735632 APS MGP Douglas, AZ 602-818-0259 Phoenix, AZ 85072-3999 PO Box53999, MS 9303 APS Judy Heywood H.Shwatz, N. Brandy Due Date: 200.8 / 6020: Yes Yes No Yes Temp Blank: Ş S S S S S S 중 Matrix N/A N/A Yes No Received by: (Signature) Sampled Temp: 2.0Thermometer ID IR ID:HOU-068 C/F:+0.2 Date 8RCRA 13PPM Texas 11 AlSb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Min Mo Ni K Se Ag SiO2 Na Sr Ti Sn U V Zn TCLP / SPLP 6010: BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U 1600 0455 035 2120 020 1005 Sampled 0430 Corrected: Wet ice: Yes 035 50-55 Time Email: Rush: X48h Routine Z Turn Around # 5-80 50-155 2530 1530 email Phone 2207 S.FOI Judith.Heywood@aps.com Send results to Company Name: 10.0-10.5 02-5-50 Depth 공 10-31-46-21328 **Number of Containers** Date/Time Matt Branche Jacobs Bernice Kidd matt.branche@jacobs.com Bernice.Kidd@jacobs.com 480-273-4084 8270 SIM PAHs Total metals (8 RCRA) 8260B - Total VOCs (MeOH preserved) 8082 - PCBs Relinquished by: (Signature) 9095B - Paint Filter ANALYSIS REQUEST SW846 Article 7.12 - Ignitability 9045B - pH 9013/9014 - Total Cyanide Deliverables: EDD Reporting:Level II X Level III PST/US-Program: UST/PST☐ PRP☐ Brownfields☐ RR☐ Superfur☐ State of Project: Received by: (Signature) Muse www.xenco.com Work Order Comments ADaPT 🗆 1631 / 245.1 / 7470 / 7471 : Hg TAT starts the day received by the lab, if received by 4:30pm Sample Comments TRRP Work Order Notes Date/Time Level IV

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 11.01.2019 09.30.00 AM

Acceptable Temperature Range: 0 - 6 degC

Air and Metal samples Acceptable Range: Ambient

Work Order #: 641801 Temperature Measuring device used : HOU-068

Sample Receipt Ch	ecklist	Comments
#1 *Temperature of cooler(s)?	2.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	No	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	Yes	2 extra MEOH vials with no sample label ID. Extra 8oz. jar, Sample Point 2 designated MS/MSD. Duplicated sample ID on COC no containers for sample point D-B28-10.05-10.5 collected at 15:55 line item 4 on pg 2 of 5 COC.
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: LM

Checklist completed by:	Rena Injur Lesia Minor	Date: <u>11.01.2019</u>	
Checklist reviewed by:	(myldrowny)	_	

PH Device/Lot#:

Ruriko Konuma

Date: 11.01.2019

Analytical Report 641882

for

APS

Project Manager: Judy Heywood

APS MPG Douglas, AZ D3118600.A.CS.EV.DG.05-1B 11.21.2019

Collected By: Client

4147 Greenbriar Dr. Stafford, TX 77477

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

11.21.2019

Project Manager: Judy Heywood

APS P.O. Box 53999 Mail Station 8376 Phoenix, AZ 85072

Reference: XENCO Report No(s): 641882

APS MPG Douglas, AZ Project Address: Miami, AZ

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 641882. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 641882 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

CASE NARRATIVE

Client Name: APS

Project Name: APS MPG Douglas, AZ

Project ID: D3118600.A. CS. EV. DG. 0. Report Date: 11.21.2019
Work Order Number(s): 641882 Date Received: 11.04.2019

Sample receipt non conformances and comments:

Revised report due to TCLP Metals Analysis added to sample ID: D-B12-7.5-8.0 sample Work Order number 641882-016 Analysis requested by Matthew Branche via email on 11/17/2019 @ 12:02pm

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3106377 Volatiles by SW 8260C

Sample required dilution due to high concentration of target analyte.

Batch: LBA-3106445 PCBs by SW 8082A

Surrogate Decachlorobiphenyl recovered above QC limits. Surrogate high due to matrix interference.

Samples affected are: 641882-004 S,641882-015,641882-012,641882-004,641882-014.

Batch: LBA-3106468 Metals, RCRA List, by SW 6020

Lab Sample ID 641882-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641882-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -012, -013, -014, -015, -016, -017, -018, -019.

The Laboratory Control Sample for Barium is within laboratory Control Limits, therefore the data was accepted.

CASE NARRATIVE

Client Name: APS

Project Name: APS MPG Douglas, AZ

 Project ID:
 D3118600.A.CS.EV.DG.0.
 Report Date:
 11.21.2019

 Work Order Number(s):
 641882
 Date Received:
 11.04.2019

Batch: LBA-3106513 PAHs by 8270D SIM

Lab Sample ID 641882-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Acenaphthene recovered below QC limits in the Matrix Spike. Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)Anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-c,d)Pyrene, Naphthalene, Phenanthrene recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Acenaphthene recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641882-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -012, -013, -014, -015, -016, -017, -018, -019.

The Laboratory Control Sample for Anthracene, Acenaphthylene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)Anthracene, Naphthalene, Pyrene, Benzo(a)pyrene, Benzo(b)fluoranthene, Fluoranthene, Acenaphthene, Benzo(a)anthracene, Indeno(1,2,3-c,d)Pyrene, Benzo(g,h,i)perylene, Fluorene, Phenanthrene is within laboratory Control Limits, therefore the data was accepted.

Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)Anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-c,d)Pyrene, Naphthalene, Phenanthrene Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits. Samples in the analytical batch are: 641882-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -012, -013, -014, -015, -016, -017, -018, -019

Surrogate 2-Fluorobiphenyl recovered above QC limits. Matrix interferences is suspected; Samples affected are: 641882-003.

Surrogate Terphenyl-D14 recovered above QC limits. Matrix interferences is suspected;

Samples affected are: 641882-003,641882-004 S,641882-004 SD,641882-016.

Sample 641882-004 were diluted due to the dark and viscous nature of the samples.

Samples in work order 641882 were run at dilution due to the dark and viscous nature of the samples.

Batch: LBA-3106537 Metals, RCRA List, by SW 6020

Lab Sample ID 641882-034 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641882-020, -021, -022, -023, -024, -025, -026, -027, -028, -031, -033, -034, -035.

The Laboratory Control Sample for Barium is within laboratory Control Limits, therefore the data was accepted.

CASE NARRATIVE

Client Name: APS

Project Name: APS MPG Douglas, AZ

 Project ID:
 D3118600.A.CS.EV.DG.0.
 Report Date:
 11.21.2019

 Work Order Number(s):
 641882
 Date Received:
 11.04.2019

Batch: LBA-3106545 Total Cyanide by SW 9012

Lab Sample ID 641882-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Cyanide, Total recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641882-004, -012, -014, -015. The Laboratory Control Sample for Cyanide, Total is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3106591 PAHs by 8270D SIM

Phenanthrene Relative Percent Difference (RPD) between matrix spike and duplicate was above quality control limits.

Samples in the analytical batch are: 641882-020, -021, -022, -023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035

Lab Sample ID 641882-034 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Fluoranthene, Indeno(1,2,3-c,d)Pyrene, Phenanthrene recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 641882-020, -021, -022, -023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035.

The Laboratory Control Sample for Chrysene, Pyrene, Benzo(a)pyrene , Benzo(b)fluoranthene , Fluoranthene , Benzo(a)anthracene , Indeno(1,2,3-c,d)Pyrene , Benzo(g,h,i)perylene , Phenanthrene is within laboratory Control Limits, therefore the data was accepted.

Flagging Criteria

Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

Sample Cross Reference 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D-B24-19.5-20.0	S	10.30.2019 15:55	19.5 - 20 ft	641882-001
D-FD01-103019	S	10.30.2019 16:00		641882-002
D-B13-1.0-1.5	S	10.31.2019 07:50	1.0 - 1.5 ft	641882-003
D-B13-2.5-3.0	S	10.31.2019 08:10	2.5 - 3.0 ft	641882-004
D-B13-5.0-5.5	S	10.31.2019 09:10	5.0 - 5.5 ft	641882-005
D-B13-7.5-8.0	S	10.31.2019 09:25	7.5 - 8 ft	641882-006
D-B13-10.0-10.5	S	10.31.2019 09:35	10 - 10.5 ft	641882-007
D-B13-15.0-15.5	S	10.31.2019 09:45	15 - 15.5 ft	641882-008
D-FD01-103119	S	10.31.2019 09:50		641882-009
D-B13-19.5-20.0	S	10.31.2019 09:55	19.5 - 20 ft	641882-010
D-TB01-103119	S	10.31.2019 08:00		641882-011
D-B12-1.0-1.5	S	10.31.2019 11:15	1.0 - 1.5 ft	641882-012
D-B12-2.5-3.0	S	10.31.2019 11:25	2.5 - 3.0 ft	641882-013
D-B12-5.0-5.5	S	10.31.2019 11:35	5.0 - 5.5 ft	641882-014
D-FD02-103119	S	10.31.2019 11:40		641882-015
D-B12-7.5-8.0	S	10.31.2019 11:45	7.5 - 8.0 ft	641882-016
D-B12-10.0-10.5	S	10.31.2019 11:50	10 - 10.5 ft	641882-017
D-B12-15.0-15.5	S	10.31.2019 11:55	15 - 15.5 ft	641882-018
D-B12-19.5-20	S	10.31.2019 12:15	19.5 - 20 ft	641882-019
D-B12-24.5-25.0	S	10.31.2019 13:50	24.5 - 25 ft	641882-020
D-B23-25-3.0	S	10.31.2019 14:35	2.5 - 3.0 ft	641882-021
D-FD03-103119	S	10.31.2019 14:45		641882-022
D-B23-5.0-5.5	S	10.31.2019 15:05	5.0 - 5.5 ft	641882-023
D-B23-7.5-8.0	S	10.31.2019 15:30	7.5 - 8.0 ft	641882-024
D-B23-9.5-10.0	S	10.31.2019 15:50	9.5 - 10.0 ft	641882-025
D-B23-14.5-15.0	S	10.31.2019 16:10	14.5 - 15.0 ft	641882-026
D-B23-19.5-20.0	S	10.31.2019 16:30	19.5 - 20.0 ft	641882-027
D-B25-10.0-10.5	S	10.31.2019 09:30	10.0 - 10.5 ft	641882-028
D-B25-15.0-15.5	S	10.31.2019 10:50	15.0 - 15.5 ft	641882-029
D-B25-20.0-20.5	S	10.31.2019 11:25	20.0 - 20.5 ft	641882-030
D-B25-25.0-25.5	S	10.31.2019 11:45	25.0 - 25.5 ft	641882-031
D-B25-30.0-30.5	S	10.31.2019 13:20	30.0 - 30.5 ft	641882-032
D-B25-40.0-40.5	S	10.31.2019 16:20	40.0 - 40.5 ft	641882-033
D-FD04-103119	S	10.31.2019 17:00		641882-034
D-B24-10.0-10.5	S	10.30.2019 15:40	10 - 10.5 ft	641882-035

ADS

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-19.5-20.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-001 Date Collected: 10.30.2019 15:55 Sample Depth: 19.5 - 20 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0179
 mg/kg
 11.05.2019 12:52
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.05.2019 10:00 Basis: Dry Weight

Seq Number: 3106468 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.55	1.85	mg/kg	11.05.2019 12:06		10
Barium	7440-39-3	43.7	3.70	mg/kg	11.05.2019 12:06		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.05.2019 12:06	U	10
Chromium	7440-47-3	19.5	3.70	mg/kg	11.05.2019 12:06		10
Lead	7439-92-1	10.5	1.85	mg/kg	11.05.2019 12:06		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.05.2019 12:06	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.05.2019 12:06	U	10

JOZ

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-19.5-20.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-001 Date Collected: 10.30.2019 15:55 Sample Depth: 19.5 - 20 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 07:39 Basis: Wet Weight

Seq Number: 3106513 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00198	0.00167		mg/kg	11.05.2019 14:16		1
Acenaphthylene	208-96-8	0.0382	0.00167		mg/kg	11.05.2019 14:16		1
Anthracene	120-12-7	0.0180	0.00167		mg/kg	11.05.2019 14:16		1
Benzo(a)anthracene	56-55-3	0.0411	0.00167		mg/kg	11.05.2019 14:16		1
Benzo(a)pyrene	50-32-8	0.0818	0.00167		mg/kg	11.05.2019 14:16		1
Benzo(b) fluoranthene	205-99-2	0.0813	0.00167		mg/kg	11.05.2019 14:16		1
Benzo(g,h,i)perylene	191-24-2	0.104	0.00167		mg/kg	11.05.2019 14:16		1
Benzo(k)fluoranthene	207-08-9	0.0239	0.00167		mg/kg	11.05.2019 14:16		1
Chrysene	218-01-9	0.0506	0.00167		mg/kg	11.05.2019 14:16		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.05.2019 14:16	U	1
Fluoranthene	206-44-0	0.181	0.00167		mg/kg	11.05.2019 14:16		1
Fluorene	86-73-7	0.00825	0.00167		mg/kg	11.05.2019 14:16		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0649	0.00167		mg/kg	11.05.2019 14:16		1
Naphthalene	91-20-3	0.0215	0.0167		mg/kg	11.05.2019 14:16		1
Phenanthrene	85-01-8	0.145	0.00167		mg/kg	11.05.2019 14:16		1
Pyrene	129-00-0	0.215	0.00167		mg/kg	11.05.2019 14:16		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		102	%	31-130	11.05	5.2019 14:16		
2-Fluorobiphenyl		103	%	51-133	11.05	5.2019 14:16		
Terphenyl-D14		108	%	46-137	11.05	5.2019 14:16		

ADS

Seq Number: 3106468

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-FD01-103019 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-002 Date Collected: 10.30.2019 16:00

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight Seq Number: 3106489

SUB: T104704215-19-30

Result **Parameter** Cas Number RLUnits **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0175 mg/kg 11.05.2019 12:54 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

DEP Analyst: Date Prep: 11.05.2019 10:00

Basis: Dry Weight SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 8.20 11.05.2019 12:09 10 Arsenic 7440-38-2 1.69 mg/kg Barium 46.1 7440-39-3 3.39 11.05.2019 12:09 10 mg/kg Cadmium 7440-43-9 BRL 1.69 mg/kg 11.05.2019 12:09 U 10 Chromium 7440-47-3 17.4 3.39 11.05.2019 12:09 10 mg/kg 22.3 10 Lead 7439-92-1 1.69 mg/kg 11.05.2019 12:09 Selenium 7782-49-2 BRL 1.69 11.05.2019 12:09 U 10 mg/kg Silver 7440-22-4 BRL 1.69 11.05.2019 12:09 U 10 mg/kg

JOZ

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD01-103019** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-002 Date Collected: 10.30.2019 16:00

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 07:42 Basis: Wet Weight

Seq Number: 3106513 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.05.2019 14:00	U	1
Acenaphthylene	208-96-8	0.0103	0.00167		mg/kg	11.05.2019 14:00		1
Anthracene	120-12-7	0.00347	0.00167		mg/kg	11.05.2019 14:00		1
Benzo(a)anthracene	56-55-3	0.00975	0.00167		mg/kg	11.05.2019 14:00		1
Benzo(a)pyrene	50-32-8	0.0232	0.00167		mg/kg	11.05.2019 14:00		1
Benzo(b)fluoranthene	205-99-2	0.0237	0.00167		mg/kg	11.05.2019 14:00		1
Benzo(g,h,i)perylene	191-24-2	0.0322	0.00167		mg/kg	11.05.2019 14:00		1
Benzo(k)fluoranthene	207-08-9	0.00611	0.00167		mg/kg	11.05.2019 14:00		1
Chrysene	218-01-9	0.0131	0.00167		mg/kg	11.05.2019 14:00		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.05.2019 14:00	U	1
Fluoranthene	206-44-0	0.0471	0.00167		mg/kg	11.05.2019 14:00		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.05.2019 14:00	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0202	0.00167		mg/kg	11.05.2019 14:00		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.05.2019 14:00	U	1
Phenanthrene	85-01-8	0.0327	0.00167		mg/kg	11.05.2019 14:00		1
Pyrene	129-00-0	0.0615	0.00167		mg/kg	11.05.2019 14:00		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		106	%	31-130		5.2019 14:00		
2-Fluorobiphenyl		107	%	51-133		5.2019 14:00		
Terphenyl-D14		109	%	46-137	11.05	5.2019 14:00		

ADS

Seq Number: 3106489

Seq Number: 3106468

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B13-1.0-1.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-003 Date Collected: 10.31.2019 07:50 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0427 0.0185 mg/kg 11.05.2019 12:55 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Date Prep: 11.05.2019 10:00

Prep Method: SW3050B

% Moisture:

Basis: Dry Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.5	1.67	mg/kg	11.05.2019 12:12		10
Barium	7440-39-3	68.4	3.33	mg/kg	11.05.2019 12:12		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.05.2019 12:12	U	10
Chromium	7440-47-3	7.85	3.33	mg/kg	11.05.2019 12:12		10
Lead	7439-92-1	89.4	1.67	mg/kg	11.05.2019 12:12		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.05.2019 12:12	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.05.2019 12:12	U	10

JOZ

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-003 Date Collected: 10.31.2019 07:50 Sample Depth: 1.0 - 1.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 07:45 Basis: Wet Weight

Seq Number: 3106513 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	0.544	0.0667		mg/kg	11.05.2019 14	1:33		20
Acenaphthylene	208-96-8	14.2	0.667		mg/kg	11.05.2019 20):12	D	200
Anthracene	120-12-7	6.63	0.0667		mg/kg	11.05.2019 14	1:33		20
Benzo(a)anthracene	56-55-3	17.5	0.667		mg/kg	11.05.2019 20):12	D	200
Benzo(a)pyrene	50-32-8	28.9	0.667		mg/kg	11.05.2019 20):12	D	200
Benzo(b)fluoranthene	205-99-2	26.4	0.667		mg/kg	11.05.2019 20):12	D	200
Benzo(g,h,i)perylene	191-24-2	30.3	0.667		mg/kg	11.05.2019 20):12	D	200
Benzo(k)fluoranthene	207-08-9	7.09	0.0667		mg/kg	11.05.2019 14	1:33		20
Chrysene	218-01-9	20.7	0.667		mg/kg	11.05.2019 20):12	D	200
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0667		mg/kg	11.05.2019 14	1:33	U	20
Fluoranthene	206-44-0	71.0	0.667		mg/kg	11.05.2019 20):12	D	200
Fluorene	86-73-7	4.49	0.0667		mg/kg	11.05.2019 14	1:33		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	21.5	0.667		mg/kg	11.05.2019 20):12	D	200
Naphthalene	91-20-3	35.9	6.67		mg/kg	11.05.2019 20):12	D	200
Phenanthrene	85-01-8	70.8	0.667		mg/kg	11.05.2019 20):12	D	200
Pyrene	129-00-0	83.6	0.667		mg/kg	11.05.2019 20):12	D	200
		% Recovery							
Surrogate			Units	Limits	Analysis Date Fla		Flag		
Nitrobenzene-d5		123	%	31-130	11.05.2019 14:33				
2-Fluorobiphenyl		216	%	51-133	11.05	5.2019 14:33	**		
Terphenyl-D14		446	%	46-137	11.05	5.2019 14:33	**		

SAD

Seq Number: 3106377

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B13-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-003 Date Collected: 10.31.2019 07:50 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,1-Dichloroethane	75-34-3	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,1-Dichloroethene	75-35-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,1-Dichloropropene	563-58-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2-Dibromoethane	106-93-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2-Dichloroethane	107-06-2	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,2-Dichloropropane	78-87-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,3-Dichloropropane	142-28-9	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
2,2-Dichloropropane	594-20-7	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
2-Butanone	78-93-3	BRL	1.15	mg/kg	11.04.2019 21:11	U	50
2-Chlorotoluene	95-49-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
2-Hexanone	591-78-6	BRL	2.89	mg/kg	11.04.2019 21:11	U	50
4-Chlorotoluene	106-43-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.89	mg/kg	11.04.2019 21:11	U	50
Acetone	67-64-1	BRL	5.77	mg/kg	11.04.2019 21:11	U	50
Benzene	71-43-2	0.509	0.0577	mg/kg	11.04.2019 21:11		50
Bromobenzene	108-86-1	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Bromochloromethane	74-97-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Bromodichloromethane	75-27-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Bromoform	75-25-2	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Bromomethane	74-83-9	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Carbon Disulfide	75-15-0	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Carbon Tetrachloride	56-23-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Chlorobenzene	108-90-7	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Chloroethane	75-00-3	BRL	0.577	mg/kg	11.04.2019 21:11	U	50
Chloroform	67-66-3	BRL	0.289	mg/kg	11.04.2019 21:11	U	50

SAD

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B13-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-003 Date Collected: 10.31.2019 07:50 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Seq Number: 3106377 SUB: T104704215-19-30

Chromentame 74-87-3 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 cis-1.2-Dichloroptene 156-59-2 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 cis-1.3-Dichloroptopene 18061-01-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dibromomethane 74-95-3 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dichlorodiflaroromethane 75-71-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Editylkenzene 100-41-4 BRL 0.0577 mg/kg 11.04.2019 21:11 U 50 Idodomethane (Methyl Iodide) 74-88-3 BRL 0.157 mg/kg 11.04.2019 21:11 U 50 Isopropylbenzene 98-82-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Isopropylbenzene 98-82-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylene Chloride <	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichloropropene 10061-01-5 BRI. 0.289 mgkg 11.04.2019 21:11 U 50 Dibromochloromethane 124-48-1 BRI. 0.289 mgkg 11.04.2019 21:11 U 50 Dichlorodifibroomethane 74-95-3 BRI. 0.289 mgkg 11.04.2019 21:11 U 50 Eithylhenzene 100-41-4 BRI. 0.037 mgkg 11.04.2019 21:11 U 50 Hexachlorobudatine 87-68-3 BRI. 0.029 mgkg 11.04.2019 21:11 U 50 Idodomethane (Methyl Iodide) 74-88-4 BRI. 0.15 mgkg 11.04.2019 21:11 U 50 Isopropylbenzene 98-82-8 BRI. 0.15 mgkg 11.04.2019 21:11 U 50 Bortoride 75-09-2 BRI. 0.15 mgkg 11.04.2019 21:11 U 50 Methylene Chloride 75-09-2 BRI. 0.289 mgkg 11.04.2019 21:11 U 50 Pollari 103-3	Chloromethane	74-87-3	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Dibromochloromethane 12448-1 BRL 0.289 mgkg 11.04.2019 21:11 U 50 50 50 50 50 50 50	cis-1,2-Dichloroethene	156-59-2	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Dirbonomethane	cis-1,3-Dichloropropene	10061-01-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Dichlorodiffluoromethane 75-71-8 BRL 0.289 mgkg 11.04.2019 21:11 U 50	Dibromochloromethane	124-48-1	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Ehiyhbenzene 100-41-4 BRIL 0.0577 mg/kg 11.04.2019 21:11 U 50	Dibromomethane	74-95-3	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Hexachlorobutadiene	Dichlorodifluoromethane	75-71-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Description Parametric Pa	Ethylbenzene	100-41-4	BRL	0.0577	mg/kg	11.04.2019 21:11	U	50
Suppossible 98-82-8 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 mg-kylenes 179601-23-1 0.197 0.115 mg/kg 11.04.2019 21:11 V 50 Methylene Chloride 75-49-2 BRL 1.15 mg/kg 11.04.2019 21:11 V 50 Methylene Chloride 75-49-2 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Naphthalene 91-20-3 28.3 2.31 mg/kg 11.04.2019 21:11 V 50 Naphthalene 91-20-3 28.3 2.31 mg/kg 11.04.2019 21:11 V 50 Naphthalene 104-51-8 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Naphthalene 103-65-1 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Naphthalene 95-47-6 0.133 0.0289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 136-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 1006-10-26 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 1006-10-26 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 1006-10-26 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 1006-10-26 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 1006-10-26 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 1006-10-26 BRL 0.289 mg/kg 11.04.2019 21:11 V 50 Sec-Butylbenzene 1006-10-26 BRL 0.289 mg/kg 11.04.20	Hexachlorobutadiene	87-68-3	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Methylene Chloride	Iodomethane (Methyl Iodide)	74-88-4	BRL	1.15	mg/kg	11.04.2019 21:11	U	50
Methylene Chloride 75-09-2 BRL 1.15 mg/kg 11.04.2019 21:11 U 50 MTBE 1634-044 BRL 0.289 mg/kg 11.04.2019 21:31 U 50 Naphthalene 91-20-3 28.3 2.31 mg/kg 11.04.2019 21:31 U 50 n-Butylbenzene 104-51-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 n-Propylbenzene 103-65-1 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 n-Propylbenzene 95-47-6 0.133 0.0577 mg/kg 11.04.2019 21:11 U 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Styrene 100-042-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Etter-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Totlach 20 30 0.030	Isopropylbenzene	98-82-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
MTBE 1634-04-4 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 Naphthalene 91-20-3 28.3 2.31 mg/kg 1.04.2019 21:32 D 200 n-Butylbenzene 104-51-8 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 o-Xylene 95-47-6 0.133 0.0577 mg/kg 11.04.2019 21:11 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Styrene 100-42-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Ettrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Total Xylene 1330-20-7 0.330 0.577 mg/kg 11.04.2019 21:11 U 50 Total Xylene 156-60-5 BRL	m,p-Xylenes	179601-23-1	0.197	0.115	mg/kg	11.04.2019 21:11		50
Asplithalene 91-20-3 28.3 2.31 mg/kg 11.04.2019 21:32 D 200 n-Butylbenzene 104-51-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 n-Propylbenzene 103-65-1 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 o-Xylene 95-47-6 0.133 0.0577 mg/kg 11.04.2019 21:11 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Styrene 100-42-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 tert-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Totachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Totalutylenes 1330-20-7 BR	Methylene Chloride	75-09-2	BRL	1.15	mg/kg	11.04.2019 21:11	U	50
n-Butylbenzene 104-51-8 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 n-Propylbenzene 103-65-1 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 o-Xylene 95-47-6 0.133 0.0577 mg/kg 1.04.2019 21:11 U 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Sec-Butylbenzene 100-42-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 tert-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Toluene 108-88-3 0.380 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloroepropene 10061-02-6	MTBE	1634-04-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
n-Propylbenzene 103-65-1 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 o-Xylene 95-47-6 0.133 0.0577 mg/kg 11.04.2019 21:11 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Styrene 100-42-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 tetr-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Total Xylene 1330-20-7 0.330 0.0577 mg/kg 11.04.2019 21:11 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoroethene 79-01-	Naphthalene	91-20-3	28.3	2.31	mg/kg	11.04.2019 21:32	D	200
o-Xylene 95-47-6 0.133 0.0577 mg/kg 11.04.2019 21:11 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Styrene 100-42-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 terr-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Tollace 108-88-3 0.380 0.289 mg/kg 11.04.2019 21:11 U 50 Tollace 108-88-3 0.380 0.0577 mg/kg 11.04.2019 21:11 U 50 Tollace 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorothene 79-01-6 BRL	n-Butylbenzene	104-51-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 See-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Styrene 100-42-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 tert-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Toluene 108-88-3 0.380 0.289 mg/kg 11.04.2019 21:11 U 50 Total Xylenes 1330-20-7 0.330 0.0577 mg/kg 11.04.2019 21:11 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane	n-Propylbenzene	103-65-1	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Sec-Butylbenzene 135-98-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Styrene 100-42-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 tert-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Toluene 108-88-3 0.380 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 <td>o-Xylene</td> <td>95-47-6</td> <td>0.133</td> <td>0.0577</td> <td>mg/kg</td> <td>11.04.2019 21:11</td> <td></td> <td>50</td>	o-Xylene	95-47-6	0.133	0.0577	mg/kg	11.04.2019 21:11		50
Styrene 100-42-5 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 tetr-Butylbenzene 98-06-6 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 Toluene 108-88-3 0.380 0.289 mg/kg 1.04.2019 21:11 U 50 Total Xylenes 1330-20-7 0.330 0.0577 mg/kg 1.04.2019 21:11 U 50 trans-1,2-dichloroptopene 156-60-5 BRL 0.289 mg/kg 1.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
tert-Butylbenzene 98-06-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Toluene 108-88-3 0.380 0.289 mg/kg 11.04.2019 21:11 U 50 Total Xylenes 1330-20-7 0.330 0.0577 mg/kg 11.04.2019 21:11 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Using Chloride 75-0	Sec-Butylbenzene	135-98-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Tetrachloroethylene 127-18-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Toluene 108-88-3 0.380 0.289 mg/kg 11.04.2019 21:11 U 50 Total Xylenes 1330-20-7 0.330 0.0577 mg/kg 11.04.2019 21:11 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Qylor Cyclohexane 110-	Styrene	100-42-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Toluene 108-88-3 0.380 0.289 mg/kg 11.04.2019 21:11 50 Total Xylenes 1330-20-7 0.330 0.0577 mg/kg 11.04.2019 21:11 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL	tert-Butylbenzene	98-06-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Total Xylenes 1330-20-7 0.330 0.0577 mg/kg 11.04.2019 21:11 50 trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 B	Tetrachloroethylene	127-18-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 I,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Nethylcyclohexane 110-54-3 BRL 0	Toluene	108-88-3	0.380	0.289	mg/kg	11.04.2019 21:11		50
trans-1,3-dichloropropene 10061-02-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8	Total Xylenes	1330-20-7	0.330	0.0577	mg/kg	11.04.2019 21:11		50
Trichloroethene 79-01-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL	trans-1,2-dichloroethene	156-60-5	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Trichlorofluoromethane 75-69-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Vinyl Acetate 108-05-4 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	Trichloroethene	79-01-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Vinyl Chloride 75-01-4 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	Trichlorofluoromethane	75-69-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
1,3-Butadiene 106-99-0 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	Vinyl Acetate	108-05-4	BRL	0.577	mg/kg	11.04.2019 21:11	U	50
Cyclohexane 110-82-7 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	Vinyl Chloride	75-01-4	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Dicyclopentadiene 77-73-6 BRL 0.289 mg/kg 11.04.2019 21:11 U 50 Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	1,3-Butadiene	106-99-0	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
Methylcyclohexane 108-87-2 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	Cyclohexane	110-82-7	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
n-Hexane 110-54-3 BRL 0.577 mg/kg 11.04.2019 21:11 U 50 4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	Dicyclopentadiene	77-73-6	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
4-Ethyltoluene 622-96-8 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	Methylcyclohexane	108-87-2	BRL	0.577	mg/kg	11.04.2019 21:11	U	50
	n-Hexane	110-54-3	BRL	0.577	mg/kg	11.04.2019 21:11	U	50
Propene 115-07-1 BRL 0.289 mg/kg 11.04.2019 21:11 U 50	4-Ethyltoluene	622-96-8	BRL	0.289	mg/kg	11.04.2019 21:11	U	50
	Propene	115-07-1	BRL	0.289	mg/kg	11.04.2019 21:11	U	50

SAD

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-003 Date Collected: 10.31.2019 07:50 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Seq Number: 3106377 SUB: T104704215-19-30

% Recovery							
Surrogate		Units	Limits	Analysis Date	Flag		
Dibromofluoromethane	91	%	53-142	11.04.2019 21:11			
1,2-Dichloroethane-D4	100	%	56-150	11.04.2019 21:11			
Toluene-D8	102	%	70-130	11.04.2019 21:11			
4-Bromofluorobenzene	97	%	68-152	11.04.2019 21:11			

Seq Number: 3106545

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B13-2.5-3.0 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-004 Sample Depth: 2.5 - 3.0 ft Date Collected: 10.31.2019 08:10

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Tech: **KCS** Analyst: Date Prep: 11.05.2019 13:00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter Cas Number Result RL Units **Analysis Date** Dil Cyanide, Total 57-12-5 0.0668 0.0532 mg/kg 11.05.2019 15:22 1

Prep Method: SW7471P Analytical Method: Mercury by SW 7471B

% Moisture: **ADS** Tech:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30 Seq Number: 3106489

Parameter Cas Number Result RL Units **Analysis Date** Flag Dil BRL 0.0196 11.05.2019 12:39 U Mercury 7439-97-6 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: Basis: Dry Weight Date Prep: 11.05.2019 10:00

Seq Number: 3106468 SUB: T104704215-19-30

RL **Parameter** Cas Number Result Dil Units **Analysis Date** Flag 18.9 11.05.2019 11:46 Arsenic 7440-38-2 2.00 10 mg/kg Barium 7440-39-3 540 4.00 11.05.2019 11:46 10 mg/kg Cadmium 7440-43-9 BRL 2.00 11.05.2019 11:46 U 10 mg/kg Chromium 7440-47-3 12.9 4.00 11.05.2019 11:46 10 mg/kg Lead 7439-92-1 17.9 2.00 mg/kg 11.05.2019 11:46 10 Selenium 7782-49-2 BRL 2.00 mg/kg 11.05.2019 11:46 U 10 Silver 7440-22-4 BRL 2.00 mg/kg 11.05.2019 11:46 U 10

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-004 Date Collected: 10.31.2019 08:10 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106491

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.05.2019 11:52
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.2019 13:301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.84 pН 12408-02-5 1 Temperature TEMP 24.9 Deg C 11.04.2019 12:44 1

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-004 Date Collected: 10.31.2019 08:10 Sample Depth: 2.5 - 3.0 ft

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:24 Basis: Wet Weight

Seq Number: 3106445 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0333	mg/kg	11.05.2019 12:56	U	2
PCB-1221	11104-28-2	BRL	0.0333	mg/kg	11.05.2019 12:56	U	2
PCB-1232	11141-16-5	BRL	0.0333	mg/kg	11.05.2019 12:56	U	2
PCB-1242	53469-21-9	BRL	0.0333	mg/kg	11.05.2019 12:56	U	2
PCB-1248	12672-29-6	BRL	0.0333	mg/kg	11.05.2019 12:56	U	2
PCB-1254	11097-69-1	BRL	0.0333	mg/kg	11.05.2019 12:56	U	2
PCB-1260	11096-82-5	BRL	0.0333	mg/kg	11.05.2019 12:56	U	2

 Surrogate
 Units
 Limits
 Analysis Date
 Flag

 Decachlorobiphenyl
 188
 %
 39-125
 11.05.2019 12:56
 **

 Tetrachloro-m-xylene
 78
 %
 37-124
 11.05.2019 12:56
 **

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-004 Date Collected: 10.31.2019 08:10 Sample Depth: 2.5 - 3.0 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 07:48 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.955	0.333		mg/kg	11.05.2019 13:10		200
Acenaphthylene	208-96-8	10.9	0.333		mg/kg	11.05.2019 13:10		200
Anthracene	120-12-7	4.88	0.333		mg/kg	11.05.2019 13:10		200
Benzo(a)anthracene	56-55-3	7.25	0.333		mg/kg	11.05.2019 13:10		200
Benzo(a)pyrene	50-32-8	9.99	0.333		mg/kg	11.05.2019 13:10		200
Benzo(b) fluoranthene	205-99-2	10.0	0.333		mg/kg	11.05.2019 13:10		200
Benzo(g,h,i)perylene	191-24-2	8.37	0.333		mg/kg	11.05.2019 13:10		200
Benzo(k)fluoranthene	207-08-9	2.73	0.333		mg/kg	11.05.2019 13:10		200
Chrysene	218-01-9	7.71	0.333		mg/kg	11.05.2019 13:10		200
Dibenz(a,h)Anthracene	53-70-3	BRL	0.333		mg/kg	11.05.2019 13:10	U	200
Fluoranthene	206-44-0	28.3	0.333		mg/kg	11.05.2019 13:10		200
Fluorene	86-73-7	5.82	0.333		mg/kg	11.05.2019 13:10		200
Indeno(1,2,3-c,d)Pyrene	193-39-5	6.18	0.333		mg/kg	11.05.2019 13:10		200
Naphthalene	91-20-3	21.0	3.33		mg/kg	11.05.2019 13:10		200
Phenanthrene	85-01-8	40.1	0.333		mg/kg	11.05.2019 13:10		200
Pyrene	129-00-0	33.8	0.333		mg/kg	11.05.2019 13:10		200
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		89	%	31-130		5.2019 13:10		
2-Fluorobiphenyl		101	%	51-133		5.2019 13:10		
Terphenyl-D14		136	%	46-137	11.05	5.2019 13:10		

Seq Number: 3106377

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B13-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-004 Date Collected: 10.31.2019 08:10 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,1-Dichloroethane	75-34-3	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,1-Dichloroethene	75-35-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,1-Dichloropropene	563-58-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2-Dibromoethane	106-93-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2-Dichloroethane	107-06-2	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,2-Dichloropropane	78-87-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,3-Dichloropropane	142-28-9	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
2,2-Dichloropropane	594-20-7	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
2-Butanone	78-93-3	BRL	0.971	mg/kg	11.04.2019 16:33	U	50
2-Chlorotoluene	95-49-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
2-Hexanone	591-78-6	BRL	2.43	mg/kg	11.04.2019 16:33	U	50
4-Chlorotoluene	106-43-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.43	mg/kg	11.04.2019 16:33	U	50
Acetone	67-64-1	BRL	4.85	mg/kg	11.04.2019 16:33	U	50
Benzene	71-43-2	BRL	0.0485	mg/kg	11.04.2019 16:33	U	50
Bromobenzene	108-86-1	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Bromochloromethane	74-97-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Bromodichloromethane	75-27-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Bromoform	75-25-2	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Bromomethane	74-83-9	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Carbon Disulfide	75-15-0	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Carbon Tetrachloride	56-23-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Chlorobenzene	108-90-7	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Chloroethane	75-00-3	BRL	0.485	mg/kg	11.04.2019 16:33	U	50
Chloroform	67-66-3	BRL	0.243	mg/kg	11.04.2019 16:33	U	50

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B13-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-004 Date Collected: 10.31.2019 08:10 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Dibromochloromethane	124-48-1	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Dibromomethane	74-95-3	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Ethylbenzene	100-41-4	BRL	0.0485	mg/kg	11.04.2019 16:33	U	50
Hexachlorobutadiene	87-68-3	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.971	mg/kg	11.04.2019 16:33	U	50
Isopropylbenzene	98-82-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
m,p-Xylenes	179601-23-1	BRL	0.0971	mg/kg	11.04.2019 16:33	U	50
Methylene Chloride	75-09-2	BRL	0.971	mg/kg	11.04.2019 16:33	U	50
MTBE	1634-04-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Naphthalene	91-20-3	10.5	1.94	mg/kg	11.04.2019 16:54	D	200
n-Butylbenzene	104-51-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
n-Propylbenzene	103-65-1	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
o-Xylene	95-47-6	BRL	0.0485	mg/kg	11.04.2019 16:33	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Sec-Butylbenzene	135-98-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Styrene	100-42-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
tert-Butylbenzene	98-06-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Tetrachloroethylene	127-18-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Toluene	108-88-3	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Total Xylenes	1330-20-7	BRL	0.0485	mg/kg	11.04.2019 16:33	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Trichloroethene	79-01-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Trichlorofluoromethane	75-69-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Vinyl Acetate	108-05-4	BRL	0.485	mg/kg	11.04.2019 16:33	U	50
Vinyl Chloride	75-01-4	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
1,3-Butadiene	106-99-0	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Cyclohexane	110-82-7	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Dicyclopentadiene	77-73-6	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Methylcyclohexane	108-87-2	BRL	0.485	mg/kg	11.04.2019 16:33	U	50
n-Hexane	110-54-3	BRL	0.485	mg/kg	11.04.2019 16:33	U	50
4-Ethyltoluene	622-96-8	BRL	0.243	mg/kg	11.04.2019 16:33	U	50
Propene	115-07-1	BRL	0.243	mg/kg	11.04.2019 16:33	U	50

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-004 Date Collected: 10.31.2019 08:10 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	96	%	53-142	11.04.2019 16:33	
1,2-Dichloroethane-D4	99	%	56-150	11.04.2019 16:33	
Toluene-D8	102	%	70-130	11.04.2019 16:33	
4-Bromofluorobenzene	96	%	68-152	11.04.2019 16:33	

ADS

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B13-5.0-5.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-005 Date Collected: 10.31.2019 09:10 Sample Depth: 5.0 - 5.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight Seq Number: 3106489

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0239 0.0192 mg/kg 11.05.2019 12:57 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Dry Weight Date Prep: 11.05.2019 10:00

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.0	1.89	mg/kg	11.05.2019 12:15		10
Barium	7440-39-3	95.8	3.77	mg/kg	11.05.2019 12:15		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.05.2019 12:15	U	10
Chromium	7440-47-3	9.46	3.77	mg/kg	11.05.2019 12:15		10
Lead	7439-92-1	43.7	1.89	mg/kg	11.05.2019 12:15		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.05.2019 12:15	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.05.2019 12:15	U	10

Seq Number: 3106513

Analyst:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B13-5.0-5.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-005 Date Collected: 10.31.2019 09:10 Sample Depth: 5.0 - 5.5 ft

Date Prep:

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

11.05.2019 07:57

Tech: JOZ DNE

SUB: T104704215-19-30

Wet Weight

Basis:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.116	0.0666	mg/kg	11.05.2019 14:50		20
Acenaphthylene	208-96-8	1.89	0.0666	mg/kg	11.05.2019 14:50		20
Anthracene	120-12-7	0.927	0.0666	mg/kg	11.05.2019 14:50		20
Benzo(a)anthracene	56-55-3	2.13	0.0666	mg/kg	11.05.2019 14:50		20
Benzo(a)pyrene	50-32-8	3.21	0.0666	mg/kg	11.05.2019 14:50		20
Benzo(b)fluoranthene	205-99-2	3.49	0.0666	mg/kg	11.05.2019 14:50		20
Benzo(g,h,i)perylene	191-24-2	2.58	0.0666	mg/kg	11.05.2019 14:50		20
Benzo(k)fluoranthene	207-08-9	1.05	0.0666	mg/kg	11.05.2019 14:50		20
Chrysene	218-01-9	2.69	0.0666	mg/kg	11.05.2019 14:50		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0666	mg/kg	11.05.2019 14:50	U	20
Fluoranthene	206-44-0	7.83	0.0666	mg/kg	11.05.2019 14:50		20
Fluorene	86-73-7	0.669	0.0666	mg/kg	11.05.2019 14:50		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	2.04	0.0666	mg/kg	11.05.2019 14:50		20
Naphthalene	91-20-3	2.60	0.666	mg/kg	11.05.2019 14:50		20
Phenanthrene	85-01-8	8.36	0.0666	mg/kg	11.05.2019 14:50		20
Pyrene	129-00-0	8.76	0.0666	mg/kg	11.05.2019 14:50		20
		% Recovery					

% Recovery								
Surrogate		Units	Limits	Analysis Date	Flag			
Nitrobenzene-d5	100	%	31-130	11.05.2019 14:50				
2-Fluorobiphenyl	100	%	51-133	11.05.2019 14:50				
Terphenyl-D14	108	%	46-137	11.05.2019 14:50				

ADS

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-7.5-8.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-006 Date Collected: 10.31.2019 09:25 Sample Depth: 7.5 - 8 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0267
 0.0196
 mg/kg
 11.05.2019 12:59
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.05.2019 10:00

Prep: 11.05.2019 10:00 Basis: Dry Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	24.5	1.96	mg/kg	11.05.2019 12:18		10
Barium	7440-39-3	247	3.92	mg/kg	11.05.2019 12:18		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.05.2019 12:18	U	10
Chromium	7440-47-3	19.1	3.92	mg/kg	11.05.2019 12:18		10
Lead	7439-92-1	49.8	1.96	mg/kg	11.05.2019 12:18		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.05.2019 12:18	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.05.2019 12:18	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-7.5-8.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-006 Date Collected: 10.31.2019 09:25 Sample Depth: 7.5 - 8 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	F	lag	Dil
Acenaphthene	83-32-9	0.580	0.0668		mg/kg	11.05.2019 20:4	5		20
Acenaphthylene	208-96-8	9.61	0.0668		mg/kg	11.05.2019 20:4	5		20
Anthracene	120-12-7	4.41	0.0668		mg/kg	11.05.2019 20:4	5		20
Benzo(a)anthracene	56-55-3	7.72	0.0668		mg/kg	11.05.2019 20:4	5		20
Benzo(a)pyrene	50-32-8	11.1	0.0668		mg/kg	11.05.2019 20:4	5		20
Benzo(b) fluoranthene	205-99-2	10.3	0.0668		mg/kg	11.05.2019 20:4	5		20
Benzo(g,h,i)perylene	191-24-2	11.0	0.0668		mg/kg	11.05.2019 20:4	5		20
Benzo(k)fluoranthene	207-08-9	3.68	0.0668		mg/kg	11.05.2019 20:4	5		20
Chrysene	218-01-9	8.48	0.0668		mg/kg	11.05.2019 20:4	5		20
Dibenz(a,h)Anthracene	53-70-3	1.26	0.0668		mg/kg	11.05.2019 20:4	5		20
Fluoranthene	206-44-0	33.8	0.668		mg/kg	11.05.2019 20:2	.8	D	200
Fluorene	86-73-7	4.75	0.0668		mg/kg	11.05.2019 20:4	5		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	7.63	0.0668		mg/kg	11.05.2019 20:4	5		20
Naphthalene	91-20-3	25.1	6.68		mg/kg	11.05.2019 20:2	8	D	200
Phenanthrene	85-01-8	41.3	0.668		mg/kg	11.05.2019 20:2	8	D	200
Pyrene	129-00-0	39.3	0.668		mg/kg	11.05.2019 20:2	8	D	200
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		95	%	31-130		5.2019 20:45			
2-Fluorobiphenyl		102	%	51-133		5.2019 20:45			
Terphenyl-D14		122	%	46-137	11.05	5.2019 20:45			

ADS

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B13-10.0-10.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-007 Date Collected: 10.31.2019 09:35 Sample Depth: 10 - 10.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Result **Parameter** Cas Number RLUnits **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0196 mg/kg 11.05.2019 13:01 U 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: Date Prep: 11.05.2019 10:00 Basis: Dry Weight Seq Number: 3106468

SUB: T104704215-19-30

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 22.7 1.85 11.05.2019 12:21 10 Arsenic 7440-38-2 mg/kg Barium 135 3.70 7440-39-3 mg/kg 11.05.2019 12:21 10 Cadmium 7440-43-9 BRL 1.85 mg/kg 11.05.2019 12:21 U 10 Chromium 7440-47-3 11.2 3.70 11.05.2019 12:21 10 mg/kg 20.5 10 Lead 7439-92-1 1.85 mg/kg 11.05.2019 12:21 Selenium 7782-49-2 BRL 1.85 11.05.2019 12:21 U 10 mg/kg Silver 7440-22-4 BRL 1.85 11.05.2019 12:21 U 10 mg/kg

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-10.0-10.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-007 Date Collected: 10.31.2019 09:35 Sample Depth: 10 - 10.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:03 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0786	0.0334		mg/kg	11.05.2019 21:18		20
Acenaphthylene	208-96-8	1.74	0.0334		mg/kg	11.05.2019 21:18		20
Anthracene	120-12-7	0.706	0.0334		mg/kg	11.05.2019 21:18		20
Benzo(a)anthracene	56-55-3	1.57	0.0334		mg/kg	11.05.2019 21:18		20
Benzo(a)pyrene	50-32-8	2.44	0.0334		mg/kg	11.05.2019 21:18		20
Benzo(b)fluoranthene	205-99-2	2.39	0.0334		mg/kg	11.05.2019 21:18		20
Benzo(g,h,i)perylene	191-24-2	2.47	0.0334		mg/kg	11.05.2019 21:18		20
Benzo(k)fluoranthene	207-08-9	0.825	0.0334		mg/kg	11.05.2019 21:18		20
Chrysene	218-01-9	1.86	0.0334		mg/kg	11.05.2019 21:18		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0334		mg/kg	11.05.2019 21:18	U	20
Fluoranthene	206-44-0	5.87	0.0334		mg/kg	11.05.2019 21:18		20
Fluorene	86-73-7	0.643	0.0334		mg/kg	11.05.2019 21:18		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.78	0.0334		mg/kg	11.05.2019 21:18		20
Naphthalene	91-20-3	3.23	0.334		mg/kg	11.05.2019 21:18		20
Phenanthrene	85-01-8	6.56	0.0334		mg/kg	11.05.2019 21:18		20
Pyrene	129-00-0	7.21	0.334		mg/kg	11.05.2019 21:02	D	200
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date F	lag	
Nitrobenzene-d5		96	%	31-130	11.05	5.2019 21:18		
2-Fluorobiphenyl		98	%	51-133	11.05	5.2019 21:18		
Terphenyl-D14		109	%	46-137	11.05	5.2019 21:18		

ADS

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-15.0-15.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-008 Date Collected: 10.31.2019 09:45 Sample Depth: 15 - 15.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.05.2019 13:03
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.05.2019 10:00 Basis: Dry Weight

Seq Number: 3106468 SUB: T104704215-19-30

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 21.0 1.79 11.05.2019 12:24 10 Arsenic 7440-38-2 mg/kg Barium 76.0 7440-39-3 3.57 11.05.2019 12:24 10 mg/kg Cadmium 7440-43-9 BRL 1.79 mg/kg 11.05.2019 12:24 U 10 Chromium 6.13 3.57 11.05.2019 12:24 10 7440-47-3 mg/kg mg/kg 10 Lead 7439-92-1 10.6 1.79 11.05.2019 12:24 Selenium 7782-49-2 BRL 1.79 11.05.2019 12:24 U 10 mg/kg Silver 7440-22-4 BRL 1.79 11.05.2019 12:24 U 10 mg/kg

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-15.0-15.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-008 Date Collected: 10.31.2019 09:45 Sample Depth: 15 - 15.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:06 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00366	0.00167		mg/kg	11.05.2019 21:35		1
Acenaphthylene	208-96-8	0.0655	0.00167		mg/kg	11.05.2019 21:35		1
Anthracene	120-12-7	0.0267	0.00167		mg/kg	11.05.2019 21:35		1
Benzo(a)anthracene	56-55-3	0.0550	0.00167		mg/kg	11.05.2019 21:35		1
Benzo(a)pyrene	50-32-8	0.0817	0.00167		mg/kg	11.05.2019 21:35		1
Benzo(b)fluoranthene	205-99-2	0.0832	0.00167		mg/kg	11.05.2019 21:35		1
Benzo(g,h,i)perylene	191-24-2	0.0836	0.00167		mg/kg	11.05.2019 21:35		1
Benzo(k)fluoranthene	207-08-9	0.0268	0.00167		mg/kg	11.05.2019 21:35		1
Chrysene	218-01-9	0.0607	0.00167		mg/kg	11.05.2019 21:35		1
Dibenz(a,h)Anthracene	53-70-3	0.00962	0.00167		mg/kg	11.05.2019 21:35		1
Fluoranthene	206-44-0	0.206	0.00167		mg/kg	11.05.2019 21:35		1
Fluorene	86-73-7	0.0284	0.00167		mg/kg	11.05.2019 21:35		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0589	0.00167		mg/kg	11.05.2019 21:35		1
Naphthalene	91-20-3	0.116	0.0167		mg/kg	11.05.2019 21:35		1
Phenanthrene	85-01-8	0.246	0.00167		mg/kg	11.05.2019 21:35		1
Pyrene	129-00-0	0.243	0.00167		mg/kg	11.05.2019 21:35		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		108	%	31-130		5.2019 21:35		
2-Fluorobiphenyl		109	%	51-133	11.05	5.2019 21:35		
Terphenyl-D14		111	%	46-137	11.05	5.2019 21:35		

ADS

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-FD01-103119 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-009 Date Collected: 10.31.2019 09:50

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight Seq Number: 3106489

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0185 mg/kg 11.05.2019 13:05 U 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

Analyst: DEP Basis: Dry Weight Date Prep: 11.05.2019 10:00

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	17.1	1.75	mg/kg	11.05.2019 12:27		10
Barium	7440-39-3	75.5	3.51	mg/kg	11.05.2019 12:27		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.05.2019 12:27	U	10
Chromium	7440-47-3	8.37	3.51	mg/kg	11.05.2019 12:27		10
Lead	7439-92-1	11.8	1.75	mg/kg	11.05.2019 12:27		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.05.2019 12:27	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.05.2019 12:27	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD01-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-009 Date Collected: 10.31.2019 09:50

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:09 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00607	0.00167		mg/kg	11.05.2019 21:52		1
Acenaphthylene	208-96-8	0.106	0.00167		mg/kg	11.05.2019 21:52		1
Anthracene	120-12-7	0.0495	0.00167		mg/kg	11.05.2019 21:52		1
Benzo(a)anthracene	56-55-3	0.124	0.00167		mg/kg	11.05.2019 21:52		1
Benzo(a)pyrene	50-32-8	0.184	0.00167		mg/kg	11.05.2019 21:52		1
Benzo(b)fluoranthene	205-99-2	0.196	0.00167		mg/kg	11.05.2019 21:52		1
Benzo(g,h,i)perylene	191-24-2	0.173	0.00167		mg/kg	11.05.2019 21:52		1
Benzo(k)fluoranthene	207-08-9	0.0654	0.00167		mg/kg	11.05.2019 21:52		1
Chrysene	218-01-9	0.161	0.00167		mg/kg	11.05.2019 21:52		1
Dibenz(a,h)Anthracene	53-70-3	0.0250	0.00167		mg/kg	11.05.2019 21:52		1
Fluoranthene	206-44-0	0.491	0.0167		mg/kg	11.06.2019 11:08	D	10
Fluorene	86-73-7	0.0474	0.0167		mg/kg	11.05.2019 11:52	Ъ	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0474	0.00167		0 0	11.05.2019 21:52		1
					mg/kg			
Naphthalene	91-20-3	0.168	0.0167		mg/kg	11.05.2019 21:52		1
Phenanthrene	85-01-8	0.529	0.0167		mg/kg	11.06.2019 11:08	D	10
Pyrene	129-00-0	0.524	0.0167		mg/kg	11.06.2019 11:08	D	10
		% Recovery						
Surrogate		,	Units	Limits	Analy	ysis Date Fla	g	
Nitrobenzene-d5		98	%	31-130	11.05	5.2019 21:52		
2-Fluorobiphenyl		97	%	51-133	11.05	5.2019 21:52		
Terphenyl-D14		105	%	46-137	11.05	5.2019 21:52		

ADS

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B13-19.5-20.0 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-010 Date Collected: 10.31.2019 09:55 Sample Depth: 19.5 - 20 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0185 mg/kg 11.05.2019 13:10 U 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

Analyst: DEP Basis: Dry Weight Date Prep: 11.05.2019 10:00 Seq Number: 3106468

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.1	1.75	mg/kg	11.05.2019 12:30		10
Barium	7440-39-3	70.5	3.51	mg/kg	11.05.2019 12:30		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.05.2019 12:30	U	10
Chromium	7440-47-3	18.7	3.51	mg/kg	11.05.2019 12:30		10
Lead	7439-92-1	6.70	1.75	mg/kg	11.05.2019 12:30		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.05.2019 12:30	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.05.2019 12:30	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B13-19.5-20.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-010 Date Collected: 10.31.2019 09:55 Sample Depth: 19.5 - 20 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00265	0.00166		mg/kg	11.05.2019 22:0	8	1
Acenaphthylene	208-96-8	0.0343	0.00166		mg/kg	11.05.2019 22:0	8	1
Anthracene	120-12-7	0.0189	0.00166		mg/kg	11.05.2019 22:0	8	1
Benzo(a)anthracene	56-55-3	0.0355	0.00166		mg/kg	11.05.2019 22:0	8	1
Benzo(a)pyrene	50-32-8	0.0488	0.00166		mg/kg	11.05.2019 22:0	8	1
Benzo(b) fluoranthene	205-99-2	0.0504	0.00166		mg/kg	11.05.2019 22:0	8	1
Benzo(g,h,i)perylene	191-24-2	0.0455	0.00166		mg/kg	11.05.2019 22:0	8	1
Benzo(k)fluoranthene	207-08-9	0.0149	0.00166		mg/kg	11.05.2019 22:0	8	1
Chrysene	218-01-9	0.0380	0.00166		mg/kg	11.05.2019 22:0	8	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.05.2019 22:0	8 U	1
Fluoranthene	206-44-0	0.128	0.00166		mg/kg	11.05.2019 22:0	8	1
Fluorene	86-73-7	0.0190	0.00166		mg/kg	11.05.2019 22:0	8	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0329	0.00166		mg/kg	11.05.2019 22:0	8	1
Naphthalene	91-20-3	0.0518	0.0166		mg/kg	11.05.2019 22:0	8	1
Phenanthrene	85-01-8	0.159	0.00166		mg/kg	11.05.2019 22:0	8	1
Pyrene	129-00-0	0.152	0.00166		mg/kg	11.05.2019 22:0	8	1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		114	%	31-130	11.05	5.2019 22:08		
2-Fluorobiphenyl		117	%	51-133		5.2019 22:08		
Terphenyl-D14		123	%	46-137	11.05	5.2019 22:08		

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-TB01-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-011 Date Collected: 10.31.2019 08:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,1-Dichloroethane	75-34-3	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,1-Dichloroethene	75-35-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,1-Dichloropropene	563-58-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2-Dibromoethane	106-93-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2-Dichloroethane	107-06-2	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,2-Dichloropropane	78-87-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,3-Dichloropropane	142-28-9	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
2,2-Dichloropropane	594-20-7	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
2-Butanone	78-93-3	BRL	1.00	mg/kg	11.04.2019 17:38	U	50
2-Chlorotoluene	95-49-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
2-Hexanone	591-78-6	BRL	2.50	mg/kg	11.04.2019 17:38	U	50
4-Chlorotoluene	106-43-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.50	mg/kg	11.04.2019 17:38	U	50
Acetone	67-64-1	BRL	5.00	mg/kg	11.04.2019 17:38	U	50
Benzene	71-43-2	BRL	0.0500	mg/kg	11.04.2019 17:38	U	50
Bromobenzene	108-86-1	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Bromochloromethane	74-97-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Bromodichloromethane	75-27-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Bromoform	75-25-2	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Bromomethane	74-83-9	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Carbon Disulfide	75-15-0	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Carbon Tetrachloride	56-23-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Chlorobenzene	108-90-7	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Chloroethane	75-00-3	BRL	0.500	mg/kg	11.04.2019 17:38	U	50
Chloroform	67-66-3	BRL	0.250	mg/kg	11.04.2019 17:38	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-TB01-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-011 Date Collected: 10.31.2019 08:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Dibromochloromethane	124-48-1	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Dibromomethane	74-95-3	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Ethylbenzene	100-41-4	BRL	0.0500	mg/kg	11.04.2019 17:38	U	50
Hexachlorobutadiene	87-68-3	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.00	mg/kg	11.04.2019 17:38	U	50
Isopropylbenzene	98-82-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
m,p-Xylenes	179601-23-1	BRL	0.100	mg/kg	11.04.2019 17:38	U	50
Methylene Chloride	75-09-2	BRL	1.00	mg/kg	11.04.2019 17:38	U	50
MTBE	1634-04-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Naphthalene	91-20-3	BRL	0.500	mg/kg	11.04.2019 17:38	U	50
n-Butylbenzene	104-51-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
n-Propylbenzene	103-65-1	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
o-Xylene	95-47-6	BRL	0.0500	mg/kg	11.04.2019 17:38	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Sec-Butylbenzene	135-98-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Styrene	100-42-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
tert-Butylbenzene	98-06-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Tetrachloroethylene	127-18-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Toluene	108-88-3	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Total Xylenes	1330-20-7	BRL	0.0500	mg/kg	11.04.2019 17:38	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Trichloroethene	79-01-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Trichlorofluoromethane	75-69-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Vinyl Acetate	108-05-4	BRL	0.500	mg/kg	11.04.2019 17:38	U	50
Vinyl Chloride	75-01-4	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
1,3-Butadiene	106-99-0	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Cyclohexane	110-82-7	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Dicyclopentadiene	77-73-6	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Methylcyclohexane	108-87-2	BRL	0.500	mg/kg	11.04.2019 17:38	U	50
n-Hexane	110-54-3	BRL	0.500	mg/kg	11.04.2019 17:38	U	50
4-Ethyltoluene	622-96-8	BRL	0.250	mg/kg	11.04.2019 17:38	U	50
Propene	115-07-1	BRL	0.250	mg/kg	11.04.2019 17:38	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-TB01-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-011 Date Collected: 10.31.2019 08:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	96	%	53-142	11.04.2019 17:38	
1,2-Dichloroethane-D4	102	%	56-150	11.04.2019 17:38	
Toluene-D8	103	%	70-130	11.04.2019 17:38	
4-Bromofluorobenzene	89	%	68-152	11.04.2019 17:38	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B12-1.0-1.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-012 Date Collected: 10.31.2019 11:15 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Analyst: Date Prep: 11.05.2019 13:00 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW7471P

SUB: T104704215-19-30

% Moisture:

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Cyanide, Total 57-12-5 BRL 0.0588 mg/kg 11.05.2019 15:29 U 1

Analytical Method: Mercury by SW 7471B

KCS

Tech:

ADS Tech:

Seq Number: 3106545

ANJ Basis: Analyst: Date Prep: 11.05.2019 09:40 Wet Weight

Seq Number: 3106489

RL Parameter Cas Number Result Units **Analysis Date** Flag Dil Mercury 0.0302 0.0185 11.05.2019 13:22 7439-97-6

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

DEP Analyst:

Seq Number: 3106468

Prep Method: SW3050B

% Moisture: 0

Basis: Dry Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	18.0	1.96	mg/kg	11.05.2019 12:33		10
Barium	7440-39-3	111	3.92	mg/kg	11.05.2019 12:33		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.05.2019 12:33	U	10
Chromium	7440-47-3	10.0	3.92	mg/kg	11.05.2019 12:33		10
Lead	7439-92-1	166	1.96	mg/kg	11.05.2019 12:33		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.05.2019 12:33	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.05.2019 12:33	U	10

Date Prep:

11.05.2019 10:00

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-012 Date Collected: 10.31.2019 11:15 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106491

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.05.2019 12:10
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.2019 13:301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.30 pН 12408-02-5 1 Temperature TEMP 25.1 11.04.2019 12:44 1 Deg C

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-012 Date Collected: 10.31.2019 11:15 Sample Depth: 1.0 - 1.5 ft

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:27 Basis: Wet Weight

Seq Number: 3106445 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0333	mg/kg	11.05.2019 13:18	U	2
PCB-1221	11104-28-2	BRL	0.0333	mg/kg	11.05.2019 13:18	U	2
PCB-1232	11141-16-5	BRL	0.0333	mg/kg	11.05.2019 13:18	U	2
PCB-1242	53469-21-9	BRL	0.0333	mg/kg	11.05.2019 13:18	U	2
PCB-1248	12672-29-6	BRL	0.0333	mg/kg	11.05.2019 13:18	U	2
PCB-1254	11097-69-1	BRL	0.0333	mg/kg	11.05.2019 13:18	U	2
PCB-1260	11096-82-5	BRL	0.0333	mg/kg	11.05.2019 13:18	U	2

% Recovery

Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	126	%	39-125	11.05.2019 13:18	**
Tetrachloro-m-xylene	72	%	37-124	11.05.2019 13:18	

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-012 Date Collected: 10.31.2019 11:15 Sample Depth: 1.0 - 1.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0666		mg/kg	11.05.2019 22:25	U	20
Acenaphthylene	208-96-8	0.471	0.0666		mg/kg	11.05.2019 22:25		20
Anthracene	120-12-7	0.246	0.0666		mg/kg	11.05.2019 22:25		20
Benzo(a)anthracene	56-55-3	0.811	0.0666		mg/kg	11.05.2019 22:25		20
Benzo(a)pyrene	50-32-8	1.68	0.0666		mg/kg	11.05.2019 22:25		20
Benzo(b)fluoranthene	205-99-2	1.75	0.0666		mg/kg	11.05.2019 22:25		20
Benzo(g,h,i)perylene	191-24-2	2.12	0.0666		mg/kg	11.05.2019 22:25		20
Benzo(k)fluoranthene	207-08-9	0.520	0.0666		mg/kg	11.05.2019 22:25		20
Chrysene	218-01-9	1.04	0.0666		mg/kg	11.05.2019 22:25		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0666		mg/kg	11.05.2019 22:25	U	20
Fluoranthene	206-44-0	3.68	0.0666		mg/kg	11.05.2019 22:25		20
Fluorene	86-73-7	0.0716	0.0666		mg/kg	11.05.2019 22:25		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.44	0.0666		mg/kg	11.05.2019 22:25		20
Naphthalene	91-20-3	BRL	0.666		mg/kg	11.05.2019 22:25	U	20
Phenanthrene	85-01-8	2.37	0.0666		mg/kg	11.05.2019 22:25		20
Pyrene	129-00-0	4.40	0.0666		mg/kg	11.05.2019 22:25		20
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		98	%	31-130	11.05	5.2019 22:25		
2-Fluorobiphenyl		98	%	51-133	11.05	5.2019 22:25		
Terphenyl-D14		103	%	46-137	11.05	5.2019 22:25		

Seq Number: 3106377

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B12-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-012 Date Collected: 10.31.2019 11:15 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,1-Dichloroethane	75-34-3	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,1-Dichloroethene	75-35-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,1-Dichloropropene	563-58-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2-Dibromoethane	106-93-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2-Dichloroethane	107-06-2	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,2-Dichloropropane	78-87-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,3-Dichloropropane	142-28-9	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
2,2-Dichloropropane	594-20-7	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
2-Butanone	78-93-3	BRL	1.01	mg/kg	11.04.2019 17:59	U	50
2-Chlorotoluene	95-49-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
2-Hexanone	591-78-6	BRL	2.53	mg/kg	11.04.2019 17:59	U	50
4-Chlorotoluene	106-43-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.53	mg/kg	11.04.2019 17:59	U	50
Acetone	67-64-1	BRL	5.06	mg/kg	11.04.2019 17:59	U	50
Benzene	71-43-2	BRL	0.0506	mg/kg	11.04.2019 17:59	U	50
Bromobenzene	108-86-1	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Bromochloromethane	74-97-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Bromodichloromethane	75-27-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Bromoform	75-25-2	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Bromomethane	74-83-9	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Carbon Disulfide	75-15-0	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Carbon Tetrachloride	56-23-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Chlorobenzene	108-90-7	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Chloroethane	75-00-3	BRL	0.506	mg/kg	11.04.2019 17:59	U	50
Chloroform	67-66-3	BRL	0.253	mg/kg	11.04.2019 17:59	U	50

Seq Number: 3106377

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-B12-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-012 Date Collected: 10.31.2019 11:15 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

SUB: T104704215-19-30

Chloromethane 74-87-3 BRL 0.253 mg/kg 11.04.2019 17-59 U 50 cis-12-Dichlorochene 156-59-2 BRL 0.253 mg/kg 11.04.2019 17-59 U 50 cis-13-Dichloropropene 10061-01-5 BRL 0.253 mg/kg 11.04.2019 17-59 U 50 Dibromochloromethane 74-95-3 BRL 0.253 mg/kg 11.04.2019 17-59 U 50 Ethylbenzene 100-41-4 BRL 0.253 mg/kg 11.04.2019 17-59 U 50 Ethylbenzene 100-41-4 BRL 0.0506 mg/kg 11.04.2019 17-59 U 50 Ethylbenzene 176-8-3 BRL 0.253 mg/kg 11.04.2019 17-59 U 50 Ethylbenzene 186-1 0.0506 mg/kg 11.04.2019 17-59 U 50 Ethylbenzene 197-61-23-1 BRL 0.253 mg/kg 11.04.2019 17-59 U 50 kopropylbenzene 175-61-22-3 BRL <t< th=""><th>Parameter</th><th>Cas Number</th><th>Result</th><th>RL</th><th>Units</th><th>Analysis Date</th><th>Flag</th><th>Dil</th></t<>	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichlorpropene 10061-01-5 BRIL 0.253 mayk 11.04.2019 17:59 U 50 Dibromochloromethane 124-48-1 BRIL 0.253 mgkg 11.04.2019 17:59 U 50 Dichlorodrifloromethane 74-95-3 BRIL 0.253 mgkg 11.04.2019 17:59 U 50 Ethylberzene 100-114 BRIL 0.0506 mgkg 11.04.2019 17:59 U 50 Hexachlorobudation 78-78-8 BRIL 0.050 mgkg 11.04.2019 17:59 U 50 Idodomethane (Methyl Iodide) 74-88-4 BRIL 0.101 mgkg 11.04.2019 17:59 U 50 Isopropylbenzene 98-82-8 BRIL 0.101 mgkg 11.04.2019 17:59 U 50 Mchtylene Chloride 75-09-2 BRIL 0.101 mgkg 11.04.2019 17:59 U 50 Mthylene Chloride 163-04-4 BRIL 0.253 mgkg 11.04.2019 17:59 U 50 Naphthalene	Chloromethane	74-87-3	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Dibromochloromethane 12448-1 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dibromomethane 74-95-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Eichylbenzene 100-41-4 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 Hexachtorobutadiene 87-68-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Icopropylbenzene 98-82-8 BRL 0.101 mg/kg 11.04.2019 17:59 U 50 Icopropylbenzene 98-82-8 BRL 0.101 mg/kg 11.04.2019 17:59 U 50 Methylene Chloride 75-09-2 BRL 0.101 mg/kg 11.04.2019 17:59 U 50 MTHE 163-404-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Naphthalene 91-20-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Palmblane 91-20-3 BRL <	cis-1,2-Dichloroethene	156-59-2	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Dibnomomethane 74-95-3 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Dichlorodifiloromethane 75-71-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Edhylbenzene 100.41-4 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Edwachlorobudidiene 87-68-3 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Edwachlorobudidiene 75-70-2 BRL 0.0253 mgkg 1.04.2019 17:59 U 50 Eopropylbenzene 179601-23-1 BRL 0.101 mgkg 1.04.2019 17:59 U 50 Methylene Chloride 75-09-2 BRL 0.101 mgkg 1.04.2019 17:59 U 50 Methylene Chloride 75-09-2 BRL 0.101 mgkg 1.04.2019 17:59 U 50 Maphthalene 91-20-3 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Maphthalene 104-51-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Naphthalene 104-51-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Naphthalene 104-51-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Naphthalene 104-51-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Naphthalene 104-51-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Naphthalene 104-52 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Naphthalene 135-98-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Sett-Butylbenzene 127-18-4 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Tetrachlorothylene 127-18-4 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Tetrachlorothene 156-60-5 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Tetrachlorothene 156-60-5 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Tetrachlorothene 156-60-5 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Tetrachlorothene 156-60-5 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Tetrachlorothene 156-60-5 BRL 0.253 mgkg 1.04.2019 17:59 U 50 Tetrachlorothene 156-60-5 BRL 0.253 mgkg 1.04.2019 17:59 U 50	cis-1,3-Dichloropropene	10061-01-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Dichlorodifluoromethane 75.71-8 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Eftylkenzene 100-41-4 BRL 0.0506 mg/kg 11.04.2019 17.59 U 50 Hexachlorobutadiene 87.68-3 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Idoomethane (Methyl Iodide) 74.88-4 BRL 1.01 mg/kg 11.04.2019 17.59 U 50 Isopropylbenzene 98.82-8 BRL 0.101 mg/kg 11.04.2019 17.59 U 50 Isopropylbenzene 75-09-2 BRL 0.101 mg/kg 11.04.2019 17.59 U 50 Methylene Chloride 75-09-2 BRL 0.101 mg/kg 11.04.2019 17.59 U 50 MTBE 1634-04-4 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Naphthalene 91-20-3 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Naphthalene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Naphthylenzene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Naphthylenzene 103-65-1 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 O-Xylene 95-47-6 BRL 0.056 mg/kg 11.04.2019 17.59 U 50 O-Cylene 0-Sopropylloluene 99-87-6 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 135-80-6 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 136-60-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 130-60-1 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 130-60-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 130-60-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 130-60-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 130-60-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-Burylbenzene 130-60-5 BRL 0.253 mg/kg 11.04.2019 17.59 U 50 Sec-B	Dibromochloromethane	124-48-1	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Ethylbenzene 100-41-4 8RL 0.0506 mg/kg 1.04.2019 17.59 U 50 Hexachlorobundiene 87-08-3 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Lodomethane (Methyl lodide) 74-88-4 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Mcpyropylbenzene 98-82-8 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Mchylene Chloride 75-09-2 8RL 1.01 mg/kg 1.04.2019 17.59 U 50 Methylene Chloride 75-09-2 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Mthylane 91-20-3 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Naphthalene 91-20-3 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Naphthalene 104-51-8 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 N-Propylbenzene 103-65-1 8RL 0.050 mg/kg 1.04.2019 17.59 U 50 N-Propylbenzene 98-47-6 8RL 0.050 mg/kg 1.04.2019 17.59 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 8RL 0.053 mg/kg 1.04.2019 17.59 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Suryene 135-98-8 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Suryene 136-88-3 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Suryene 138-8-3 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Tetrachloroethylene 127-18-4 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Total Xylene 1330-207 8RL 0.050 mg/kg 1.04.2019 17.59 U 50 Total Xylene 1330-207 8RL 0.050 mg/kg 1.04.2019 17.59 U 50 Total Xylene 156-60-5 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Total Xylene 156-60-5 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Total Xylene 130-60-2-6 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Total Xylene 130-60-2-6 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Total Xylene 156-60-5 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Total Xylene 156-60-5 8RL 0.253 mg/kg 1.04.2019 17.59 U 50 Trichloroethene 75-60-4 8RL 0.253 mg/kg 1.04.2019 17.5	Dibromomethane	74-95-3	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Hexachlorobudaiene	Dichlorodifluoromethane	75-71-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Colomethane (Methyl Iodide) 74-88-4 BRL 1.01 mg/kg 11.04.2019 17:59 U 50	Ethylbenzene	100-41-4	BRL	0.0506	mg/kg	11.04.2019 17:59	U	50
Borpopylbenzene 98-82-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylene Chloride 75-09-2 BRL 1.01 mg/kg 11.04.2019 17:59 U 50 Methylene Chloride 75-09-2 BRL 1.01 mg/kg 11.04.2019 17:59 U 50 Methylene Chloride 75-09-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Maghthalene 91-20-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Maghthalene 91-20-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Maghthalene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 95-47-6 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 Maghthalene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 136-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 136-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Maghthalene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Ma	Hexachlorobutadiene	87-68-3	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
m.pXylenes 179601-23-1 BRL 0.101 mg/kg 11.04.2019 17:59 U 50 Methylene Chloride 75-09-2 BRL 1.01 mg/kg 11.04.2019 17:59 U 50 MTBE 1634-04-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Naphthalene 91-20-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Butylhenzene 104-51-8 BRL 0.523 mg/kg 11.04.2019 17:59 U 50 n-Propylhenzene 103-65-1 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 e-Yylene 95-47-6 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 e-Se-Butylhenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 terr-Butylbenzene 98-06-6 BRL 0.253 </td <td>Iodomethane (Methyl Iodide)</td> <td>74-88-4</td> <td>BRL</td> <td>1.01</td> <td>mg/kg</td> <td>11.04.2019 17:59</td> <td>U</td> <td>50</td>	Iodomethane (Methyl Iodide)	74-88-4	BRL	1.01	mg/kg	11.04.2019 17:59	U	50
Methylene Chloride 75-09-2 BRL 1.01 mg/kg 11.04.2019 17:59 U 50 MTBE 1634-04-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Naphthalene 91-20-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Butylbenzene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 o-Xylene 95-47-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Etert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetra-Butylbenzene 127-18-4 BRL	Isopropylbenzene	98-82-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
MTBE 1634-04-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Naphthalene 91-20-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Butylbenzene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 or-Yopylbenzene 103-65-1 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Or-Xylene 95-47-6 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.0253 mg/kg 11.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 108-06-6 BRL	m,p-Xylenes	179601-23-1	BRL	0.101	mg/kg	11.04.2019 17:59	U	50
Naphthalene 91-20-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Butylbenzene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 n-Propylbenzene 103-65-1 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 o-Xylene 95-47-6 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 p-Cymene (p-Isopropyloluene) 99-87-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL <td>Methylene Chloride</td> <td>75-09-2</td> <td>BRL</td> <td>1.01</td> <td>mg/kg</td> <td>11.04.2019 17:59</td> <td>U</td> <td>50</td>	Methylene Chloride	75-09-2	BRL	1.01	mg/kg	11.04.2019 17:59	U	50
n-Butylbenzene 104-51-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 n-Propylbenzene 103-65-1 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 o-Xylene 95-47-6 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 p-Cymene (p-Isopropyltoluen) 99-87-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5	MTBE	1634-04-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
n-Propylbenzene 103-65-1 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 o-Xylene 95-47-6 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.056 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-	Naphthalene	91-20-3	BRL	0.506	mg/kg	11.04.2019 17:59	U	50
o-Xylene 95-47-6 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 136-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Toluene 108-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5	n-Butylbenzene	104-51-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Sec-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Toluene 108-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluorethane <th< td=""><td>n-Propylbenzene</td><td>103-65-1</td><td>BRL</td><td>0.253</td><td>mg/kg</td><td>11.04.2019 17:59</td><td>U</td><td>50</td></th<>	n-Propylbenzene	103-65-1	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
See-Butylbenzene 135-98-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Toluene 108-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichlorothene 156-60-5 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4	o-Xylene	95-47-6	BRL	0.0506	mg/kg	11.04.2019 17:59	U	50
Styrene 100-42-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Toluene 108-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
tert-Butylbenzene 98-06-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Toluene 108-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 L3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Hetsane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Hetsane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Hetshyltoluene 622-96-8 BRL 0.506 mg/kg 11.04.2019 17:59 U 50	Sec-Butylbenzene	135-98-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Tetrachloroethylene 127-18-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Toluene 108-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7	Styrene	100-42-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Toluene 108-88-3 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7	tert-Butylbenzene	98-06-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Total Xylenes 1330-20-7 BRL 0.0506 mg/kg 11.04.2019 17:59 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 <td>Tetrachloroethylene</td> <td>127-18-4</td> <td>BRL</td> <td>0.253</td> <td>mg/kg</td> <td>11.04.2019 17:59</td> <td>U</td> <td>50</td>	Tetrachloroethylene	127-18-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2<	Toluene	108-88-3	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
trans-1,3-dichloropropene 10061-02-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.506 mg/kg 11.04.2019 17:59 U 50	Total Xylenes	1330-20-7	BRL	0.0506	mg/kg	11.04.2019 17:59	U	50
Trichloroethene 79-01-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL	trans-1,2-dichloroethene	156-60-5	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Trichlorofluoromethane 75-69-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Vinyl Acetate 108-05-4 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	Trichloroethene	79-01-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Vinyl Chloride 75-01-4 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	Trichlorofluoromethane	75-69-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
1,3-Butadiene 106-99-0 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	Vinyl Acetate	108-05-4	BRL	0.506	mg/kg	11.04.2019 17:59	U	50
Cyclohexane 110-82-7 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	Vinyl Chloride	75-01-4	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Dicyclopentadiene 77-73-6 BRL 0.253 mg/kg 11.04.2019 17:59 U 50 Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	1,3-Butadiene	106-99-0	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
Methylcyclohexane 108-87-2 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	Cyclohexane	110-82-7	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
n-Hexane 110-54-3 BRL 0.506 mg/kg 11.04.2019 17:59 U 50 4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	Dicyclopentadiene	77-73-6	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
4-Ethyltoluene 622-96-8 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	Methylcyclohexane	108-87-2	BRL	0.506	mg/kg	11.04.2019 17:59	U	50
,	n-Hexane	110-54-3	BRL	0.506	mg/kg	11.04.2019 17:59	U	50
Propene 115-07-1 BRL 0.253 mg/kg 11.04.2019 17:59 U 50	4-Ethyltoluene	622-96-8	BRL	0.253	mg/kg	11.04.2019 17:59	U	50
	Propene	115-07-1	BRL	0.253	mg/kg	11.04.2019 17:59	U	50

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-1.0-1.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-012 Date Collected: 10.31.2019 11:15 Sample Depth: 1.0 - 1.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Dibromofluoromethane	90	%	53-142	11.04.2019 17:59	
1,2-Dichloroethane-D4	99	%	56-150	11.04.2019 17:59	
Toluene-D8	104	%	70-130	11.04.2019 17:59	
4-Bromofluorobenzene	95	%	68-152	11.04.2019 17:59	

ADS

Seq Number: 3106489

Seq Number: 3106468

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B12-2.5-3.0 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-013 Date Collected: 10.31.2019 11:25 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0175 mg/kg 11.05.2019 13:24 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Date Prep: 11.05.2019 10:00

Prep Method: SW3050B % Moisture:

Basis: Dry Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.1	1.69	mg/kg	11.05.2019 12:42		10
Barium	7440-39-3	136	3.39	mg/kg	11.05.2019 12:42		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.05.2019 12:42	U	10
Chromium	7440-47-3	9.32	3.39	mg/kg	11.05.2019 12:42		10
Lead	7439-92-1	8.74	1.69	mg/kg	11.05.2019 12:42		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.05.2019 12:42	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.05.2019 12:42	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-013 Date Collected: 10.31.2019 11:25 Sample Depth: 2.5 - 3.0 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:18 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	F	lag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.05.2019 22:5	8	U	1
Acenaphthylene	208-96-8	0.00490	0.00166		mg/kg	11.05.2019 22:5	8		1
Anthracene	120-12-7	0.00220	0.00166		mg/kg	11.05.2019 22:5	8		1
Benzo(a)anthracene	56-55-3	0.00481	0.00166		mg/kg	11.05.2019 22:5	8		1
Benzo(a)pyrene	50-32-8	0.00724	0.00166		mg/kg	11.05.2019 22:5	8		1
Benzo(b) fluoranthene	205-99-2	0.00736	0.00166		mg/kg	11.05.2019 22:5	8		1
Benzo(g,h,i)perylene	191-24-2	0.00718	0.00166		mg/kg	11.05.2019 22:5	8		1
Benzo(k)fluoranthene	207-08-9	0.00198	0.00166		mg/kg	11.05.2019 22:5	8		1
Chrysene	218-01-9	0.00503	0.00166		mg/kg	11.05.2019 22:5	8		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.05.2019 22:5	8	U	1
Fluoranthene	206-44-0	0.0181	0.00166		mg/kg	11.05.2019 22:5	8		1
Fluorene	86-73-7	0.00212	0.00166		mg/kg	11.05.2019 22:5	8		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00503	0.00166		mg/kg	11.05.2019 22:5	8		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.05.2019 22:5	8	U	1
Phenanthrene	85-01-8	0.0194	0.00166		mg/kg	11.05.2019 22:5	8		1
Pyrene	129-00-0	0.0216	0.00166		mg/kg	11.05.2019 22:5	8		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		105	%	31-130		5.2019 22:58			
2-Fluorobiphenyl		111	%	51-133		5.2019 22:58			
Terphenyl-D14		115	%	46-137	11.05	5.2019 22:58			

Certificate of Analytical Results 641882

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: D-B12-2.5-3.0 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-013 Date Collected: 10.31.2019 11:25 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Tech: SAD Analyst: Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,1-Dichloroethane	75-34-3	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,1-Dichloroethene	75-35-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,1-Dichloropropene	563-58-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2-Dibromoethane	106-93-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2-Dichloroethane	107-06-2	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,2-Dichloropropane	78-87-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,3-Dichloropropane	142-28-9	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
2,2-Dichloropropane	594-20-7	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
2-Butanone	78-93-3	BRL	0.882	mg/kg	11.04.2019 18:21	U	50
2-Chlorotoluene	95-49-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
2-Hexanone	591-78-6	BRL	2.20	mg/kg	11.04.2019 18:21	U	50
4-Chlorotoluene	106-43-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.20	mg/kg	11.04.2019 18:21	U	50
Acetone	67-64-1	BRL	4.41	mg/kg	11.04.2019 18:21	U	50
Benzene	71-43-2	BRL	0.0441	mg/kg	11.04.2019 18:21	U	50
Bromobenzene	108-86-1	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Bromochloromethane	74-97-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Bromodichloromethane	75-27-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Bromoform	75-25-2	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Bromomethane	74-83-9	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Carbon Disulfide	75-15-0	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Carbon Tetrachloride	56-23-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Chlorobenzene	108-90-7	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Chloroethane	75-00-3	BRL	0.441	mg/kg	11.04.2019 18:21	U	50
Chloroform	67-66-3	BRL	0.220	mg/kg	11.04.2019 18:21	U	50

Seq Number: 3106377

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-013 Date Collected: 10.31.2019 11:25 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Dibromochloromethane	124-48-1	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Dibromomethane	74-95-3	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Ethylbenzene	100-41-4	BRL	0.0441	mg/kg	11.04.2019 18:21	U	50
Hexachlorobutadiene	87-68-3	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.882	mg/kg	11.04.2019 18:21	U	50
Isopropylbenzene	98-82-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
m,p-Xylenes	179601-23-1	BRL	0.0882	mg/kg	11.04.2019 18:21	U	50
Methylene Chloride	75-09-2	BRL	0.882	mg/kg	11.04.2019 18:21	U	50
MTBE	1634-04-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Naphthalene	91-20-3	BRL	0.441	mg/kg	11.04.2019 18:21	U	50
n-Butylbenzene	104-51-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
n-Propylbenzene	103-65-1	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
o-Xylene	95-47-6	BRL	0.0441	mg/kg	11.04.2019 18:21	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Sec-Butylbenzene	135-98-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Styrene	100-42-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
tert-Butylbenzene	98-06-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Tetrachloroethylene	127-18-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Toluene	108-88-3	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Total Xylenes	1330-20-7	BRL	0.0441	mg/kg	11.04.2019 18:21	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Trichloroethene	79-01-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Trichlorofluoromethane	75-69-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Vinyl Acetate	108-05-4	BRL	0.441	mg/kg	11.04.2019 18:21	U	50
Vinyl Chloride	75-01-4	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
1,3-Butadiene	106-99-0	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Cyclohexane	110-82-7	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Dicyclopentadiene	77-73-6	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Methylcyclohexane	108-87-2	BRL	0.441	mg/kg	11.04.2019 18:21	U	50
n-Hexane	110-54-3	BRL	0.441	mg/kg	11.04.2019 18:21	U	50
4-Ethyltoluene	622-96-8	BRL	0.220	mg/kg	11.04.2019 18:21	U	50
Propene	115-07-1	BRL	0.220	mg/kg	11.04.2019 18:21	U	50

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-2.5-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-013 Date Collected: 10.31.2019 11:25 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	91	%	53-142	11.04.2019 18:21	
1,2-Dichloroethane-D4	101	%	56-150	11.04.2019 18:21	
Toluene-D8	103	%	70-130	11.04.2019 18:21	
4-Bromofluorobenzene	95	%	68-152	11.04.2019 18:21	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B12-5.0-5.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-014 Date Collected: 10.31.2019 11:35 Sample Depth: 5.0 - 5.5 ft

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Analyst: Date Prep: 11.05.2019 13:00 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Cyanide, Total 57-12-5 0.1900.0544 mg/kg 11.05.2019 15:30 1

Analytical Method: Mercury by SW 7471B

KCS

Seq Number: 3106545

Tech:

ADS Tech:

ANJ Analyst: Date Prep: 11.05.2019 09:40

SUB: T104704215-19-30

Basis:

Seq Number: 3106489

RL Parameter Cas Number Result Units **Analysis Date** Flag Dil Mercury 0.0387 0.0167 11.05.2019 13:25 7439-97-6

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

DEP Analyst: 11.05.2019 10:00 Basis: Date Prep:

Seq Number: 3106468

Prep Method: SW3050B

Prep Method: SW7471P

Wet Weight

% Moisture:

% Moisture: 0

Dry Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	17.2	1.89	mg/kg	11.05.2019 12:45		10
Barium	7440-39-3	96.0	3.77	mg/kg	11.05.2019 12:45		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.05.2019 12:45	U	10
Chromium	7440-47-3	10.6	3.77	mg/kg	11.05.2019 12:45		10
Lead	7439-92-1	169	1.89	mg/kg	11.05.2019 12:45		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.05.2019 12:45	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.05.2019 12:45	U	10

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-5.0-5.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-014 Date Collected: 10.31.2019 11:35 Sample Depth: 5.0 - 5.5 ft

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106491

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.05.2019 12:28
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.2019 13:301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.13 pН 12408-02-5 1 Temperature TEMP 24.3 11.04.2019 12:44 1 Deg C

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-5.0-5.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-014 Date Collected: 10.31.2019 11:35 Sample Depth: 5.0 - 5.5 ft

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:30 Basis: Wet Weight

Seq Number: 3106445 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0833	mg/kg	11.05.2019 13:41	U	5
PCB-1221	11104-28-2	BRL	0.0833	mg/kg	11.05.2019 13:41	U	5
PCB-1232	11141-16-5	BRL	0.0833	mg/kg	11.05.2019 13:41	U	5
PCB-1242	53469-21-9	BRL	0.0833	mg/kg	11.05.2019 13:41	U	5
PCB-1248	12672-29-6	BRL	0.0833	mg/kg	11.05.2019 13:41	U	5
PCB-1254	11097-69-1	BRL	0.0833	mg/kg	11.05.2019 13:41	U	5
PCB-1260	11096-82-5	BRL	0.0833	mg/kg	11.05.2019 13:41	U	5

 Surrogate
 Units
 Limits
 Analysis Date
 Flag

 Decachlorobiphenyl
 311
 %
 39-125
 11.05.2019 13:41
 **

 Tetrachloro-m-xylene
 68
 %
 37-124
 11.05.2019 13:41
 **

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-5.0-5.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-014 Date Collected: 10.31.2019 11:35 Sample Depth: 5.0 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:21 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0553	0.0334		mg/kg	11.05.2019 23:1:	5	20
Acenaphthylene	208-96-8	0.847	0.0334		mg/kg	11.05.2019 23:1:	5	20
Anthracene	120-12-7	0.427	0.0334		mg/kg	11.05.2019 23:1:	5	20
Benzo(a)anthracene	56-55-3	1.24	0.0334		mg/kg	11.05.2019 23:1:	5	20
Benzo(a)pyrene	50-32-8	2.65	0.0334		mg/kg	11.05.2019 23:1:	5	20
Benzo(b) fluoranthene	205-99-2	2.58	0.0334		mg/kg	11.05.2019 23:1:	5	20
Benzo(g,h,i)perylene	191-24-2	3.17	0.0334		mg/kg	11.05.2019 23:1:	5	20
Benzo(k)fluoranthene	207-08-9	0.777	0.0334		mg/kg	11.05.2019 23:1:	5	20
Chrysene	218-01-9	1.61	0.0334		mg/kg	11.05.2019 23:1:	5	20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0334		mg/kg	11.05.2019 23:1:	5 U	20
Fluoranthene	206-44-0	5.61	0.0334		mg/kg	11.05.2019 23:1:	5	20
Fluorene	86-73-7	0.134	0.0334		mg/kg	11.05.2019 23:1:	5	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	2.16	0.0334		mg/kg	11.05.2019 23:1:	5	20
Naphthalene	91-20-3	0.775	0.334		mg/kg	11.05.2019 23:1:	5	20
Phenanthrene	85-01-8	3.83	0.0334		mg/kg	11.05.2019 23:1:	5	20
Pyrene	129-00-0	6.53	0.334		mg/kg	11.06.2019 11:24	4 D	200
		% Recovery						
Surrogate		·	Units	Limits	Anal	ysis Date I	lag	
Nitrobenzene-d5		90	%	31-130	11.05	5.2019 23:15		
2-Fluorobiphenyl		103	%	51-133		5.2019 23:15		
Terphenyl-D14		116	%	46-137	11.05	5.2019 23:15		

SAD

Seq Number: 3106377

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-B12-5.0-5.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-014 Date Collected: 10.31.2019 11:35 Sample Depth: 5.0 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,1-Dichloroethane	75-34-3	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,1-Dichloroethene	75-35-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,1-Dichloropropene	563-58-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2-Dibromoethane	106-93-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2-Dichloroethane	107-06-2	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,2-Dichloropropane	78-87-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,3-Dichloropropane	142-28-9	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
2,2-Dichloropropane	594-20-7	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
2-Butanone	78-93-3	BRL	0.839	mg/kg	11.04.2019 18:42	U	50
2-Chlorotoluene	95-49-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
2-Hexanone	591-78-6	BRL	2.10	mg/kg	11.04.2019 18:42	U	50
4-Chlorotoluene	106-43-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.10	mg/kg	11.04.2019 18:42	U	50
Acetone	67-64-1	BRL	4.19	mg/kg	11.04.2019 18:42	U	50
Benzene	71-43-2	BRL	0.0419	mg/kg	11.04.2019 18:42	U	50
Bromobenzene	108-86-1	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Bromochloromethane	74-97-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Bromodichloromethane	75-27-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Bromoform	75-25-2	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Bromomethane	74-83-9	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Carbon Disulfide	75-15-0	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Carbon Tetrachloride	56-23-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Chlorobenzene	108-90-7	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Chloroethane	75-00-3	BRL	0.419	mg/kg	11.04.2019 18:42	U	50
Chloroform	67-66-3	BRL	0.210	mg/kg	11.04.2019 18:42	U	50

SAD

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-5.0-5.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-014 Date Collected: 10.31.2019 11:35 Sample Depth: 5.0 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Dibromochloromethane	124-48-1	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Dibromomethane	74-95-3	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Ethylbenzene	100-41-4	BRL	0.0419	mg/kg	11.04.2019 18:42	U	50
Hexachlorobutadiene	87-68-3	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.839	mg/kg	11.04.2019 18:42	U	50
Isopropylbenzene	98-82-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
m,p-Xylenes	179601-23-1	BRL	0.0839	mg/kg	11.04.2019 18:42	U	50
Methylene Chloride	75-09-2	BRL	0.839	mg/kg	11.04.2019 18:42	U	50
MTBE	1634-04-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Naphthalene	91-20-3	BRL	0.419	mg/kg	11.04.2019 18:42	U	50
n-Butylbenzene	104-51-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
n-Propylbenzene	103-65-1	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
o-Xylene	95-47-6	BRL	0.0419	mg/kg	11.04.2019 18:42	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Sec-Butylbenzene	135-98-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Styrene	100-42-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
tert-Butylbenzene	98-06-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Tetrachloroethylene	127-18-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Toluene	108-88-3	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Total Xylenes	1330-20-7	BRL	0.0419	mg/kg	11.04.2019 18:42	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Trichloroethene	79-01-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Trichlorofluoromethane	75-69-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Vinyl Acetate	108-05-4	BRL	0.419	mg/kg	11.04.2019 18:42	U	50
Vinyl Chloride	75-01-4	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
1,3-Butadiene	106-99-0	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Cyclohexane	110-82-7	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Dicyclopentadiene	77-73-6	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Methylcyclohexane	108-87-2	BRL	0.419	mg/kg	11.04.2019 18:42	U	50
n-Hexane	110-54-3	BRL	0.419	mg/kg	11.04.2019 18:42	U	50
4-Ethyltoluene	622-96-8	BRL	0.210	mg/kg	11.04.2019 18:42	U	50
Propene	115-07-1	BRL	0.210	mg/kg	11.04.2019 18:42	U	50

SAD

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-5.0-5.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-014 Date Collected: 10.31.2019 11:35 Sample Depth: 5.0 - 5.5 ft

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Dibromofluoromethane	92	%	53-142	11.04.2019 18:42	
1,2-Dichloroethane-D4	101	%	56-150	11.04.2019 18:42	
Toluene-D8	103	%	70-130	11.04.2019 18:42	
4-Bromofluorobenzene	96	%	68-152	11.04.2019 18:42	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD02-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-015 Date Collected: 10.31.2019 11:40

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

Tech: KCS % Moisture:

Analyst: KCS Date Prep: 11.05.2019 13:00 Basis: Wet Weight

Seq Number: 3106545 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Cyanide, Total
 57-12-5
 0.136
 0.0611
 mg/kg
 11.05.2019 15:31
 1

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight

Seq Number: 3106489 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0584
 0.0185
 mg/kg
 11.05.2019 13:27
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture: 0

Analyst: DEP Date Prep: 11.05.2019 10:00 Basis: Dry Weight

Seq Number: 3106468 SUB: T104704215-19-30

RL **Parameter** Cas Number Result Dil Units **Analysis Date** Flag 16.9 1.75 11.05.2019 12:48 Arsenic 7440-38-2 10 mg/kg Barium 7440-39-3 109 3.51 11.05.2019 12:48 10 mg/kg Cadmium 7440-43-9 BRL 1.75 11.05.2019 12:48 U 10 mg/kg Chromium 7440-47-3 12.5 3.51 11.05.2019 12:48 10 mg/kg Lead 7439-92-1 113 1.75 mg/kg 11.05.2019 12:48 10 Selenium 7782-49-2 BRL 1.75 11.05.2019 12:48 U 10 mg/kg Silver 7440-22-4 BRL 1.75 mg/kg 11.05.2019 12:48 U 10

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD02-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-015 Date Collected: 10.31.2019 11:40

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106491

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.05.2019 12:45
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.2019 13:301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106345

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.04.2019 12:44 8.09 pН 12408-02-5 1 **Temperature** TEMP 24.5 11.04.2019 12:44 1 Deg C

Seq Number: 3106445

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD02-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-015 Date Collected: 10.31.2019 11:40

Analytical Method: PCBs by SW 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.04.2019 11:33 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0333	mg/kg	11.05.2019 13:30	U	2
PCB-1221	11104-28-2	BRL	0.0333	mg/kg	11.05.2019 13:30	U	2
PCB-1232	11141-16-5	BRL	0.0333	mg/kg	11.05.2019 13:30	U	2
PCB-1242	53469-21-9	BRL	0.0333	mg/kg	11.05.2019 13:30	U	2
PCB-1248	12672-29-6	BRL	0.0333	mg/kg	11.05.2019 13:30	U	2
PCB-1254	11097-69-1	BRL	0.0333	mg/kg	11.05.2019 13:30	U	2
PCB-1260	11096-82-5	BRL	0.0333	mg/kg	11.05.2019 13:30	U	2

% Recovery

Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	138	%	39-125	11.05.2019 13:30	**
Tetrachloro-m-xylene	74	%	37-124	11.05.2019 13:30	

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD02-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-015 Date Collected: 10.31.2019 11:40

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:24 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0166		mg/kg	11.05.2019 23:3	2 U	10
Acenaphthylene	208-96-8	0.107	0.0166		mg/kg	11.05.2019 23:3	2	10
Anthracene	120-12-7	0.0470	0.0166		mg/kg	11.05.2019 23:3	2	10
Benzo(a)anthracene	56-55-3	0.175	0.0166		mg/kg	11.05.2019 23:3	2	10
Benzo(a)pyrene	50-32-8	0.386	0.0166		mg/kg	11.05.2019 23:3	2	10
Benzo(b) fluoranthene	205-99-2	0.418	0.0166		mg/kg	11.05.2019 23:3	2	10
Benzo(g,h,i)perylene	191-24-2	0.468	0.0166		mg/kg	11.05.2019 23:3	2	10
Benzo(k) fluoranthene	207-08-9	0.0903	0.0166		mg/kg	11.05.2019 23:3	2	10
Chrysene	218-01-9	0.228	0.0166		mg/kg	11.05.2019 23:3	2	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0166		mg/kg	11.05.2019 23:3	2 U	10
Fluoranthene	206-44-0	0.633	0.0166		mg/kg	11.05.2019 23:3	2	10
Fluorene	86-73-7	BRL	0.0166		mg/kg	11.05.2019 23:3	2 U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.317	0.0166		mg/kg	11.05.2019 23:3	2	10
Naphthalene	91-20-3	BRL	0.166		mg/kg	11.05.2019 23:3	2 U	10
Phenanthrene	85-01-8	0.367	0.0166		mg/kg	11.05.2019 23:3	2	10
Pyrene	129-00-0	0.777	0.0166		mg/kg	11.05.2019 23:3	2	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date 1	lag	
Nitrobenzene-d5		111	%	31-130		5.2019 23:32		
2-Fluorobiphenyl		117	%	51-133		5.2019 23:32		
Terphenyl-D14		119	%	46-137	11.05	5.2019 23:32		

APS, Phoenix, AZAPS MPG Douglas, AZ

Sample Id: **D-FD02-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-015 Date Collected: 10.31.2019 11:40

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,1-Dichloroethane	75-34-3	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,1-Dichloroethene	75-35-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,1-Dichloropropene	563-58-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2-Dibromoethane	106-93-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2-Dichloroethane	107-06-2	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,2-Dichloropropane	78-87-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,3-Dichloropropane	142-28-9	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
2,2-Dichloropropane	594-20-7	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
2-Butanone	78-93-3	BRL	0.856	mg/kg	11.04.2019 19:03	U	50
2-Chlorotoluene	95-49-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
2-Hexanone	591-78-6	BRL	2.14	mg/kg	11.04.2019 19:03	U	50
4-Chlorotoluene	106-43-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.14	mg/kg	11.04.2019 19:03	U	50
Acetone	67-64-1	BRL	4.28	mg/kg	11.04.2019 19:03	U	50
Benzene	71-43-2	BRL	0.0428	mg/kg	11.04.2019 19:03	U	50
Bromobenzene	108-86-1	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Bromochloromethane	74-97-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Bromodichloromethane	75-27-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Bromoform	75-25-2	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Bromomethane	74-83-9	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Carbon Disulfide	75-15-0	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Carbon Tetrachloride	56-23-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Chlorobenzene	108-90-7	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Chloroethane	75-00-3	BRL	0.428	mg/kg	11.04.2019 19:03	U	50
Chloroform	67-66-3	BRL	0.214	mg/kg	11.04.2019 19:03	U	50

APS, Phoenix, AZ APS MPG Douglas, AZ

Sample Id: **D-FD02-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-015 Date Collected: 10.31.2019 11:40

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Dibromochloromethane	124-48-1	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Dibromomethane	74-95-3	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Ethylbenzene	100-41-4	BRL	0.0428	mg/kg	11.04.2019 19:03	U	50
Hexachlorobutadiene	87-68-3	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.856	mg/kg	11.04.2019 19:03	U	50
Isopropylbenzene	98-82-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
m,p-Xylenes	179601-23-1	BRL	0.0856	mg/kg	11.04.2019 19:03	U	50
Methylene Chloride	75-09-2	BRL	0.856	mg/kg	11.04.2019 19:03	U	50
MTBE	1634-04-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Naphthalene	91-20-3	BRL	0.428	mg/kg	11.04.2019 19:03	U	50
n-Butylbenzene	104-51-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
n-Propylbenzene	103-65-1	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
o-Xylene	95-47-6	BRL	0.0428	mg/kg	11.04.2019 19:03	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Sec-Butylbenzene	135-98-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Styrene	100-42-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
tert-Butylbenzene	98-06-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Tetrachloroethylene	127-18-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Toluene	108-88-3	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Total Xylenes	1330-20-7	BRL	0.0428	mg/kg	11.04.2019 19:03	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Trichloroethene	79-01-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Trichlorofluoromethane	75-69-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Vinyl Acetate	108-05-4	BRL	0.428	mg/kg	11.04.2019 19:03	U	50
Vinyl Chloride	75-01-4	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
1,3-Butadiene	106-99-0	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Cyclohexane	110-82-7	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Dicyclopentadiene	77-73-6	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Methylcyclohexane	108-87-2	BRL	0.428	mg/kg	11.04.2019 19:03	U	50
n-Hexane	110-54-3	BRL	0.428	mg/kg	11.04.2019 19:03	U	50
4-Ethyltoluene	622-96-8	BRL	0.214	mg/kg	11.04.2019 19:03	U	50
Propene	115-07-1	BRL	0.214	mg/kg	11.04.2019 19:03	U	50

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD02-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-015 Date Collected: 10.31.2019 11:40

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.04.2019 15:30 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	90	%	53-142	11.04.2019 19:03	
1,2-Dichloroethane-D4	98	%	56-150	11.04.2019 19:03	
Toluene-D8	103	%	70-130	11.04.2019 19:03	
4-Bromofluorobenzene	94	%	68-152	11.04.2019 19:03	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-7.5-8.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-016 Date Collected: 10.31.2019 11:45 Sample Depth: 7.5 - 8.0 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0169
 mg/kg
 11.05.2019 13:33
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3106489

Tech:

Analyst: DEP Date Prep: 11.05.2019 10:00 Basis: Dry Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.7	1.75	mg/kg	11.05.2019 12:51		10
Barium	7440-39-3	122	3.51	mg/kg	11.05.2019 12:51		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.05.2019 12:51	U	10
Chromium	7440-47-3	10.8	3.51	mg/kg	11.05.2019 12:51		10
Lead	7439-92-1	531	1.75	mg/kg	11.05.2019 12:51		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.05.2019 12:51	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.05.2019 12:51	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-7.5-8.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-016 Date Collected: 10.31.2019 11:45 Sample Depth: 7.5 - 8.0 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:27 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	•	Flag	Dil
Acenaphthene	83-32-9	BRL	0.669		mg/kg	11.06.2019 0	0:05	U	200
Acenaphthylene	208-96-8	1.84	0.669		mg/kg	11.06.2019 0	0:05		200
Anthracene	120-12-7	0.826	0.669		mg/kg	11.06.2019 0	0:05		200
Benzo(a)anthracene	56-55-3	2.79	0.669		mg/kg	11.06.2019 0	0:05		200
Benzo(a)pyrene	50-32-8	5.93	0.669		mg/kg	11.06.2019 0	0:05		200
Benzo(b)fluoranthene	205-99-2	6.16	0.669		mg/kg	11.06.2019 0	0:05		200
Benzo(g,h,i)perylene	191-24-2	7.41	0.669		mg/kg	11.06.2019 0	0:05		200
Benzo(k)fluoranthene	207-08-9	2.26	0.669		mg/kg	11.06.2019 0	0:05		200
Chrysene	218-01-9	3.59	0.669		mg/kg	11.06.2019 0	0:05		200
Dibenz(a,h)Anthracene	53-70-3	BRL	0.669		mg/kg	11.06.2019 0	0:05	U	200
Fluoranthene	206-44-0	11.5	0.669		mg/kg	11.06.2019 0	0:05		200
Fluorene	86-73-7	BRL	0.669		mg/kg	11.06.2019 0	0:05	U	200
Indeno(1,2,3-c,d)Pyrene	193-39-5	5.01	0.669		mg/kg	11.06.2019 0	0:05		200
Naphthalene	91-20-3	BRL	6.69		mg/kg	11.06.2019 0	0:05	U	200
Phenanthrene	85-01-8	7.20	0.669		mg/kg	11.06.2019 0	0:05		200
Pyrene	129-00-0	14.2	0.669		mg/kg	11.06.2019 0	0:05		200
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		123	%	31-130		5.2019 00:05			
2-Fluorobiphenyl		123	%	51-133		5.2019 00:05			
Terphenyl-D14		146	%	46-137	11.06	5.2019 00:05	**		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-7.5-8.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-016 Date Collected: 10.31.2019 11:45 Sample Depth: 7.5 - 8.0 ft

Analytical Method: TCLP Mercury by SW 1311/7470A

Prep Method: SW7470P

Tech: ADS

% Moisture:

Analyst: ANJ Date Prep: 11.19.2019 10:10 Seq Number: 3107924

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.000200
 mg/L
 11.19.2019 13:52
 U
 1

Analytical Method: TCLP Metal by SW 1311/6010C Prep Method: SW3010A

Tech: MLI % Moisture:

Analyst: DEP Date Prep: 11.19.2019 09:50

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	BRL	0.100	mg/L	11.19.2019 15:22	U	1
Barium	7440-39-3	1.17	0.0500	mg/L	11.19.2019 15:22		1
Cadmium	7440-43-9	BRL	0.0500	mg/L	11.19.2019 15:22	U	1
Chromium	7440-47-3	BRL	0.0500	mg/L	11.19.2019 15:22	U	1
Lead	7439-92-1	0.920	0.0750	mg/L	11.19.2019 15:22		1
Selenium	7782-49-2	0.393	0.150	mg/L	11.19.2019 15:22		1
Silver	7440-22-4	BRL	0.150	mg/L	11.19.2019 15:22	U	1

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B12-10.0-10.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-017 Date Collected: 10.31.2019 11:50 Sample Depth: 10 - 10.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0182 mg/kg 11.05.2019 13:35 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB % Moisture: Tech:

Analyst: DEP Basis: Dry Weight Date Prep: 11.05.2019 10:00 Seq Number: 3106468

SUB: T104704215-19-30

Prep Method: SW3050B

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.6	1.92	mg/kg	11.05.2019 12:54		10
Barium	7440-39-3	207	3.85	mg/kg	11.05.2019 12:54		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.05.2019 12:54	U	10
Chromium	7440-47-3	43.2	3.85	mg/kg	11.05.2019 12:54		10
Lead	7439-92-1	30.8	1.92	mg/kg	11.05.2019 12:54		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.05.2019 12:54	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.05.2019 12:54	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-10.0-10.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-017 Date Collected: 10.31.2019 11:50 Sample Depth: 10 - 10.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	11.06.2019 00:2	3 U	10
Acenaphthylene	208-96-8	0.0512	0.0167		mg/kg	11.06.2019 00:2	3	10
Anthracene	120-12-7	0.0258	0.0167		mg/kg	11.06.2019 00:2	3	10
Benzo(a)anthracene	56-55-3	0.0968	0.0167		mg/kg	11.06.2019 00:2	3	10
Benzo(a)pyrene	50-32-8	0.180	0.0167		mg/kg	11.06.2019 00:2	3	10
Benzo(b)fluoranthene	205-99-2	0.193	0.0167		mg/kg	11.06.2019 00:2	3	10
Benzo(g,h,i)perylene	191-24-2	0.216	0.0167		mg/kg	11.06.2019 00:2	3	10
Benzo(k)fluoranthene	207-08-9	0.0597	0.0167		mg/kg	11.06.2019 00:2	3	10
Chrysene	218-01-9	0.120	0.0167		mg/kg	11.06.2019 00:2	3	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.06.2019 00:2	3 U	10
Fluoranthene	206-44-0	0.368	0.0167		mg/kg	11.06.2019 00:2	3	10
Fluorene	86-73-7	BRL	0.0167		mg/kg	11.06.2019 00:2	3 U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.149	0.0167		mg/kg	11.06.2019 00:2	3	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	11.06.2019 00:2	3 U	10
Phenanthrene	85-01-8	0.277	0.0167		mg/kg	11.06.2019 00:2	3	10
Pyrene	129-00-0	0.450	0.0167		mg/kg	11.06.2019 00:2	3	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		104	%	31-130		5.2019 00:23		
2-Fluorobiphenyl		112	%	51-133		5.2019 00:23		
Terphenyl-D14		121	%	46-137	11.06	5.2019 00:23		

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B12-15.0-15.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-018 Date Collected: 10.31.2019 11:55 Sample Depth: 15 - 15.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0185 mg/kg 11.05.2019 13:37 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB % Moisture: Tech:

Basis: Dry Weight 11.05.2019 10:00

Analyst: DEP Date Prep: Seq Number: 3106468 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	23.1	1.75	mg/kg	11.05.2019 12:57		10
Barium	7440-39-3	225	3.51	mg/kg	11.05.2019 12:57		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.05.2019 12:57	U	10
Chromium	7440-47-3	38.9	3.51	mg/kg	11.05.2019 12:57		10
Lead	7439-92-1	21.1	1.75	mg/kg	11.05.2019 12:57		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.05.2019 12:57	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.05.2019 12:57	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-15.0-15.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-018 Date Collected: 10.31.2019 11:55 Sample Depth: 15 - 15.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:33 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	11.06.2019 00:40) U	10
Acenaphthylene	208-96-8	0.0552	0.0167		mg/kg	11.06.2019 00:4)	10
Anthracene	120-12-7	0.0225	0.0167		mg/kg	11.06.2019 00:4)	10
Benzo(a)anthracene	56-55-3	0.0910	0.0167		mg/kg	11.06.2019 00:40)	10
Benzo(a)pyrene	50-32-8	0.148	0.0167		mg/kg	11.06.2019 00:4)	10
Benzo(b)fluoranthene	205-99-2	0.172	0.0167		mg/kg	11.06.2019 00:4)	10
Benzo(g,h,i)perylene	191-24-2	0.175	0.0167		mg/kg	11.06.2019 00:4)	10
Benzo(k)fluoranthene	207-08-9	0.0507	0.0167		mg/kg	11.06.2019 00:40)	10
Chrysene	218-01-9	0.111	0.0167		mg/kg	11.06.2019 00:40)	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.06.2019 00:40) U	10
Fluoranthene	206-44-0	0.338	0.0167		mg/kg	11.06.2019 00:40)	10
Fluorene	86-73-7	BRL	0.0167		mg/kg	11.06.2019 00:40) U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.123	0.0167		mg/kg	11.06.2019 00:40)	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	11.06.2019 00:40) U	10
Phenanthrene	85-01-8	0.285	0.0167		mg/kg	11.06.2019 00:40)	10
Pyrene	129-00-0	0.400	0.0167		mg/kg	11.06.2019 00:4)	10
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date I	lag	
Nitrobenzene-d5		113	%	31-130		5.2019 00:40		
2-Fluorobiphenyl		120	%	51-133		5.2019 00:40		
Terphenyl-D14		121	%	46-137	11.06	5.2019 00:40		

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B12-19.5-20 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-019 Date Collected: 10.31.2019 12:15 Sample Depth: 19.5 - 20 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0182 mg/kg 11.05.2019 13:39 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB % Moisture: Tech:

Analyst: DEP Basis: Dry Weight Date Prep: 11.05.2019 10:00 Seq Number: 3106468

SUB: T104704215-19-30

Prep Method: SW3050B

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	18.1	1.92	mg/kg	11.05.2019 13:00		10
Barium	7440-39-3	376	3.85	mg/kg	11.05.2019 13:00		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.05.2019 13:00	U	10
Chromium	7440-47-3	49.2	3.85	mg/kg	11.05.2019 13:00		10
Lead	7439-92-1	62.8	1.92	mg/kg	11.05.2019 13:00		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.05.2019 13:00	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.05.2019 13:00	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-19.5-20** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-019 Date Collected: 10.31.2019 12:15 Sample Depth: 19.5 - 20 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 08:36 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	;	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333		mg/kg	11.06.2019 00):57	U	20
Acenaphthylene	208-96-8	0.398	0.0333		mg/kg	11.06.2019 00):57		20
Anthracene	120-12-7	0.177	0.0333		mg/kg	11.06.2019 00):57		20
Benzo(a)anthracene	56-55-3	0.693	0.0333		mg/kg	11.06.2019 00):57		20
Benzo(a)pyrene	50-32-8	1.38	0.0333		mg/kg	11.06.2019 00):57		20
Benzo(b) fluoranthene	205-99-2	1.49	0.0333		mg/kg	11.06.2019 00):57		20
Benzo(g,h,i)perylene	191-24-2	1.68	0.0333		mg/kg	11.06.2019 00):57		20
Benzo(k)fluoranthene	207-08-9	0.453	0.0333		mg/kg	11.06.2019 00):57		20
Chrysene	218-01-9	0.899	0.0333		mg/kg	11.06.2019 00):57		20
Dibenz(a,h)Anthracene	53-70-3	0.165	0.0333		mg/kg	11.06.2019 00):57		20
Fluoranthene	206-44-0	2.68	0.0333		mg/kg	11.06.2019 00):57		20
Fluorene	86-73-7	0.0597	0.0333		mg/kg	11.06.2019 00):57		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.16	0.0333		mg/kg	11.06.2019 00):57		20
Naphthalene	91-20-3	BRL	0.333		mg/kg	11.06.2019 00):57	U	20
Phenanthrene	85-01-8	1.73	0.0333		mg/kg	11.06.2019 00):57		20
Pyrene	129-00-0	3.18	0.0333		mg/kg	11.06.2019 00):57		20
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		114	%	31-130		5.2019 00:57			
2-Fluorobiphenyl		120	%	51-133		5.2019 00:57			
Terphenyl-D14		127	%	46-137	11.06	5.2019 00:57			

Seq Number: 3106489

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-24.5-25.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-020 Date Collected: 10.31.2019 13:50 Sample Depth: 24.5 - 25 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.05.2019 13:41
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	4.16	1.69	mg/kg	11.05.2019 17:25		10
Barium	7440-39-3	44.2	3.39	mg/kg	11.05.2019 17:25		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.05.2019 17:25	U	10
Chromium	7440-47-3	23.1	3.39	mg/kg	11.05.2019 17:25		10
Lead	7439-92-1	8.74	1.69	mg/kg	11.05.2019 17:25		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.05.2019 17:25	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.05.2019 17:25	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B12-24.5-25.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-020 Date Collected: 10.31.2019 13:50 Sample Depth: 24.5 - 25 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 13:39 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00187	0.00167		mg/kg	11.06.2019 01:3	1	1
Acenaphthylene	208-96-8	0.0199	0.00167		mg/kg	11.06.2019 01:3	1	1
Anthracene	120-12-7	0.00743	0.00167		mg/kg	11.06.2019 01:3	1	1
Benzo(a)anthracene	56-55-3	0.0318	0.00167		mg/kg	11.06.2019 01:3	1	1
Benzo(a)pyrene	50-32-8	0.0675	0.00167		mg/kg	11.06.2019 01:3	1	1
Benzo(b)fluoranthene	205-99-2	0.0709	0.00167		mg/kg	11.06.2019 01:3	1	1
Benzo(g,h,i)perylene	191-24-2	0.0806	0.00167		mg/kg	11.06.2019 01:3	1	1
Benzo(k)fluoranthene	207-08-9	0.0187	0.00167		mg/kg	11.06.2019 01:3	1	1
Chrysene	218-01-9	0.0416	0.00167		mg/kg	11.06.2019 01:3	1	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.06.2019 01:3	1 U	1
Fluoranthene	206-44-0	0.119	0.00167		mg/kg	11.06.2019 01:3	1	1
Fluorene	86-73-7	0.00213	0.00167		mg/kg	11.06.2019 01:3	1	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0541	0.00167		mg/kg	11.06.2019 01:3	1	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.06.2019 01:3	1 U	1
Phenanthrene	85-01-8	0.0593	0.00167		mg/kg	11.06.2019 01:3	1	1
Pyrene	129-00-0	0.150	0.00167		mg/kg	11.06.2019 01:3	1	1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		120	%	31-130		5.2019 01:31		
2-Fluorobiphenyl		122	%	51-133		5.2019 01:31		
Terphenyl-D14		126	%	46-137	11.06	5.2019 01:31		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B23-25-3.0 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-021 Date Collected: 10.31.2019 14:35 Sample Depth: 2.5 - 3.0 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 10:50 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 0.0269 0.0196 mg/kg 11.05.2019 14:01 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

ADS

Seq Number: 3106487

Tech:

Analyst: DEP Basis: Date Prep: 11.05.2019 11:05 Wet Weight Seq Number: 3106537

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.8	1.75	mg/kg	11.05.2019 17:28		10
Barium	7440-39-3	477	3.51	mg/kg	11.05.2019 17:28		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.05.2019 17:28	U	10
Chromium	7440-47-3	12.1	3.51	mg/kg	11.05.2019 17:28		10
Lead	7439-92-1	69.0	1.75	mg/kg	11.05.2019 17:28		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.05.2019 17:28	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.05.2019 17:28	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B23-25-3.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-021 Date Collected: 10.31.2019 14:35 Sample Depth: 2.5 - 3.0 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 13:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0334		mg/kg	11.06.2019 01:4	8 U	20
Acenaphthylene	208-96-8	0.0449	0.0334		mg/kg	11.06.2019 01:4	8	20
Anthracene	120-12-7	BRL	0.0334		mg/kg	11.06.2019 01:4	8 U	20
Benzo(a)anthracene	56-55-3	0.117	0.0334		mg/kg	11.06.2019 01:4	8	20
Benzo(a)pyrene	50-32-8	0.213	0.0334		mg/kg	11.06.2019 01:4	8	20
Benzo(b) fluoranthene	205-99-2	0.237	0.0334		mg/kg	11.06.2019 01:4	8	20
Benzo(g,h,i)perylene	191-24-2	0.259	0.0334		mg/kg	11.06.2019 01:4	8	20
Benzo(k)fluoranthene	207-08-9	0.0722	0.0334		mg/kg	11.06.2019 01:4	8	20
Chrysene	218-01-9	0.143	0.0334		mg/kg	11.06.2019 01:4	8	20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0334		mg/kg	11.06.2019 01:4	8 U	20
Fluoranthene	206-44-0	0.423	0.0334		mg/kg	11.06.2019 01:4	8	20
Fluorene	86-73-7	BRL	0.0334		mg/kg	11.06.2019 01:4	8 U	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.177	0.0334		mg/kg	11.06.2019 01:4	8	20
Naphthalene	91-20-3	BRL	0.334		mg/kg	11.06.2019 01:4	8 U	20
Phenanthrene	85-01-8	0.262	0.0334		mg/kg	11.06.2019 01:4	8	20
Pyrene	129-00-0	0.504	0.0334		mg/kg	11.06.2019 01:4	8	20
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		86	%	31-130		5.2019 01:48		
2-Fluorobiphenyl		101	%	51-133		5.2019 01:48		
Terphenyl-D14		114	%	46-137	11.06	5.2019 01:48		

Seq Number: 3106487

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-FD03-103119 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-022 Date Collected: 10.31.2019 14:45

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits **Analysis Date** Dil Mercury 7439-97-6 0.0332 0.0200 mg/kg 11.05.2019 14:03 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

DEP Analyst: Date Prep: 11.05.2019 11:05 Basis: Seq Number: 3106537

SUB: T104704215-19-30

Wet Weight

Prep Method: SW3050B

% Moisture:

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 17.3 1.85 11.05.2019 17:31 10 Arsenic 7440-38-2 mg/kg Barium 319 3.70 7440-39-3 11.05.2019 17:31 10 mg/kg Cadmium 7440-43-9 BRL 1.85 mg/kg 11.05.2019 17:31 U 10 Chromium 7440-47-3 14.0 3.70 11.05.2019 17:31 10 mg/kg mg/kg 10 Lead 7439-92-1 46.4 1.85 11.05.2019 17:31 Selenium 7782-49-2 BRL 1.85 11.05.2019 17:31 U 10 mg/kg Silver 7440-22-4 BRL 1.85 11.05.2019 17:31 U 10 mg/kg

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD03-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-022 Date Collected: 10.31.2019 14:45

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

JOZ % Moisture:

Analyst: DNE Date Prep: 11.05.2019 12:18 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333		mg/kg	11.06.2019 02:	05	U	20
Acenaphthylene	208-96-8	0.0699	0.0333		mg/kg	11.06.2019 02:	05		20
Anthracene	120-12-7	0.0455	0.0333		mg/kg	11.06.2019 02:	05		20
Benzo(a)anthracene	56-55-3	0.206	0.0333		mg/kg	11.06.2019 02:	05		20
Benzo(a)pyrene	50-32-8	0.322	0.0333		mg/kg	11.06.2019 02:	05		20
Benzo(b)fluoranthene	205-99-2	0.390	0.0333		mg/kg	11.06.2019 02:	05		20
Benzo(g,h,i)perylene	191-24-2	0.337	0.0333		mg/kg	11.06.2019 02:	05		20
Benzo(k) fluoranthene	207-08-9	0.0828	0.0333		mg/kg	11.06.2019 02:	05		20
Chrysene	218-01-9	0.243	0.0333		mg/kg	11.06.2019 02:	05		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333		mg/kg	11.06.2019 02:	05	U	20
Fluoranthene	206-44-0	0.608	0.0333		mg/kg	11.06.2019 02:	05		20
Fluorene	86-73-7	BRL	0.0333		mg/kg	11.06.2019 02:	05	U	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.244	0.0333		mg/kg	11.06.2019 02:	05		20
Naphthalene	91-20-3	BRL	0.333		mg/kg	11.06.2019 02:	05	U	20
Phenanthrene	85-01-8	0.323	0.0333		mg/kg	11.06.2019 02:	05		20
Pyrene	129-00-0	0.724	0.0333		mg/kg	11.06.2019 02:	05		20
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		59	%	31-130		5.2019 02:05			
2-Fluorobiphenyl		69	%	51-133		5.2019 02:05			
Terphenyl-D14		95	%	46-137	11.06	5.2019 02:05			

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B23-5.0-5.5 Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-023 Date Collected: 10.31.2019 15:05 Sample Depth: 5.0 - 5.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.05.2019 09:40 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0175 mg/kg 11.05.2019 13:12 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106489

Analyst: DEP Basis: Date Prep: 11.05.2019 11:05 Wet Weight Seq Number: 3106537

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	26.0	1.89	mg/kg	11.05.2019 17:05		10
Barium	7440-39-3	764	3.77	mg/kg	11.05.2019 17:05		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.05.2019 17:05	U	10
Chromium	7440-47-3	20.7	3.77	mg/kg	11.05.2019 17:05		10
Lead	7439-92-1	18.7	1.89	mg/kg	11.05.2019 17:05		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.05.2019 17:05	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.05.2019 17:05	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B23-5.0-5.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-023 Date Collected: 10.31.2019 15:05 Sample Depth: 5.0 - 5.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 12:12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.06.2019 10:18	U	1
Acenaphthylene	208-96-8	0.00264	0.00167		mg/kg	11.06.2019 10:18		1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.06.2019 10:18	U	1
Benzo(a)anthracene	56-55-3	0.00635	0.00167		mg/kg	11.06.2019 10:18		1
Benzo(a)pyrene	50-32-8	0.0133	0.00167		mg/kg	11.06.2019 10:18		1
Benzo(b) fluoranthene	205-99-2	0.0148	0.00167		mg/kg	11.06.2019 10:18		1
Benzo(g,h,i)perylene	191-24-2	0.0194	0.00167		mg/kg	11.06.2019 10:18		1
Benzo(k)fluoranthene	207-08-9	0.00424	0.00167		mg/kg	11.06.2019 10:18		1
Chrysene	218-01-9	0.00828	0.00167		mg/kg	11.06.2019 10:18		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.06.2019 10:18	U	1
Fluoranthene	206-44-0	0.0251	0.00167		mg/kg	11.06.2019 10:18		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.06.2019 10:18	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0125	0.00167		mg/kg	11.06.2019 10:18		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.06.2019 10:18	U	1
Phenanthrene	85-01-8	0.0149	0.00167		mg/kg	11.06.2019 10:18		1
Pyrene	129-00-0	0.0293	0.00167		mg/kg	11.06.2019 10:18		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fla	ıg	
Nitrobenzene-d5		107	%	31-130		5.2019 10:18		
2-Fluorobiphenyl		109	%	51-133		5.2019 10:18		
Terphenyl-D14		109	%	46-137	11.06	5.2019 10:18		

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B23-7.5-8.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-024 Date Collected: 10.31.2019 15:30 Sample Depth: 7.5 - 8.0 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

Seq Number: 3106487 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.05.2019 14:05
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	23.9	1.85	mg/kg	11.05.2019 17:34		10
Barium	7440-39-3	91.8	3.70	mg/kg	11.05.2019 17:34		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.05.2019 17:34	U	10
Chromium	7440-47-3	14.6	3.70	mg/kg	11.05.2019 17:34		10
Lead	7439-92-1	9.97	1.85	mg/kg	11.05.2019 17:34		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.05.2019 17:34	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.05.2019 17:34	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B23-7.5-8.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-024 Date Collected: 10.31.2019 15:30 Sample Depth: 7.5 - 8.0 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 12:21 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Benzo(a)pyrene	50-32-8	0.00222	0.00167		mg/kg	11.06.2019 03:13		1
Benzo(b)fluoranthene	205-99-2	0.00248	0.00167		mg/kg	11.06.2019 03:13		1
Benzo(g,h,i)perylene	191-24-2	0.00290	0.00167		mg/kg	11.06.2019 03:13		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Fluoranthene	206-44-0	0.00377	0.00167		mg/kg	11.06.2019 03:13		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.06.2019 03:13	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00187	0.00167		mg/kg	11.06.2019 03:13		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.06.2019 03:13	U	1
Phenanthrene	85-01-8	0.00226	0.00167		mg/kg	11.06.2019 03:13		1
Pyrene	129-00-0	0.00469	0.00167		mg/kg	11.06.2019 03:13		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	ag	
Nitrobenzene-d5		103	%	31-130		5.2019 03:13		
2-Fluorobiphenyl		105	%	51-133	11.06	5.2019 03:13		
Terphenyl-D14		117	%	46-137	11.06	5.2019 03:13		

ANJ

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B23-9.5-10.0 Matrix: Soil Date Received:11.04.2019 09:30 Lab Sample Id: 641882-025 Date Collected: 10.31.2019 15:50 Sample Depth: 9.5 - 10.0 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ADS % Moisture: Tech:

> Basis: Wet Weight

Analyst: Date Prep: 11.05.2019 10:50 Seq Number: 3106487

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0189 mg/kg 11.05.2019 14:07 U 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.05.2019 11:05 Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.3	1.69	mg/kg	11.05.2019 17:37		10
Barium	7440-39-3	84.6	3.39	mg/kg	11.05.2019 17:37		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.05.2019 17:37	U	10
Chromium	7440-47-3	7.00	3.39	mg/kg	11.05.2019 17:37		10
Lead	7439-92-1	10.3	1.69	mg/kg	11.05.2019 17:37		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.05.2019 17:37	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.05.2019 17:37	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B23-9.5-10.0** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-025 Date Collected: 10.31.2019 15:50 Sample Depth: 9.5 - 10.0 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 12:24 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.06.2019 03:30	U	1
Acenaphthylene	208-96-8	0.00183	0.00166		mg/kg	11.06.2019 03:30		1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.06.2019 03:30	U	1
Benzo(a)anthracene	56-55-3	0.00314	0.00166		mg/kg	11.06.2019 03:30		1
Benzo(a)pyrene	50-32-8	0.00579	0.00166		mg/kg	11.06.2019 03:30		1
Benzo(b)fluoranthene	205-99-2	0.00713	0.00166		mg/kg	11.06.2019 03:30		1
Benzo(g,h,i)perylene	191-24-2	0.00787	0.00166		mg/kg	11.06.2019 03:30		1
Benzo(k)fluoranthene	207-08-9	0.00175	0.00166		mg/kg	11.06.2019 03:30		1
Chrysene	218-01-9	0.00392	0.00166		mg/kg	11.06.2019 03:30		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.06.2019 03:30	U	1
Fluoranthene	206-44-0	0.0101	0.00166		mg/kg	11.06.2019 03:30		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.06.2019 03:30	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00523	0.00166		mg/kg	11.06.2019 03:30		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.06.2019 03:30	U	1
Phenanthrene	85-01-8	0.00603	0.00166		mg/kg	11.06.2019 03:30		1
Pyrene	129-00-0	0.0122	0.00166		mg/kg	11.06.2019 03:30		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	ag	
Nitrobenzene-d5		103	%	31-130		5.2019 03:30		
2-Fluorobiphenyl		104	%	51-133		5.2019 03:30		
Terphenyl-D14		110	%	46-137	11.06	5.2019 03:30		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

% Moisture:

 Sample Id:
 D-B23-14.5-15.0
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-026
 Date Collected: 10.31.2019 16:10
 Sample Depth: 14.5 - 15.0 ft

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

Seq Number: 3106487 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0196
 mg/kg
 11.05.2019 14:22
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	42.5	1.85	mg/kg	11.05.2019 17:40		10
Barium	7440-39-3	53.3	3.70	mg/kg	11.05.2019 17:40		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.05.2019 17:40	U	10
Chromium	7440-47-3	11.3	3.70	mg/kg	11.05.2019 17:40		10
Lead	7439-92-1	10.6	1.85	mg/kg	11.05.2019 17:40		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.05.2019 17:40	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.05.2019 17:40	U	10

APS, Phoenix, AZ

APS MPG Douglas, AZ

 Sample Id:
 D-B23-14.5-15.0
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-026
 Date Collected: 10.31.2019 16:10
 Sample Depth: 14.5 - 15.0 ft

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst:

DNE Date Prep: 11.05.2019 12:27

Analyst: Date Prep: 11.05.2019 12:2
Seq Number: 3106591

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.06.2019 11:	40	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.06.2019 11:	40	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.06.2019 11:	40	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.06.2019 11:	40	U	1
Benzo(a)pyrene	50-32-8	0.00296	0.00167		mg/kg	11.06.2019 11:	40		1
Benzo(b)fluoranthene	205-99-2	0.00327	0.00167		mg/kg	11.06.2019 11:	40		1
Benzo(g,h,i)perylene	191-24-2	0.00448	0.00167		mg/kg	11.06.2019 11:	40		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.06.2019 11:	40	U	1
Chrysene	218-01-9	0.00179	0.00167		mg/kg	11.06.2019 11:	40		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.06.2019 11:	40	U	1
Fluoranthene	206-44-0	0.00499	0.00167		mg/kg	11.06.2019 11:	40		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.06.2019 11:	40	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00286	0.00167		mg/kg	11.06.2019 11:	40		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.06.2019 11:	40	U	1
Phenanthrene	85-01-8	0.00270	0.00167		mg/kg	11.06.2019 11:	40		1
Pyrene	129-00-0	0.00633	0.00167		mg/kg	11.06.2019 11:	40		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		105	%	31-130	11.06	5.2019 11:40			
2-Fluorobiphenyl		107	%	51-133		5.2019 11:40			
Terphenyl-D14		112	%	46-137	11.06	5.2019 11:40			

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

 Sample Id:
 D-B23-19.5-20.0
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-027
 Date Collected: 10.31.2019 16:30
 Sample Depth: 19.5 - 20.0 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.05.2019 14:09
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Seq Number: 3106487

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.6	1.67	mg/kg	11.05.2019 17:43		10
Barium	7440-39-3	88.8	3.33	mg/kg	11.05.2019 17:43		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.05.2019 17:43	U	10
Chromium	7440-47-3	9.66	3.33	mg/kg	11.05.2019 17:43		10
Lead	7439-92-1	12.7	1.67	mg/kg	11.05.2019 17:43		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.05.2019 17:43	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.05.2019 17:43	U	10

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Prep Method: SW3550

 Sample Id:
 D-B23-19.5-20.0
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-027
 Date Collected: 10.31.2019 16:30
 Sample Depth: 19.5 - 20.0 ft

Analytical Method: PAHs by 8270D SIM

JOZ % Moisture:

Analyst: DNE Date Prep: 11.05.2019 12:30 Basis: Wet Weight

Seq Number: 3106591 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.06.2019 11::	57	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.06.2019 11::	57	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.06.2019 11::	57	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.06.2019 11::	57	U	1
Benzo(a)pyrene	50-32-8	0.00292	0.00167		mg/kg	11.06.2019 11::	57		1
Benzo(b)fluoranthene	205-99-2	0.00319	0.00167		mg/kg	11.06.2019 11::	57		1
Benzo(g,h,i)perylene	191-24-2	0.00461	0.00167		mg/kg	11.06.2019 11::	57		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.06.2019 11::	57	U	1
Chrysene	218-01-9	0.00176	0.00167		mg/kg	11.06.2019 11::	57		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.06.2019 11::	57	U	1
Fluoranthene	206-44-0	0.00495	0.00167		mg/kg	11.06.2019 11::	57		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.06.2019 11::	57	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00285	0.00167		mg/kg	11.06.2019 11::	57		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.06.2019 11::	57	U	1
Phenanthrene	85-01-8	0.00316	0.00167		mg/kg	11.06.2019 11::	57		1
Pyrene	129-00-0	0.00624	0.00167		mg/kg	11.06.2019 11::	57		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		111	%	31-130		5.2019 11:57			
2-Fluorobiphenyl		113	%	51-133		5.2019 11:57			
Terphenyl-D14		113	%	46-137	11.06	5.2019 11:57			

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Prep Method: SW7471P

 Sample Id:
 D-B25-10.0-10.5
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-028
 Date Collected: 10.31.2019 09:30
 Sample Depth: 10.0 - 10.5 ft

Analytical Method: Mercury by SW 7471B

ADS % Moisture:

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

Seq Number: 3106487 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0185
 mg/kg
 11.05.2019 14:10
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Seq Number: 3106537 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	23.7	1.92	mg/kg	11.05.2019 17:46		10
Barium	7440-39-3	165	3.85	mg/kg	11.05.2019 17:46		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.05.2019 17:46	U	10
Chromium	7440-47-3	14.7	3.85	mg/kg	11.05.2019 17:46		10
Lead	7439-92-1	11.9	1.92	mg/kg	11.05.2019 17:46		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.05.2019 17:46	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.05.2019 17:46	U	10

Analytical Method: FOC By ASTM D2974

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106488

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Fraction Organic Carbon
 FOC
 1.30
 0.0100
 %
 11.05.2019 15:45
 +
 1

APS, Phoenix, AZ

APS MPG Douglas, AZ

 Sample Id:
 D-B25-10.0-10.5
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-028
 Date Collected: 10.31.2019 09:30
 Sample Depth: 10.0 - 10.5 ft

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.05.2019 12:33

Seq Number: 3106591

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.06.2019 12:13	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.06.2019 12:13	U	1
		% Recovery					
Surrogate			Units	Limits Ana	llysis Date Fla	g	

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	101	%	31-130	11.06.2019 12:13	
2-Fluorobiphenyl	101	%	51-133	11.06.2019 12:13	
Terphenyl-D14	108	%	46-137	11.06.2019 12:13	

APS, Phoenix, AZ

APS MPG Douglas, AZ

 Sample Id:
 D-B25-15.0-15.5
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-029
 Date Collected: 10.31.2019 10:50
 Sample Depth: 15.0 - 15.5 ft

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.05.2019 12:36 Ba

Seq Number: 3106591

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Acenaphthylene	208-96-8	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Anthracene	120-12-7	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Chrysene	218-01-9	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Fluoranthene	206-44-0	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Fluorene	86-73-7	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Naphthalene	91-20-3	BRL	0.0166	mg/kg	11.06.2019 12:29	U	1
Phenanthrene	85-01-8	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
Pyrene	129-00-0	BRL	0.00166	mg/kg	11.06.2019 12:29	U	1
		% Recovery					

	% Recovery				
Surrogate	-	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	100	%	31-130	11.06.2019 12:29	
2-Fluorobiphenyl	102	%	51-133	11.06.2019 12:29	
Terphenyl-D14	110	%	46-137	11.06.2019 12:29	

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B25-20.0-20.5 Matrix: Soil Date Received:11.04.2019 09:30 Lab Sample Id: 641882-030 Date Collected: 10.31.2019 11:25 Sample Depth: 20.0 - 20.5 ft

Analytical Method: FOC By ASTM D2974

YAV Tech:

% Moisture: YAV Analyst: Basis:

Seq Number: 3106488

Parameter Cas Number Result RLUnits **Analysis Date** Dil **Fraction Organic Carbon** FOC 1.20 0.0100 11.05.2019 15:45 1

Analytical Method: PAHs by 8270D SIM

JOZ Tech:

Analyst: DNE Basis: Date Prep: 11.05.2019 12:39 Wet Weight

Seq Number: 3106591

SUB: T104704215-19-30

Prep Method: SW3550

% Moisture:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.06.2019 12:48	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.06.2019 12:48	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.06.2019 12:48	U	1
Benzo(a)anthracene	56-55-3	0.00258	0.00167	mg/kg	11.06.2019 12:48		1
Benzo(a)pyrene	50-32-8	0.00369	0.00167	mg/kg	11.06.2019 12:48		1
Benzo(b) fluoran thene	205-99-2	0.00466	0.00167	mg/kg	11.06.2019 12:48		1
Benzo(g,h,i)perylene	191-24-2	0.00446	0.00167	mg/kg	11.06.2019 12:48		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.06.2019 12:48	U	1
Chrysene	218-01-9	0.00303	0.00167	mg/kg	11.06.2019 12:48		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.06.2019 12:48	U	1
Fluoranthene	206-44-0	0.00704	0.00167	mg/kg	11.06.2019 12:48		1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.06.2019 12:48	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00309	0.00167	mg/kg	11.06.2019 12:48		1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.06.2019 12:48	U	1
Phenanthrene	85-01-8	0.00568	0.00167	mg/kg	11.06.2019 12:48		1
Pyrene	129-00-0	0.00828	0.00167	mg/kg	11.06.2019 12:48		1

% Recovery Units Flag Surrogate Limits **Analysis Date** Nitrobenzene-d5 108 % 31-130 11.06.2019 12:48 2-Fluorobiphenyl 110 51-133 11.06.2019 12:48 % Terphenyl-D14 112 46-137 11.06.2019 12:48

APS, Phoenix, AZ

APS MPG Douglas, AZ

 Sample Id:
 D-B25-25.0-25.5
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-031
 Date Collected: 10.31.2019 11:45
 Sample Depth: 25.0 - 25.5 ft

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

Seq Number: 3106487

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Prep Method: SW7471P

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.05.2019 14:12
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Seq Number: 3106537 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	5.23	1.96	mg/kg	11.05.2019 17:49		10
Barium	7440-39-3	35.2	3.92	mg/kg	11.05.2019 17:49		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.05.2019 17:49	U	10
Chromium	7440-47-3	21.0	3.92	mg/kg	11.05.2019 17:49		10
Lead	7439-92-1	10.9	1.96	mg/kg	11.05.2019 17:49		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.05.2019 17:49	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.05.2019 17:49	U	10

APS, Phoenix, AZ

APS MPG Douglas, AZ

Prep Method: SW3550

% Moisture:

 Sample Id:
 D-B25-25.0-25.5
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-031
 Date Collected: 10.31.2019 11:45
 Sample Depth: 25.0 - 25.5 ft

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.05.2019 12:42 Basis: Wet Weight

Seq Number: 3106591 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Chrysene	218-01-9	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Fluoranthene	206-44-0	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.06.2019 14:11	U	1
Phenanthrene	85-01-8	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
Pyrene	129-00-0	BRL	0.00166		mg/kg	11.06.2019 14:11	U	1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	ag	
Nitrobenzene-d5		109	%	31-130	11.06	5.2019 14:11		
2-Fluorobiphenyl		113	%	51-133		5.2019 14:11		
Terphenyl-D14		124	%	46-137	11.06	5.2019 14:11		

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: D-B25-30.0-30.5 Matrix: Soil Date Received:11.04.2019 09:30 Lab Sample Id: 641882-032 Date Collected: 10.31.2019 13:20 Sample Depth: 30.0 - 30.5 ft

Analytical Method: FOC By ASTM D2974

YAV Tech:

% Moisture: YAV Analyst: Basis:

Seq Number: 3106488

Parameter Cas Number Result RLUnits **Analysis Date** Dil **Fraction Organic Carbon** FOC 5.80 0.0100 11.05.2019 15:45 1

Analytical Method: PAHs by 8270D SIM

JOZ Tech:

Analyst: DNE Date Prep: 11.05.2019 12:45

Seq Number: 3106591

Prep Method: SW3550

% Moisture:

Wet Weight

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.06.2019 14:28	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.06.2019 14:28	U	1

% Recovery Units Flag Surrogate Limits **Analysis Date** Nitrobenzene-d5 % 31-130 11.06.2019 14:28 86 2-Fluorobiphenyl 91 51-133 11.06.2019 14:28 % Terphenyl-D14 101 46-137 11.06.2019 14:28

APS, Phoenix, AZ

APS MPG Douglas, AZ

 Sample Id:
 D-B25-40.0-40.5
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-033
 Date Collected: 10.31.2019 16:20
 Sample Depth: 40.0 - 40.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

Seq Number: 3106487 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.05.2019 14:18
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Seq Number: 3106537 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.22	1.85	mg/kg	11.05.2019 17:52		10
Barium	7440-39-3	55.4	3.70	mg/kg	11.05.2019 17:52		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.05.2019 17:52	U	10
Chromium	7440-47-3	11.0	3.70	mg/kg	11.05.2019 17:52		10
Lead	7439-92-1	10.1	1.85	mg/kg	11.05.2019 17:52		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.05.2019 17:52	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.05.2019 17:52	U	10

APS, Phoenix, AZ

APS MPG Douglas, AZ

 Sample Id:
 D-B25-40.0-40.5
 Matrix:
 Soil
 Date Received:11.04.2019 09:30

 Lab Sample Id:
 641882-033
 Date Collected: 10.31.2019 16:20
 Sample Depth: 40.0 - 40.5 ft

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.05.2019 12:48

Seq Number: 3106591

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Acenaphthylene	208-96-8	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Anthracene	120-12-7	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Chrysene	218-01-9	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Fluoranthene	206-44-0	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Fluorene	86-73-7	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Naphthalene	91-20-3	BRL	0.0166	mg/kg	11.06.2019 14:45	U	1
Phenanthrene	85-01-8	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
Pyrene	129-00-0	BRL	0.00166	mg/kg	11.06.2019 14:45	U	1
		% Recovery					

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	101	%	31-130	11.06.2019 14:45	
2-Fluorobiphenyl	109	%	51-133	11.06.2019 14:45	
Terphenyl-D14	114	%	46-137	11.06.2019 14:45	

ADS

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD04-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-034 Date Collected: 10.31.2019 17:00

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

Seq Number: 3106487 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.05.2019 13:48
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Seq Number: 3106537 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.13	1.85	mg/kg	11.05.2019 18:01		10
Barium	7440-39-3	68.3	3.70	mg/kg	11.05.2019 18:01		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.05.2019 18:01	U	10
Chromium	7440-47-3	14.4	3.70	mg/kg	11.05.2019 18:01		10
Lead	7439-92-1	15.9	1.85	mg/kg	11.05.2019 18:01		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.05.2019 18:01	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.05.2019 18:01	U	10

JOZ

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-FD04-103119** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-034 Date Collected: 10.31.2019 17:00

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 12:51 Basis: Wet Weight

Seq Number: 3106591 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.05.2019 18:32	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.05.2019 18:32	U	1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fl	ag	
Nitrobenzene-d5		98	%	31-130		5.2019 18:32		
2-Fluorobiphenyl		100	%	51-133		5.2019 18:32		
Terphenyl-D14		104	%	46-137	11.05	5.2019 18:32		

ADS

Seq Number: 3106487

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-10.0-10.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-035 Date Collected: 10.30.2019 15:40 Sample Depth: 10 - 10.5 ft

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

% Moisture:

Analyst: ANJ Date Prep: 11.05.2019 10:50 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0189
 mg/kg
 11.05.2019 14:20
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB

Analyst: DEP Date Prep: 11.05.2019 11:05 Basis: Wet Weight

Seq Number: 3106537 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.6	1.72	mg/kg	11.05.2019 18:13		10
Barium	7440-39-3	80.0	3.45	mg/kg	11.05.2019 18:13		10
Cadmium	7440-43-9	BRL	1.72	mg/kg	11.05.2019 18:13	U	10
Chromium	7440-47-3	9.03	3.45	mg/kg	11.05.2019 18:13		10
Lead	7439-92-1	77.3	1.72	mg/kg	11.05.2019 18:13		10
Selenium	7782-49-2	BRL	1.72	mg/kg	11.05.2019 18:13	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	11.05.2019 18:13	U	10

JOZ

Tech:

Certificate of Analytical Results 641882

APS, Phoenix, AZ

APS MPG Douglas, AZ

Sample Id: **D-B24-10.0-10.5** Matrix: Soil Date Received:11.04.2019 09:30

Lab Sample Id: 641882-035 Date Collected: 10.30.2019 15:40 Sample Depth: 10 - 10.5 ft

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.05.2019 13:00 Basis: Wet Weight

Seq Number: 3106591 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0334		mg/kg	11.06.2019 02:3	9 U	20
Acenaphthylene	208-96-8	0.363	0.0334		mg/kg	11.06.2019 02:3	9	20
Anthracene	120-12-7	0.162	0.0334		mg/kg	11.06.2019 02:3	9	20
Benzo(a)anthracene	56-55-3	0.538	0.0334		mg/kg	11.06.2019 02:3	9	20
Benzo(a)pyrene	50-32-8	1.22	0.0334		mg/kg	11.06.2019 02:3	9	20
Benzo(b) fluoranthene	205-99-2	1.24	0.0334		mg/kg	11.06.2019 02:3	9	20
Benzo(g,h,i)perylene	191-24-2	1.44	0.0334		mg/kg	11.06.2019 02:3	9	20
Benzo(k)fluoranthene	207-08-9	0.341	0.0334		mg/kg	11.06.2019 02:3	9	20
Chrysene	218-01-9	0.730	0.0334		mg/kg	11.06.2019 02:3	9	20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0334		mg/kg	11.06.2019 02:3	9 U	20
Fluoranthene	206-44-0	2.23	0.0334		mg/kg	11.06.2019 02:3	9	20
Fluorene	86-73-7	0.0503	0.0334		mg/kg	11.06.2019 02:3	9	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.958	0.0334		mg/kg	11.06.2019 02:3	9	20
Naphthalene	91-20-3	BRL	0.334		mg/kg	11.06.2019 02:3	9 U	20
Phenanthrene	85-01-8	1.38	0.0334		mg/kg	11.06.2019 02:3	9	20
Pyrene	129-00-0	2.75	0.0334		mg/kg	11.06.2019 02:3	9	20
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
Nitrobenzene-d5		78	%	31-130		5.2019 02:39		
2-Fluorobiphenyl		80	%	51-133		5.2019 02:39		
Terphenyl-D14		87	%	46-137	11.06	5.2019 02:39		

APS

APS MPG Douglas, AZ

Analytical Method:	Total Cyanide by SW 9012		Prep Method:	E335.4P
Seq Number:	3106545	Matrix: Solid	Date Prep:	11.05.2019

MB Sample Id: 7689652-1-BLK LCS Sample Id: 7689652-1-BKS

LCS MB Spike LCS Limits Units Analysis Flag **Parameter** Result Amount Result %Rec Date < 0.0298 1.20 1.14 95 85-115 11.05.2019 15:19

Cyanide, Total <0.0298 1.20 1.14 95 85-115 mg/kg 11.05.2019 15:19

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

 Seq Number:
 3106545
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-004
 MS Sample Id:
 641882-004 S
 MSD Sample Id:
 641882-004 SD

Parent Spike MS MS MSD MSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date 20 11.05.2019 15:26 Cyanide, Total 0.0668 2.66 0.835 29 0.843 29 85-115 1 mg/kg X

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106489
 Matrix:
 Solid
 Date Prep:
 11.05.2019

 MB Sample Id:
 7689616-1-BLK
 LCS Sample Id:
 7689616-1-BKS
 LCSD Sample Id:
 7689616-1-BSD

RPD MR Spike LCS LCS %RPD Units Analysis LCSD LCSD Limits Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec < 0.00384 0 20 11.05.2019 12:35 Mercury 0.200 0.191 96 0.191 96 80-120 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106487
 Matrix:
 Solid
 Date Prep:
 11.05.2019

 MB Sample Id:
 7689619-1-BLK
 LCS Sample Id:
 7689619-1-BKS
 LCSD Sample Id:
 7689619-1-BSD

RPD MB Spike LCS LCS LCSD LCSD Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 11.05.2019 13:44 97 20 Mercury < 0.00384 0.200 0.1940.196 98 80-120 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106489
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-004
 MS Sample Id:
 641882-004 S
 MSD Sample Id:
 641882-004 SD

Parent Spike MS MS Limits %RPD RPD Units Analysis MSD MSD Flag **Parameter** Result %Rec Limit Date Result Amount Result %Rec 11.05.2019 12:40 20 Mercury 0.00608 0.185 0.153 79 0.155 82. 75-125 1 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106489
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-023
 MS Sample Id:
 641882-023 SD
 MSD Sample Id:
 641882-023 SD

Spike %RPD RPD Parent MS MS Units MSD MSD Limits Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec 11.05.2019 13:14 0.0114 92 75-125 20 Mercury 0.189 0.185 0.183 1 mg/kg

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) |[D] = 100* (C) / [B]Log Diff - Log(Sample Duplicate)

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result

= MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS

APS MPG Douglas, AZ

Analytical Method: Mercury by SW 7471B

 Seq Number:
 3106487
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-026
 MS Sample Id:
 641882-026 S
 MSD Sample Id:
 641882-026 SD

RPD **Parent** Spike MS MS MSD Limits %RPD Units Analysis MSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date

Analytical Method:Mercury by SW 7471BPrep Method:SW7471PSeq Number:3106487Matrix: SoilDate Prep:11.05.2019

 Seq Number:
 3106487
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-034
 MS Sample Id:
 641882-034 S
 MSD Sample Id:
 641882-034 SD

Spike Parent MS MS MSD **MSD** Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

 Seq Number:
 3106468
 Matrix:
 Solid
 Date Prep:
 11.05.2019

 MB Sample Id:
 7689613-1-BLK
 LCS Sample Id:
 7689613-1-BKS
 LCSD Sample Id:
 7689613-1-BSD

Spike LCS **RPD** MB LCS %RPD Units Analysis LCSD LCSD Limits **Parameter** Result %Rec Limit Date Result Amount Result %Rec < 0.200 9.62 96 9.80 80-120 2 20 11.05.2019 11:40 Arsenic 10.0 98 mg/kg Barium < 0.400 10.0 9.59 96 9.49 95 80-120 20 11.05.2019 11:40 1 mg/kg 9.70 11.05.2019 11:40 Cadmium < 0.200 10.0 9.75 98 97 80-120 20 1 mg/kg 11.05.2019 11:40 Chromium < 0.400 10.0 9.64 96 9.64 96 80-120 0 20 mg/kg Lead < 0.200 10.0 9.88 99 9.78 98 80-120 20 11.05.2019 11:40 1 mg/kg 11.05.2019 11:40 Selenium < 0.200 10.0 9.79 98 9.88 99 80-120 1 20 mg/kg 20 11.05.2019 11:40 5.04 101 80-120 Silver < 0.200 5.00 4.99 100 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

 Seq Number:
 3106537
 Matrix:
 Solid
 Date Prep:
 11.05.2019

 MB Sample Id:
 7689640-1-BLK
 LCS Sample Id:
 7689640-1-BKS
 LCSD Sample Id:
 7689640-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.200	10.0	10.4	104	10.5	105	80-120	1	20	mg/kg	11.05.2019 16:59	
Barium	< 0.400	10.0	10.4	104	10.5	105	80-120	1	20	mg/kg	11.05.2019 16:59	
Cadmium	< 0.200	10.0	10.3	103	10.3	103	80-120	0	20	mg/kg	11.05.2019 16:59	
Chromium	< 0.400	10.0	10.2	102	9.99	100	80-120	2	20	mg/kg	11.05.2019 16:59	
Lead	< 0.200	10.0	10.4	104	10.3	103	80-120	1	20	mg/kg	11.05.2019 16:59	
Selenium	< 0.200	10.0	10.6	106	10.7	107	80-120	1	20	mg/kg	11.05.2019 16:59	
Silver	< 0.200	5.00	5.20	104	5.14	103	80-120	1	20	mg/kg	11.05.2019 16:59	

SW7471P

Flag

Prep Method:

APSAPS MPG Douglas, AZ

 Analytical Method:
 Metals, RCRA List, by SW 6020
 Prep Method:
 SW 3050B

 Seq Number:
 3106468
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-004
 MS Sample Id:
 641882-004 S
 MSD Sample Id:
 641882-004 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	18.9	8.47	26.6	91	26.4	90	75-125	1	30	mg/kg	11.05.2019 11:49	
Barium	540	8.47	505	0	488	0	75-125	3	30	mg/kg	11.05.2019 11:49	X
Cadmium	< 1.69	8.47	10.0	118	9.96	120	75-125	0	30	mg/kg	11.05.2019 11:49	
Chromium	12.9	8.47	21.2	98	21.2	100	75-125	0	30	mg/kg	11.05.2019 11:49	
Lead	17.9	8.47	26.4	100	25.6	92	75-125	3	30	mg/kg	11.05.2019 11:49	
Selenium	< 1.69	8.47	10.3	122	10.2	122	75-125	1	30	mg/kg	11.05.2019 11:49	
Silver	<1.69	4.24	4.18	99	4.16	100	75-125	0	30	mg/kg	11.05.2019 11:49	

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

 Seq Number:
 3106537
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-023
 MS Sample Id:
 641882-023 SD
 MSD Sample Id:
 641882-023 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	26.0	8.47	35.1	107	33.6	91	75-125	4	30	mg/kg	11.05.2019 17:08	
Barium	764	8.47	756	0	735	0	75-125	3	30	mg/kg	11.05.2019 17:08	X
Cadmium	<1.69	8.47	9.49	112	9.50	114	75-125	0	30	mg/kg	11.05.2019 17:08	
Chromium	20.7	8.47	29.4	103	28.8	97	75-125	2	30	mg/kg	11.05.2019 17:08	
Lead	18.7	8.47	27.8	107	27.0	100	75-125	3	30	mg/kg	11.05.2019 17:08	
Selenium	<1.69	8.47	10.2	120	9.75	117	75-125	5	30	mg/kg	11.05.2019 17:08	
Silver	< 1.69	4.24	3.73	88	3.56	85	75-125	5	30	mg/kg	11.05.2019 17:08	

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW3050BSeq Number:3106537Matrix: SoilDate Prep:11.05.2019

MS Sample Id: 641882-034 S MSD Sample Id: 641882-034 SD Parent Sample Id: 641882-034 Spike MS MS %RPD RPD Parent Limits MSD Units Analysis MSD **Parameter** Result Amount Result %Rec Limit Date %Rec Result

11.05.2019 18:04 99 75-125 30 mg/kg Arsenic 8.13 9.80 17.8 16.0 91 11 30 mg/kg 11.05.2019 18:04 Barium 68.3 9.80 80.5 124 71.6 38 75-125 12 103 30 11.05.2019 18:04 Cadmium 10.1 8.57 99 75-125 16 < 1.96 9.80 mg/kg 11.05.2019 18:04 75-125 30 Chromium 14.4 9.80 25.0 108 21.6 84 15 mg/kg 11.05.2019 18:04 Lead 15.9 9.80 26.4 107 23.4 75-125 12 30 mg/kg 11.05.2019 18:04 Selenium <1.96 9.80 10.1 103 9.19 107 75-125 9 30 mg/kg 11.05.2019 18:04 30 Silver 4.22 75-125 15 < 1.96 4.90 86 3.64 84 mg/kg

Analytical Method: TCLP Mercury by SW 1311/7470A Prep Method: SW7470P

 Seq Number:
 3107924
 Matrix:
 Water
 Date Prep:
 11.19.2019

 MB Sample Id:
 7690601-1-BLK
 LCS Sample Id:
 7690601-1-BKS
 LCSD Sample Id:
 7690601-1-BSD

Spike LCS %RPD RPD Analysis MB LCS LCSD Units LCSD Limits Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 11.19.2019 12:53 < 0.0000263 20 mg/L Mercury 0.00200 0.00190 95 0.00188 94 80-120 1

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) |[D] = 100*(C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec Flag

X

APS

APS MPG Douglas, AZ

SW7470P Analytical Method: TCLP Mercury by SW 1311/7470A Prep Method: Matrix: Ground Water Seq Number: 3107924 Date Prep: 11.19.2019

Parent Sample Id: 643302-001 MS Sample Id: 643302-001 S MSD Sample Id: 643302-001 SD

RPD **Parent** Spike MS MS Limits %RPD Units Analysis MSD MSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date < 0.0000263 11.19.2019 13:02

0.00200 0.00176 88 0.00179 90 75-125 20 mg/L Mercury 2

Analytical Method: TCLP Metal by SW 1311/6010C Prep Method: SW3010A Seq Number: 3107971 Matrix: Water Date Prep: 11.19.2019

7690617-1-BKS LCSD Sample Id: 7690617-1-BSD MB Sample Id: 7690617-1-BLK LCS Sample Id:

MB Spike LCS LCS LCSD LCSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec %Rec Limit Date Result 11.19.2019 14:32 Arsenic < 0.0200 1.00 0.985 99 0.982 98 75-125 0 20 mg/L 11.19.2019 14:32 Barium < 0.0100 1.00 0.975 98 0.972 97 75-125 0 20 mg/L 11.19.2019 14:32 Cadmium < 0.0100 1.00 0.987 99 0.982 98 75-125 1 20 mg/L 11.19.2019 14:32 Chromium < 0.0100 1.00 1.02 102 1.02 102 75-125 0 20 mg/L 11.19.2019 14:32 Lead < 0.0150 1.00 1.03 103 1.02 102 75-125 1 20 mg/L 11.19.2019 14:32 Selenium < 0.0300 1.00 0.978 98 0.975 98 75-125 0 20 mg/L 11.19.2019 14:32 Silver < 0.0300 0.500 0.499 100 0.498 100 75-125 0 20 mg/L

SW3010A Analytical Method: TCLP Metal by SW 1311/6010C Prep Method:

Seq Number: 3107971 Matrix: Waste Water Date Prep: 11.19.2019 MS Sample Id: 643160-001 S MSD Sample Id: 643160-001 SD Parent Sample Id: 643160-001

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.0200	1.00	1.02	102	1.03	103	75-125	1	20	mg/L	11.19.2019 14:44	
Barium	0.0686	1.00	1.09	102	1.09	102	75-125	0	20	mg/L	11.19.2019 14:44	
Cadmium	< 0.00243	1.00	1.05	105	1.06	106	75-125	1	20	mg/L	11.19.2019 14:44	
Chromium	< 0.0100	1.00	1.06	106	1.05	105	75-125	1	20	mg/L	11.19.2019 14:44	
Lead	< 0.0150	1.00	1.04	104	1.04	104	75-125	0	20	mg/L	11.19.2019 14:44	
Selenium	0.0688	1.00	1.15	108	1.14	107	75-125	1	20	mg/L	11.19.2019 14:44	
Silver	< 0.0300	0.500	0.541	108	0.541	108	75-125	0	20	mg/L	11.19.2019 14:44	

Analytical Method: FOC By ASTM D2974

Seq Number: 3106488 Matrix: Solid

MB Sample Id: 3106488-1-BLK

MB Units Analysis Flag **Parameter** Result Date

Fraction Organic Carbon BRL % 11.05.2019 15:45

Analytical Method: FOC By ASTM D2974

Seq Number: 3106488 Matrix: Soil

MD Sample Id: 641801-043 D Parent Sample Id: 641801-043

MD %RPD RPD **Parent** Units Analysis **Parameter** Flag Result Result Limit Date 11.05.2019 15:45 Fraction Organic Carbon 2.50 2.30 8 25 %

MS/MSD Percent Recovery [D] = 100*(C-A) / BLCS = Laboratory Control Sample RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Relative Percent Difference = Parent Result

LCS/LCSD Recovery = MS/LCS Result Log Diff. = Log(Sample Duplicate) - Log(Original Sample) Log Difference E = MSD/LCSD Result

> Page 106 of 124 Final 1.003

MS = Matrix Spike

D = MSD/LCSD % Rec

B = Spike Added

APS

APS MPG Douglas, AZ

Analytical Method: Flash Point (CC) SW-846 1010

Seq Number: 3106491 Matrix: Product

Parent Sample Id: 641579-001 MD Sample Id: 641579-001 D

MD RPD **Parent** %RPD Units Analysis Flag **Parameter** Result Result Limit Date Flash Point 138 140 25 11.05.2019 10:30 1 Deg F

Analytical Method: Flash Point (CC) SW-846 1010

Seq Number: 3106491 Matrix: Soil

Parent Sample Id: 641812-003 MD Sample Id: 641812-003 D

Parent MD %RPD **RPD** Units Analysis **Parameter** Flag Result Result Limit Date 25 11.05.2019 14:05 Flash Point >180 >180 0 Deg F

Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3106597 Matrix: Soil

Parent Sample Id: 641882-004 MD Sample Id: 641882-004 D

MD %RPD **RPD Parent** Units Analysis Flag **Parameter** Result Result Limit Date 11.06.2019 13:30 Paint Filter Pass 0 0 Pass

Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3106597 Matrix: Soil

Parent Sample Id: 642000-023 MD Sample Id: 642000-023 D

MD **Parent** %RPD **RPD** Units Analysis Flag **Parameter** Result Limit Date Result Pass 11.06.2019 13:30 Paint Filter 0 Pass 0

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3106345 Matrix: Soil

Parent Sample Id: 641801-006 MD Sample Id: 641801-006 D

Parent MD %RPD RPD Units Analysis Flag **Parameter** Result Result Limit Date 11.04.2019 12:44 pН 8.31 8.32 0 20 SU 11.04.2019 12:44 25.9 25.9 0 25 Deg C Temperature

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3106345 Matrix: Soil

Parent Sample Id: 641882-012 MD Sample Id: 641882-012 D

MD %RPD RPD **Parent** Units Analysis Flag **Parameter** Result Result Limit Date 11.04.2019 12:44 рΗ 8.30 8.31 0 20 SU 11.04.2019 12:44 25.1 25.0 0 Temperature 25 Deg C

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(C\text{-A}) \, / \, B \\ RPD &= 200* \mid (C\text{-E}) \, / \, (C\text{+E}) \mid \\ [D] &= 100*(C) \, / \, [B] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

APS

APS MPG Douglas, AZ

Analytical Method:	PCBs by SW 8082A			Prep Method:	SW3550
Seq Number:	3106445	Matrix:	Solid	Date Prep:	11.04.2019
MB Sample Id:	7689522-1-BLK	LCS Sample Id:	7689522-1-BKS	LCSD Sample Id:	7689522-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
PCB-1016	< 0.0167	0.167	0.116	69	0.118	71	54-121	2	20	mg/kg	11.05.2019 11:02
PCB-1260	< 0.0167	0.167	0.159	95	0.161	96	41-126	1	20	mg/kg	11.05.2019 11:02
S	MB	MB	L	CS 1	LCS	LCSI) LCS	D Li	imits	Units	Analysis

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Decachlorobiphenyl	114		119		119		39-125	%	11.05.2019 11:02
Tetrachloro-m-xylene	51		58		59		37-124	%	11.05.2019 11:02

 Analytical Method:
 PCBs by SW 8082A
 Prep Method:
 SW 3550

 Seq Number:
 3106445
 Matrix:
 Soil
 Date Prep:
 11.04.2019

 Parent Sample Id:
 641882-004
 MS Sample Id:
 641882-004 S
 MSD Sample Id:
 641882-004 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
PCB-1016	< 0.0333	0.167	0.157	94	0.154	92	54-121	2	20	mg/kg	11.05.2019 12:33	
PCB-1260	< 0.0333	0.167	0.157	94	0.154	92	41-126	2	20	mg/kg	11.05.2019 12:33	

Surrogate	MS %Rec	MS Flag	1,102	MSD Limits Flag	Units	Analysis Date
Decachlorobiphenyl	196	**	123	39-125	%	11.05.2019 12:33
Tetrachloro-m-xylene	87		89	37-124	%	11.05.2019 12:33

Flag

APS APS MPG Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106513Matrix:SolidDate Prep:11.05.2019MB Sample Id:7689597-1-BLKLCS Sample Id:7689597-1-BKSLCSD Sample Id:7689597-1-BSD

1				•					•			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0296	89	0.0306	92	42-116	3	25	mg/kg	11.05.2019 16:33	
Acenaphthylene	< 0.00167	0.0333	0.0286	86	0.0294	88	42-121	3	25	mg/kg	11.05.2019 16:33	
Anthracene	< 0.00167	0.0333	0.0301	90	0.0304	91	44-120	1	25	mg/kg	11.05.2019 16:33	
Benzo(a)anthracene	< 0.00167	0.0333	0.0311	93	0.0318	95	52-121	2	25	mg/kg	11.05.2019 16:33	
Benzo(a)pyrene	< 0.00167	0.0333	0.0319	96	0.0319	96	50-128	0	25	mg/kg	11.05.2019 16:33	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0336	101	0.0339	102	49-137	1	25	mg/kg	11.05.2019 16:33	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0320	96	0.0335	101	47-132	5	25	mg/kg	11.05.2019 16:33	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0318	95	0.0341	102	48-133	7	25	mg/kg	11.05.2019 16:33	
Chrysene	< 0.00167	0.0333	0.0308	92	0.0314	94	54-113	2	25	mg/kg	11.05.2019 16:33	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0330	99	0.0346	104	48-133	5	25	mg/kg	11.05.2019 16:33	
Fluoranthene	< 0.00167	0.0333	0.0325	98	0.0328	98	54-128	1	25	mg/kg	11.05.2019 16:33	
Fluorene	< 0.00167	0.0333	0.0299	90	0.0310	93	44-118	4	25	mg/kg	11.05.2019 16:33	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0329	99	0.0344	103	49-129	4	25	mg/kg	11.05.2019 16:33	
Naphthalene	< 0.0167	0.0333	0.0284	85	0.0295	89	40-135	4	25	mg/kg	11.05.2019 16:33	
Phenanthrene	< 0.00167	0.0333	0.0311	93	0.0321	96	44-119	3	25	mg/kg	11.05.2019 16:33	
Pyrene	< 0.00167	0.0333	0.0311	93	0.0317	95	50-126	2	25	mg/kg	11.05.2019 16:33	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			mits	Units	Analysis Date	
Nitrobenzene-d5	114		1	15		114		31	-130	%	11.05.2019 16:33	
2-Fluorobiphenyl	118		1	15		117		51	-133	%	11.05.2019 16:33	
Terphenyl-D14	118		1	17		119		46	-137	%	11.05.2019 16:33	


APS APS MPG Douglas, AZ

Analytical Method: PAHs by 8270D SIM SW3550 Prep Method: 3106591 Seq Number: Matrix: Solid Date Prep: 11.05.2019 LCSD Sample Id: 7689639-1-BSD

LCS Sample Id: 7689639-1-BKS MB Sample Id: 7689639-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0306	92	0.0307	92	42-116	0	25	mg/kg	11.05.2019 17:58	
Acenaphthylene	< 0.00167	0.0333	0.0298	89	0.0299	90	42-121	0	25	mg/kg	11.05.2019 17:58	
Anthracene	< 0.00167	0.0333	0.0309	93	0.0312	94	44-120	1	25	mg/kg	11.05.2019 17:58	
Benzo(a)anthracene	< 0.00167	0.0333	0.0319	96	0.0327	98	52-121	2	25	mg/kg	11.05.2019 17:58	
Benzo(a)pyrene	< 0.00167	0.0333	0.0327	98	0.0332	100	50-128	2	25	mg/kg	11.05.2019 17:58	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0345	104	0.0342	103	49-137	1	25	mg/kg	11.05.2019 17:58	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0327	98	0.0335	101	47-132	2	25	mg/kg	11.05.2019 17:58	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0321	96	0.0341	102	48-133	6	25	mg/kg	11.05.2019 17:58	
Chrysene	< 0.00167	0.0333	0.0315	95	0.0321	96	54-113	2	25	mg/kg	11.05.2019 17:58	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0340	102	0.0349	105	48-133	3	25	mg/kg	11.05.2019 17:58	
Fluoranthene	< 0.00167	0.0333	0.0323	97	0.0328	98	54-128	2	25	mg/kg	11.05.2019 17:58	
Fluorene	< 0.00167	0.0333	0.0309	93	0.0314	94	44-118	2	25	mg/kg	11.05.2019 17:58	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0338	102	0.0347	104	49-129	3	25	mg/kg	11.05.2019 17:58	
Naphthalene	< 0.0167	0.0333	0.0294	88	0.0293	88	40-135	0	25	mg/kg	11.05.2019 17:58	
Phenanthrene	< 0.00167	0.0333	0.0317	95	0.0322	97	44-119	2	25	mg/kg	11.05.2019 17:58	
Pyrene	< 0.00118	0.0333	0.0309	93	0.0318	95	50-126	3	25	mg/kg	11.05.2019 17:58	
Surrogate	MB %Rec	MB Flag	LC %R		LCS Flag	LCSI %Re			imits	Units	Analysis Date	

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	103		114		113		31-130	%	11.05.2019 17:58
2-Fluorobiphenyl	108		116		117		51-133	%	11.05.2019 17:58
Terphenyl-D14	112		115		119		46-137	%	11.05.2019 17:58

APS APS MPG Douglas, AZ

Analytical Method: PAHs by 8270D SIM

 Seq Number:
 3106513
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-004
 MS Sample Id:
 641882-004 S
 MSD Sample Id:
 641882-004 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	0.955	0.0333	0.904	0	2.96	6003	42-116	106	25	mg/kg	11.05.2019 19:38	XF
Acenaphthylene	10.9	0.0333	12.3	4204	38.3	82036	42-121	103	25	mg/kg	11.05.2019 19:38	XF
Anthracene	4.88	0.0333	5.95	3213	19.0	42275	44-120	105	25	mg/kg	11.05.2019 19:38	XF
Benzo(a)anthracene	7.25	0.0333	8.68	4294	24.8	52545	52-121	96	25	mg/kg	11.05.2019 19:38	XF
Benzo(a)pyrene	9.99	0.0333	12.0	6036	35.6	76677	50-128	99	25	mg/kg	11.05.2019 19:38	XF
Benzo(b)fluoranthene	10.0	0.0333	11.7	5105	33.2	69461	49-137	96	25	mg/kg	11.05.2019 19:38	XF
Benzo(g,h,i)perylene	8.37	0.0333	11.0	7898	30.6	66557	47-132	94	25	mg/kg	11.05.2019 19:38	XF
Benzo(k)fluoranthene	2.73	0.0333	3.49	2282	9.62	20629	48-133	94	25	mg/kg	11.05.2019 19:38	XF
Chrysene	7.71	0.0333	8.95	3724	25.0	51766	54-113	95	25	mg/kg	11.05.2019 19:38	XF
Dibenz(a,h)Anthracene	< 0.666	0.0333	1.31	3934	3.40	10180	48-133	89	25	mg/kg	11.05.2019 19:38	XF
Fluoranthene	28.3	0.0333	34.6	18919	97.8	208084	54-128	95	25	mg/kg	11.05.2019 19:38	XF
Fluorene	5.82	0.0333	6.89	3213	24.0	54431	44-118	111	25	mg/kg	11.05.2019 19:38	XF
Indeno(1,2,3-c,d)Pyrene	6.18	0.0333	7.74	4685	21.5	45868	49-129	94	25	mg/kg	11.05.2019 19:38	XF
Naphthalene	21.0	0.0333	23.7	8108	75.7	163772	40-135	105	25	mg/kg	11.05.2019 19:38	XF
Phenanthrene	40.1	0.0333	49.1	27027	146	317066	44-119	99	25	mg/kg	11.05.2019 19:38	XF
Pyrene	33.8	0.0333	40.0	18619	114	240120	50-126	96	25	mg/kg	11.05.2019 19:38	XF

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	118		98		31-130	%	11.05.2019 19:38
2-Fluorobiphenyl	104		100		51-133	%	11.05.2019 19:38
Terphenyl-D14	143	**	161	**	46-137	%	11.05.2019 19:38

SW3550

Prep Method:

APS APS MPG Douglas, AZ

Analytical Method: PAHs by 8270D SIM

Prep Method:

Page Number: Soil Page Property

 Seq Number:
 3106591
 Matrix:
 Soil
 Date Prep:
 11.05.2019

 Parent Sample Id:
 641882-023
 MS Sample Id:
 641882-023 SD
 MSD Sample Id:
 641882-023 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00166	0.0333	0.0264	79	0.0270	81	42-116	2	25	mg/kg	11.06.2019 10:35	
Acenaphthylene	0.00264	0.0333	0.0306	84	0.0361	100	42-121	16	25	mg/kg	11.06.2019 10:35	
Anthracene	0.00140	0.0333	0.0303	87	0.0337	97	44-120	11	25	mg/kg	11.06.2019 10:35	
Benzo(a)anthracene	0.00635	0.0333	0.0492	129	0.0511	134	52-121	4	25	mg/kg	11.06.2019 10:35	X
Benzo(a)pyrene	0.0133	0.0333	0.0689	167	0.0691	168	50-128	0	25	mg/kg	11.06.2019 10:35	X
Benzo(b)fluoranthene	0.0148	0.0333	0.0710	169	0.0738	177	49-137	4	25	mg/kg	11.06.2019 10:35	X
Benzo(g,h,i)perylene	0.0194	0.0333	0.0834	192	0.0823	189	47-132	1	25	mg/kg	11.06.2019 10:35	X
Benzo(k)fluoranthene	0.00424	0.0333	0.0415	112	0.0420	113	48-133	1	25	mg/kg	11.06.2019 10:35	
Chrysene	0.00828	0.0333	0.0542	138	0.0564	145	54-113	4	25	mg/kg	11.06.2019 10:35	X
Dibenz(a,h)Anthracene	< 0.00166	0.0333	0.0358	108	0.0366	110	48-133	2	25	mg/kg	11.06.2019 10:35	
Fluoranthene	0.0251	0.0333	0.0973	217	0.109	252	54-128	11	25	mg/kg	11.06.2019 10:35	X
Fluorene	< 0.00166	0.0333	0.0275	83	0.0297	89	44-118	8	25	mg/kg	11.06.2019 10:35	
Indeno(1,2,3-c,d)Pyrene	0.0125	0.0333	0.0650	158	0.0659	160	49-129	1	25	mg/kg	11.06.2019 10:35	X
Naphthalene	0.00171	0.0333	0.0311	88	0.0372	107	40-135	18	25	mg/kg	11.06.2019 10:35	
Phenanthrene	0.0149	0.0333	0.0647	150	0.0843	208	44-119	26	25	mg/kg	11.06.2019 10:35	XF
Pyrene	0.0293	0.0333	0.113	251	0.118	266	50-126	4	25	mg/kg	11.06.2019 10:35	X

Surrogate	MS MS %Rec Flag	MSD MSD %Rec Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	99	91	31-130	%	11.06.2019 10:35
2-Fluorobiphenyl	98	98	51-133	%	11.06.2019 10:35
Terphenyl-D14	102	111	46-137	%	11.06.2019 10:35

SW3550

APS APS MPG Douglas, AZ

Analytical Method: PAHs by 8270D SIM

Seq Number: 3106591 Matrix: Soil Date Prep: 11.05.2019 MS Sample Id: 641882-034 S Parent Sample Id: 641882-034 MSD Sample Id: 641882-034 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00166	0.0333	0.0303	91	0.0320	96	42-116	5	25	mg/kg	11.05.2019 18:48	
Acenaphthylene	< 0.00166	0.0333	0.0295	89	0.0311	93	42-121	5	25	mg/kg	11.05.2019 18:48	
Anthracene	< 0.00166	0.0333	0.0317	95	0.0324	97	44-120	2	25	mg/kg	11.05.2019 18:48	
Benzo(a)anthracene	< 0.00166	0.0333	0.0328	98	0.0334	100	52-121	2	25	mg/kg	11.05.2019 18:48	
Benzo(a)pyrene	< 0.00166	0.0333	0.0339	102	0.0345	104	50-128	2	25	mg/kg	11.05.2019 18:48	
Benzo(b)fluoranthene	< 0.00166	0.0333	0.0355	107	0.0364	109	49-137	3	25	mg/kg	11.05.2019 18:48	
Benzo(g,h,i)perylene	< 0.00166	0.0333	0.0338	102	0.0342	103	47-132	1	25	mg/kg	11.05.2019 18:48	
Benzo(k)fluoranthene	< 0.00166	0.0333	0.0333	100	0.0335	101	48-133	1	25	mg/kg	11.05.2019 18:48	
Chrysene	< 0.00166	0.0333	0.0323	97	0.0324	97	54-113	0	25	mg/kg	11.05.2019 18:48	
Dibenz(a,h)Anthracene	< 0.00166	0.0333	0.0349	105	0.0356	107	48-133	2	25	mg/kg	11.05.2019 18:48	
Fluoranthene	< 0.00166	0.0333	0.0334	100	0.0343	103	54-128	3	25	mg/kg	11.05.2019 18:48	
Fluorene	< 0.00166	0.0333	0.0309	93	0.0325	98	44-118	5	25	mg/kg	11.05.2019 18:48	
Indeno(1,2,3-c,d)Pyrene	< 0.00166	0.0333	0.0347	104	0.0353	106	49-129	2	25	mg/kg	11.05.2019 18:48	
Naphthalene	< 0.0166	0.0333	0.0288	86	0.0306	92	40-135	6	25	mg/kg	11.05.2019 18:48	
Phenanthrene	< 0.00166	0.0333	0.0325	98	0.0334	100	44-119	3	25	mg/kg	11.05.2019 18:48	
Pyrene	< 0.00166	0.0333	0.0323	97	0.0330	99	50-126	2	25	mg/kg	11.05.2019 18:48	
Surrogate				IS Rec	MS Flag	MSI %Re			imits	Units	Analysis Date	
Nitrobenzene-d5			1	12		121		31	-130	%	11.05.2019 18:48	
2-Fluorobiphenyl			1	14		122		51	-133	%	11.05.2019 18:48	

121

123

46-137

11.05.2019 18:48

Terphenyl-D14

SW3550

Prep Method:

APS APS MPG Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3106377Matrix:SolidDate Prep:11.04.2019MB Sample Id:7689559-1-BLKLCS Sample Id:7689559-1-BKSLCSD Sample Id:7689559-1-BSD

RPD MB Spike LCS LCS Limits %RPD Units Analysis LCSD LCSD **Parameter** Result Amount Result %Rec Limit Date Result %Rec 11.04.2019 10:43 1.1.1.2-Tetrachloroethane < 0.00500 0.0500 0.0495 99 0.0470 97 5 25 72-125 mg/kg 11.04.2019 10:43 95 75-125 3 25 1.1.1-Trichloroethane < 0.00500 0.0500 0.0478 96 0.0462 mg/kg 11.04.2019 10:43 0.0500 0.0503 101 0.0398 82 74-125 23 25 1.1.2.2-Tetrachloroethane < 0.00500 mg/kg 11.04.2019 10:43 1,1,2-Trichloroethane < 0.00500 0.0500 0.0490 98 0.0474 98 75-127 3 25 mg/kg 11.04.2019 10:43 97 0.0460 95 72-125 5 25 1.1-Dichloroethane < 0.00500 0.0500 0.0483 mg/kg 11.04.2019 10:43 1,1-Dichloroethene < 0.00500 0.0500 0.0500 100 0.0484 100 59-172 3 25 mg/kg 0.0500 0.0510 102 0.0485100 75-125 5 25 11.04.2019 10:43 1,1-Dichloropropene < 0.00500 mg/kg 11.04.2019 10:43 1,2,3-Trichlorobenzene < 0.00500 0.0500 0.0503101 0.0414 85 75-137 19 25 mg/kg 75-125 21 25 11.04.2019 10:43 < 0.00500 0.0500 0.0487 97 0.0394 81 mg/kg1,2,3-Trichloropropane 102 11.04.2019 10:43 0.0500 0.0423 75-135 19 25 1,2,4-Trichlorobenzene < 0.00500 0.0512 87 mg/kg 11.04.2019 10:43 1,2,4-Trimethylbenzene 0.0500 0.0481 0.0395 81 75-125 20 25 < 0.00500 96 mg/kg 11.04.2019 10:43 1,2-Dibromo-3-Chloropropane < 0.00500 0.0500 0.0485 97 0.0390 80 59-125 22 25 mg/kg 11.04.2019 10:43 0.0500 0.0489 98 0.0476 98 73-125 3 25 1.2-Dibromoethane < 0.00500 mg/kg 11.04.2019 10:43 99 75-125 25 1,2-Dichlorobenzene < 0.00500 0.0500 0.04940.0405 84 20 mg/kg 1,2-Dichloroethane < 0.00500 0.0500 0.0456 91 0.0431 89 68-127 6 25 mg/kg 11.04.2019 10:43 25 11.04.2019 10:43 1,2-Dichloropropane < 0.00500 0.0500 0.0481 96 0.0450 93 74-125 7 mg/kg 105 0.0430 20 25 mg/kg 11.04.2019 10:43 1,3,5-Trimethylbenzene < 0.00500 0.0500 0.0523 89 70-130 98 83 75-125 19 25 11.04.2019 10:43 1,3-Dichlorobenzene < 0.00500 0.0500 0.0488 0.0404 mg/kg 0.0500 0.0493 99 0.0484 100 75-125 2 25 mg/kg 11.04.2019 10:43 1.3-Dichloropropane < 0.00500 1,4-Dichlorobenzene < 0.00500 0.0500 0.0484 97 0.0401 83 75-125 19 25 mg/kg 11.04.2019 10:43 < 0.00500 0.0500 0.0491 98 0.0481 99 75-125 2 25 11.04.2019 10:43 2,2-Dichloropropane mg/kg 80 79 75-125 5 25 11.04.2019 10:43 2-Butanone < 0.0200 0.250 0.201 0.191 mg/kg 2-Chlorotoluene 0.0500 0.0503 101 0.0410 85 73-125 20 25 11 04 2019 10:43 < 0.00500 mg/kg 2-Hexanone < 0.0500 0.250 0.220 88 0.210 86 75-125 5 25 mg/kg 11.04.2019 10:43 11.04.2019 10:43 4-Chlorotoluene < 0.00500 0.0500 0.0486 97 0.0402 83 74-125 19 25 mg/kg 11.04.2019 10:43 4-Methyl-2-Pentanone 0.250 0.230 92 0.215 88 60-140 7 25 < 0.0500 mg/kg 11.04.2019 10:43 < 0.100 0.250 0.157 63 0.146 60 50-150 7 25 Acetone mg/kg Benzene < 0.00100 0.0500 0.0475 95 0.0449 93 66-142 6 25 mg/kg 11.04.2019 10:43 11.04.2019 10:43 Bromobenzene < 0.00500 0.0500 0.0498 100 0.0409 84 75-125 20 25 mg/kg 11.04.2019 10:43 Bromochloromethane 0.0448 92 60-140 2 25 < 0.00500 0.0500 0.0456 91 mg/kg Bromodichloromethane 0.0500 0.0484 97 0.0448 92 75-125 8 25 11.04.2019 10:43 < 0.00500 mg/kg Bromoform < 0.00500 0.0500 0.0547 109 0.0497 102 75-125 10 25 mg/kg 11.04.2019 10:43 11.04.2019 10:43 Bromomethane < 0.00500 0.0500 0.0365 73 0.0383 79 60-140 5 25 mg/kg 25 11.04.2019 10:43 Carbon Disulfide 0.0500 0.0581 116 0.0543 112 60-140 7 < 0.00500 mg/kg 11.04.2019 10:43 Carbon Tetrachloride < 0.00500 0.0500 0.0516 103 0.0492 101 62-125 5 25 mg/kg Chlorobenzene < 0.00500 0.0500 0.0479 96 0.0469 97 60-133 2 25 mg/kg 11.04.2019 10:43 11.04.2019 10:43 Chloroethane < 0.0100 0.0500 0.0377 75 0.0377 78 60-140 0 25 mg/kg 74-125 11.04.2019 10:43 Chloroform < 0.00500 0.0500 0.0457 91 0.0443 91 3 25 mg/kg 11.04.2019 10:43 Chloromethane < 0.00500 0.0500 0.0424 85 0.0441 91 60-140 4 25 mg/kg cis-1,2-Dichloroethene < 0.00500 0.0500 0.0459 92 0.0443 91 75-125 4 25 mg/kg 11.04.2019 10:43 11.04.2019 10:43 cis-1.3-Dichloropropene < 0.00500 0.0500 0.0503 101 0.0482 99 74-125 4 25 mg/kg 11.04.2019 10:43 Dibromochloromethane < 0.00500 0.0500 0.0519 104 0.0483 100 73-125 7 25 mg/kg 11.04.2019 10:43 Dibromomethane < 0.00500 0.0500 0.0470 94 0.0444 92 69-127 6 25 mg/kg Dichlorodifluoromethane < 0.00500 0.0500 0.0625 125 0.0585 121 65-135 7 25 mg/kg 11.04.2019 10:43 mg/kg 11.04.2019 10:43 Ethylbenzene < 0.00100 0.0500 0.0482 96 0.0476 98 75-125 1 25 111 0.0455 94 75-125 20 25 11.04.2019 10:43 Hexachlorobutadiene < 0.00500 0.0500 0.0555 mg/kg 11.04.2019 10:43 Iodomethane (Methyl Iodide) < 0.0200 0.0500 0.0399 80 0.0390 80 75-125 2 25 mg/kg 2 25 11.04.2019 10:43 Isopropylbenzene < 0.00500 0.0500 0.0505 101 0.0494 102 75-125 mg/kg 11.04.2019 10:43 0.0973 97 0.0958 99 75-125 2 25 m,p-Xylenes < 0.00200 0.100 mg/kg 25 11.04.2019 10:43 Methylene Chloride < 0.0200 0.0500 0.0481 0.0483 100 75-125 0 96 mg/kg

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(C\text{-A}) \, / \, B \\ RPD &= 200* \mid (C\text{-E}) \, / \, (C\text{+E}) \mid \\ [D] &= 100*(C) \, / \, [B] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec Flag

APS MPG Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3106377Matrix:SolidDate Prep:11.04.2019MB Sample Id:7689559-1-BLKLCS Sample Id:7689559-1-BKSLCSD Sample Id:7689559-1-BSD

RPD MB Spike LCS LCS Limits %RPD Units Analysis LCSD LCSD **Parameter** Result Amount Result %Rec %Rec Limit Date Result MTBE 0.0500 0.0444 0 25 11.04.2019 10:43 < 0.00500 0.0445 89 92 60-140 mg/kg 11.04.2019 10:43 0.0523 105 0.0428 88 70-130 20 25 Naphthalene < 0.0100 0.0500 mg/kg 11.04.2019 10:43 n-Butylbenzene < 0.00500 0.0500 0.0507 101 0.0420 87 75-125 19 25 mg/kg 11.04.2019 10:43 n-Propylbenzene < 0.00500 0.0500 0.0514 103 0.0423 87 75-125 19 25 mg/kg 75-125 11.04.2019 10:43 0.0500 0.0494 99 0.0485 100 2. 25 o-Xylene < 0.00100 mg/kg 11.04.2019 10:43 97 75-125 25 p-Cymene (p-Isopropyltoluene) < 0.00500 0.0500 0.04850.0402 83 19 mg/kg 11.04.2019 10:43 Sec-Butylbenzene < 0.00500 0.05000.0507 101 0.0421 87 75-125 19 25 mg/kg 97 0.0477 75-125 25 11.04.2019 10:43 Styrene < 0.00500 0.05000.048398 1 mg/kg 0.0500 0.0557 111 0.0457 94 75-125 20 25 11.04.2019 10:43 tert-Butylbenzene < 0.00500 mg/kg 106 25 11.04.2019 10:43 0.0500 0.0520 104 0.0512 71-125 2 Tetrachloroethylene < 0.00500 mg/kg 11.04.2019 10:43 Toluene < 0.00500 0.0500 0.0472 94 0.0466 96 59-139 1 25 mg/kg 0.0457 3 11.04.2019 10:43 trans-1,2-dichloroethene < 0.00500 0.0500 0.0471 94 94 75-125 25 mg/kg 0.0505 101 0.0496 2 25 11.04.2019 10:43 trans-1,3-dichloropropene 0.0500 102 66-125 < 0.00500 mg/kg 11.04.2019 10:43 5 25 Trichloroethene < 0.00500 0.0500 0.0441 88 0.0419 86 62-137 mg/kg 11.04.2019 10:43 Trichlorofluoromethane < 0.00500 0.0500 0.0448 90 0.0440 91 67-125 2 25 mg/kg 0.202 81 0.192 5 25 11.04.2019 10:43 Vinyl Acetate < 0.0100 0.250 79 60-140 mg/kg Vinyl Chloride 0.0500 0.0442 88 0.0456 94 60-140 3 25 11.04.2019 10:43 < 0.00500 mg/kg 1,3-Butadiene 0.0500 0.0564 113 0.0583 120 70-130 3 25 mg/kg 11.04.2019 10:43 < 0.00500 Cyclohexane < 0.00500 0.0500 0.0490 98 0.0473 98 70-130 4 25 mg/kg 11.04.2019 10:43 Dicyclopentadiene < 0.00500 0.0500 0.0454 91 0.0369 76 70-120 21 25 mg/kg 11.04.2019 10:43 Methylcyclohexane < 0.0100 0.0500 0.0518 104 0.0490 101 65-135 6 25 mg/kg 11.04.2019 10:43 0.0500 0.0461 92 0.0448 92 72-125 3 25 11.04.2019 10:43 n-Hexane < 0.0100 mg/kg 11.04.2019 10:43 4-Ethyltoluene < 0.00500 0.0500 0.0510 102 0.0419 86 70-130 20 25 mg/kg

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	104		97		96		53-142	%	11.04.2019 10:43
1,2-Dichloroethane-D4	101		99		97		56-150	%	11.04.2019 10:43
Toluene-D8	103		100		102		70-130	%	11.04.2019 10:43
4-Bromofluorobenzene	96		99		84		68-152	%	11.04.2019 10:43

Flag

APS APS MPG Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: Seq Number: 3106377 Matrix: Soil Date Prep: 11.04.2019 MSD Sample Id: 641882-004 SD

MS Sample Id: 641882-004 S Parent Sample Id: 641882-004

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.250	2.50	2.32	93	2.22	91	72-125	4	25	mg/kg	11.04.2019 11:49	
1,1,1-Trichloroethane	< 0.250	2.50	2.30	92	2.37	98	75-125	3	25	mg/kg	11.04.2019 11:49	
1,1,2,2-Tetrachloroethane	< 0.250	2.50	2.28	91	2.10	86	74-125	8	25	mg/kg	11.04.2019 11:49	
1,1,2-Trichloroethane	< 0.250	2.50	2.40	96	2.31	95	75-127	4	25	mg/kg	11.04.2019 11:49	
1,1-Dichloroethane	< 0.250	2.50	2.36	94	2.38	98	72-125	1	25	mg/kg	11.04.2019 11:49	
1,1-Dichloroethene	< 0.250	2.50	2.38	95	2.48	102	59-172	4	25	mg/kg	11.04.2019 11:49	
1,1-Dichloropropene	< 0.250	2.50	2.48	99	2.53	104	75-125	2	25	mg/kg	11.04.2019 11:49	
1,2,3-Trichlorobenzene	< 0.250	2.50	2.37	95	2.25	93	75-137	5	25	mg/kg	11.04.2019 11:49	
1,2,3-Trichloropropane	< 0.250	2.50	2.30	92	2.04	84	75-125	12	25	mg/kg	11.04.2019 11:49	
1,2,4-Trichlorobenzene	< 0.250	2.50	2.42	97	2.29	94	75-135	6	25	mg/kg	11.04.2019 11:49	
1,2,4-Trimethylbenzene	0.0194	2.50	2.38	94	2.20	90	75-125	8	25	mg/kg	11.04.2019 11:49	
1,2-Dibromo-3-Chloropropane	< 0.250	2.50	2.03	81	1.81	74	59-125	11	25	mg/kg	11.04.2019 11:49	
1,2-Dibromoethane	< 0.250	2.50	2.33	93	2.30	95	73-125	1	25	mg/kg	11.04.2019 11:49	
1,2-Dichlorobenzene	< 0.250	2.50	2.38	95	2.19	90	75-125	8	25	mg/kg	11.04.2019 11:49	
1,2-Dichloroethane	< 0.250	2.50	2.18	87	2.18	90	68-127	0	25	mg/kg	11.04.2019 11:49	
1,2-Dichloropropane	< 0.250	2.50	2.36	94	2.29	94	74-125	3	25	mg/kg	11.04.2019 11:49	
1,3,5-Trimethylbenzene	< 0.0144	2.50	2.57	103	2.40	99	70-130	7	25	mg/kg	11.04.2019 11:49	
1,3-Dichlorobenzene	< 0.250	2.50	2.47	99	2.21	91	75-125	11	25	mg/kg	11.04.2019 11:49	
1,3-Dichloropropane	< 0.250	2.50	2.45	98	2.39	98	75-125	2	25	mg/kg	11.04.2019 11:49	
1,4-Dichlorobenzene	< 0.250	2.50	2.46	98	2.18	90	75-125	12	25	mg/kg	11.04.2019 11:49	
2,2-Dichloropropane	< 0.250	2.50	2.33	93	2.41	99	75-125	3	25	mg/kg	11.04.2019 11:49	
2-Butanone	<1.00	12.5	9.05	72	9.29	77	75-125	3	25	mg/kg	11.04.2019 11:49	X
2-Chlorotoluene	< 0.250	2.50	2.47	99	2.29	94	73-125	8	25	mg/kg	11.04.2019 11:49	71
2-Hexanone	<2.50	12.5	10.1	81	10.0	83	75-125	1	25	mg/kg	11.04.2019 11:49	
4-Chlorotoluene	< 0.250	2.50	2.47	99	2.25	93	74-125	9	25	mg/kg	11.04.2019 11:49	
4-Methyl-2-Pentanone	< 2.50	12.5	10.3	82	10.2	84	60-140	1	25	mg/kg	11.04.2019 11:49	
Acetone	< 5.00	12.5	6.60	53	6.98	58	50-150	6	25	mg/kg	11.04.2019 11:49	
Benzene	0.0248	2.50	2.38	94	2.37	97	66-142	0	25	mg/kg	11.04.2019 11:49	
Bromobenzene	< 0.250	2.50	2.48	99	2.28	94	75-125	8	25	mg/kg	11.04.2019 11:49	
Bromochloromethane	< 0.250	2.50	2.20	88	2.24	92	60-140	2	25	mg/kg	11.04.2019 11:49	
Bromodichloromethane	< 0.250	2.50	2.20	88	2.12	87	75-125	4	25	mg/kg	11.04.2019 11:49	
Bromoform	< 0.250	2.50	2.25	90	2.01	83	75-125	11	25	mg/kg	11.04.2019 11:49	
Bromomethane	< 0.250	2.50	0.569	23	0.523	22	60-140	8	25	mg/kg	11.04.2019 11:49	X
Carbon Disulfide	< 0.250	2.50	2.51	100	2.56	105	60-140	2	25	mg/kg	11.04.2019 11:49	
Carbon Tetrachloride	< 0.250	2.50	2.34	94	2.34	96	62-125	0	25	mg/kg	11.04.2019 11:49	
Chlorobenzene	< 0.250	2.50	2.42	97	2.33	96	60-133	4	25	mg/kg	11.04.2019 11:49	
Chloroethane	< 0.500	2.50	0.689	28	0.821	34	60-140	17	25	mg/kg	11.04.2019 11:49	X
Chloroform	< 0.250	2.50	2.22	89	2.25		74-125	1	25		11.04.2019 11:49	
Chloromethane	< 0.250	2.50	2.39	96	2.33	96		3	25	mg/kg	11.04.2019 11:49	
cis-1,2-Dichloroethene	< 0.250	2.50	2.27	91	2.28	94		0	25	mg/kg	11.04.2019 11:49	
cis-1,3-Dichloropropene	< 0.250	2.50	2.48	99	2.39		74-125	4	25	mg/kg	11.04.2019 11:49	
Dibromochloromethane	< 0.250	2.50	2.25	90	2.10		73-125	7	25	mg/kg	11.04.2019 11:49	
Dibromomethane	< 0.250	2.50	2.24	90	2.22	91	69-127	1	25	mg/kg	11.04.2019 11:49	
Dichlorodifluoromethane	< 0.250	2.50	2.98	119	3.02	124	65-135	1	25	mg/kg	11.04.2019 11:49	
Ethylbenzene	< 0.0500	2.50	2.45	98	2.38	98	75-125	3	25	mg/kg	11.04.2019 11:49	
Hexachlorobutadiene	< 0.250	2.50	2.58	103	2.41	99	75-125	7	25	mg/kg	11.04.2019 11:49	
Iodomethane (Methyl Iodide)	<1.00	2.50	1.92	77	1.94	80	75-125	1	25	mg/kg	11.04.2019 11:49	
Isopropylbenzene	< 0.250	2.50	2.54	102	2.49		75-125	2	25	mg/kg	11.04.2019 11:49	
m,p-Xylenes	< 0.0218	5.00	4.97	99	4.80	99	75-125	3	25	mg/kg	11.04.2019 11:49	
Methylene Chloride	< 0.211	2.50	2.37	95	2.40		75-125	1	25	mg/kg	11.04.2019 11:49	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B

RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

APS APS MPG Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW 5035ASeq Number:3106377Matrix:SoilDate Prep:11.04.2019Parent Sample Id:641882-004MS Sample Id:641882-004 SMSD Sample Id:641882-004 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.250	2.50	2.14	86	2.20	91	60-140	3	25	mg/kg	11.04.2019 11:49	
Naphthalene	9.90	2.50	11.8	76	12.0	86	70-130	2	25	mg/kg	11.04.2019 11:49	
n-Butylbenzene	< 0.250	2.50	2.50	100	2.29	94	75-125	9	25	mg/kg	11.04.2019 11:49	
n-Propylbenzene	< 0.250	2.50	2.58	103	2.37	98	75-125	8	25	mg/kg	11.04.2019 11:49	
o-Xylene	< 0.0493	2.50	2.48	99	2.41	99	75-125	3	25	mg/kg	11.04.2019 11:49	
p-Cymene (p-Isopropyltoluene)	< 0.250	2.50	2.39	96	2.23	92	75-125	7	25	mg/kg	11.04.2019 11:49	
Sec-Butylbenzene	< 0.250	2.50	2.49	100	2.33	96	75-125	7	25	mg/kg	11.04.2019 11:49	
Styrene	0.0218	2.50	2.50	99	2.42	99	75-125	3	25	mg/kg	11.04.2019 11:49	
tert-Butylbenzene	< 0.250	2.50	2.72	109	2.55	105	75-125	6	25	mg/kg	11.04.2019 11:49	
Tetrachloroethylene	< 0.250	2.50	2.63	105	2.56	105	71-125	3	25	mg/kg	11.04.2019 11:49	
Toluene	< 0.0500	2.50	2.42	97	2.35	97	59-139	3	25	mg/kg	11.04.2019 11:49	
trans-1,2-dichloroethene	< 0.250	2.50	2.31	92	2.37	98	75-125	3	25	mg/kg	11.04.2019 11:49	
trans-1,3-dichloropropene	< 0.250	2.50	2.47	99	2.36	97	66-125	5	25	mg/kg	11.04.2019 11:49	
Trichloroethene	< 0.250	2.50	2.20	88	2.18	90	62-137	1	25	mg/kg	11.04.2019 11:49	
Trichlorofluoromethane	< 0.250	2.50	2.00	80	2.08	86	67-125	4	25	mg/kg	11.04.2019 11:49	
Vinyl Acetate	< 0.500	12.5	9.54	76	9.43	78	60-140	1	25	mg/kg	11.04.2019 11:49	
Vinyl Chloride	< 0.250	2.50	2.34	94	2.29	94	60-140	2	25	mg/kg	11.04.2019 11:49	
1,3-Butadiene	< 0.250	2.50	2.94	118	2.89	119	70-130	2	25	mg/kg	11.04.2019 11:49	
Cyclohexane	< 0.250	2.50	2.35	94	2.48	102	70-130	5	25	mg/kg	11.04.2019 11:49	
Dicyclopentadiene	< 0.250	2.50	2.20	88	2.06	85	70-120	7	25	mg/kg	11.04.2019 11:49	
Methylcyclohexane	< 0.500	2.50	2.50	100	2.57	106	65-135	3	25	mg/kg	11.04.2019 11:49	
n-Hexane	< 0.500	2.50	2.32	93	2.34	96	72-125	1	25	mg/kg	11.04.2019 11:49	
4-Ethyltoluene	< 0.250	2.50	2.57	103	2.34	96	70-130	9	25	mg/kg	11.04.2019 11:49	
Propene	< 0.250	2.50	1.79	72	1.87	77	70-130	4	25	mg/kg	11.04.2019 11:49	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	94		97		53-142	%	11.04.2019 11:49
1,2-Dichloroethane-D4	97		98		56-150	%	11.04.2019 11:49
Toluene-D8	101		100		70-130	%	11.04.2019 11:49
4-Bromofluorobenzene	98		92		68-152	%	11.04.2019 11:49

Chain of Custody

Work Order No: 641882

Page

www.xenco.com

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334

TOUSIDI, 17 (201) 240-4200 Dallas, 17 (214) 302-0000 Call Allicello, 17 (210) 508-0004	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296	s NM (575-392-7550) Phoenix AZ (480-355-0900) Atlanta GA (770-448-8800) Tampa El (813-620-2000)

Work Order Comments	P☐ Brownfields☐ RR☐ Superfur☐	Arizona	Reporting:Level III X Level III□ PST/US-□ TRR-□ Level IV□	ADaPT ☐ Other:	Work Order Notes	ID:HOU-068 C/F:+0.2	Temp: // Corrected //	0.4				TAT starts the day recevied by the lab, if received by 4:30pm		Sample Comments				MS/MSD						,
Wor	Program: UST/PST☐ PRP☐ Brownfields☐	State of Project: A	Reporting:Level II X Level	Deliverables: EDD	NEST				әр) Ngui	Otal C	v1 - t	LOG	6/2106				✓				, ,		
			om om		ANALYSIS REQUEST			līty		161 -	S1.7 €	oloim Ho	l - ·	85+06 9+8MS				XXX						
Bernice Kidd Matt Branche	Jacobs	480-273-4084	Bernice.Kidd@jacobs.com matt.branche@jacobs.com	wood@aps.com							etoT -	A171	1	80108 80608 8082 -	× ×	××	XXX	XXX	×	×	××	×	××	XX
Send results to	Company Name:	Phone	email	Email: Judith. Heywood@	Turn Around	Routine 文	Rush: けるトC	ue Date:	Wet Ice: Yes No		J	Τ	Ц	ed Depth Z	5 19.5-20 1	-	50 1.0-15 3	D 25-307	0 5.0-5.5 1		5 10.0-10.5 1	15,0-15	1	S 19,520,0 1
		3	61	山			Н	-M. Aranche 10	(Yes) No	Thermometer ID	IR ID:HOU-068 C/F:+0.2	Jenip - / Scott		Sampled Sampled	10-30-19 15.55	10-30-17 GOD	10314 0750	180 . 1	0800	1 1925	0935	S44S	1, 1695	S50
Judy Heywood	APS	PO Box53999, MS 9303	Phoenix, AZ 85072-3999	602-818-0259	APS MGP Douglas, AZ	D3118600.A.CS.EV.DG.05-1B	700735632	A. Shurshe, M. Branch Due Date:	IPT Temp Blank:	(IS: Yes No (M/A)		tification Matrix	- B24- 19.5-20,0 s	(030/9 s	s 51.0"	1.5-3.0 s	-5.0-5.5 s	s 0'8-5'	13-10.0-10.5 s	5.0-15.5 s	0319 5	9,5-20,015
Project Manager:		Address:	City, State ZIP:	Phone:	Project Name:	Project Number:	P.O. Number:	Sampler's Name:	SAMPLE RECEIPT	Temperature (°C):	Received Intact:	Sample Custody Seals:		Sample Identification	D-B24-	D-F061-103019	D-613-1	D B13-1	D-813-8	D-813-7	D-813-1	D. B13-1	-	D-813-1

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.

1631 / 245.1 / 7470 / 7471 : Hg

8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn

Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl

TCLP / SPLP 6010: 8RCRA

Circle Method(s) and Metal(s) to be analyzed

Total 200.7 / 6010

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
	Feltx		2 Falso	Z Z	11.4.19 9:30
	1 - 1		,		
			9		
					Revised Date 051418 Rev 2018 1

XENCO

Chain of Custody

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296

Work Order No: 1041882 www.xenco.com Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)

Work Order Comments	:T/PST☐ PRP☐ Brownfields☐ RR☐ Superfur	roject: Arizona	Reporting:Level III X Level III□ PST/US꾸 TRR戶 Level IV□	EDD ☐ ADaPT ☐ Other:	Work Order Notes	IR ID:HOU-068 C/F:+0.2	Temp; (Corrected:)	9:0				TAT starts the day recevied by the	lab, if received by 4:30pm	Sample Comments		TRID BLAK			Dossible land black		7			possible (amp black		
	Program: UST/PST□	State of Project:	Reporting:Lev	Deliverables: EDD	ANALYSIS REQUEST			<i>f</i> ₁₁₁					Hq -	13/6/EI 89b	06		×××	,	XXX	XXX						
Bernice Kidd Matt Branche	Jacobs	480-273-4084	Bernice. Kidd@jacobs.com matt.branche@jacobs.com	gaps.com	ANAL			(8 RC		: (Me	Tota OCs	V Is	Tot- FOEs	809 809	06	×	××××××		X X X X X X	$^{\wedge}$ \times \times \times	××	×	~ ×	××	XX	
Send results to	Company Name:	Phone	email	Email: Judith.Heywood@aps.com	Turn Around	Routine	Rush: 48 hr	M. Prancho Due Date:	Wet Ice: (Yes No	ter ID		ected;	I	-	Sampled	1 - 0000	1115 120-15 4	1125 2530 3	1135 505,54	h 0h11	10.8.54. 5411	1150 10,0-10,5 1	1155 150-155 1	1215 19.5-201	1350 24.5.25.0 1	
Judy Heywood	APS	PO Box53999, MS 9303	Phoenix, AZ 85072-3999	602-818-0259	APS MGP Douglas, AZ	D3118600.A.CS.EV.DG.05-1B	700735632	A.Shwarte M. Bra	PT Temp Blank: Yes No)	(Yes/ No IRID:H	(Yes)No N/A	Yes No (M/A)	Matrix		13-15-01 s 91:50	s S 1-0"	3.5.3.0 s	s 25-0.	s 61/201-	7.8.8.08	. 10.0-10.5ls	S.O-15.S	19.5-2015 1	24.5.35.0 S	
Project Manager:	Company Name:	Address:	City, State ZIP:	Phone:	Project Name:	Project Number:	P.O. Number:	Sampler's Name:	SAMPLE RECEIPT	Temperature (°C):	Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Sample Identification		D-TB01-103119	D-812-1.	D-1312-	D-812-5	D-ED02	D- B12-	D- 1912-	D-812-1	D-B12-	D-B12-	

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.

1631 / 245.1 / 7470 / 7471 : Hg

Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U

TCLP / SPLP 6010: 8RCRA

Circle Method(s) and Metal(s) to be analyzed

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
	15/130		2 Fello	Kar	05:661411
	1		4)	
			9		
					Revised Date 051418 Rev. 2018 1

Chain of Custody

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296

CID	70	
11111	X 10)	
	rder No:	
	ork O	

TAT starts the day recevied by the Temp; 4 Corrected: Reporting:Level II X Level III PST/US-P TRRP Level IV lab, if received by 4:30pm Superfur Work Order Notes Sample Comments of IR ID:HOU-068 Other: Program: UST/PST☐ PRP☐ Brownfields☐ RR□ Work Order Comments ADaPT www.xenco.com State of Project: Deliverables: EDD Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) ANALYSIS REQUEST 9013/9014 - Total Cyanide Hd - 85106 SW846 Article 7.12 - Ignitability matt.branche@jacobs.com 9095B - Paint Filter Bernice.Kidd@jacobs.com 8085 - PCBs 8260B - Total VOCs (MeOH preserved) 480-273-4084 Matt Branche Bernice Kidd Email: Judith. Heywood@aps.com Jacobs SHA9 MIS 0758 **Number of Containers** Company Name: Send results to 9.5-10.0 9.5200 2.530 S Rush: 1287 Turn Around Depth Corrected: 6 Phone email Wet Ice: (Yes) C/F:+0.2 Routine * D. Shwarte, M. Brownbue Date: Thermometer ID 1435 020 とけて Sampled 550 019 Time R ID:HOU-068 10-31-19 Yes No Sampled Date Temp: D3118600.A.CS.EV.DG.05-1B Phoenix, AZ 85072-3999 Temp Blank: PO Box53999, MS 9303 **A** APS MGP Douglas, AZ Matrix N N 8 23-14.5-150s S S S Yes No å 5-50-55 -873-9.5-60 Judy Heywood B23-2530 602-818-0259 FD03-103119 Yes 700735632 Sample Identification APS SAMPLE RECEIPT Sample Custody Seals: Cooler Custody Seals: D-P3 Project Manager: Sampler's Name: Temperature (°C) Company Name: Project Number: Received Infact: City, State ZIP: Project Name: P.O. Number: Address: Phone:

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be eaplied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. lotice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions

1631 / 245.1 / 7470 / 7471 : Hg

13PPM Texas 11 AISb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn

Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl

TCLP / SPLP 6010: 8RCRA

Circle Method(s) and Metal(s) to be analyzed

200.8 / 6020:

Total 200.7 / 6010

8RCRA

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
	Feder		2 Felix	the state of the s	11419 9:30
3			4	7	
9			Ø		
				,	Revised Date 051418 Rev. 2018 1

Chain of Custody

Work Order No: UMISS

www.xenco.com

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)

TAT starts the day recevied by the IR ID:HOU-068 C/F:+0.2 Temp: L4 Corrected: D. L Reporting:Level II|X Level III PST/US-P TRR-P Level IV Nab, if received by 4:30pm Superfur□ Work Order Notes Sample Comments MS/MSD Other: Program: UST/PST☐ PRP☐ Brownfields☐ RR□ JAR AR Work Order Comments ADaPT State of Project: Deliverables: EDD (ASTH DD4129-05 FOG ANALYSIS REQUEST 9013/9014 - Total Cyanide Hq - 82406 SW846 Article 7.12 - Ignitability matt.branche@jacobs.com 9095B - Paint Filter Bernice. Kidd@jacobs.com 8085 - PCBs 8260B - Total VOCs (MeOH preserved) Matt Branche 480-273-4084 Bernice Kidd (ANDA 8) sistem isto! - Afterialf(8 RCRA) Email: Judith.Heywood@aps.com Jacobs SHA9 MIZ 07S8 Number of Containers Company Name: Send results to IR ID:HOU-068 C/F:+0.2
Temp: __/. & Corrected: __/. & ___/. Rush: 48 Hours 30,0-30,5 25.0-255 30-30.5 40.0-40.5 Wet Ice: (Yes) No 10.0-10.5 15.0-15.5 Turn Around Routine X (A Depth 4 7 Phone email Due Date: Thermometer ID 0:30 Sampled 10:50 7.8 9.30 13:30 11:35 1:45 Time Temp Blank: (Yes) No Ika D. Dinkelman 03119 0 31 19 10/31/19 Sampled 10/31/19 2 Date K D3118600.A.CS.EV.DG.05-1B iolail 10/3 Phoenix, AZ 85072-3999 PO Box53999, MS 9303 APS MGP Douglas, AZ Matrix N/A 8 S S S S S S S No 9N Judy Heywood 602-818-0259 Yes Yes 700735632 Sample Identification D-825-30.0-30.5 D-835-35.0-35.5 D-825-30.0-30.5 D-B25-40.0-40,5 D-825-15.0-15.5 D-FD04-103119 APS D-825-10.0-10.5 SAMPLE RECEIPT Sample Custody Seals: Cooler Custody Seals: Project Manager: Temperature (°C) Sampler's Name: Company Name: Received Intact: Project Number City, State ZIP: Project Name: P.O. Number: Address: Phone:

1631 / 245.1 / 7470 / 7471 : Hg 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Votice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti Circle Method(s) and Metal(s) to be analyzed 200.8 / 6020: Total 200.7 / 6010

MON - 04 NOV 10:30A PRIORITY OVERNIGHT TX-NZ IAH Packages up to 150 lbs. Forpackages ever 150 lbs, use the Fedex Express Freight US Aibill. 6 Special Handling and Delivery Signature Options Fees may supply See the Feelth Service Gur Obtain recip FedEx 2Day
Second business afternoon.* Thursday shipments
Will be delivered on Monday unless Saturday
Delivery is selected. Cargo Aircraft Only FedEx Tube FID 3604368 01NOV19 AVWA 56AC3/2A3C/05A2 FedEx 2Day A.M.
Second business morning.*
Saturday Delivery NOT available. FedEx Express Saver
Third business day.*
Saturday Delivery NOT aveilable. 2 or 3 Business Days Credit Card Tour liability is limited to USS100 unless you declare a higher value. See the current FedEx Service Guide for deads. Credit Card Auth. Enter FodEx Acct. No. or Credit Card No. below. .. FedEx Saturday Delivery Not eventiable for Feditiv Standard Overnight, Feditix 20ay A.M., or Feditix Express Saver Direct Signature Someone at recipients address may sign for delivery. 0200 8125 9253 6299 Rev. Dato 3/15+ Part #187002 + ©2012-2015 Fodex + PRINTED IN U.S.A. RRDA 00/00 Yes
As per attached
Shipper's Declaration
not required. Restrictions apply for dangerous goods — see the current fedfix Service Guids. Does this shipment contain dangerous goods? FedEx Pak* 5 Packaging + Declared value limit \$500. FedEx Priority Overnight
Next business morning.* Fridey shipments will be
delivered on Mondey unless Saturday Delivery
is selected. Express Package Service FedEx First Overnight
Earliest next business morning delivery to select
locations. Fridey shipments will be delivered on
Monday unless Saturdey Delivery is selected. FedEx Standard Overnight
Nextbusiness afternoon;
Saturday Delivery, NOT available. SE CEUC No Signature Required Package may be left without obtaining a signature for delivery. Next Business Day FedEx Envelope* 7 Payment Bill to: Total Packages No 6549 Hold Weekday Fedex location address REQUIRED NOT available for Fedex First Overnight. Hold Saturday
Fedex location address
REQUIRED. Available DWYor
Fedex Priority Overnight and
Fedex 20ay to select locations. 00 9253 N 3/4 ZIP Fedex B125 Phone

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: APS Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11.04.2019 09.30.00 AM

Temperature Measuring device used: HOU-068 Work Order #: 641882

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	-1.6	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	Yes	Extra container not on COC and added to the end
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

^{*} Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: MDS

Checklist completed by:

Monica Shakhshir

PH Device/Lot#:

Date: 11.04.2019

Checklist reviewed by:

Date: 11.04.2019 Ruriko Konuma

Analytical Report 642000

for APS

Project Manager: Judy Heywood APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 08-NOV-19

Collected By: Client

4147 Greenbriar Dr. Stafford, TX 77477

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092)

Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Tampa: Florida (E87429), North Carolina (483)

08-NOV-19

Project Manager: **Judy Heywood APS**P.O. Box 53999
Mail Station 8376
Phoenix, AZ 85072

Reference: XENCO Report No(s): 642000

APS MGP Douglas, AZ

Project Address:

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 642000. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 642000 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

XENCO

CASE NARRATIVE

Client Name: APS
Project Name: APS MGP Douglas, AZ

Project ID: D3118600.A.CS.EV.DG.0. Report Date: 08-NOV-19
Work Order Number(s): 62200

Work Order Number(s): 642000 Date Received: 11/05/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3106630 Metals, RCRA List, by SW 6020

Lab Sample ID 642000-015 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Arsenic recovered above QC limits in the Matrix Spike. Barium, Chromium, Lead recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642000-011, -012, -013, -014, -015, -016, -017, -018, -019, -020, -021, -023, -024, -025, -026, -027, -028, -029, -030.

The Laboratory Control Sample for Arsenic, Chromium, Barium, Lead is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3106671 PAHs by SW846 8270D SIM

Lab Sample ID 642000-057 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzo(k)fluoranthene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)Pyrene recovered below QC limits in the Matrix Spike. Benzo(g,h,i)perylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642000-057, -058.

The Laboratory Control Sample for Dibenz(a,h)anthracene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Indeno(1,2,3-c,d)Pyrene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3106705 Metals, RCRA List, by SW 6020

Lab Sample ID 642000-048 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Arsenic recovered above QC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642000-031, -032, -035, -036, -037, -038, -039, -040, -041, -042, -043, -044, -045, -046, -047, -048, -049, -050, -051, -052.

The Laboratory Control Sample for Arsenic, Barium is within laboratory Control Limits, therefore the data was accepted.

0

CASE NARRATIVE

Client Name: APS
Project Name: APS MGP Douglas, AZ

Project ID: D3118600.A.CS.EV.DG.0. Report Date: 08-NOV-19

Work Order Number(s): 642000 Date Received: 11/05/2019

Batch: LBA-3106710 PAHs by 8270D SIM

Fluoranthene, Phenanthrene, Pyrene Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits.

Samples in the analytical batch are: 642000-043, -044, -045, -046, -047, -048, -049, -050, -051, -052, -053, -054, -055

Lab Sample ID 642000-048 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Fluoranthene, Phenanthrene, Pyrene recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642000-043, -044, -045, -046, -047, -048, -049, -050, -051, -052, -053, -054, -055.

The Laboratory Control Sample for Pyrene, Fluoranthene, Phenanthrene is within laboratory Control Limits, therefore the data was accepted.

Sample 642000-048 was run at dilution due to the physical characteristics of the sample (dark and viscous).

Batch: LBA-3106739 PAHs by 8270D SIM

Lab Sample ID 642000-015 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Fluoranthene, Indeno(1,2,3-c,d)Pyrene, Phenanthrene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642000-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020.

The Laboratory Control Sample for Chrysene, Pyrene, Benzo(a)pyrene , Benzo(b)fluoranthene , Fluoranthene , Benzo(a)anthracene , Indeno(1,2,3-c,d)Pyrene , Benzo(g,h,i)perylene , Phenanthrene is within laboratory Control Limits, therefore the data was accepted.

Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Fluoranthene, Indeno(1,2,3-c,d)Pyrene, Phenanthrene Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits.

Samples in the analytical batch are: 642000-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020

Samples in work order 642000 were run at dilution due to the physical characteristics of the sample (dark and very viscous).

Page 4 of 194 Final 1.000

Flagging Criteria

Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

Sample Cross Reference 642000

TNI CABORATOR

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D-B30-5.0-5.5	S	11-01-19 08:50	5.0 - 5.5	642000-001
D-FD01-110119	S	11-01-19 08:55		642000-002
D-B30-10.0-10.5	S	11-01-19 09:10	10.0 - 10.5	642000-003
D-B30-15.0-15.5	S	11-01-19 09:15	15.0 - 15.5	642000-004
D-B30-19.5-20.0	S	11-01-19 09:30	19.5 - 20.0	642000-005
D-B21-2.5-3.0	S	11-01-19 10:40	2.5 - 3.0	642000-006
D-FD02-110119	S	11-01-19 10:45		642000-007
D-B21-5.0-5.5	S	11-01-19 10:55	5.0 - 5.5	642000-008
D-B21-7.5-8.0	S	11-01-19 11:15	7.5 - 8.0	642000-009
D-B21-10.0-10.5	S	11-01-19 11:25	10.0 - 10.5	642000-010
D-B21-15.0-15.5	S	11-01-19 11:35	15.0 - 15.5	642000-011
D-B21-19.5-20.0	S	11-01-19 11:45	19.5 - 20.0	642000-012
D-B21-24.5-25.0	S	11-01-19 13:05	24.5 - 25.0	642000-013
D-B15-1.0-1.5	S	11-01-19 13:55	1.0 - 1.5	642000-014
D-B15-2.5-3.0	S	11-01-19 14:10	2.5 - 3.0	642000-015
D-B15-5.0-5.5	S	11-01-19 14:25	5.0 - 5.5	642000-016
D-FD03-110119	S	11-01-19 14:35		642000-017
D-B15-7.5-8.0	S	11-01-19 14:45	7.5 - 8.0	642000-018
D-B15-10.0-10.5	S	11-01-19 14:50	10.0 - 10.5	642000-019
D-FD04-110119	S	11-01-19 14:55		642000-020
D-B15-14.5-15.0	S	11-01-19 15:00	14.5 - 15.0	642000-021
D-TB01-110119	S	11-01-19 08:00		642000-022
D-B19-2.5-3.0	S	11-01-19 15:40	2.5 - 3.0	642000-023
D-B19-5.0-5.5	S	11-01-19 15:55	5.0 - 5.5	642000-024
D-B19-7.5-8.0	S	11-01-19 16:05	7.5 - 8.0	642000-025
D-B19-10.0-10.5	S	11-02-19 08:00	10.0 - 10.5	642000-026
D-B19-15.0-15.5	S	11-02-19 08:10	15.0 - 15.5	642000-027
D-B19-19.5-20.0	S	11-02-19 08:25	19.5 - 20.0	642000-028
D-B20-7.5-8.0	S	11-02-19 09:25	7.5 - 8.0	642000-029
D-B20-9.5-10.0	S	11-02-19 09:30	9.5 - 10.0	642000-030
D-B20-14.5-15.0	S	11-02-19 09:45	14.5 - 15.0	642000-031
D-B20-19.5-20.0	S	11-02-19 09:55	19.5 - 20.0	642000-032
D-TAR-01	S	11-02-19 08:00		642000-033
D-B26-40.0-40.5	S	11-02-19 14:30	40.0 - 40.5	642000-034
D-B27-2.5-3.0	S	11-03-19 10:00	2.5 - 3.0	642000-035
D-B27-5.0-5.5	S	11-03-19 10:10	5.0 - 5.5	642000-036
D-FD01-110319	S	11-03-19 10:05		642000-037
D-B27-7.5-8.0	S	11-03-19 15:15	7.5 - 8.0	642000-038
D-B27-10.0-10.5	S	11-03-19 15:35	10.0 - 10.5	642000-039
D-B27-15.0-15.5	S	11-03-19 15:55	15.0 - 15.5	642000-040
D-B27-20.0-20.5	S	11-03-19 16:20	20.0 - 20.5	642000-041
D-B27-25.0-25.5	S	11-03-19 16:30	25.0 - 25.5	642000-042
D-FD02-110319	S	11-03-19 16:35		642000-043

Sample Cross Reference 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

D-B26-2.5-3.0	S	11-01-19 14:15	2.5 - 3.0	642000-044
D-FD05-110119	S	11-01-19 14:20		642000-045
D-B26-5.0-5.5	S	11-01-19 14:30	5.0 - 5.5	642000-046
D-B26-7.5-8.0	S	11-02-19 09:50	7.5 - 8.0	642000-047
D-B26-10.0-10.5	S	11-02-19 10:15	10.0 - 10.5	642000-048
D-B26-15.0-15.5	S	11-02-19 10:35	15.0 - 15.5	642000-049
D-B26-20.0-20.5	S	11-02-19 10:50	20.0 - 20.5	642000-050
D-B26-25.0-25.5	S	11-02-19 11:15	25.0 - 25.5	642000-051
D-FD01-110219	S	11-02-19 09:55		642000-052
D-B26-30.0-30.5	S	11-02-19 13:25	30.0 - 30.5	642000-053
D-B27-30.0-30.5	S	11-04-19 09:50	30.0 - 30.5	642000-054
D-B27-40.0-40.5	S	11-04-19 11:05	40.0 - 40.5	642000-055
D-TB01-102919	S	10-29-19 00:00		642000-056
D-EB01-102919	W	10-29-19 10:20		642000-057
D-EB01-110219	W	11-02-19 15:50		642000-058

Prep Method: SW7471P

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B30-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-001 Date Collected: 11.01.19 08.50 Sample Depth: 5.0 - 5.5

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture:

KCS Analyst: Date Prep: 11.06.19 11.00 Basis: Wet Weight

SUB: T104704215-19-30 Seq Number: 3106614

Result RL**Parameter** Cas Number Dil **Analysis Date** Flag BRL Cyanide, Total 57-12-5 0.0565 mg/kg 11.06.19 12.22 U 1

Analytical Method: Mercury by SW 7471B

ADS Tech:

Tech:

ANJ Basis: Wet Weight Analyst: Date Prep: 11.06.19 07.40

Seq Number: 3106627 SUB: T104704215-19-30

Result RL Parameter Cas Number Dil Units **Analysis Date** Flag BRL 0.0182 Mercury 7439-97-6 mg/kg 11.06.19 11.02

Analytical Method: Metals, RCRA List, by SW 6020

Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: 11.05.19 16.10 Basis: Wet Weight Date Prep:

Seq Number: 3106697 SUB: T104704215-19-30

Cas Number Result RL**Parameter Analysis Date** Flag Dil Units 7440-38-2 12.6 1.85 11.06.19 17.57 10 Arsenic mg/kg Barium 7440-39-3 133 3.70 mg/kg 11.06.19 17.57 10 Cadmium 7440-43-9 BRL 1.85 mg/kg 11.06.19 17.57 U 10 Chromium 7440-47-3 10.2 3.70 11.06.19 17.57 10 mg/kg Lead 7439-92-1 26.8 1.85 mg/kg 11.06.19 17.57 10 Selenium 7782-49-2 BRL 1.85 mg/kg 11.06.19 17.57 U 10 Silver 7440-22-4 BRL 1.85 mg/kg 11.06.19 17.57 U 10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B30-5.0-5.5** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-001 Date Collected: 11.01.19 08.50 Sample Depth: 5.0 - 5.5

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106624

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilFlash Point>180Deg F $11.06.19\ 10.56$ 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.19 13.301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106588

Parameter Cas Number Result RLUnits **Analysis Date** Dil Flag pН 12408-02-5 7.91 SU 11.06.19 11.26 1 11.06.19 11.26 **Temperature** TEMP 25.3 Deg C 1

DRU

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B30-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-001 Date Collected: 11.01.19 08.50 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.09 Basis: Wet Weight

Seq Number: 3106739 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	11.07.19 11.40	U	5
Acenaphthylene	208-96-8	0.0154	0.00833		mg/kg	11.07.19 11.40		5
Anthracene	120-12-7	0.00931	0.00833		mg/kg	11.07.19 11.40		5
Benzo(a)anthracene	56-55-3	0.0376	0.00833		mg/kg	11.07.19 11.40		5
Benzo(a)pyrene	50-32-8	0.0672	0.00833		mg/kg	11.07.19 11.40		5
Benzo(b)fluoranthene	205-99-2	0.0795	0.00833		mg/kg	11.07.19 11.40		5
Benzo(g,h,i)perylene	191-24-2	0.0744	0.00833		mg/kg	11.07.19 11.40		5
Benzo(k)fluoranthene	207-08-9	0.0232	0.00833		mg/kg	11.07.19 11.40		5
Chrysene	218-01-9	0.0484	0.00833		mg/kg	11.07.19 11.40		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00833		mg/kg	11.07.19 11.40	U	5
Fluoranthene	206-44-0	0.140	0.00833		mg/kg	11.07.19 11.40		5
Fluorene	86-73-7	BRL	0.00833		mg/kg	11.07.19 11.40	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0536	0.00833		mg/kg	11.07.19 11.40		5
Naphthalene	91-20-3	BRL	0.0833		mg/kg	11.07.19 11.40	U	5
Phenanthrene	85-01-8	0.100	0.00833		mg/kg	11.07.19 11.40		5
Pyrene	129-00-0	0.172	0.00833		mg/kg	11.07.19 11.40		5
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		85	%	31-130		.19 11.40		
2-Fluorobiphenyl		96	%	51-133		.19 11.40		
Terphenyl-D14		112	%	46-137	11.07	.19 11.40		

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B30-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-001 Date Collected: 11.01.19 08.50 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,1-Dichloroethane	75-34-3	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,1-Dichloroethene	75-35-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,1-Dichloropropene	563-58-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2-Dibromoethane	106-93-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2-Dichloroethane	107-06-2	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,2-Dichloropropane	78-87-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,3-Dichloropropane	142-28-9	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.213	mg/kg	11.05.19 16.30	U	50
2,2-Dichloropropane	594-20-7	BRL	0.213	mg/kg	11.05.19 16.30	U	50
2-Butanone	78-93-3	BRL	0.853	mg/kg	11.05.19 16.30	U	50
2-Chlorotoluene	95-49-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
2-Hexanone	591-78-6	BRL	2.13	mg/kg	11.05.19 16.30	U	50
4-Chlorotoluene	106-43-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.13	mg/kg	11.05.19 16.30	U	50
Acetone	67-64-1	BRL	4.27	mg/kg	11.05.19 16.30	U	50
Benzene	71-43-2	BRL	0.0427	mg/kg	11.05.19 16.30	U	50
Bromobenzene	108-86-1	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Bromochloromethane	74-97-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Bromodichloromethane	75-27-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Bromoform	75-25-2	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Bromomethane	74-83-9	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Carbon Disulfide	75-15-0	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Carbon Tetrachloride	56-23-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Chlorobenzene	108-90-7	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Chloroethane	75-00-3	BRL	0.427	mg/kg	11.05.19 16.30	U	50
Chloroform	67-66-3	BRL	0.213	mg/kg	11.05.19 16.30	U	50

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B30-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-001 Date Collected: 11.01.19 08.50 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.213	mg/kg	11.05.19 16.30	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.213	mg/kg	11.05.19 16.30	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Dibromochloromethane	124-48-1	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Dibromomethane	74-95-3	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Ethylbenzene	100-41-4	BRL	0.0427	mg/kg	11.05.19 16.30	U	50
Hexachlorobutadiene	87-68-3	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.853	mg/kg	11.05.19 16.30	U	50
Isopropylbenzene	98-82-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
m,p-Xylenes	179601-23-1	BRL	0.0853	mg/kg	11.05.19 16.30	U	50
Methylene Chloride	75-09-2	BRL	0.853	mg/kg	11.05.19 16.30	U	50
MTBE	1634-04-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Naphthalene	91-20-3	BRL	0.427	mg/kg	11.05.19 16.30	U	50
n-Butylbenzene	104-51-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
n-Propylbenzene	103-65-1	BRL	0.213	mg/kg	11.05.19 16.30	U	50
o-Xylene	95-47-6	BRL	0.0427	mg/kg	11.05.19 16.30	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Sec-Butylbenzene	135-98-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Styrene	100-42-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
tert-Butylbenzene	98-06-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Tetrachloroethylene	127-18-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Toluene	108-88-3	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Total Xylenes	1330-20-7	BRL	0.0427	mg/kg	11.05.19 16.30	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.213	mg/kg	11.05.19 16.30	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Trichloroethene	79-01-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Trichlorofluoromethane	75-69-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Vinyl Acetate	108-05-4	BRL	0.427	mg/kg	11.05.19 16.30	U	50
Vinyl Chloride	75-01-4	BRL	0.213	mg/kg	11.05.19 16.30	U	50
1,3-Butadiene	106-99-0	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Cyclohexane	110-82-7	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Dicyclopentadiene	77-73-6	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Methylcyclohexane	108-87-2	BRL	0.427	mg/kg	11.05.19 16.30	U	50
n-Hexane	110-54-3	BRL	0.427	mg/kg	11.05.19 16.30	U	50
4-Ethyltoluene	622-96-8	BRL	0.213	mg/kg	11.05.19 16.30	U	50
Propene	115-07-1	BRL	0.213	mg/kg	11.05.19 16.30	U	50

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B30-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-001 Date Collected: 11.01.19 08.50 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	86	%	53-142	11.05.19 16.30	
1,2-Dichloroethane-D4	98	%	56-150	11.05.19 16.30	
Toluene-D8	101	%	70-130	11.05.19 16.30	
4-Bromofluorobenzene	97	%	68-152	11.05.19 16.30	

Tech:

Certificate of Analytical Results 642000

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD01-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-002 Date Collected: 11.01.19 08.55

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture:

Analyst: KCS Date Prep: 11.06.19 11.00 Basis: Wet Weight

Seq Number: 3106614 SUB: T104704215-19-30

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilCyanide, Total57-12-5BRL0.0571mg/kg11.06.19 12.27U1

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

Seq Number: 3106627 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0208
 0.0192
 mg/kg
 11.06.19 11.08
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.05.19 16.10 Basis: Wet Weight

Seq Number: 3106697 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.5	1.89	mg/kg	11.06.19 18.06		10
Barium	7440-39-3	162	3.77	mg/kg	11.06.19 18.06		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.06.19 18.06	U	10
Chromium	7440-47-3	11.5	3.77	mg/kg	11.06.19 18.06		10
Lead	7439-92-1	52.3	1.89	mg/kg	11.06.19 18.06		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.06.19 18.06	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.06.19 18.06	U	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110119** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-002 Date Collected: 11.01.19 08.55

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106624

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.06.19 11.15
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.19 13.301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106588

Parameter Cas Number Result RLUnits **Analysis Date** Dil Flag pН 12408-02-5 7.76 SU 11.06.19 11.26 1 11.06.19 11.26 **Temperature** TEMP 25.3 Deg C 1

DRU

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110119** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-002 Date Collected: 11.01.19 08.55

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

 Analyst:
 DNE
 Date Prep:
 11.06.19 12.12
 Basis:
 Wet Weight

 Seq Number:
 3106739
 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Acenaphthene 83-32-9 BRL 0.00832 mg/kg 11.07.19 15.34 U 5 0.0125 5 Acenaphthylene 208-96-8 0.00832mg/kg 11.07.19 15.34 0.00832 11.07.19 15.34 5 Anthracene 0.0115 mg/kg 120-12-7 Benzo(a)anthracene 0.0439 0.00832 11.07.19 15.34 5 56-55-3 mg/kg 0.0719 5 Benzo(a)pyrene 50-32-8 0.00832 mg/kg 11.07.19 15.34 Benzo(b)fluoranthene 205-99-2 0.116 0.00832 mg/kg 11.07.19 15.34 5 Benzo(g,h,i)perylene 191-24-2 0.0533 0.00832 mg/kg 11.07.19 15.34 5 5 Benzo(k)fluoranthene 207-08-9 0.0307 0.00832mg/kg 11.07.19 15.34 5 0.0631 0.00832 11.07.19 15.34 Chrysene 218-01-9 mg/kg 5 Dibenz(a,h)Anthracene BRL 0.00832 mg/kg 11.07.19 15.34 U 53-70-3 Fluoranthene 0.119 0.00832mg/kg 11.07.19 15.34 5 206-44-0 mg/kg 11.07.19 15.34 5 Fluorene BRL 0.00832 U 86-73-7 Indeno(1,2,3-c,d)Pyrene 193-39-5 0.0441 0.00832 mg/kg 11.07.19 15.34 5 Naphthalene BRL 0.0832 11.07.19 15.34 5 91-20-3 mg/kg Phenanthrene 85-01-8 0.0498 0.00832 mg/kg 11.07.19 15.34 5 Pyrene 129-00-0 0.133 0.00832 mg/kg 11.07.19 15.34 5 % Surrogate Recovery Units Limits **Analysis Date** Flag Nitrobenzene-d5 95 % 31-130 11.07.19 15.34 2-Fluorobiphenyl 105 % 51-133 11.07.19 15.34 Terphenyl-D14 112 % 46-137 11.07.19 15.34

Page 16 of 194

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-FD01-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-002 Date Collected: 11.01.19 08.55

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,1-Dichloroethane	75-34-3	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,1-Dichloroethene	75-35-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,1-Dichloropropene	563-58-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2-Dibromoethane	106-93-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2-Dichloroethane	107-06-2	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,2-Dichloropropane	78-87-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,3-Dichloropropane	142-28-9	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.266	mg/kg	11.05.19 16.51	U	50
2,2-Dichloropropane	594-20-7	BRL	0.266	mg/kg	11.05.19 16.51	U	50
2-Butanone	78-93-3	BRL	1.06	mg/kg	11.05.19 16.51	U	50
2-Chlorotoluene	95-49-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
2-Hexanone	591-78-6	BRL	2.66	mg/kg	11.05.19 16.51	U	50
4-Chlorotoluene	106-43-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.66	mg/kg	11.05.19 16.51	U	50
Acetone	67-64-1	BRL	5.32	mg/kg	11.05.19 16.51	U	50
Benzene	71-43-2	BRL	0.0532	mg/kg	11.05.19 16.51	U	50
Bromobenzene	108-86-1	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Bromochloromethane	74-97-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Bromodichloromethane	75-27-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Bromoform	75-25-2	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Bromomethane	74-83-9	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Carbon Disulfide	75-15-0	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Carbon Tetrachloride	56-23-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Chlorobenzene	108-90-7	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Chloroethane	75-00-3	BRL	0.532	mg/kg	11.05.19 16.51	U	50
Chloroform	67-66-3	BRL	0.266	mg/kg	11.05.19 16.51	U	50

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-FD01-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-002 Date Collected: 11.01.19 08.55

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.266	mg/kg	11.05.19 16.51	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.266	mg/kg	11.05.19 16.51	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Dibromochloromethane	124-48-1	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Dibromomethane	74-95-3	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Ethylbenzene	100-41-4	BRL	0.0532	mg/kg	11.05.19 16.51	U	50
Hexachlorobutadiene	87-68-3	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.06	mg/kg	11.05.19 16.51	U	50
Isopropylbenzene	98-82-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
m,p-Xylenes	179601-23-1	BRL	0.106	mg/kg	11.05.19 16.51	U	50
Methylene Chloride	75-09-2	BRL	1.06	mg/kg	11.05.19 16.51	U	50
MTBE	1634-04-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Naphthalene	91-20-3	BRL	0.532	mg/kg	11.05.19 16.51	U	50
n-Butylbenzene	104-51-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
n-Propylbenzene	103-65-1	BRL	0.266	mg/kg	11.05.19 16.51	U	50
o-Xylene	95-47-6	BRL	0.0532	mg/kg	11.05.19 16.51	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Sec-Butylbenzene	135-98-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Styrene	100-42-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
tert-Butylbenzene	98-06-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Tetrachloroethylene	127-18-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Toluene	108-88-3	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Total Xylenes	1330-20-7	BRL	0.0532	mg/kg	11.05.19 16.51	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.266	mg/kg	11.05.19 16.51	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Trichloroethene	79-01-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Trichlorofluoromethane	75-69-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Vinyl Acetate	108-05-4	BRL	0.532	mg/kg	11.05.19 16.51	U	50
Vinyl Chloride	75-01-4	BRL	0.266	mg/kg	11.05.19 16.51	U	50
1,3-Butadiene	106-99-0	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Cyclohexane	110-82-7	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Dicyclopentadiene	77-73-6	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Methylcyclohexane	108-87-2	BRL	0.532	mg/kg	11.05.19 16.51	U	50
n-Hexane	110-54-3	BRL	0.532	mg/kg	11.05.19 16.51	U	50
4-Ethyltoluene	622-96-8	BRL	0.266	mg/kg	11.05.19 16.51	U	50
Propene	115-07-1	BRL	0.266	mg/kg	11.05.19 16.51	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD01-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-002 Date Collected: 11.01.19 08.55

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	85	%	53-142	11.05.19 16.51	
1,2-Dichloroethane-D4	98	%	56-150	11.05.19 16.51	
Toluene-D8	102	%	70-130	11.05.19 16.51	
4-Bromofluorobenzene	97	%	68-152	11.05.19 16.51	

Analytical Method: Mercury by SW 7471B

ADS

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B30-10.0-10.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-003 Date Collected: 11.01.19 09.10 Sample Depth: 10.0 - 10.5

Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.06.19 07.40 Basis: Wet Weight Seq Number: 3106627

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Result RL**Parameter** Cas Number Dil **Analysis Date** 0.0250 Mercury 7439-97-6 0.0200 mg/kg 11.06.19 11.10 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Tech:

Analyst: DEP Basis: Wet Weight Date Prep: 11.05.19 16.10 Seq Number: 3106697 SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 9.78 1.85 11.06.19 18.09 10 mg/kg 3.70 Barium 7440-39-3 112 11.06.19 18.09 10 mg/kg Cadmium 7440-43-9 BRL 1.85 mg/kg 11.06.19 18.09 U 10 Chromium 8.93 3.70 7440-47-3 11.06.19 18.09 10 mg/kg Lead 7439-92-1 36.8 1.85 11.06.19 18.09 10 mg/kg Selenium 7782-49-2 BRL 1.85 11.06.19 18.09 U 10 mg/kg Silver BRL U 7440-22-4 1.85 11.06.19 18.09 10

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 12.15

Sample Id: D-B30-10.0-10.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-003 Date Collected: 11.01.19 09.10 Sample Depth: 10.0 - 10.5

Date Prep:

Analytical Method: PAHs by 8270D SIM

DRU Tech:

DNE Analyst: Seq Number: 3106739

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	U	nits	Analysis Dat	te I	lag	Dil
Acenaphthene	83-32-9	BRL	0.00835	mş	g/kg	11.07.19 19.1	2	U	5
Acenaphthylene	208-96-8	0.0336	0.00835	mg	g/kg	11.07.19 19.1	2		5
Anthracene	120-12-7	0.0219	0.00835	mg	g/kg	11.07.19 19.1	2		5
Benzo(a)anthracene	56-55-3	0.0705	0.00835	mg	g/kg	11.07.19 19.1	2		5
Benzo(a)pyrene	50-32-8	0.115	0.00835	mg	g/kg	11.07.19 19.1	2		5
Benzo(b)fluoranthene	205-99-2	0.147	0.00835	mg	g/kg	11.07.19 19.1	2		5
Benzo(g,h,i)perylene	191-24-2	0.105	0.00835	mg	g/kg	11.07.19 19.1	2		5
Benzo(k) fluoranthene	207-08-9	0.0405	0.00835	mg	g/kg	11.07.19 19.1	2		5
Chrysene	218-01-9	0.0867	0.00835	mg	g/kg	11.07.19 19.1	2		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00835	mg	g/kg	11.07.19 19.1	2	U	5
Fluoranthene	206-44-0	0.226	0.00835	mg	g/kg	11.07.19 19.1	2		5
Fluorene	86-73-7	0.0105	0.00835	mg	g/kg	11.07.19 19.1	2		5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0795	0.00835	mg	g/kg	11.07.19 19.1	2		5
Naphthalene	91-20-3	BRL	0.0835	mg	g/kg	11.07.19 19.1	2	U	5
Phenanthrene	85-01-8	0.156	0.00835	mg	g/kg	11.07.19 19.1	2		5
Pyrene	129-00-0	0.266	0.00835	mg	g/kg	11.07.19 19.1	2		5
		%							
Surrogate		Recovery	Units	Limits	Anal	ysis Date	Flag		
Nitrobenzene-d5		79	%			.19 19.12			
2-Fluorobiphenyl		93	%			.19 19.12			
Terphenyl-D14		119	%	46-137	11.07	.19 19.12			

U

Prep Method: SW3050B

% Moisture:

1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B30-15.0-15.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-004 Date Collected: 11.01.19 09.15 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

ANJ Analyst: Date Prep: 11.06.19 07.40 Basis: Wet Weight Seq Number: 3106627 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil **Analysis Date** BRL 0.0192 11.06.19 11.12

Analytical Method: Metals, RCRA List, by SW 6020

7439-97-6

PJB Tech:

Tech:

Mercury

Analyst: DEP Basis: Wet Weight Date Prep: 11.05.19 16.10 Seq Number: 3106697 SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag 15.4 11.06.19 18.12 Arsenic 7440-38-2 1.69 mg/kg 10 3.39 11.06.19 18.12 Barium 7440-39-3 130 10 mg/kg Cadmium 7440-43-9 BRL 1.69 mg/kg 11.06.19 18.12 U 10 Chromium 3.39 7440-47-3 14.0 11.06.19 18.12 10 mg/kg Lead 7439-92-1 14.1 1.69 11.06.19 18.12 10 mg/kg Selenium 7782-49-2 BRL 1.69 11.06.19 18.12 U 10 mg/kg Silver BRL U 7440-22-4 1.69 mg/kg 11.06.19 18.12 10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B30-15.0-15.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-004
 Date Collected: 11.01.19 09.15
 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 12.18 Basis: Wet Weight

Seq Number: 3106739 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.07.19 17.48	U	1
Acenaphthylene	208-96-8	0.00576	0.00166		mg/kg	11.07.19 17.48	;	1
Anthracene	120-12-7	0.00379	0.00166		mg/kg	11.07.19 17.48	;	1
Benzo(a)anthracene	56-55-3	0.0168	0.00166		mg/kg	11.07.19 17.48	;	1
Benzo(a)pyrene	50-32-8	0.0290	0.00166		mg/kg	11.07.19 17.48	;	1
Benzo(b)fluoranthene	205-99-2	0.0372	0.00166		mg/kg	11.07.19 17.48	;	1
Benzo(g,h,i)perylene	191-24-2	0.0292	0.00166		mg/kg	11.07.19 17.48	;	1
Benzo(k)fluoranthene	207-08-9	0.0109	0.00166		mg/kg	11.07.19 17.48	;	1
Chrysene	218-01-9	0.0218	0.00166		mg/kg	11.07.19 17.48	;	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.07.19 17.48	U	1
Fluoranthene	206-44-0	0.0526	0.00166		mg/kg	11.07.19 17.48	;	1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.07.19 17.48	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0217	0.00166		mg/kg	11.07.19 17.48	;	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.07.19 17.48	U	1
Phenanthrene	85-01-8	0.0250	0.00166		mg/kg	11.07.19 17.48	;	1
Pyrene	129-00-0	0.0605	0.00166		mg/kg	11.07.19 17.48	}	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		110	%	31-130		.19 17.48		
2-Fluorobiphenyl		121	%	51-133		.19 17.48		
Terphenyl-D14		132	%	46-137	11.07	.19 17.48		

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B30-19.5-20.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-005
 Date Collected: 11.01.19 09.30
 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

Seq Number: 3106627 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0189
 mg/kg
 11.06.19 11.14
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.05.19 16.10 Basis: Wet Weight Seq Number: 3106697 SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 16.0 1.82 mg/kg 11.06.19 18.15 10 3.64 11.06.19 18.15 Barium 7440-39-3 142 10 mg/kg Cadmium 7440-43-9 BRL 1.82 mg/kg 11.06.19 18.15 U 10 Chromium 7440-47-3 21.8 3.64 11.06.19 18.15 10 mg/kg Lead 7439-92-1 15.9 1.82 11.06.19 18.15 10 mg/kg Selenium 7782-49-2 BRL 1.82 11.06.19 18.15 U 10 mg/kg Silver BRL U 7440-22-4 1.82 mg/kg 11.06.19 18.15 10

DRU

Seq Number: 3106739

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B30-19.5-20.0 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-005 Date Collected: 11.01.19 09.30 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: 11.06.19 12.21 Basis: Wet Weight Date Prep:

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 18.05	U	1
Acenaphthylene	208-96-8	0.00663	0.00167		mg/kg	11.07.19 18.05		1
Anthracene	120-12-7	0.00556	0.00167		mg/kg	11.07.19 18.05		1
Benzo(a)anthracene	56-55-3	0.0246	0.00167		mg/kg	11.07.19 18.05		1
Benzo(a)pyrene	50-32-8	0.0424	0.00167		mg/kg	11.07.19 18.05		1
Benzo(b)fluoranthene	205-99-2	0.0558	0.00167		mg/kg	11.07.19 18.05		1
Benzo(g,h,i)perylene	191-24-2	0.0394	0.00167		mg/kg	11.07.19 18.05		1
Benzo(k) fluoran thene	207-08-9	0.0135	0.00167		mg/kg	11.07.19 18.05		1
Chrysene	218-01-9	0.0327	0.00167		mg/kg	11.07.19 18.05		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 18.05	U	1
Fluoranthene	206-44-0	0.0748	0.00167		mg/kg	11.07.19 18.05		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 18.05	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0297	0.00167		mg/kg	11.07.19 18.05		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 18.05	U	1
Phenanthrene	85-01-8	0.0379	0.00167		mg/kg	11.07.19 18.05		1
Pyrene	129-00-0	0.0845	0.00167		mg/kg	11.07.19 18.05		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		75	%	31-130		.19 18.05		
2-Fluorobiphenyl		88	%	51-133		.19 18.05		
Terphenyl-D14		119	%	46-137	11.07	.19 18.05		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B21-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-006 Date Collected: 11.01.19 10.40 Sample Depth: 2.5 - 3.0

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture: Tech:

KCS Analyst: Date Prep: 11.06.19 11.00 Basis: Wet Weight

SUB: T104704215-19-30 Seq Number: 3106614

Result RL**Parameter** Cas Number Dil **Analysis Date** Cyanide, Total 0.0715 57-12-5 0.0680 mg/kg 11.06.19 12.28 1

Analytical Method: Mercury by SW 7471B

ADS Tech:

ANJ Basis: Wet Weight Analyst: Date Prep: 11.06.19 07.40 SUB: T104704215-19-30

Seq Number: 3106627

Result RL Parameter Cas Number Dil Units **Analysis Date** Flag 0.0532 0.0182 Mercury 7439-97-6 mg/kg 11.06.19 11.16

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

DEP Analyst: 11.05.19 16.10 Basis: Wet Weight Date Prep:

Seq Number: 3106697

SUB: T104704215-19-30

% Moisture:

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

Cas Number Result RL**Parameter Analysis Date** Dil Units Flag 7440-38-2 12.2 1.67 11.06.19 18.18 10 Arsenic mg/kg Barium 7440-39-3 120 3.33 mg/kg 11.06.19 18.18 10 Cadmium 7440-43-9 BRL 1.67 11.06.19 18.18 U 10 mg/kg Chromium 7440-47-3 9.99 3.33 11.06.19 18.18 10 mg/kg Lead 7439-92-1 72.8 1.67 mg/kg 11.06.19 18.18 10 Selenium 7782-49-2 BRL 1.67 11.06.19 18.18 U 10 BRL Silver 7440-22-4 1.67 mg/kg 11.06.19 18.18 U 10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B21-2.5-3.0** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-006 Date Collected: 11.01.19 10.40 Sample Depth: 2.5 - 3.0

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106624

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilFlash Point>180Deg F $11.06.19 \ 11.34$ 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.19 13.301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106588

Parameter Cas Number Result RLUnits **Analysis Date** Dil Flag pН 12408-02-5 7.95 SU 11.06.19 11.26 1 11.06.19 11.26 **Temperature** TEMP 25.1 Deg C 1

DRU

Seq Number: 3106739

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B21-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-006 Date Collected: 11.01.19 10.40 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.24 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0521	0.0334	mg/kg	11.07.19 18.21		20
Acenaphthylene	208-96-8	1.89	0.0334	mg/kg	11.07.19 18.21		20
Anthracene	120-12-7	1.38	0.0334	mg/kg	11.07.19 18.21		20
Benzo(a)anthracene	56-55-3	6.24	0.0334	mg/kg	11.07.19 18.21		20
Benzo(a)pyrene	50-32-8	11.8	0.334	mg/kg	11.07.19 18.38	D	200
Benzo(b)fluoranthene	205-99-2	12.3	0.334	mg/kg	11.07.19 18.38	D	200
Benzo(g,h,i)perylene	191-24-2	9.70	0.334	mg/kg	11.07.19 18.38	D	200
Benzo(k)fluoranthene	207-08-9	3.69	0.0334	mg/kg	11.07.19 18.21		20
Chrysene	218-01-9	8.25	0.334	mg/kg	11.07.19 18.38	D	200
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0334	mg/kg	11.07.19 18.21	U	20
Fluoranthene	206-44-0	20.3	0.334	mg/kg	11.07.19 18.38	D	200
Fluorene	86-73-7	0.366	0.0334	mg/kg	11.07.19 18.21		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	7.56	0.334	mg/kg	11.07.19 18.38	D	200
Naphthalene	91-20-3	1.65	0.334	mg/kg	11.07.19 18.21		20
Phenanthrene	85-01-8	8.90	0.334	mg/kg	11.07.19 18.38	D	200
Pyrene	129-00-0	25.7	0.334	mg/kg	11.07.19 18.38	D	200
		%					

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	88	%	31-130	11.07.19 18.21	
2-Fluorobiphenyl	90	%	51-133	11.07.19 18.21	
Terphenyl-D14	107	%	46-137	11.07.19 18.21	

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B21-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-006 Date Collected: 11.01.19 10.40 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,1-Dichloroethane	75-34-3	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,1-Dichloroethene	75-35-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,1-Dichloropropene	563-58-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2-Dibromoethane	106-93-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2-Dichloroethane	107-06-2	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,2-Dichloropropane	78-87-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,3-Dichloropropane	142-28-9	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.234	mg/kg	11.05.19 17.13	U	50
2,2-Dichloropropane	594-20-7	BRL	0.234	mg/kg	11.05.19 17.13	U	50
2-Butanone	78-93-3	BRL	0.936	mg/kg	11.05.19 17.13	U	50
2-Chlorotoluene	95-49-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
2-Hexanone	591-78-6	BRL	2.34	mg/kg	11.05.19 17.13	U	50
4-Chlorotoluene	106-43-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.34	mg/kg	11.05.19 17.13	U	50
Acetone	67-64-1	BRL	4.68	mg/kg	11.05.19 17.13	U	50
Benzene	71-43-2	BRL	0.0468	mg/kg	11.05.19 17.13	U	50
Bromobenzene	108-86-1	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Bromochloromethane	74-97-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Bromodichloromethane	75-27-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Bromoform	75-25-2	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Bromomethane	74-83-9	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Carbon Disulfide	75-15-0	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Carbon Tetrachloride	56-23-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Chlorobenzene	108-90-7	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Chloroethane	75-00-3	BRL	0.468	mg/kg	11.05.19 17.13	U	50
Chloroform	67-66-3	BRL	0.234	mg/kg	11.05.19 17.13	U	50

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B21-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-006 Date Collected: 11.01.19 10.40 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.234	mg/kg	11.05.19 17.13	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.234	mg/kg	11.05.19 17.13	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Dibromochloromethane	124-48-1	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Dibromomethane	74-95-3	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Ethylbenzene	100-41-4	BRL	0.0468	mg/kg	11.05.19 17.13	U	50
Hexachlorobutadiene	87-68-3	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.936	mg/kg	11.05.19 17.13	U	50
Isopropylbenzene	98-82-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
m,p-Xylenes	179601-23-1	BRL	0.0936	mg/kg	11.05.19 17.13	U	50
Methylene Chloride	75-09-2	BRL	0.936	mg/kg	11.05.19 17.13	U	50
MTBE	1634-04-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Naphthalene	91-20-3	BRL	0.468	mg/kg	11.05.19 17.13	U	50
n-Butylbenzene	104-51-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
n-Propylbenzene	103-65-1	BRL	0.234	mg/kg	11.05.19 17.13	U	50
o-Xylene	95-47-6	BRL	0.0468	mg/kg	11.05.19 17.13	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Sec-Butylbenzene	135-98-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Styrene	100-42-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
tert-Butylbenzene	98-06-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Tetrachloroethylene	127-18-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Toluene	108-88-3	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Total Xylenes	1330-20-7	BRL	0.0468	mg/kg	11.05.19 17.13	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.234	mg/kg	11.05.19 17.13	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Trichloroethene	79-01-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Trichlorofluoromethane	75-69-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Vinyl Acetate	108-05-4	BRL	0.468	mg/kg	11.05.19 17.13	U	50
Vinyl Chloride	75-01-4	BRL	0.234	mg/kg	11.05.19 17.13	U	50
1,3-Butadiene	106-99-0	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Cyclohexane	110-82-7	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Dicyclopentadiene	77-73-6	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Methylcyclohexane	108-87-2	BRL	0.468	mg/kg	11.05.19 17.13	U	50
n-Hexane	110-54-3	BRL	0.468	mg/kg	11.05.19 17.13	U	50
4-Ethyltoluene	622-96-8	BRL	0.234	mg/kg	11.05.19 17.13	U	50
Propene	115-07-1	BRL	0.234	mg/kg	11.05.19 17.13	U	50

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B21-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-006 Date Collected: 11.01.19 10.40 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

SAD Analyst: 11.05.19 15.30 Basis: Wet Weight Date Prep:

Seq Number: 3106502 SUB: T104704215-19-30

%							
Surrogate	Recovery	Units	Limits	Analysis Date	Flag		
Dibromofluoromethane	86	%	53-142	11.05.19 17.13			
1,2-Dichloroethane-D4	100	%	56-150	11.05.19 17.13			
Toluene-D8	101	%	70-130	11.05.19 17.13			
4-Bromofluorobenzene	99	%	68-152	11.05.19 17.13			

Tech:

Certificate of Analytical Results 642000

Prep Method: SW7471P

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD02-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-007 Date Collected: 11.01.19 10.45

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

> **KCS** % Moisture:

KCS Analyst: Date Prep: 11.06.19 11.00 Basis: Wet Weight

SUB: T104704215-19-30 Seq Number: 3106614

Result RL**Parameter** Cas Number Dil **Analysis Date** Cyanide, Total 57-12-5 0.0969 0.0516 mg/kg 11.06.19 12.29 1

Analytical Method: Mercury by SW 7471B

ADS % Moisture: Tech:

ANJ Basis: Wet Weight Analyst: Date Prep: 11.06.19 07.40 Seq Number: 3106627 SUB: T104704215-19-30

Result RL Parameter Cas Number Dil Units **Analysis Date** Flag 0.0782 Mercury 7439-97-6 0.0189 mg/kg 11.06.19 11.17

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: 11.05.19 16.10 Basis: Wet Weight Date Prep:

Seq Number: 3106697 SUB: T104704215-19-30

Cas Number Result RL**Parameter Analysis Date** Dil Units Flag 7440-38-2 9.37 1.92 11.06.19 18.20 10 Arsenic mg/kg Barium 7440-39-3 95.2 3.85 mg/kg 11.06.19 18.20 10 Cadmium 7440-43-9 BRL 1.92 mg/kg 11.06.19 18.20 U 10 Chromium 7440-47-3 8.56 3.85 11.06.19 18.20 10 mg/kg Lead 7439-92-1 55.3 1.92 mg/kg 11.06.19 18.20 10 Selenium 7782-49-2 BRL 1.92 11.06.19 18.20 U 10 Silver 7440-22-4 BRL 1.92 mg/kg 11.06.19 18.20 U 10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD02-110119** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-007 Date Collected: 11.01.19 10.45

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106624

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilFlash Point>180Deg F11.06.19 11.511

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.19 13.301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106588

Parameter Cas Number Result RLUnits **Analysis Date** Dil Flag pН 12408-02-5 8.15 SU 11.06.19 11.26 1 11.06.19 11.26 **Temperature** TEMP 25.0 Deg C 1

DRU

Seq Number: 3106739

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD02-110119** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-007 Date Collected: 11.01.19 10.45

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.27 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.0796	0.0333	mg/kg	11.07.19 11.58		20
Acenaphthylene	208-96-8	2.37	0.0333	mg/kg	11.07.19 11.58		20
Anthracene	120-12-7	1.27	0.0333	mg/kg	11.07.19 11.58		20
Benzo(a)anthracene	56-55-3	4.91	0.0333	mg/kg	11.07.19 11.58		20
Benzo(a)pyrene	50-32-8	9.38	0.333	mg/kg	11.07.19 18.56	D	200
Benzo(b)fluoranthene	205-99-2	9.84	0.333	mg/kg	11.07.19 18.56	D	200
Benzo(g,h,i)perylene	191-24-2	8.54	0.333	mg/kg	11.07.19 18.56	D	200
Benzo(k)fluoranthene	207-08-9	2.44	0.0333	mg/kg	11.07.19 11.58		20
Chrysene	218-01-9	6.30	0.0333	mg/kg	11.07.19 11.58		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333	mg/kg	11.07.19 11.58	U	20
Fluoranthene	206-44-0	18.1	0.333	mg/kg	11.07.19 18.56	D	200
Fluorene	86-73-7	0.604	0.0333	mg/kg	11.07.19 11.58		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	5.88	0.0333	mg/kg	11.07.19 11.58		20
Naphthalene	91-20-3	2.41	0.333	mg/kg	11.07.19 11.58		20
Phenanthrene	85-01-8	12.3	0.333	mg/kg	11.07.19 18.56	D	200
Pyrene	129-00-0	22.0	0.333	mg/kg	11.07.19 18.56	D	200
Surrogate		% Recovery	Units	Limits Anal	ysis Date Fla	ıg	

101

98

116

%

%

%

31-130

51-133

46-137

11.07.19 11.58 11.07.19 11.58

11.07.19 11.58

Page 34 of 194

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-FD02-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-007 Date Collected: 11.01.19 10.45

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,1-Dichloroethane	75-34-3	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,1-Dichloroethene	75-35-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,1-Dichloropropene	563-58-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2-Dibromoethane	106-93-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2-Dichloroethane	107-06-2	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,2-Dichloropropane	78-87-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,3-Dichloropropane	142-28-9	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.219	mg/kg	11.05.19 17.35	U	50
2,2-Dichloropropane	594-20-7	BRL	0.219	mg/kg	11.05.19 17.35	U	50
2-Butanone	78-93-3	BRL	0.877	mg/kg	11.05.19 17.35	U	50
2-Chlorotoluene	95-49-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
2-Hexanone	591-78-6	BRL	2.19	mg/kg	11.05.19 17.35	U	50
4-Chlorotoluene	106-43-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.19	mg/kg	11.05.19 17.35	U	50
Acetone	67-64-1	BRL	4.39	mg/kg	11.05.19 17.35	U	50
Benzene	71-43-2	BRL	0.0439	mg/kg	11.05.19 17.35	U	50
Bromobenzene	108-86-1	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Bromochloromethane	74-97-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Bromodichloromethane	75-27-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Bromoform	75-25-2	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Bromomethane	74-83-9	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Carbon Disulfide	75-15-0	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Carbon Tetrachloride	56-23-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Chlorobenzene	108-90-7	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Chloroethane	75-00-3	BRL	0.439	mg/kg	11.05.19 17.35	U	50
Chloroform	67-66-3	BRL	0.219	mg/kg	11.05.19 17.35	U	50

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-FD02-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-007 Date Collected: 11.01.19 10.45

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.219	mg/kg	11.05.19 17.35	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.219	mg/kg	11.05.19 17.35	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Dibromochloromethane	124-48-1	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Dibromomethane	74-95-3	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Ethylbenzene	100-41-4	BRL	0.0439	mg/kg	11.05.19 17.35	U	50
Hexachlorobutadiene	87-68-3	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.877	mg/kg	11.05.19 17.35	U	50
Isopropylbenzene	98-82-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
m,p-Xylenes	179601-23-1	BRL	0.0877	mg/kg	11.05.19 17.35	U	50
Methylene Chloride	75-09-2	BRL	0.877	mg/kg	11.05.19 17.35	U	50
MTBE	1634-04-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Naphthalene	91-20-3	BRL	0.439	mg/kg	11.05.19 17.35	U	50
n-Butylbenzene	104-51-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
n-Propylbenzene	103-65-1	BRL	0.219	mg/kg	11.05.19 17.35	U	50
o-Xylene	95-47-6	BRL	0.0439	mg/kg	11.05.19 17.35	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Sec-Butylbenzene	135-98-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Styrene	100-42-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
tert-Butylbenzene	98-06-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Tetrachloroethylene	127-18-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Toluene	108-88-3	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Total Xylenes	1330-20-7	BRL	0.0439	mg/kg	11.05.19 17.35	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.219	mg/kg	11.05.19 17.35	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Trichloroethene	79-01-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Trichlorofluoromethane	75-69-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Vinyl Acetate	108-05-4	BRL	0.439	mg/kg	11.05.19 17.35	U	50
Vinyl Chloride	75-01-4	BRL	0.219	mg/kg	11.05.19 17.35	U	50
1,3-Butadiene	106-99-0	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Cyclohexane	110-82-7	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Dicyclopentadiene	77-73-6	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Methylcyclohexane	108-87-2	BRL	0.439	mg/kg	11.05.19 17.35	U	50
n-Hexane	110-54-3	BRL	0.439	mg/kg	11.05.19 17.35	U	50
4-Ethyltoluene	622-96-8	BRL	0.219	mg/kg	11.05.19 17.35	U	50
Propene	115-07-1	BRL	0.219	mg/kg	11.05.19 17.35	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD02-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-007 Date Collected: 11.01.19 10.45

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	87	%	53-142	11.05.19 17.35	
1,2-Dichloroethane-D4	99	%	56-150	11.05.19 17.35	
Toluene-D8	102	%	70-130	11.05.19 17.35	
4-Bromofluorobenzene	94	%	68-152	11.05.19 17.35	

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-5.0-5.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-008
 Date Collected: 11.01.19 10.55
 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

Seq Number: 3106627 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0317
 0.0189
 mg/kg
 11.06.19 11.19
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.05.19 16.10 Basis: Wet Weight

Seq Number: 3106697 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.28	1.96	mg/kg	11.06.19 18.23		10
Barium	7440-39-3	660	3.92	mg/kg	11.06.19 18.23		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.06.19 18.23	U	10
Chromium	7440-47-3	10.4	3.92	mg/kg	11.06.19 18.23		10
Lead	7439-92-1	40.9	1.96	mg/kg	11.06.19 18.23		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.06.19 18.23	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.06.19 18.23	U	10

Seq Number: 3106739

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B21-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-008 Date Collected: 11.01.19 10.55 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333	mg/kg	11.07.19 12.14	U	20
Acenaphthylene	208-96-8	BRL	0.0333	mg/kg	11.07.19 12.14	U	20
Anthracene	120-12-7	BRL	0.0333	mg/kg	11.07.19 12.14	U	20
Benzo(a)anthracene	56-55-3	0.0863	0.0333	mg/kg	11.07.19 12.14		20
Benzo(a)pyrene	50-32-8	0.154	0.0333	mg/kg	11.07.19 12.14		20
Benzo(b)fluoranthene	205-99-2	0.164	0.0333	mg/kg	11.07.19 12.14		20
Benzo(g,h,i)perylene	191-24-2	0.138	0.0333	mg/kg	11.07.19 12.14		20
Benzo(k) fluoranthene	207-08-9	0.0510	0.0333	mg/kg	11.07.19 12.14		20
Chrysene	218-01-9	0.101	0.0333	mg/kg	11.07.19 12.14		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333	mg/kg	11.07.19 12.14	U	20
Fluoranthene	206-44-0	0.226	0.0333	mg/kg	11.07.19 12.14		20
Fluorene	86-73-7	BRL	0.0333	mg/kg	11.07.19 12.14	U	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.101	0.0333	mg/kg	11.07.19 12.14		20
Naphthalene	91-20-3	BRL	0.333	mg/kg	11.07.19 12.14	U	20
Phenanthrene	85-01-8	0.109	0.0333	mg/kg	11.07.19 12.14		20
Pyrene	129-00-0	0.297	0.0333	mg/kg	11.07.19 12.14		20
Surrogate		% Recovery	Units	Limits Anal	lysis Date Fla	g	

90

88

94

%

%

31-130

51-133

46-137

11.07.19 12.14 11.07.19 12.14

11.07.19 12.14

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-7.5-8.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-009
 Date Collected: 11.01.19 11.15
 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

Seq Number: 3106627 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0463
 0.0192
 mg/kg
 11.06.19 11.21
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Tech:

 Analyst:
 DEP
 Date Prep:
 11.05.19 16.10
 Basis:
 Wet Weight

 Seq Number:
 3106697
 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 19.7 1.92 11.06.19 18.26 10 mg/kg Barium 7440-39-3 144 3.85 11.06.19 18.26 10 mg/kg Cadmium 7440-43-9 BRL 1.92 mg/kg 11.06.19 18.26 U 10 Chromium 7440-47-3 14.7 3.85 11.06.19 18.26 10 mg/kg Lead 7439-92-1 54.0 1.92 11.06.19 18.26 10 mg/kg Selenium 7782-49-2 BRL 1.92 11.06.19 18.26 U 10 mg/kg Silver BRL U 7440-22-4 1.92 mg/kg 11.06.19 18.26 10

Seq Number: 3106739

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B21-7.5-8.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-009 Date Collected: 11.01.19 11.15 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.33 Basis: Wet Weight

SUB: T104704215-19-30

11.07.19 12.30

46-137

Parameter	Cas Number	Result	RL	Uni	s Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0332	mg/l	g 11.07.19 12.30	U	20
Acenaphthylene	208-96-8	0.560	0.0332	mg/l	g 11.07.19 12.30		20
Anthracene	120-12-7	0.346	0.0332	mg/l	g 11.07.19 12.30		20
Benzo(a)anthracene	56-55-3	1.51	0.0332	mg/l	g 11.07.19 12.30		20
Benzo(a)pyrene	50-32-8	2.84	0.0332	mg/l	g 11.07.19 12.30		20
Benzo(b)fluoranthene	205-99-2	3.16	0.0332	mg/l	g 11.07.19 12.30		20
Benzo(g,h,i)perylene	191-24-2	2.67	0.0332	mg/l	g 11.07.19 12.30		20
Benzo(k)fluoranthene	207-08-9	0.780	0.0332	mg/l	g 11.07.19 12.30		20
Chrysene	218-01-9	1.91	0.0332	mg/l	g 11.07.19 12.30		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0332	mg/l	g 11.07.19 12.30	U	20
Fluoranthene	206-44-0	4.90	0.0332	mg/l	g 11.07.19 12.30		20
Fluorene	86-73-7	0.140	0.0332	mg/l	g 11.07.19 12.30		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.95	0.0332	mg/l	g 11.07.19 12.30		20
Naphthalene	91-20-3	0.688	0.332	mg/l	g 11.07.19 12.30		20
Phenanthrene	85-01-8	3.03	0.0332	mg/l	g 11.07.19 12.30		20
Pyrene	129-00-0	6.58	0.0332	mg/l	g 11.07.19 12.30		20
		%					
Surrogate		Recovery	Units	Limits A	alysis Date Fl	ag	
Nitrobenzene-d5		106	%		07.19 12.30		
2-Fluorobiphenyl		111	%	51-133 11	07.19 12.30		

123

_			
Page 4	41	of	194

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B21-10.0-10.5**

Analytical Method: Mercury by SW 7471B

Matrix: Soil

Date Received:11.05.19 10.00

Lab Sample Id: 642000-010

Date Collected: 11.01.19 11.25

Sample Depth: 10.0 - 10.5

Prep Method: SW7471P

% Moisture:

Tech: ADS Analyst: ANJ

Seq Number: 3106627

Date Prep:

11.06.19 07.40

Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.06.19 12.21
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP

Seq Number: 3106697

Date Prep: 11.05.19 16.10

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 19.1 1.75 11.06.19 18.29 10 mg/kg 87.9 Barium 7440-39-3 3.51 11.06.19 18.29 10 mg/kg Cadmium 7440-43-9 BRL 1.75 mg/kg 11.06.19 18.29 U 10 Chromium 7440-47-3 12.1 3.51 11.06.19 18.29 10 mg/kg Lead 7439-92-1 18.5 1.75 11.06.19 18.29 10 mg/kg Selenium 7782-49-2 BRL 1.75 11.06.19 18.29 U 10 mg/kg Silver BRL U 7440-22-4 1.75 11.06.19 18.29 10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-10.0-10.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-010
 Date Collected: 11.01.19 11.25
 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 12.36 Basis: Wet Weight

Seq Number: 3106739 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333		mg/kg	11.07.19 12.46		20
Acenaphthylene	208-96-8	0.525	0.0333		mg/kg	11.07.19 12.46		20
Anthracene	120-12-7	0.358	0.0333		mg/kg	11.07.19 12.46	i	20
Benzo(a)anthracene	56-55-3	1.50	0.0333		mg/kg	11.07.19 12.46	i	20
Benzo(a)pyrene	50-32-8	2.78	0.0333		mg/kg	11.07.19 12.46		20
Benzo(b)fluoranthene	205-99-2	3.04	0.0333		mg/kg	11.07.19 12.46	i	20
Benzo(g,h,i)perylene	191-24-2	2.59	0.0333		mg/kg	11.07.19 12.46	i	20
Benzo(k)fluoranthene	207-08-9	0.792	0.0333		mg/kg	11.07.19 12.46	i	20
Chrysene	218-01-9	1.87	0.0333		mg/kg	11.07.19 12.46	i	20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333		mg/kg	11.07.19 12.46	U	20
Fluoranthene	206-44-0	4.62	0.0333		mg/kg	11.07.19 12.46	i	20
Fluorene	86-73-7	0.138	0.0333		mg/kg	11.07.19 12.46	i	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.88	0.0333		mg/kg	11.07.19 12.46	i	20
Naphthalene	91-20-3	0.361	0.333		mg/kg	11.07.19 12.46	i	20
Phenanthrene	85-01-8	2.71	0.0333		mg/kg	11.07.19 12.46		20
Pyrene	129-00-0	6.25	0.0333		mg/kg	11.07.19 12.46		20
		°/ ₀						
Surrogate		Recovery	Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		90	%	31-130	11.07	.19 12.46		
2-Fluorobiphenyl		103	%	51-133		.19 12.46		
Terphenyl-D14		121	%	46-137	11.07	.19 12.46		

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-15.0-15.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-011
 Date Collected: 11.01.19 11.35
 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

Seq Number: 3106627 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0235
 0.0189
 mg/kg
 11.06.19 12.23
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Tech:

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight Seq Number: 3106630 SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 19.6 1.69 11.06.19 15.50 10 mg/kg 3.39 Barium 7440-39-3 232 11.06.19 15.50 10 mg/kg Cadmium 7440-43-9 BRL 1.69 mg/kg 11.06.19 15.50 U 10 Chromium 3.39 7440-47-3 17.8 11.06.19 15.50 10 mg/kg Lead 7439-92-1 53.8 1.69 11.06.19 15.50 10 mg/kg Selenium 7782-49-2 BRL 1.69 11.06.19 15.50 U 10 mg/kg Silver BRL U 7440-22-4 1.69 mg/kg 11.06.19 15.50 10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-15.0-15.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-011
 Date Collected: 11.01.19 11.35
 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 12.39 Basis: Wet Weight

Seq Number: 3106739 SUB: T104704215-19-30

•									
Parameter	Cas Number	Result	RL		Units	Analysis l	Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333		mg/kg	11.07.19 1	3.05	U	20
Acenaphthylene	208-96-8	0.538	0.0333		mg/kg	11.07.19 1	3.05		20
Anthracene	120-12-7	0.347	0.0333		mg/kg	11.07.19 1	3.05		20
Benzo(a)anthracene	56-55-3	1.52	0.0333		mg/kg	11.07.19 1	3.05		20
Benzo(a)pyrene	50-32-8	2.73	0.0333		mg/kg	11.07.19 1	3.05		20
Benzo(b)fluoranthene	205-99-2	3.04	0.0333		mg/kg	11.07.19 1	3.05		20
Benzo(g,h,i)perylene	191-24-2	2.60	0.0333		mg/kg	11.07.19 1	3.05		20
Benzo(k)fluoranthene	207-08-9	0.698	0.0333		mg/kg	11.07.19 1	3.05		20
Chrysene	218-01-9	1.89	0.0333		mg/kg	11.07.19 1	3.05		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333		mg/kg	11.07.19 1	3.05	U	20
Fluoranthene	206-44-0	4.96	0.0333		mg/kg	11.07.19 1	3.05		20
Fluorene	86-73-7	0.141	0.0333		mg/kg	11.07.19 1	3.05		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	1.88	0.0333		mg/kg	11.07.19 1	3.05		20
Naphthalene	91-20-3	0.514	0.333		mg/kg	11.07.19 1	3.05		20
Phenanthrene	85-01-8	3.12	0.0333		mg/kg	11.07.19 1	3.05		20
Pyrene	129-00-0	6.63	0.0333		mg/kg	11.07.19 1	3.05		20
		%							
Surrogate		Recovery	Units	Limits	Anal	ysis Date	Flag	;	
Nitrobenzene-d5		82	%	31-130		.19 13.05			
2-Fluorobiphenyl		86	%	51-133		.19 13.05			
Terphenyl-D14		106	%	46-137	11.07	.19 13.05			

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-19.5-20.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-012
 Date Collected: 11.01.19 11.45
 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

Seq Number: 3106627 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.06.19 12.25
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Seq Number: 3106630 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.4	1.89	mg/kg	11.06.19 15.56		10
Barium	7440-39-3	64.3	3.77	mg/kg	11.06.19 15.56		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.06.19 15.56	U	10
Chromium	7440-47-3	38.9	3.77	mg/kg	11.06.19 15.56		10
Lead	7439-92-1	10.7	1.89	mg/kg	11.06.19 15.56		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.06.19 15.56	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.06.19 15.56	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-19.5-20.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-012
 Date Collected: 11.01.19 11.45
 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 12.42 Basis: Wet Weight

Seq Number: 3106739 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Dat	e Flag	Dil
Acenaphthene	83-32-9	BRL	0.0167		mg/kg	11.07.19 13.2	1 U	10
Acenaphthylene	208-96-8	0.0541	0.0167		mg/kg	11.07.19 13.2	1	10
Anthracene	120-12-7	0.0325	0.0167		mg/kg	11.07.19 13.2	1	10
Benzo(a)anthracene	56-55-3	0.156	0.0167		mg/kg	11.07.19 13.2	1	10
Benzo(a)pyrene	50-32-8	0.301	0.0167		mg/kg	11.07.19 13.2	1	10
Benzo(b)fluoranthene	205-99-2	0.327	0.0167		mg/kg	11.07.19 13.2	1	10
Benzo(g,h,i)perylene	191-24-2	0.295	0.0167		mg/kg	11.07.19 13.2	1	10
Benzo(k) fluoran thene	207-08-9	0.0947	0.0167		mg/kg	11.07.19 13.2	1	10
Chrysene	218-01-9	0.193	0.0167		mg/kg	11.07.19 13.2	1	10
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0167		mg/kg	11.07.19 13.2	1 U	10
Fluoranthene	206-44-0	0.512	0.0167		mg/kg	11.07.19 13.2	1	10
Fluorene	86-73-7	BRL	0.0167		mg/kg	11.07.19 13.2	1 U	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.213	0.0167		mg/kg	11.07.19 13.2	1	10
Naphthalene	91-20-3	BRL	0.167		mg/kg	11.07.19 13.2	1 U	10
Phenanthrene	85-01-8	0.267	0.0167		mg/kg	11.07.19 13.2	1	10
Pyrene	129-00-0	0.703	0.0167		mg/kg	11.07.19 13.2	1	10
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date 1	lag	
Nitrobenzene-d5		99	%	31-130		.19 13.21		
2-Fluorobiphenyl		108	%	51-133		.19 13.21		
Terphenyl-D14		120	%	46-137	11.07	.19 13.21		

ADS

Seq Number: 3106627

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Date Collected: 11.01.19 13.05

Sample Id: D-B21-24.5-25.0 Matrix: Soil Lab Sample Id: 642000-013

Sample Depth: 24.5 - 25.0

Analytical Method: Mercury by SW 7471B

Prep Method: SW7471P

Date Received:11.05.19 10.00

% Moisture:

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

SUB: T104704215-19-30

Cas Number Result RL**Parameter** Analysis Date Flag Dil 7439-97-6 BRL 0.0175 11.06.19 12.27 Mercury U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106630

Analyst: DEP 11.06.19 09.30 Date Prep:

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	7.08	1.85	mg/kg	11.06.19 15.59		10
Barium	7440-39-3	89.3	3.70	mg/kg	11.06.19 15.59		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.06.19 15.59	U	10
Chromium	7440-47-3	28.5	3.70	mg/kg	11.06.19 15.59		10
Lead	7439-92-1	8.11	1.85	mg/kg	11.06.19 15.59		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.06.19 15.59	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.06.19 15.59	U	10

Seq Number: 3106739

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B21-24.5-25.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-013
 Date Collected: 11.01.19 13.05
 Sample Depth: 24.5 - 25.0

Analytical Method: PAHs by 8270D SIM

Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.45 Basis:

SUB: T104704215-19-30

11.07.19 15.18

46-137

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 15.18	U	1
Acenaphthylene	208-96-8	0.00934	0.00167		mg/kg	11.07.19 15.18		1
Anthracene	120-12-7	0.00600	0.00167		mg/kg	11.07.19 15.18		1
Benzo(a)anthracene	56-55-3	0.0293	0.00167		mg/kg	11.07.19 15.18		1
Benzo(a)pyrene	50-32-8	0.0544	0.00167		mg/kg	11.07.19 15.18		1
Benzo(b)fluoranthene	205-99-2	0.0596	0.00167		mg/kg	11.07.19 15.18		1
Benzo(g,h,i)perylene	191-24-2	0.0453	0.00167		mg/kg	11.07.19 15.18		1
Benzo(k) fluoranthene	207-08-9	0.0209	0.00167		mg/kg	11.07.19 15.18		1
Chrysene	218-01-9	0.0357	0.00167		mg/kg	11.07.19 15.18		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 15.18	U	1
Fluoranthene	206-44-0	0.0957	0.00167		mg/kg	11.07.19 15.18		1
Fluorene	86-73-7	0.00235	0.00167		mg/kg	11.07.19 15.18		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0342	0.00167		mg/kg	11.07.19 15.18		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 15.18	U	1
Phenanthrene	85-01-8	0.0523	0.00167		mg/kg	11.07.19 15.18		1
Pyrene	129-00-0	0.128	0.00167		mg/kg	11.07.19 15.18		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		103	%	31-130		.19 15.18		
2-Fluorobiphenyl		114	%	51-133	11.07	.19 15.18		

125

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B15-1.0-1.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-014
 Date Collected: 11.01.19 13.55
 Sample Depth: 1.0 - 1.5

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 07.40

Seq Number: 3106627

Prep Method: SW7471P

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0445
 0.0172
 mg/kg
 11.06.19 12.29
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight Seq Number: 3106630 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag 9.77 Arsenic 7440-38-2 2.00 11.06.19 16.02 10 mg/kg 4.00 11.06.19 16.02 Barium 7440-39-3 144 10 mg/kg Cadmium 7440-43-9 BRL 2.00 mg/kg 11.06.19 16.02 U 10 Chromium 7.42 7440-47-3 4.00 11.06.19 16.02 10 mg/kg Lead 7439-92-1 56.2 2.00 11.06.19 16.02 10 mg/kg Selenium 7782-49-2 BRL 2.00 11.06.19 16.02 U 10 mg/kg Silver BRL U 7440-22-4 2.00 mg/kg 11.06.19 16.02 10

Seq Number: 3106739

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-1.0-1.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-014 Date Collected: 11.01.19 13.55 Sample Depth: 1.0 - 1.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.48 Basis: Wet Weight

SUB: T104704215-19-30

11.07.19 17.32

46-137

Parameter	Cas Number	Result	RL		Units	Analysis Dat	e Fla	ag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	11.07.19 17.3	2 L	J	5
Acenaphthylene	208-96-8	BRL	0.00833		mg/kg	11.07.19 17.3	2 L	J	5
Anthracene	120-12-7	BRL	0.00833		mg/kg	11.07.19 17.3	2 L	J	5
Benzo(a)anthracene	56-55-3	BRL	0.00833		mg/kg	11.07.19 17.3	2 L	J	5
Benzo(a)pyrene	50-32-8	0.0115	0.00833		mg/kg	11.07.19 17.3	2		5
Benzo(b)fluoranthene	205-99-2	0.0168	0.00833		mg/kg	11.07.19 17.3	2		5
Benzo(g,h,i)perylene	191-24-2	0.0193	0.00833		mg/kg	11.07.19 17.3	2		5
Benzo(k)fluoranthene	207-08-9	BRL	0.00833		mg/kg	11.07.19 17.3	2 L	J	5
Chrysene	218-01-9	0.0141	0.00833		mg/kg	11.07.19 17.3	2		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00833		mg/kg	11.07.19 17.3	2 L	J	5
Fluoranthene	206-44-0	0.0147	0.00833		mg/kg	11.07.19 17.3	2		5
Fluorene	86-73-7	BRL	0.00833		mg/kg	11.07.19 17.3	2 L	J	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0102	0.00833		mg/kg	11.07.19 17.3	2		5
Naphthalene	91-20-3	BRL	0.0833		mg/kg	11.07.19 17.3	2 L	J	5
Phenanthrene	85-01-8	0.0118	0.00833		mg/kg	11.07.19 17.3	2		5
Pyrene	129-00-0	0.0170	0.00833		mg/kg	11.07.19 17.3	2		5
		%							
Surrogate		Recovery	Units	Limits	Anal	ysis Date 1	lag		
Nitrobenzene-d5		79	%	31-130		.19 17.32			
2-Fluorobiphenyl		70	%	51-133	11.07	.19 17.32			

74

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B15-2.5-3.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-015
 Date Collected: 11.01.19 14.10
 Sample Depth: 2.5 - 3.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 07.40 Basis: Wet Weight

Seq Number: 3106627 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0450
 0.0189
 mg/kg
 11.06.19 10.53
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Seq Number: 3106630 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	10.8	1.75	mg/kg	11.06.19 15.26		10
Barium	7440-39-3	141	3.51	mg/kg	11.06.19 15.26		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.06.19 15.26	U	10
Chromium	7440-47-3	11.1	3.51	mg/kg	11.06.19 15.26		10
Lead	7439-92-1	30.5	1.75	mg/kg	11.06.19 15.26		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.06.19 15.26	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.06.19 15.26	U	10

Seq Number: 3106739

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-015 Date Collected: 11.01.19 14.10 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 12.51 Basis: Wet Weight

SUB: T104704215-19-30

11.08.19 00.47

46-137

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00833		mg/kg	11.08.19 00.47	U	5
Acenaphthylene	208-96-8	0.00936	0.00833		mg/kg	11.08.19 00.47		5
Anthracene	120-12-7	0.00878	0.00833		mg/kg	11.08.19 00.47		5
Benzo(a)anthracene	56-55-3	0.0242	0.00833		mg/kg	11.08.19 00.47		5
Benzo(a)pyrene	50-32-8	0.0329	0.00833		mg/kg	11.08.19 00.47		5
Benzo(b)fluoranthene	205-99-2	0.0454	0.00833		mg/kg	11.08.19 00.47		5
Benzo(g,h,i)perylene	191-24-2	0.0228	0.00833		mg/kg	11.08.19 00.47		5
Benzo(k) fluoranthene	207-08-9	0.00917	0.00833		mg/kg	11.08.19 00.47		5
Chrysene	218-01-9	0.0341	0.00833		mg/kg	11.08.19 00.47		5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00833		mg/kg	11.08.19 00.47	U	5
Fluoranthene	206-44-0	0.0644	0.00833		mg/kg	11.08.19 00.47		5
Fluorene	86-73-7	BRL	0.00833		mg/kg	11.08.19 00.47	U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0149	0.00833		mg/kg	11.08.19 00.47		5
Naphthalene	91-20-3	BRL	0.0833		mg/kg	11.08.19 00.47	U	5
Phenanthrene	85-01-8	0.0504	0.00833		mg/kg	11.08.19 00.47		5
Pyrene	129-00-0	0.0776	0.00833		mg/kg	11.08.19 00.47		5
		%						
Surrogate		Recovery	Units	Limits		•	ag	
Nitrobenzene-d5		66	%	31-130		.19 00.47		
2-Fluorobiphenyl		96	%	51-133	11.08	.19 00.47		

99

Wet Weight

Prep Method: SW7471P

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-016 Date Collected: 11.01.19 14.25 Sample Depth: 5.0 - 5.5

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

% Moisture:

KCS Tech: **KCS** Analyst: Date Prep: 11.06.19 11.00 Basis:

Seq Number: 3106614 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag

BRL Cyanide, Total 57-12-5 0.0601 mg/kg 11.06.19 12.31 U 1

Analytical Method: Mercury by SW 7471B

ADS Tech:

ANJ Basis: Wet Weight Analyst: Date Prep: 11.06.19 07.40

Seq Number: 3106627 SUB: T104704215-19-30

Result RL Parameter Cas Number Dil Units **Analysis Date** Flag 0.0391 Mercury 7439-97-6 0.0190 mg/kg 11.06.19 12.31

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: 11.06.19 09.30 Basis: Wet Weight Date Prep:

Seq Number: 3106630 SUB: T104704215-19-30

Cas Number Result RL**Parameter Analysis Date** Flag Dil Units 7440-38-2 13.8 1.89 11.06.19 16.05 10 Arsenic mg/kg Barium 7440-39-3 160 3.77 mg/kg 11.06.19 16.05 10 Cadmium 7440-43-9 BRL 1.89 mg/kg 11.06.19 16.05 U 10 Chromium 7440-47-3 13.2 3.77 11.06.19 16.05 10 mg/kg Lead 7439-92-1 44.7 1.89 mg/kg 11.06.19 16.05 10 Selenium 7782-49-2 BRL 1.89 11.06.19 16.05 U 10 Silver 7440-22-4 BRL 1.89 mg/kg 11.06.19 16.05 U 10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-016 Date Collected: 11.01.19 14.25

Sample Depth: 5.0 - 5.5

Analytical Method: Flash Point (CC) SW-846 1010

JCL % Moisture: Tech:

JCL Analyst: Basis: Wet Weight

Seq Number: 3106624

Cas Number Result RL**Parameter Analysis Date** Dil Units Flash Point Deg F 11.06.19 12.10 >180 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

YAV Tech: % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

Cas Number Result RLParameter Dil Units **Analysis Date** Flag Paint Filter 11.06.19 13.30 **PAIFILTER** Pass

Analytical Method: Soil pH by SW-846 9045C

KBU Tech: % Moisture:

KBU Analyst: Basis: Wet Weight

Seq Number: 3106588

Parameter Cas Number Result RLUnits **Analysis Date** Dil Flag pН 12408-02-5 7.91 SU 11.06.19 11.26 1 11.06.19 11.26 Temperature TEMP 25.6 Deg C 1

Seq Number: 3106739

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-016 Date Collected: 11.01.19 14.25 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 13.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333	mg/kg	11.07.19 13.55	U	20
Acenaphthylene	208-96-8	0.0510	0.0333	mg/kg	11.07.19 13.55		20
Anthracene	120-12-7	0.0341	0.0333	mg/kg	11.07.19 13.55		20
Benzo(a)anthracene	56-55-3	0.131	0.0333	mg/kg	11.07.19 13.55		20
Benzo(a)pyrene	50-32-8	0.201	0.0333	mg/kg	11.07.19 13.55		20
Benzo(b)fluoranthene	205-99-2	0.227	0.0333	mg/kg	11.07.19 13.55		20
Benzo(g,h,i)perylene	191-24-2	0.149	0.0333	mg/kg	11.07.19 13.55		20
Benzo(k)fluoranthene	207-08-9	0.0709	0.0333	mg/kg	11.07.19 13.55		20
Chrysene	218-01-9	0.151	0.0333	mg/kg	11.07.19 13.55		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333	mg/kg	11.07.19 13.55	U	20
Fluoranthene	206-44-0	0.420	0.0333	mg/kg	11.07.19 13.55		20
Fluorene	86-73-7	BRL	0.0333	mg/kg	11.07.19 13.55	U	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.116	0.0333	mg/kg	11.07.19 13.55		20
Naphthalene	91-20-3	BRL	0.333	mg/kg	11.07.19 13.55	U	20
Phenanthrene	85-01-8	0.298	0.0333	mg/kg	11.07.19 13.55		20
Pyrene	129-00-0	0.533	0.0333	mg/kg	11.07.19 13.55		20
Surrogate		% Recovery	Units	Limits Anal	ysis Date Fla	g	

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	85	%	31-130	11.07.19 13.55	
2-Fluorobiphenyl	91	%	51-133	11.07.19 13.55	
Terphenyl-D14	103	%	46-137	11.07.19 13.55	

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B15-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-016 Date Collected: 11.01.19 14.25 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,1-Dichloroethane	75-34-3	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,1-Dichloroethene	75-35-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,1-Dichloropropene	563-58-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2-Dibromoethane	106-93-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2-Dichloroethane	107-06-2	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,2-Dichloropropane	78-87-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,3-Dichloropropane	142-28-9	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.247	mg/kg	11.05.19 17.56	U	50
2,2-Dichloropropane	594-20-7	BRL	0.247	mg/kg	11.05.19 17.56	U	50
2-Butanone	78-93-3	BRL	0.988	mg/kg	11.05.19 17.56	U	50
2-Chlorotoluene	95-49-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
2-Hexanone	591-78-6	BRL	2.47	mg/kg	11.05.19 17.56	U	50
4-Chlorotoluene	106-43-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.47	mg/kg	11.05.19 17.56	U	50
Acetone	67-64-1	BRL	4.94	mg/kg	11.05.19 17.56	U	50
Benzene	71-43-2	BRL	0.0494	mg/kg	11.05.19 17.56	U	50
Bromobenzene	108-86-1	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Bromochloromethane	74-97-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Bromodichloromethane	75-27-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Bromoform	75-25-2	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Bromomethane	74-83-9	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Carbon Disulfide	75-15-0	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Carbon Tetrachloride	56-23-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Chlorobenzene	108-90-7	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Chloroethane	75-00-3	BRL	0.494	mg/kg	11.05.19 17.56	U	50
Chloroform	67-66-3	BRL	0.247	mg/kg	11.05.19 17.56	U	50

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B15-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-016 Date Collected: 11.01.19 14.25 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.247	mg/kg	11.05.19 17.56	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.247	mg/kg	11.05.19 17.56	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Dibromochloromethane	124-48-1	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Dibromomethane	74-95-3	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Ethylbenzene	100-41-4	BRL	0.0494	mg/kg	11.05.19 17.56	U	50
Hexachlorobutadiene	87-68-3	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.988	mg/kg	11.05.19 17.56	U	50
Isopropylbenzene	98-82-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
m,p-Xylenes	179601-23-1	BRL	0.0988	mg/kg	11.05.19 17.56	U	50
Methylene Chloride	75-09-2	BRL	0.988	mg/kg	11.05.19 17.56	U	50
MTBE	1634-04-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Naphthalene	91-20-3	BRL	0.494	mg/kg	11.05.19 17.56	U	50
n-Butylbenzene	104-51-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
n-Propylbenzene	103-65-1	BRL	0.247	mg/kg	11.05.19 17.56	U	50
o-Xylene	95-47-6	BRL	0.0494	mg/kg	11.05.19 17.56	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Sec-Butylbenzene	135-98-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Styrene	100-42-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
tert-Butylbenzene	98-06-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Tetrachloroethylene	127-18-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Toluene	108-88-3	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Total Xylenes	1330-20-7	BRL	0.0494	mg/kg	11.05.19 17.56	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.247	mg/kg	11.05.19 17.56	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Trichloroethene	79-01-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Trichlorofluoromethane	75-69-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Vinyl Acetate	108-05-4	BRL	0.494	mg/kg	11.05.19 17.56	U	50
Vinyl Chloride	75-01-4	BRL	0.247	mg/kg	11.05.19 17.56	U	50
1,3-Butadiene	106-99-0	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Cyclohexane	110-82-7	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Dicyclopentadiene	77-73-6	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Methylcyclohexane	108-87-2	BRL	0.494	mg/kg	11.05.19 17.56	U	50
n-Hexane	110-54-3	BRL	0.494	mg/kg	11.05.19 17.56	U	50
4-Ethyltoluene	622-96-8	BRL	0.247	mg/kg	11.05.19 17.56	U	50
Propene	115-07-1	BRL	0.247	mg/kg	11.05.19 17.56	U	50

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-016 Date Collected: 11.01.19 14.25 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

 Analyst:
 SAD
 Date Prep:
 11.05.19 15.30
 Basis:
 Wet Weight

 Seq Number:
 3106502
 SUB: T104704215-19-30

%
Surrogate Recovery Units Limits Analysis Date Flag

	70				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	84	%	53-142	11.05.19 17.56	
1,2-Dichloroethane-D4	96	%	56-150	11.05.19 17.56	
Toluene-D8	103	%	70-130	11.05.19 17.56	
4-Bromofluorobenzene	97	%	68-152	11.05.19 17.56	
1,2-Dichloroethane-D4 Toluene-D8	96 103	%	56-150 70-130	11.05.19 17.56 11.05.19 17.56	

Tech:

Certificate of Analytical Results 642000

Prep Method: SW7471P

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD03-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-017 Date Collected: 11.01.19 14.35

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture:

KCS Analyst: Date Prep: 11.06.19 11.00 Basis: Wet Weight

Seq Number: 3106614 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil **Analysis Date** Cyanide, Total BRL 11.06.19 12.35 57-12-5 0.0599 mg/kg U 1

Analytical Method: Mercury by SW 7471B

ADS Tech:

Analyst: ANJ Basis: Wet Weight Date Prep: 11.06.19 07.40

Seq Number: 3106627 SUB: T104704215-19-30

Cas Number Result RL Parameter Dil Units **Analysis Date** Flag 0.0247 0.0182 Mercury 7439-97-6 mg/kg 11.06.19 12.36

Analytical Method: Metals, RCRA List, by SW 6020

Prep Method: SW3050B

PJB % Moisture: Tech:

DEP Analyst: 11.06.19 09.30 Basis: Wet Weight Date Prep:

Seq Number: 3106630 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.2	1.69	mg/kg	11.06.19 16.08		10
Barium	7440-39-3	98.0	3.39	mg/kg	11.06.19 16.08		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.06.19 16.08	U	10
Chromium	7440-47-3	15.1	3.39	mg/kg	11.06.19 16.08		10
Lead	7439-92-1	30.5	1.69	mg/kg	11.06.19 16.08		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.06.19 16.08	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.06.19 16.08	U	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD03-110119** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-017 Date Collected: 11.01.19 14.35

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3106624

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.06.19 12.26
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106597

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.06.19 13.301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3106588

Parameter Cas Number Result RLUnits **Analysis Date** Dil Flag pН 12408-02-5 8.03 SU 11.06.19 11.26 1 11.06.19 11.26 Temperature TEMP 25.2 Deg C 1

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD03-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-017 Date Collected: 11.01.19 14.35

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 13.03 Basis: Wet Weight

Seq Number: 3106739 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Uni	s Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333	mg/l	g 11.07.19 14.11	U	20
Acenaphthylene	208-96-8	0.128	0.0333	mg/l	g 11.07.19 14.11		20
Anthracene	120-12-7	0.0837	0.0333	mg/l	g 11.07.19 14.11		20
Benzo(a)anthracene	56-55-3	0.286	0.0333	mg/l	g 11.07.19 14.11		20
Benzo(a)pyrene	50-32-8	0.467	0.0333	mg/l	g 11.07.19 14.11		20
Benzo(b)fluoranthene	205-99-2	0.519	0.0333	mg/l	g 11.07.19 14.11		20
Benzo(g,h,i)perylene	191-24-2	0.365	0.0333	mg/l	g 11.07.19 14.11		20
Benzo(k)fluoranthene	207-08-9	0.163	0.0333	mg/l	g 11.07.19 14.11		20
Chrysene	218-01-9	0.339	0.0333	mg/l	g 11.07.19 14.11		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333	mg/l	g 11.07.19 14.11	U	20
Fluoranthene	206-44-0	0.930	0.0333	mg/l	g 11.07.19 14.11		20
Fluorene	86-73-7	BRL	0.0333	mg/l	g 11.07.19 14.11	U	20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.280	0.0333	mg/l	g 11.07.19 14.11		20
Naphthalene	91-20-3	BRL	0.333	mg/l	g 11.07.19 14.11	U	20
Phenanthrene	85-01-8	0.701	0.0333	mg/l	g 11.07.19 14.11		20
Pyrene	129-00-0	1.17	0.0333	mg/l	g 11.07.19 14.11		20
		%					
Surrogate		Recovery	Units	Limits A	nalysis Date Fla	ag	
Nitrobenzene-d5		89	%		07.19 14.11		
2-Fluorobiphenyl		99	%		07.19 14.11		
Terphenyl-D14		113	%	46-137 11	07.19 14.11		

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: D-FD03-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-017 Date Collected: 11.01.19 14.35

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,1-Dichloroethane	75-34-3	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,1-Dichloroethene	75-35-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,1-Dichloropropene	563-58-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2-Dibromoethane	106-93-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2-Dichloroethane	107-06-2	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,2-Dichloropropane	78-87-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,3-Dichloropropane	142-28-9	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.249	mg/kg	11.05.19 18.18	U	50
2,2-Dichloropropane	594-20-7	BRL	0.249	mg/kg	11.05.19 18.18	U	50
2-Butanone	78-93-3	BRL	0.996	mg/kg	11.05.19 18.18	U	50
2-Chlorotoluene	95-49-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
2-Hexanone	591-78-6	BRL	2.49	mg/kg	11.05.19 18.18	U	50
4-Chlorotoluene	106-43-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.49	mg/kg	11.05.19 18.18	U	50
Acetone	67-64-1	BRL	4.98	mg/kg	11.05.19 18.18	U	50
Benzene	71-43-2	BRL	0.0498	mg/kg	11.05.19 18.18	U	50
Bromobenzene	108-86-1	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Bromochloromethane	74-97-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Bromodichloromethane	75-27-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Bromoform	75-25-2	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Bromomethane	74-83-9	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Carbon Disulfide	75-15-0	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Carbon Tetrachloride	56-23-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Chlorobenzene	108-90-7	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Chloroethane	75-00-3	BRL	0.498	mg/kg	11.05.19 18.18	U	50
Chloroform	67-66-3	BRL	0.249	mg/kg	11.05.19 18.18	U	50

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: D-FD03-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-017 Date Collected: 11.01.19 14.35

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.249	mg/kg	11.05.19 18.18	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.249	mg/kg	11.05.19 18.18	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Dibromochloromethane	124-48-1	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Dibromomethane	74-95-3	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Ethylbenzene	100-41-4	BRL	0.0498	mg/kg	11.05.19 18.18	U	50
Hexachlorobutadiene	87-68-3	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	0.996	mg/kg	11.05.19 18.18	U	50
Isopropylbenzene	98-82-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
m,p-Xylenes	179601-23-1	BRL	0.0996	mg/kg	11.05.19 18.18	U	50
Methylene Chloride	75-09-2	BRL	0.996	mg/kg	11.05.19 18.18	U	50
MTBE	1634-04-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Naphthalene	91-20-3	BRL	0.498	mg/kg	11.05.19 18.18	U	50
n-Butylbenzene	104-51-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
n-Propylbenzene	103-65-1	BRL	0.249	mg/kg	11.05.19 18.18	U	50
o-Xylene	95-47-6	BRL	0.0498	mg/kg	11.05.19 18.18	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Sec-Butylbenzene	135-98-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Styrene	100-42-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
tert-Butylbenzene	98-06-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Tetrachloroethylene	127-18-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Toluene	108-88-3	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Total Xylenes	1330-20-7	BRL	0.0498	mg/kg	11.05.19 18.18	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.249	mg/kg	11.05.19 18.18	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Trichloroethene	79-01-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Trichlorofluoromethane	75-69-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Vinyl Acetate	108-05-4	BRL	0.498	mg/kg	11.05.19 18.18	U	50
Vinyl Chloride	75-01-4	BRL	0.249	mg/kg	11.05.19 18.18	U	50
1,3-Butadiene	106-99-0	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Cyclohexane	110-82-7	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Dicyclopentadiene	77-73-6	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Methylcyclohexane	108-87-2	BRL	0.498	mg/kg	11.05.19 18.18	U	50
n-Hexane	110-54-3	BRL	0.498	mg/kg	11.05.19 18.18	U	50
4-Ethyltoluene	622-96-8	BRL	0.249	mg/kg	11.05.19 18.18	U	50
Propene	115-07-1	BRL	0.249	mg/kg	11.05.19 18.18	U	50

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD03-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-017 Date Collected: 11.01.19 14.35

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	86	%	53-142	11.05.19 18.18	
1,2-Dichloroethane-D4	102	%	56-150	11.05.19 18.18	
Toluene-D8	101	%	70-130	11.05.19 18.18	
4-Bromofluorobenzene	96	%	68-152	11.05.19 18.18	

ADS

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Date Received:11.05.19 10.00 Sample Id: D-B15-7.5-8.0 Matrix: Soil Lab Sample Id: 642000-018 Date Collected: 11.01.19 14.45 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B

Prep Method: SW7471P

% Moisture:

ANJ Basis: Wet Weight Analyst: Date Prep: 11.06.19 07.40 Seq Number: 3106627

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

Cas Number Result RL**Parameter** Analysis Date Flag Dil 7439-97-6 0.0212 0.0196 11.06.19 12.38 Mercury 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP 11.06.19 09.30 Basis: Wet Weight Date Prep:

Seq Number: 3106630 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.4	1.82	mg/kg	11.06.19 16.11		10
Barium	7440-39-3	125	3.64	mg/kg	11.06.19 16.11		10
Cadmium	7440-43-9	BRL	1.82	mg/kg	11.06.19 16.11	U	10
Chromium	7440-47-3	15.9	3.64	mg/kg	11.06.19 16.11		10
Lead	7439-92-1	32.8	1.82	mg/kg	11.06.19 16.11		10
Selenium	7782-49-2	BRL	1.82	mg/kg	11.06.19 16.11	U	10
Silver	7440-22-4	BRL	1.82	mg/kg	11.06.19 16.11	U	10

Seq Number: 3106739

2-Fluorobiphenyl

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-7.5-8.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-018 Date Collected: 11.01.19 14.45 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 13.06 Basis: Wet Weight

SUB: T104704215-19-30

11.07.19 14.28

11.07.19 14.28

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0334	mg/kg	•	U	20
Acenaphthylene	208-96-8	0.327	0.0334	mg/kg			20
Anthracene	120-12-7	0.221	0.0334	mg/kg	11.07.19 14.28		20
Benzo(a)anthracene	56-55-3	0.658	0.0334	mg/kg	11.07.19 14.28		20
Benzo(a)pyrene	50-32-8	1.07	0.0334	mg/kg	11.07.19 14.28		20
Benzo(b)fluoranthene	205-99-2	1.27	0.0334	mg/kg	11.07.19 14.28		20
Benzo(g,h,i)perylene	191-24-2	0.778	0.0334	mg/kg	11.07.19 14.28		20
Benzo(k)fluoranthene	207-08-9	0.324	0.0334	mg/kg	11.07.19 14.28		20
Chrysene	218-01-9	0.777	0.0334	mg/kg	11.07.19 14.28		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0334	mg/kg	11.07.19 14.28	U	20
Fluoranthene	206-44-0	2.04	0.0334	mg/kg	11.07.19 14.28		20
Fluorene	86-73-7	0.0844	0.0334	mg/kg	11.07.19 14.28		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.611	0.0334	mg/kg	11.07.19 14.28		20
Naphthalene	91-20-3	BRL	0.334	mg/kg	11.07.19 14.28	U	20
Phenanthrene	85-01-8	1.54	0.0334	mg/kg	11.07.19 14.28		20
Pyrene	129-00-0	2.57	0.0334	mg/kg	11.07.19 14.28		20
		%					
Surrogate		Recovery	Units	Limits Ana	llysis Date Fla	g	
Nitrobenzene-d5		87	%	31-130 11.0	7.19 14.28		

90

100

%

51-133

46-137

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B15-10.0-10.5

Analytical Method: Mercury by SW 7471B

Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-019

Date Collected: 11.01.19 14.50

Sample Depth: 10.0 - 10.5 Prep Method: SW7471P

% Moisture:

Basis:

Tech:

ADS

11.06.19 07.40

Wet Weight

ANJ Analyst:

Seq Number: 3106627

Date Prep:

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil **Analysis Date** BRL Mercury 7439-97-6 0.0200 mg/kg 11.06.19 12.40 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106630

Analyst: DEP Date Prep: 11.06.19 09.30 Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 21.6 1.89 mg/kg 11.06.19 16.13 10 254 11.06.19 16.13 Barium 7440-39-3 3.77 10 mg/kg Cadmium 7440-43-9 BRL 1.89 mg/kg 11.06.19 16.13 U 10 Chromium 3.77 7440-47-3 14.6 11.06.19 16.13 10 mg/kg Lead 7439-92-1 12.6 1.89 11.06.19 16.13 10 mg/kg Selenium 7782-49-2 BRL 1.89 11.06.19 16.13 U 10 mg/kg Silver BRL U 7440-22-4 1.89 mg/kg 11.06.19 16.13 10

Analyst:

Seq Number: 3106739

Certificate of Analytical Results 642000

APS, Phoenix, AZ

11.06.19 13.09

APS MGP Douglas, AZ

Sample Id: D-B15-10.0-10.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-019 Date Collected: 11.01.19 14.50 Sample Depth: 10.0 - 10.5

Date Prep:

Analytical Method: PAHs by 8270D SIM

DRU Tech: % Moisture: **DNE**

Basis: Wet Weight SUB: T104704215-19-30

Prep Method: SW3550

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Acenaphthene 83-32-9 BRL 0.0167 mg/kg 11.07.19 14.44 U 10 Acenaphthylene 0.0489 0.0167 11.07.19 14.44 10 208-96-8 mg/kg 0.0300 0.0167 11.07.19 14.44 10 Anthracene mg/kg 120-12-7 Benzo(a)anthracene 56-55-3 0.0935 0.0167 mg/kg 11.07.19 14.44 10 0.144 mg/kg 11.07.19 14.44 Benzo(a)pyrene 50-32-8 0.0167 10 Benzo(b)fluoranthene 205-99-2 0.162 0.0167 mg/kg 11.07.19 14.44 10 Benzo(g,h,i)perylene 191-24-2 0.108 0.0167 mg/kg 11.07.19 14.44 10 Benzo(k)fluoranthene 207-08-9 0.0546 0.0167 mg/kg 11.07.19 14.44 10 0.106 0.0167 11.07.19 14.44 10 Chrysene 218-01-9 mg/kg Dibenz(a,h)Anthracene 53-70-3 BRL 0.0167 mg/kg 11.07.19 14.44 U 10 Fluoranthene 0.319 0.0167 mg/kg 11.07.19 14.44 10 206-44-0 mg/kg 11.07.19 14.44 Fluorene BRL 0.0167 U 10 86-73-7 Indeno(1,2,3-c,d)Pyrene 193-39-5 0.0862 0.0167 mg/kg 11.07.19 14.44 10 Naphthalene BRL 0.167 11.07.19 14.44 10 91-20-3 mg/kg Phenanthrene 85-01-8 0.269 0.0167 mg/kg 11.07.19 14.44 10 11.07.19 14.44 Pyrene 129-00-0 0.390 0.0167 mg/kg 10

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	86	%	31-130	11.07.19 14.44	
2-Fluorobiphenyl	99	%	51-133	11.07.19 14.44	
Terphenyl-D14	104	%	46-137	11.07.19 14.44	

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD04-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-020 Date Collected: 11.01.19 14.55

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0175
 mg/kg
 11.06.19 13.01
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

 Analyst:
 DEP
 Date Prep:
 11.06.19 09.30
 Basis:
 Wet Weight

 Seq Number:
 3106630
 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 24.0 1.82 mg/kg 11.06.19 16.16 10 11.06.19 16.16 Barium 7440-39-3 302 3.64 10 mg/kg Cadmium 7440-43-9 BRL 1.82 mg/kg 11.06.19 16.16 U 10 Chromium 7440-47-3 21.7 3.64 11.06.19 16.16 10 mg/kg Lead 7439-92-1 15.5 1.82 11.06.19 16.16 10 mg/kg Selenium 7782-49-2 BRL 1.82 11.06.19 16.16 U 10 mg/kg Silver BRL U 7440-22-4 1.82 11.06.19 16.16 10

Seq Number: 3106739

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD04-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-020 Date Collected: 11.01.19 14.55

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 13.12 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.0333	mg/kg	11.07.19 15.01	U	20
Acenaphthylene	208-96-8	0.132	0.0333	mg/kg	11.07.19 15.01		20
Anthracene	120-12-7	0.0786	0.0333	mg/kg	11.07.19 15.01		20
Benzo(a)anthracene	56-55-3	0.275	0.0333	mg/kg	11.07.19 15.01		20
Benzo(a)pyrene	50-32-8	0.487	0.0333	mg/kg	11.07.19 15.01		20
Benzo(b)fluoranthene	205-99-2	0.588	0.0333	mg/kg	11.07.19 15.01		20
Benzo(g,h,i)perylene	191-24-2	0.391	0.0333	mg/kg	11.07.19 15.01		20
Benzo(k)fluoranthene	207-08-9	0.148	0.0333	mg/kg	11.07.19 15.01		20
Chrysene	218-01-9	0.358	0.0333	mg/kg	11.07.19 15.01		20
Dibenz(a,h)Anthracene	53-70-3	BRL	0.0333	mg/kg	11.07.19 15.01	U	20
Fluoranthene	206-44-0	1.12	0.0333	mg/kg	11.07.19 15.01		20
Fluorene	86-73-7	0.0375	0.0333	mg/kg	11.07.19 15.01		20
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.301	0.0333	mg/kg	11.07.19 15.01		20
Naphthalene	91-20-3	BRL	0.333	mg/kg	11.07.19 15.01	U	20
Phenanthrene	85-01-8	0.972	0.0333	mg/kg	11.07.19 15.01		20
Pyrene	129-00-0	1.41	0.0333	mg/kg	11.07.19 15.01		20
		%					

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	88	%	31-130	11.07.19 15.01	
2-Fluorobiphenyl	98	%	51-133	11.07.19 15.01	
Terphenyl-D14	111	%	46-137	11.07.19 15.01	

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 08.05

Date Received:11.05.19 10.00 Sample Id: D-B15-14.5-15.0 Matrix: Soil Lab Sample Id: 642000-021 Date Collected: 11.01.19 15.00 Sample Depth: 14.5 - 15.0

Date Prep:

Analytical Method: Mercury by SW 7471B

ADS % Moisture: Tech:

> Basis: Wet Weight

Analyst: ANJ Seq Number: 3106634

SUB: T104704215-19-30

Prep Method: SW7471P

Cas Number Result RL**Parameter** Analysis Date Flag Dil 7439-97-6 BRL 0.0185 11.06.19 13.03 Mercury U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106630

Analyst: DEP 11.06.19 09.30 Date Prep:

Basis: Wet Weight

% Moisture:

Prep Method: SW3050B

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.8	1.85	mg/kg	11.06.19 16.19		10
Barium	7440-39-3	226	3.70	mg/kg	11.06.19 16.19		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.06.19 16.19	U	10
Chromium	7440-47-3	19.1	3.70	mg/kg	11.06.19 16.19		10
Lead	7439-92-1	13.0	1.85	mg/kg	11.06.19 16.19		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.06.19 16.19	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.06.19 16.19	U	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 15.09

Sample Id: D-B15-14.5-15.0 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-021 Date Collected: 11.01.19 15.00

Date Prep:

Analytical Method: PAHs by 8270D SIM

Tech:

DRU

DNE Analyst:

Seq Number: 3106745

Sample Depth: 14.5 - 15.0

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

Parameter	Cas Number	Result	RL	U	Jnits	Analysis D	ate	Flag	Dil
Acenaphthene	83-32-9	0.00198	0.00166	m	ng/kg	11.07.19 19	.29		1
Acenaphthylene	208-96-8	0.0326	0.00166	m	ng/kg	11.07.19 19	.29		1
Anthracene	120-12-7	0.0242	0.00166	m	ng/kg	11.07.19 19	.29		1
Benzo(a)anthracene	56-55-3	0.0731	0.00166	m	ng/kg	11.07.19 19	.29		1
Benzo(a)pyrene	50-32-8	0.112	0.00166	m	ng/kg	11.07.19 19	.29		1
Benzo(b)fluoranthene	205-99-2	0.125	0.00166	m	ng/kg	11.07.19 19	.29		1
Benzo(g,h,i)perylene	191-24-2	0.0892	0.00166	m	ng/kg	11.07.19 19	.29		1
Benzo(k) fluoran thene	207-08-9	0.0398	0.00166	m	ng/kg	11.07.19 19	.29		1
Chrysene	218-01-9	0.0856	0.00166	m	ng/kg	11.07.19 19	.29		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166	m	ng/kg	11.07.19 19	.29	U	1
Fluoranthene	206-44-0	0.217	0.00166	m	ng/kg	11.07.19 19	.29		1
Fluorene	86-73-7	0.0105	0.00166	m	ng/kg	11.07.19 19	.29		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0688	0.00166	m	ng/kg	11.07.19 19	.29		1
Naphthalene	91-20-3	0.0210	0.0166	m	ng/kg	11.07.19 19	.29		1
Phenanthrene	85-01-8	0.174	0.00166	m	ng/kg	11.07.19 19	.29		1
Pyrene	129-00-0	0.255	0.00166	m	ng/kg	11.07.19 19	.29		1
		%							
Surrogate		Recovery	Units	Limits	Analy	ysis Date	Flag	g	
Nitrobenzene-d5		112	%			.19 19.29			
2-Fluorobiphenyl		114	%			.19 19.29			
Terphenyl-D14		125	%	46-137	11.07.	.19 19.29			

SAD

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-TB01-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-022 Date Collected: 11.01.19 08.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

SAD Analyst: 11.05.19 15.00 Basis: Wet Weight Date Prep: Seq Number: 3106502

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,1-Dichloroethane	75-34-3	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,1-Dichloroethene	75-35-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,1-Dichloropropene	563-58-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2-Dibromoethane	106-93-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2-Dichloroethane	107-06-2	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,2-Dichloropropane	78-87-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,3-Dichloropropane	142-28-9	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.250	mg/kg	11.05.19 15.26	U	50
2,2-Dichloropropane	594-20-7	BRL	0.250	mg/kg	11.05.19 15.26	U	50
2-Butanone	78-93-3	BRL	1.00	mg/kg	11.05.19 15.26	U	50
2-Chlorotoluene	95-49-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
2-Hexanone	591-78-6	BRL	2.50	mg/kg	11.05.19 15.26	U	50
4-Chlorotoluene	106-43-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.50	mg/kg	11.05.19 15.26	U	50
Acetone	67-64-1	BRL	5.00	mg/kg	11.05.19 15.26	U	50
Benzene	71-43-2	BRL	0.0500	mg/kg	11.05.19 15.26	U	50
Bromobenzene	108-86-1	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Bromochloromethane	74-97-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Bromodichloromethane	75-27-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Bromoform	75-25-2	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Bromomethane	74-83-9	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Carbon Disulfide	75-15-0	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Carbon Tetrachloride	56-23-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Chlorobenzene	108-90-7	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Chloroethane	75-00-3	BRL	0.500	mg/kg	11.05.19 15.26	U	50
Chloroform	67-66-3	BRL	0.250	mg/kg	11.05.19 15.26	U	50

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: D-TB01-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-022 Date Collected: 11.01.19 08.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.250	mg/kg	11.05.19 15.26	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.250	mg/kg	11.05.19 15.26	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Dibromochloromethane	124-48-1	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Dibromomethane	74-95-3	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Ethylbenzene	100-41-4	BRL	0.0500	mg/kg	11.05.19 15.26	U	50
Hexachlorobutadiene	87-68-3	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.00	mg/kg	11.05.19 15.26	U	50
Isopropylbenzene	98-82-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
m,p-Xylenes	179601-23-1	BRL	0.100	mg/kg	11.05.19 15.26	U	50
Methylene Chloride	75-09-2	BRL	1.00	mg/kg	11.05.19 15.26	U	50
MTBE	1634-04-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Naphthalene	91-20-3	BRL	0.500	mg/kg	11.05.19 15.26	U	50
n-Butylbenzene	104-51-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
n-Propylbenzene	103-65-1	BRL	0.250	mg/kg	11.05.19 15.26	U	50
o-Xylene	95-47-6	BRL	0.0500	mg/kg	11.05.19 15.26	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Sec-Butylbenzene	135-98-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Styrene	100-42-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
tert-Butylbenzene	98-06-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Tetrachloroethylene	127-18-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Toluene	108-88-3	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Total Xylenes	1330-20-7	BRL	0.0500	mg/kg	11.05.19 15.26	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.250	mg/kg	11.05.19 15.26	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Trichloroethene	79-01-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Trichlorofluoromethane	75-69-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Vinyl Acetate	108-05-4	BRL	0.500	mg/kg	11.05.19 15.26	U	50
Vinyl Chloride	75-01-4	BRL	0.250	mg/kg	11.05.19 15.26	U	50
1,3-Butadiene	106-99-0	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Cyclohexane	110-82-7	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Dicyclopentadiene	77-73-6	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Methylcyclohexane	108-87-2	BRL	0.500	mg/kg	11.05.19 15.26	U	50
n-Hexane	110-54-3	BRL	0.500	mg/kg	11.05.19 15.26	U	50
4-Ethyltoluene	622-96-8	BRL	0.250	mg/kg	11.05.19 15.26	U	50
Propene	115-07-1	BRL	0.250	mg/kg	11.05.19 15.26	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TB01-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-022 Date Collected: 11.01.19 08.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.00 Basis: Wet Weight

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	86	%	53-142	11.05.19 15.26	
1,2-Dichloroethane-D4	100	%	56-150	11.05.19 15.26	
Toluene-D8	102	%	70-130	11.05.19 15.26	
4-Bromofluorobenzene	95	%	68-152	11.05.19 15.26	

Tech:

Certificate of Analytical Results 642000

Prep Method: SW7471P

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B19-2.5-3.0** Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-023 Date Collected: 11.01.19 15.40 Sample Depth: 2.5 - 3.0

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture:

Analyst: KCS Date Prep: 11.06.19 11.00 Basis: Wet Weight

Seq Number: 3106614 SUB: T104704215-19-30

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilCyanide, Total57-12-5BRL0.0650mg/kg11.06.19 12.36U1

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0169
 mg/kg
 11.06.19 13.06
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Seq Number: 3106630

Prep: 11.06.19 09.30 Basis: Wet Weight SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	13.7	1.85	mg/kg	11.06.19 16.28		10
Barium	7440-39-3	116	3.70	mg/kg	11.06.19 16.28		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.06.19 16.28	U	10
Chromium	7440-47-3	9.86	3.70	mg/kg	11.06.19 16.28		10
Lead	7439-92-1	26.1	1.85	mg/kg	11.06.19 16.28		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.06.19 16.28	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.06.19 16.28	U	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B19-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-023 Date Collected: 11.01.19 15.40 Sample Depth: 2.5 - 3.0

Wet Weight

Analytical Method: Flash Point (CC) SW-846 1010

JCL Tech:

% Moisture: JCL Analyst: Basis:

Seq Number: 3106624

Cas Number Result RL**Parameter Analysis Date** Dil Units Flash Point Deg F 11.06.19 12.42 >180 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

YAV Tech:

Analyst: YAV Seq Number: 3106597 % Moisture:

Basis: Wet Weight

Cas Number Result RLParameter Dil Units **Analysis Date** Flag Paint Filter 11.06.19 13.30 **PAIFILTER** Pass

Analytical Method: Soil pH by SW-846 9045C

KBU Tech:

KBU Analyst:

Seq Number: 3106588

% Moisture:

Basis: Wet Weight

Parameter Cas Number Result RLUnits **Analysis Date** Dil Flag pН 12408-02-5 8.32 SU 11.06.19 11.26 1 11.06.19 11.26 **Temperature** TEMP 25.0 Deg C 1

DRU

Seq Number: 3106745

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B19-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-023 Date Collected: 11.01.19 15.40 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: 11.06.19 15.12 Basis: Wet Weight Date Prep:

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.08.19 00.13	U	1
Acenaphthylene	208-96-8	0.00681	0.00166		mg/kg	11.08.19 00.13		1
Anthracene	120-12-7	0.00472	0.00166		mg/kg	11.08.19 00.13		1
Benzo(a)anthracene	56-55-3	0.0224	0.00166		mg/kg	11.08.19 00.13		1
Benzo(a)pyrene	50-32-8	0.0450	0.00166		mg/kg	11.08.19 00.13		1
Benzo(b) fluoranthene	205-99-2	0.0611	0.00166		mg/kg	11.08.19 00.13		1
Benzo(g,h,i)perylene	191-24-2	0.0377	0.00166		mg/kg	11.08.19 00.13		1
Benzo(k) fluoranthene	207-08-9	0.0185	0.00166		mg/kg	11.08.19 00.13		1
Chrysene	218-01-9	0.0319	0.00166		mg/kg	11.08.19 00.13		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.08.19 00.13	U	1
Fluoranthene	206-44-0	0.0556	0.00166		mg/kg	11.08.19 00.13		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.08.19 00.13	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0284	0.00166		mg/kg	11.08.19 00.13		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.08.19 00.13	U	1
Phenanthrene	85-01-8	0.0195	0.00166		mg/kg	11.08.19 00.13		1
Pyrene	129-00-0	0.0644	0.00166		mg/kg	11.08.19 00.13		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fla	ag	
Nitrobenzene-d5		87	%	31-130		.19 00.13		
2-Fluorobiphenyl		99	%	51-133		.19 00.13		
Terphenyl-D14		114	%	46-137	11.08	.19 00.13		

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B19-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-023 Date Collected: 11.01.19 15.40 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,1-Dichloroethane	75-34-3	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,1-Dichloroethene	75-35-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,1-Dichloropropene	563-58-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2-Dibromoethane	106-93-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2-Dichloroethane	107-06-2	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,2-Dichloropropane	78-87-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,3-Dichloropropane	142-28-9	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.262	mg/kg	11.05.19 18.40	U	50
2,2-Dichloropropane	594-20-7	BRL	0.262	mg/kg	11.05.19 18.40	U	50
2-Butanone	78-93-3	BRL	1.05	mg/kg	11.05.19 18.40	U	50
2-Chlorotoluene	95-49-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
2-Hexanone	591-78-6	BRL	2.62	mg/kg	11.05.19 18.40	U	50
4-Chlorotoluene	106-43-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.62	mg/kg	11.05.19 18.40	U	50
Acetone	67-64-1	BRL	5.24	mg/kg	11.05.19 18.40	U	50
Benzene	71-43-2	BRL	0.0524	mg/kg	11.05.19 18.40	U	50
Bromobenzene	108-86-1	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Bromochloromethane	74-97-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Bromodichloromethane	75-27-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Bromoform	75-25-2	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Bromomethane	74-83-9	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Carbon Disulfide	75-15-0	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Carbon Tetrachloride	56-23-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Chlorobenzene	108-90-7	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Chloroethane	75-00-3	BRL	0.524	mg/kg	11.05.19 18.40	U	50
Chloroform	67-66-3	BRL	0.262	mg/kg	11.05.19 18.40	U	50

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: D-B19-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-023 Date Collected: 11.01.19 15.40 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.262	mg/kg	11.05.19 18.40	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.262	mg/kg	11.05.19 18.40	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Dibromochloromethane	124-48-1	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Dibromomethane	74-95-3	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Ethylbenzene	100-41-4	BRL	0.0524	mg/kg	11.05.19 18.40	U	50
Hexachlorobutadiene	87-68-3	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.05	mg/kg	11.05.19 18.40	U	50
Isopropylbenzene	98-82-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
m,p-Xylenes	179601-23-1	BRL	0.105	mg/kg	11.05.19 18.40	U	50
Methylene Chloride	75-09-2	BRL	1.05	mg/kg	11.05.19 18.40	U	50
MTBE	1634-04-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Naphthalene	91-20-3	BRL	0.524	mg/kg	11.05.19 18.40	U	50
n-Butylbenzene	104-51-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
n-Propylbenzene	103-65-1	BRL	0.262	mg/kg	11.05.19 18.40	U	50
o-Xylene	95-47-6	BRL	0.0524	mg/kg	11.05.19 18.40	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Sec-Butylbenzene	135-98-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Styrene	100-42-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
tert-Butylbenzene	98-06-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Tetrachloroethylene	127-18-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Toluene	108-88-3	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Total Xylenes	1330-20-7	BRL	0.0524	mg/kg	11.05.19 18.40	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.262	mg/kg	11.05.19 18.40	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Trichloroethene	79-01-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Trichlorofluoromethane	75-69-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Vinyl Acetate	108-05-4	BRL	0.524	mg/kg	11.05.19 18.40	U	50
Vinyl Chloride	75-01-4	BRL	0.262	mg/kg	11.05.19 18.40	U	50
1,3-Butadiene	106-99-0	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Cyclohexane	110-82-7	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Dicyclopentadiene	77-73-6	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Methylcyclohexane	108-87-2	BRL	0.524	mg/kg	11.05.19 18.40	U	50
n-Hexane	110-54-3	BRL	0.524	mg/kg	11.05.19 18.40	U	50
4-Ethyltoluene	622-96-8	BRL	0.262	mg/kg	11.05.19 18.40	U	50
Propene	115-07-1	BRL	0.262	mg/kg	11.05.19 18.40	U	50

Analyst:

Certificate of Analytical Results 642000

Wet Weight

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.05.19 15.30

Basis:

Sample Id: D-B19-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-023 Date Collected: 11.01.19 15.40 Sample Depth: 2.5 - 3.0

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Tech: SAD SAD

Date Prep:

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	86	%	53-142	11.05.19 18.40	
1,2-Dichloroethane-D4	100	%	56-150	11.05.19 18.40	
Toluene-D8	102	%	70-130	11.05.19 18.40	
4-Bromofluorobenzene	96	%	68-152	11.05.19 18.40	

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B19-5.0-5.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-024
 Date Collected: 11.01.19 15.55
 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0196
 mg/kg
 11.06.19 13.08
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.6	1.69	mg/kg	11.06.19 16.31		10
Barium	7440-39-3	937	3.39	mg/kg	11.06.19 16.31		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.06.19 16.31	U	10
Chromium	7440-47-3	12.0	3.39	mg/kg	11.06.19 16.31		10
Lead	7439-92-1	11.6	1.69	mg/kg	11.06.19 16.31		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.06.19 16.31	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.06.19 16.31	U	10

DRU

Seq Number: 3106745

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B19-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-024 Date Collected: 11.01.19 15.55 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 15.15 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 19.46	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 19.46	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 19.46	U	1
Benzo(a)anthracene	56-55-3	0.00263	0.00167	mg/kg	11.07.19 19.46		1
Benzo(a)pyrene	50-32-8	0.00269	0.00167	mg/kg	11.07.19 19.46		1
Benzo(b)fluoranthene	205-99-2	0.00365	0.00167	mg/kg	11.07.19 19.46		1
Benzo(g,h,i)perylene	191-24-2	0.00175	0.00167	mg/kg	11.07.19 19.46		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 19.46	U	1
Chrysene	218-01-9	0.00286	0.00167	mg/kg	11.07.19 19.46		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 19.46	U	1
Fluoranthene	206-44-0	0.00517	0.00167	mg/kg	11.07.19 19.46		1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 19.46	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 19.46	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 19.46	U	1
Phenanthrene	85-01-8	0.00287	0.00167	mg/kg	11.07.19 19.46		1
Pyrene	129-00-0	0.00536	0.00167	mg/kg	11.07.19 19.46		1
		0/0					
Surrogate		Recovery	Units	Limits Anal	lysis Date Fla	g	
Nitrohangana d5		100	0/	21 120 11 07	10 10 46		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	109	%	31-130	11.07.19 19.46	
2-Fluorobiphenyl	115	%	51-133	11.07.19 19.46	
Terphenyl-D14	118	%	46-137	11.07.19 19.46	

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B19-7.5-8.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-025
 Date Collected: 11.01.19 16.05
 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0179
 mg/kg
 11.06.19 13.10
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.1	1.92	mg/kg	11.06.19 16.34		10
Barium	7440-39-3	121	3.85	mg/kg	11.06.19 16.34		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.06.19 16.34	U	10
Chromium	7440-47-3	9.72	3.85	mg/kg	11.06.19 16.34		10
Lead	7439-92-1	19.9	1.92	mg/kg	11.06.19 16.34		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.06.19 16.34	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.06.19 16.34	U	10

DRU

Seq Number: 3106745

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B19-7.5-8.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-025 Date Collected: 11.01.19 16.05 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: 11.06.19 15.18 Basis: Wet Weight Date Prep:

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.07.19 20.02	U	1
Acenaphthylene	208-96-8	0.00822	0.00166		mg/kg	11.07.19 20.02		1
Anthracene	120-12-7	0.00564	0.00166		mg/kg	11.07.19 20.02		1
Benzo(a)anthracene	56-55-3	0.0227	0.00166		mg/kg	11.07.19 20.02		1
Benzo(a)pyrene	50-32-8	0.0420	0.00166		mg/kg	11.07.19 20.02		1
Benzo(b) fluoranthene	205-99-2	0.0504	0.00166		mg/kg	11.07.19 20.02		1
Benzo(g,h,i)perylene	191-24-2	0.0375	0.00166		mg/kg	11.07.19 20.02		1
Benzo(k) fluoran thene	207-08-9	0.0148	0.00166		mg/kg	11.07.19 20.02		1
Chrysene	218-01-9	0.0284	0.00166		mg/kg	11.07.19 20.02		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.07.19 20.02	U	1
Fluoranthene	206-44-0	0.0694	0.00166		mg/kg	11.07.19 20.02		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.07.19 20.02	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0277	0.00166		mg/kg	11.07.19 20.02		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.07.19 20.02	U	1
Phenanthrene	85-01-8	0.0369	0.00166		mg/kg	11.07.19 20.02		1
Pyrene	129-00-0	0.0825	0.00166		mg/kg	11.07.19 20.02		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		94	%	31-130		.19 20.02		
2-Fluorobiphenyl		103	%	51-133		.19 20.02		
Terphenyl-D14		123	%	46-137	11.07	.19 20.02		

Analytical Method: Mercury by SW 7471B

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B19-10.0-10.5 Matrix: Soil

Date Received:11.05.19 10.00 Sample Depth: 10.0 - 10.5

Lab Sample Id: 642000-026 Date Collected: 11.02.19 08.00

Prep Method: SW7471P

% Moisture:

ADS Tech: ANJ Analyst: Date Prep: 11.06.19 08.05 Basis:

Wet Weight

Seq Number: 3106634

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units Analysis Date Flag Dil	
Mercury	7439-97-6	BRL	0.0169	mg/kg 11.06.19 13.12 U 1	

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106630

Analyst: DEP Date Prep: 11.06.19 09.30 Prep Method: SW3050B % Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag 14.2 Arsenic 7440-38-2 1.92 mg/kg 11.06.19 16.37 10 3.85 10 Barium 7440-39-3 138 11.06.19 16.37 mg/kg Cadmium 7440-43-9 BRL 1.92 mg/kg 11.06.19 16.37 U 10 Chromium mg/kg 7440-47-3 16.9 3.85 11.06.19 16.37 10 Lead 7439-92-1 12.3 1.92 11.06.19 16.37 10 mg/kg Selenium 7782-49-2 BRL 1.92 mg/kg 11.06.19 16.37 U 10 Silver BRL U 7440-22-4 1.92 mg/kg 11.06.19 16.37 10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B19-10.0-10.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-026
 Date Collected: 11.02.19 08.00
 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 15.21 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 20.19	U	1
Acenaphthylene	208-96-8	0.0208	0.00167		mg/kg	11.07.19 20.19		1
Anthracene	120-12-7	0.0149	0.00167		mg/kg	11.07.19 20.19		1
Benzo(a)anthracene	56-55-3	0.0583	0.00167		mg/kg	11.07.19 20.19		1
Benzo(a)pyrene	50-32-8	0.108	0.00167		mg/kg	11.07.19 20.19		1
Benzo(b)fluoranthene	205-99-2	0.126	0.00167		mg/kg	11.07.19 20.19		1
Benzo(g,h,i)perylene	191-24-2	0.0928	0.00167		mg/kg	11.07.19 20.19		1
Benzo(k)fluoranthene	207-08-9	0.0320	0.00167		mg/kg	11.07.19 20.19		1
Chrysene	218-01-9	0.0720	0.00167		mg/kg	11.07.19 20.19		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 20.19	U	1
Fluoranthene	206-44-0	0.184	0.00167		mg/kg	11.07.19 20.19		1
Fluorene	86-73-7	0.00526	0.00167		mg/kg	11.07.19 20.19		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0684	0.00167		mg/kg	11.07.19 20.19		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 20.19	U	1
Phenanthrene	85-01-8	0.107	0.00167		mg/kg	11.07.19 20.19		1
Pyrene	129-00-0	0.226	0.00167		mg/kg	11.07.19 20.19		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		98	%	31-130		.19 20.19		
2-Fluorobiphenyl		102	%	51-133		.19 20.19		
Terphenyl-D14		127	%	46-137	11.07	.19 20.19		

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B19-15.0-15.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-027
 Date Collected: 11.02.19 08.10
 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.189
 mg/kg
 11.06.19 13.14
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	16.4	1.75	mg/kg	11.06.19 16.40		10
Barium	7440-39-3	130	3.51	mg/kg	11.06.19 16.40		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.06.19 16.40	U	10
Chromium	7440-47-3	20.1	3.51	mg/kg	11.06.19 16.40		10
Lead	7439-92-1	9.79	1.75	mg/kg	11.06.19 16.40		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.06.19 16.40	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.06.19 16.40	U	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 15.24

 Sample Id:
 D-B19-15.0-15.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-027
 Date Collected: 11.02.19 08.10
 Sample Depth: 15.0 - 15.5

Date Prep:

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

rep intenious 5

Tech: DRU % Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Seq Number: 3106745

Analyst:

DNE

201								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	0.00303	0.00167		mg/kg	11.07.19 20.36		1
Acenaphthylene	208-96-8	0.0549	0.00167		mg/kg	11.07.19 20.36		1
Anthracene	120-12-7	0.0236	0.00167		mg/kg	11.07.19 20.36		1
Benzo(a)anthracene	56-55-3	0.0643	0.00167		mg/kg	11.07.19 20.36		1
Benzo(a)pyrene	50-32-8	0.0937	0.00167		mg/kg	11.07.19 20.36		1
Benzo(b)fluoranthene	205-99-2	0.110	0.00167		mg/kg	11.07.19 20.36		1
Benzo(g,h,i)perylene	191-24-2	0.0719	0.00167		mg/kg	11.07.19 20.36		1
Benzo(k)fluoranthene	207-08-9	0.0322	0.00167		mg/kg	11.07.19 20.36		1
Chrysene	218-01-9	0.0725	0.00167		mg/kg	11.07.19 20.36		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 20.36	U	1
Fluoranthene	206-44-0	0.213	0.00167		mg/kg	11.07.19 20.36		1
Fluorene	86-73-7	0.0247	0.00167		mg/kg	11.07.19 20.36		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0547	0.00167		mg/kg	11.07.19 20.36		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 20.36	U	1
Phenanthrene	85-01-8	0.253	0.00167		mg/kg	11.07.19 20.36		1
Pyrene	129-00-0	0.257	0.00167		mg/kg	11.07.19 20.36		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		107	%	31-130		.19 20.36		
2-Fluorobiphenyl		113	%	51-133		.19 20.36		
Terphenyl-D14		126	%	46-137	11.07	.19 20.36		

Prep Method: SW7471P

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B19-19.5-20.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-028
 Date Collected: 11.02.19 08.25
 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.06.19 13.16
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.25	1.69	mg/kg	11.06.19 16.43		10
Barium	7440-39-3	246	3.39	mg/kg	11.06.19 16.43		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.06.19 16.43	U	10
Chromium	7440-47-3	27.7	3.39	mg/kg	11.06.19 16.43		10
Lead	7439-92-1	4.67	1.69	mg/kg	11.06.19 16.43		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.06.19 16.43	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.06.19 16.43	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B19-19.5-20.0 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-028 Date Collected: 11.02.19 08.25 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM

DRU Tech:

DNE Analyst: 11.06.19 15.27 Basis: Wet Weight Date Prep:

Parameter	Cas Number	Result	RL		Units	Analysis Dat	e Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 20.5	2 U	1
Acenaphthylene	208-96-8	0.0243	0.00167		mg/kg	11.07.19 20.5	2	1
Anthracene	120-12-7	0.0151	0.00167		mg/kg	11.07.19 20.5	2	1
Benzo(a)anthracene	56-55-3	0.0550	0.00167		mg/kg	11.07.19 20.5	2	1
Benzo(a)pyrene	50-32-8	0.0947	0.00167		mg/kg	11.07.19 20.5	2	1
Benzo(b)fluoranthene	205-99-2	0.104	0.00167		mg/kg	11.07.19 20.5	2	1
Benzo(g,h,i)perylene	191-24-2	0.0802	0.00167		mg/kg	11.07.19 20.5	2	1
Benzo(k)fluoranthene	207-08-9	0.0357	0.00167		mg/kg	11.07.19 20.5	2	1
Chrysene	218-01-9	0.0666	0.00167		mg/kg	11.07.19 20.5	2	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 20.5	2 U	1
Fluoranthene	206-44-0	0.178	0.00167		mg/kg	11.07.19 20.5	2	1
Fluorene	86-73-7	0.00782	0.00167		mg/kg	11.07.19 20.5	2	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0594	0.00167		mg/kg	11.07.19 20.5	2	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 20.5	2 U	1
Phenanthrene	85-01-8	0.131	0.00167		mg/kg	11.07.19 20.5	2	1
Pyrene	129-00-0	0.225	0.00167		mg/kg	11.07.19 20.5	2	1
		0/0						
Surrogate		Recovery	Units	Limits	Anal	ysis Date I	lag	
Nitrobenzene-d5		105	%	31-130	11.07	.19 20.52		
2-Fluorobiphenyl		111	%	51-133	11.07	.19 20.52		
Terphenyl-D14		128	%	46-137	11.07	.19 20.52		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	105	%	31-130	11.07.19 20.52	
2-Fluorobiphenyl	111	%	51-133	11.07.19 20.52	
Terphenyl-D14	128	%	46-137	11.07.19 20.52	

Tech:

Certificate of Analytical Results 642000

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B20-7.5-8.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-029
 Date Collected: 11.02.19 09.25
 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 09.05 Basis: Wet Weight

Seq Number: 3106613 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0304
 0.0179
 mg/kg
 11.06.19 13.53
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 09.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.99	1.82	mg/kg	11.06.19 16.46		10
Barium	7440-39-3	318	3.64	mg/kg	11.06.19 16.46		10
Cadmium	7440-43-9	BRL	1.82	mg/kg	11.06.19 16.46	U	10
Chromium	7440-47-3	11.2	3.64	mg/kg	11.06.19 16.46		10
Lead	7439-92-1	29.9	1.82	mg/kg	11.06.19 16.46		10
Selenium	7782-49-2	BRL	1.82	mg/kg	11.06.19 16.46	U	10
Silver	7440-22-4	BRL	1.82	mg/kg	11.06.19 16.46	U	10

DRU

Seq Number: 3106745

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B20-7.5-8.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-029 Date Collected: 11.02.19 09.25 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 00.30	U	1
Acenaphthylene	208-96-8	0.00430	0.00167		mg/kg	11.08.19 00.30		1
Anthracene	120-12-7	0.00636	0.00167		mg/kg	11.08.19 00.30		1
Benzo(a)anthracene	56-55-3	0.0261	0.00167		mg/kg	11.08.19 00.30		1
Benzo(a)pyrene	50-32-8	0.0401	0.00167		mg/kg	11.08.19 00.30		1
Benzo(b)fluoranthene	205-99-2	0.0760	0.00167		mg/kg	11.08.19 00.30		1
Benzo(g,h,i)perylene	191-24-2	0.0245	0.00167		mg/kg	11.08.19 00.30		1
Benzo(k) fluoranthene	207-08-9	0.0181	0.00167		mg/kg	11.08.19 00.30		1
Chrysene	218-01-9	0.0370	0.00167		mg/kg	11.08.19 00.30		1
Dibenz(a,h)Anthracene	53-70-3	0.00541	0.00167		mg/kg	11.08.19 00.30		1
Fluoranthene	206-44-0	0.0599	0.00167		mg/kg	11.08.19 00.30		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 00.30	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0218	0.00167		mg/kg	11.08.19 00.30		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 00.30	U	1
Phenanthrene	85-01-8	0.0190	0.00167		mg/kg	11.08.19 00.30		1
Pyrene	129-00-0	0.0552	0.00167		mg/kg	11.08.19 00.30		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fla	ag	
Nitrobenzene-d5		70	%	31-130		.19 00.30		
2-Fluorobiphenyl		81	%	51-133		.19 00.30		
Terphenyl-D14		104	%	46-137	11.08	.19 00.30		

U

1

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 09.05

Date Received:11.05.19 10.00 Sample Id: D-B20-9.5-10.0 Matrix: Soil Lab Sample Id: 642000-030 Date Collected: 11.02.19 09.30 Sample Depth: 9.5 - 10.0

Date Prep:

Analytical Method: Mercury by SW 7471B

ADS % Moisture: Tech:

> Basis: Wet Weight SUB: T104704215-19-30

Prep Method: SW7471P

Seq Number: 3106613

ANJ

Analyst:

Mercury

Cas Number Result RL**Parameter Analysis Date** Dil 7439-97-6 BRL 0.0189 11.06.19 14.29

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106630

Analyst: DEP 11.06.19 09.30 Date Prep:

Prep Method: SW3050B % Moisture:

Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.4	1.92	mg/kg	11.06.19 16.49		10
Barium	7440-39-3	273	3.85	mg/kg	11.06.19 16.49		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.06.19 16.49	U	10
Chromium	7440-47-3	9.77	3.85	mg/kg	11.06.19 16.49		10
Lead	7439-92-1	19.9	1.92	mg/kg	11.06.19 16.49		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.06.19 16.49	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.06.19 16.49	U	10

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: Matrix: Soil Date Received:11.05.19 10.00 D-B20-9.5-10.0 Lab Sample Id: 642000-030 Date Collected: 11.02.19 09.30 Sample Depth: 9.5 - 10.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

DRU % Moisture:

DNE Analyst: 11.06.19 15.33 Basis: Wet Weight Date Prep:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 21.09	U	1
Acenaphthylene	208-96-8	0.00419	0.00167		mg/kg	11.07.19 21.09		1
Anthracene	120-12-7	0.00441	0.00167		mg/kg	11.07.19 21.09		1
Benzo(a)anthracene	56-55-3	0.0151	0.00167		mg/kg	11.07.19 21.09		1
Benzo(a)pyrene	50-32-8	0.0227	0.00167		mg/kg	11.07.19 21.09		1
Benzo(b)fluoranthene	205-99-2	0.0347	0.00167		mg/kg	11.07.19 21.09		1
Benzo(g,h,i)perylene	191-24-2	0.0171	0.00167		mg/kg	11.07.19 21.09		1
Benzo(k)fluoranthene	207-08-9	0.0107	0.00167		mg/kg	11.07.19 21.09		1
Chrysene	218-01-9	0.0203	0.00167		mg/kg	11.07.19 21.09		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 21.09	U	1
Fluoranthene	206-44-0	0.0390	0.00167		mg/kg	11.07.19 21.09		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 21.09	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0142	0.00167		mg/kg	11.07.19 21.09		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 21.09	U	1
Phenanthrene	85-01-8	0.0243	0.00167		mg/kg	11.07.19 21.09		1
Pyrene	129-00-0	0.0413	0.00167		mg/kg	11.07.19 21.09		1
		0/0						
Surrogate		Recovery	Units	Limits	Anal	lysis Date Fl	ag	
Nitrobenzene-d5		80	%	31-130	11.07	.19 21.09		
2-Fluorobiphenyl		90	%	51-133	11.07	.19 21.09		
Terphenyl-D14		123	%	46-137	11.07	19 21 09		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	80	%	31-130	11.07.19 21.09	
2-Fluorobiphenyl	90	%	51-133	11.07.19 21.09	
Terphenyl-D14	123	%	46-137	11.07.19 21.09	

ANJ

Certificate of Analytical Results 642000

Wet Weight

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 08.05

Basis:

Sample Id: D-B20-14.5-15.0 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-031 Date Collected: 11.02.19 09.45 Sample Depth: 14.5 - 15.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> **ADS** % Moisture:

Date Prep: Seq Number: 3106634 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil **Analysis Date** BRL Mercury 7439-97-6 0.0196 11.06.19 13.31 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Tech:

Analyst:

Analyst: DEP Basis: Wet Weight Date Prep: 11.06.19 10.55 Seq Number: 3106705 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag 12.7 Arsenic 7440-38-2 1.82 mg/kg 11.06.19 21.53 10 11.06.19 21.53 Barium 7440-39-3 93.6 3.64 10 mg/kg Cadmium 7440-43-9 BRL 1.82 mg/kg 11.06.19 21.53 U 10 Chromium 7440-47-3 10.6 3.64 11.06.19 21.53 10 mg/kg Lead 7439-92-1 9.25 1.82 11.06.19 21.53 10 mg/kg Selenium 7782-49-2 BRL 1.82 11.06.19 21.53 U 10 mg/kg Silver BRL U 7440-22-4 1.82 mg/kg 11.06.19 21.53 10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B20-14.5-15.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-031
 Date Collected: 11.02.19 09.45
 Sample Depth: 14.5 - 15.0

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 15.36 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 21.26	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 21.26	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 21.26	U	1
Benzo(a)anthracene	56-55-3	0.00539	0.00167		mg/kg	11.07.19 21.26		1
Benzo(a)pyrene	50-32-8	0.00886	0.00167		mg/kg	11.07.19 21.26		1
Benzo(b)fluoranthene	205-99-2	0.0144	0.00167		mg/kg	11.07.19 21.26		1
Benzo(g,h,i)perylene	191-24-2	0.00660	0.00167		mg/kg	11.07.19 21.26		1
Benzo(k)fluoranthene	207-08-9	0.00348	0.00167		mg/kg	11.07.19 21.26		1
Chrysene	218-01-9	0.00747	0.00167		mg/kg	11.07.19 21.26		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 21.26	U	1
Fluoranthene	206-44-0	0.0136	0.00167		mg/kg	11.07.19 21.26		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 21.26	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00549	0.00167		mg/kg	11.07.19 21.26		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 21.26	U	1
Phenanthrene	85-01-8	0.00470	0.00167		mg/kg	11.07.19 21.26		1
Pyrene	129-00-0	0.0141	0.00167		mg/kg	11.07.19 21.26		1
Summagata		% December	Units	Limits	Anal	voja Doto – El		
Surrogate		Recovery				ysis Date Fl	ag	
Nitrobenzene-d5		88 95	% %	31-130 51-133		.19 21.26 .19 21.26		
2-Fluorobiphenyl Terphenyl-D14		95 115	%	46-137		.19 21.26		

Prep Method: SW7471P

11.06.19 13.33

Prep Method: SW3050B

% Moisture:

U

1

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

BRL

Date Received:11.05.19 10.00 Sample Id: D-B20-19.5-20.0 Matrix: Soil Lab Sample Id: 642000-032 Date Collected: 11.02.19 09.55 Sample Depth: 19.5 - 20.0

Analytical Method: Mercury by SW 7471B

ADS Tech:

Parameter

Mercury

ANJ Basis: Wet Weight Analyst: Date Prep: 11.06.19 08.05 SUB: T104704215-19-30

Seq Number: 3106634

Cas Number Result RLAnalysis Date Flag Dil

0.0167

Analytical Method: Metals, RCRA List, by SW 6020

7439-97-6

PJB Tech:

Analyst: DEP 11.06.19 10.55 Basis: Wet Weight Date Prep: SUB: T104704215-19-30

Seq Number: 3106705

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.99	1.92	mg/kg	11.06.19 21.56		10
Barium	7440-39-3	36.9	3.85	mg/kg	11.06.19 21.56		10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.06.19 21.56	U	10
Chromium	7440-47-3	18.7	3.85	mg/kg	11.06.19 21.56		10
Lead	7439-92-1	5.25	1.92	mg/kg	11.06.19 21.56		10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.06.19 21.56	U	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.06.19 21.56	U	10

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B20-19.5-20.0 Matrix: Soil

Date Received:11.05.19 10.00 Lab Sample Id: 642000-032 Date Collected: 11.02.19 09.55 Sample Depth: 19.5 - 20.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

DRU % Moisture:

DNE Analyst: 11.06.19 15.39 Basis: Wet Weight Date Prep:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 21.42	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 21.42	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 21.42	U	1
Benzo(a)anthracene	56-55-3	0.00227	0.00167		mg/kg	11.07.19 21.42		1
Benzo(a)pyrene	50-32-8	0.00367	0.00167		mg/kg	11.07.19 21.42		1
Benzo(b)fluoranthene	205-99-2	0.00577	0.00167		mg/kg	11.07.19 21.42		1
Benzo(g,h,i)perylene	191-24-2	0.00299	0.00167		mg/kg	11.07.19 21.42		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.07.19 21.42	U	1
Chrysene	218-01-9	0.00286	0.00167		mg/kg	11.07.19 21.42		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 21.42	U	1
Fluoranthene	206-44-0	0.00609	0.00167		mg/kg	11.07.19 21.42		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 21.42	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00233	0.00167		mg/kg	11.07.19 21.42		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 21.42	U	1
Phenanthrene	85-01-8	0.00245	0.00167		mg/kg	11.07.19 21.42		1
Pyrene	129-00-0	0.00665	0.00167		mg/kg	11.07.19 21.42		1
		%						
Surrogate		Recovery	Units	Limits	Anal	lysis Date F	ag	
Nitrobenzene-d5		103	%	31-130	11.07	.19 21.42		
2-Fluorobiphenyl		107	%	51-133	11.07	.19 21.42		
Ternhenyl-D1/		124	0/0	46-137	11.07	10 21 42		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	103	%	31-130	11.07.19 21.42	
2-Fluorobiphenyl	107	%	51-133	11.07.19 21.42	
Terphenyl-D14	124	%	46-137	11.07.19 21.42	

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-TAR-01 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-033 Date Collected: 11.02.19 08.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5030B

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,1-Dichloroethane	75-34-3	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,1-Dichloroethene	75-35-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,1-Dichloropropene	563-58-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2-Dibromoethane	106-93-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2-Dichloroethane	107-06-2	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,2-Dichloropropane	78-87-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,3-Dichloropropane	142-28-9	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.502	mg/kg	11.05.19 19.02	U	50
2,2-Dichloropropane	594-20-7	BRL	0.502	mg/kg	11.05.19 19.02	U	50
2-Butanone	78-93-3	BRL	2.01	mg/kg	11.05.19 19.02	U	50
2-Chlorotoluene	95-49-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
2-Hexanone	591-78-6	BRL	5.02	mg/kg	11.05.19 19.02	U	50
4-Chlorotoluene	106-43-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	5.02	mg/kg	11.05.19 19.02	U	50
Acetone	67-64-1	BRL	10.0	mg/kg	11.05.19 19.02	U	50
Benzene	71-43-2	BRL	0.100	mg/kg	11.05.19 19.02	U	50
Bromobenzene	108-86-1	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Bromochloromethane	74-97-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Bromodichloromethane	75-27-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Bromoform	75-25-2	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Bromomethane	74-83-9	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Carbon Disulfide	75-15-0	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Carbon Tetrachloride	56-23-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Chlorobenzene	108-90-7	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Chloroethane	75-00-3	BRL	1.00	mg/kg	11.05.19 19.02	U	50
Chloroform	67-66-3	BRL	0.502	mg/kg	11.05.19 19.02	U	50

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: D-TAR-01 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-033 Date Collected: 11.02.19 08.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5030B

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.502	mg/kg	11.05.19 19.02	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.502	mg/kg	11.05.19 19.02	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Dibromochloromethane	124-48-1	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Dibromomethane	74-95-3	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Ethylbenzene	100-41-4	BRL	0.100	mg/kg	11.05.19 19.02	U	50
Hexachlorobutadiene	87-68-3	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	2.01	mg/kg	11.05.19 19.02	U	50
Isopropylbenzene	98-82-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
m,p-Xylenes	179601-23-1	BRL	0.201	mg/kg	11.05.19 19.02	U	50
Methylene Chloride	75-09-2	BRL	2.01	mg/kg	11.05.19 19.02	U	50
MTBE	1634-04-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Naphthalene	91-20-3	BRL	1.00	mg/kg	11.05.19 19.02	U	50
n-Butylbenzene	104-51-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
n-Propylbenzene	103-65-1	BRL	0.502	mg/kg	11.05.19 19.02	U	50
o-Xylene	95-47-6	BRL	0.100	mg/kg	11.05.19 19.02	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Sec-Butylbenzene	135-98-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Styrene	100-42-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
tert-Butylbenzene	98-06-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Tetrachloroethylene	127-18-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Toluene	108-88-3	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Total Xylenes	1330-20-7	BRL	0.100	mg/kg	11.05.19 19.02	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.502	mg/kg	11.05.19 19.02	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Trichloroethene	79-01-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Trichlorofluoromethane	75-69-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Vinyl Acetate	108-05-4	BRL	1.00	mg/kg	11.05.19 19.02	U	50
Vinyl Chloride	75-01-4	BRL	0.502	mg/kg	11.05.19 19.02	U	50
1,3-Butadiene	106-99-0	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Cyclohexane	110-82-7	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Dicyclopentadiene	77-73-6	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Methylcyclohexane	108-87-2	BRL	1.00	mg/kg	11.05.19 19.02	U	50
n-Hexane	110-54-3	BRL	1.00	mg/kg	11.05.19 19.02	U	50
4-Ethyltoluene	622-96-8	BRL	0.502	mg/kg	11.05.19 19.02	U	50
Propene	115-07-1	BRL	0.502	mg/kg	11.05.19 19.02	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TAR-01 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-033 Date Collected: 11.02.19 08.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5030B

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.30 Basis: Wet Weight

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	84	%	53-142	11.05.19 19.02	
1,2-Dichloroethane-D4	100	%	56-150	11.05.19 19.02	
Toluene-D8	102	%	70-130	11.05.19 19.02	
4-Bromofluorobenzene	94	%	68-152	11.05.19 19.02	

Prep Method: SW7470P

Prep Method: SW3010A

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-TAR-01** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-033 Date Collected: 11.02.19 08.00

Analytical Method: TCLP Mercury by SW-846 1311/7470A

Tech: ADS

Analyst: ANJ Date Prep: 11.07.19 11.30

Seq Number: 3106790

Cas Number Result RL**Parameter Analysis Date** Dil Units Flag 7439-97-6 BRL 0.000200 11.07.19 15.32 Mercury mg/L U 1

Analytical Method: TCLP Metals per ICP/MS by EPA 6020

Tech: MLI

Analyst: DEP Date Prep: 11.06.19 10.30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	BRL	0.0200	mg/L	11.06.19 20.02	U	1
Barium	7440-39-3	1.35	0.0200	mg/L	11.06.19 20.02		1
Cadmium	7440-43-9	BRL	0.0100	mg/L	11.06.19 20.02	U	1
Chromium	7440-47-3	BRL	0.0200	mg/L	11.06.19 20.02	U	1
Lead	7439-92-1	BRL	0.0100	mg/L	11.06.19 20.02	U	1
Selenium	7782-49-2	BRL	0.0100	mg/L	11.06.19 20.02	U	1
Silver	7440-22-4	BRL	0.0100	mg/L	11.06.19 20.02	U	1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TAR-01 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-033 Date Collected: 11.02.19 08.00

Analytical Method: TCLP VOCs by SW-846 8260C Prep Method: SW5030B

% Moisture:

Tech: CRL

Analyst: SAD Date Prep: 11.06.19 13.00

Seq Number: 3106619

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	BRL	0.0500	mg/L	11.06.19 16.58	U	50
Methyl ethyl ketone	78-93-3	BRL	2.50	mg/L	11.06.19 16.58	U	50
Carbon Tetrachloride	56-23-5	BRL	0.250	mg/L	11.06.19 16.58	U	50
Chlorobenzene	108-90-7	BRL	0.0500	mg/L	11.06.19 16.58	U	50
Chloroform	67-66-3	BRL	0.0500	mg/L	11.06.19 16.58	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.0500	mg/L	11.06.19 16.58	U	50
1,2-Dichloroethane	107-06-2	BRL	0.0500	mg/L	11.06.19 16.58	U	50
1,1-Dichloroethene	75-35-4	BRL	0.0500	mg/L	11.06.19 16.58	U	50
Tetrachloroethylene	127-18-4	BRL	0.0500	mg/L	11.06.19 16.58	U	50
Trichloroethylene	79-01-6	BRL	0.250	mg/L	11.06.19 16.58	U	50
Vinyl Chloride	75-01-4	BRL	0.100	mg/L	11.06.19 16.58	U	50

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	91	%	75-131	11.06.19 16.58	
1,2-Dichloroethane-D4	100	%	63-144	11.06.19 16.58	
Toluene-D8	90	%	80-117	11.06.19 16.58	
4-Bromofluorobenzene	99	%	74-124	11.06.19 16.58	

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B26-40.0-40.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-034
 Date Collected: 11.02.19 14.30
 Sample Depth: 40.0 - 40.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 15.42

Seq Number: 3106745

Sample Depth: 40.0 - 40.5

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 21.59	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.07.19 21.59	U	1
		0/2					

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	112	%	31-130	11.07.19 21.59	
2-Fluorobiphenyl	116	%	51-133	11.07.19 21.59	
Terphenyl-D14	125	%	46-137	11.07.19 21.59	

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-2.5-3.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-035
 Date Collected: 11.03.19 10.00
 Sample Depth: 2.5 - 3.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0182
 mg/kg
 11.06.19 13.35
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.4	2.00	mg/kg	11.06.19 21.59		10
Barium	7440-39-3	426	4.00	mg/kg	11.06.19 21.59		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.06.19 21.59	U	10
Chromium	7440-47-3	8.79	4.00	mg/kg	11.06.19 21.59		10
Lead	7439-92-1	11.8	2.00	mg/kg	11.06.19 21.59		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.06.19 21.59	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.06.19 21.59	U	10

DRU

Seq Number: 3106745

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: D-B27-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-035 Date Collected: 11.03.19 10.00 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 15.45 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 22.16	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.07.19 22.16	U	1
C		0/ ₀	TI:4-	T::4- A1	l		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	82	%	31-130	11.07.19 22.16	
2-Fluorobiphenyl	114	%	51-133	11.07.19 22.16	
Terphenyl-D14	121	%	46-137	11.07.19 22.16	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B27-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-036 Date Collected: 11.03.19 10.10 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Prep Method: SW3050B

11.06.19 22.01

11.06.19 22.01

U

U

10

10

% Moisture:

mg/kg

mg/kg

ADS Tech:

ANJ Analyst: Date Prep: 11.06.19 08.05 Basis: Wet Weight Seq Number: 3106634 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil **Analysis Date** BRL 0.0172 Mercury 7439-97-6 11.06.19 13.36 U 1

Analytical Method: Metals, RCRA List, by SW 6020

7782-49-2

7440-22-4

PJB Tech:

Selenium

Silver

Analyst: DEP Basis: Wet Weight Date Prep: 11.06.19 10.55 Seq Number: 3106705 SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag 24.1 Arsenic 7440-38-2 1.67 mg/kg 11.06.19 22.01 10 3.33 11.06.19 22.01 Barium 7440-39-3 151 10 mg/kg 1.67 Cadmium 7440-43-9 BRL mg/kg 11.06.19 22.01 U 10 Chromium 3.33 7440-47-3 11.8 11.06.19 22.01 10 mg/kg Lead 7439-92-1 12.0 1.67 11.06.19 22.01 10 mg/kg

BRL

BRL

1.67

1.67

Seq Number: 3106745

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-D14

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B27-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-036 Date Collected: 11.03.19 10.10 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 15.48 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 22.33	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.07.19 22.33	U	1
		%					
Surrogate		Recovery	Units	Limits Anal	lysis Date 🛮 Fla	ıg	

119

125

127

%

%

%

31-130

51-133

46-137

11.07.19 22.33 11.07.19 22.33

11.07.19 22.33

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110319** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-037 Date Collected: 11.03.19 10.05

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0185
 mg/kg
 11.06.19 13.38
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

 Analyst:
 DEP
 Date Prep:
 11.06.19 10.55
 Basis:
 Wet Weight

 Seq Number:
 3106705
 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 13.8 1.79 mg/kg 11.06.19 22.04 10 11.06.19 22.04 Barium 7440-39-3 142 3.57 10 mg/kg Cadmium 7440-43-9 BRL 1.79 mg/kg 11.06.19 22.04 U 10 Chromium 7440-47-3 9.14 3.57 11.06.19 22.04 10 mg/kg Lead 7439-92-1 12.2 1.79 11.06.19 22.04 10 mg/kg Selenium 7782-49-2 BRL 1.79 11.06.19 22.04 U 10 mg/kg Silver BRL U 7440-22-4 1.79 mg/kg 11.06.19 22.04 10

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD01-110319 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-037 Date Collected: 11.03.19 10.05

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

DRU % Moisture:

Analyst: DNE Date Prep: 11.06.19 15.51 Basis: Wet Weight

Seq Number: 3106745 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Chrysene	218-01-9	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Fluoranthene	206-44-0	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.07.19 22.49	U	1
Phenanthrene	85-01-8	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
Pyrene	129-00-0	BRL	0.00166		mg/kg	11.07.19 22.49	U	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		109	%	31-130		.19 22.49		
2-Fluorobiphenyl		117	%	51-133		.19 22.49		
Terphenyl-D14		123	%	46-137	11.07	.19 22.49		

Page 112 of 194

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-7.5-8.0
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-038
 Date Collected: 11.03.19 15.15
 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0196
 mg/kg
 11.06.19 13.44
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	21.2	1.69	mg/kg	11.06.19 22.07		10
Barium	7440-39-3	171	3.39	mg/kg	11.06.19 22.07		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.06.19 22.07	U	10
Chromium	7440-47-3	10.3	3.39	mg/kg	11.06.19 22.07		10
Lead	7439-92-1	12.3	1.69	mg/kg	11.06.19 22.07		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.06.19 22.07	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.06.19 22.07	U	10

Seq Number: 3106745

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B27-7.5-8.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-038 Date Collected: 11.03.19 15.15 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 15.54 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Benzo(b) fluor anthene	205-99-2	0.00184	0.00167	mg/kg	11.07.19 23.06		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 23.06	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 23.06	U	1
Pyrene	129-00-0	0.00187	0.00167	mg/kg	11.07.19 23.06		1
Surrogate		% Recovery	Units	Limits Anal	lysis Date Fla	g	

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	124	%	31-130	11.07.19 23.06	
2-Fluorobiphenyl	127	%	51-133	11.07.19 23.06	
Terphenyl-D14	127	%	46-137	11.07.19 23.06	

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B27-10.0-10.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-039 Date Collected: 11.03.19 15.35 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B

ADS Tech:

ANJ Analyst: Date Prep: 11.06.19 07.40 Basis: Wet Weight SUB: T104704215-19-30

Seq Number: 3106627

Result RL**Parameter** Cas Number Dil **Analysis Date** Mercury 7439-97-6 BRL 0.0185 11.06.19 11.23 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

% Moisture: Analyst: DEP Basis: Wet Weight Date Prep: 11.06.19 10.55 SUB: T104704215-19-30

Seq Number: 3106705

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.7	1.75	mg/kg	11.06.19 22.10		10
Barium	7440-39-3	84.7	3.51	mg/kg	11.06.19 22.10		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.06.19 22.10	U	10
Chromium	7440-47-3	16.5	3.51	mg/kg	11.06.19 22.10		10
Lead	7439-92-1	11.1	1.75	mg/kg	11.06.19 22.10		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.06.19 22.10	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.06.19 22.10	U	10

Analytical Method: FOC By ASTM D2974

Tech: YAV

YAV Analyst:

Seq Number: 3106776

RLCas Number Result **Parameter** Units **Analysis Date** Dil Flag **Fraction Organic Carbon** 1.50 0.0100 11.07.19 15.07 FOC

% Moisture:

Basis:

Wet Weight

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-10.0-10.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-039
 Date Collected: 11.03.19 15.35
 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 15.57 Basis: Wet Weight

Seq Number: 3106745 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.06.19 22.34	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.06.19 22.34	U	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		116	%	31-130		.19 22.34		
2-Fluorobiphenyl		118	%	51-133		.19 22.34		
Terphenyl-D14		125	%	46-137	11.06	.19 22.34		

Analytical Method: Mercury by SW 7471B

ADS

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B27-15.0-15.5 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-040 Date Collected: 11.03.19 15.55 Sample Depth: 15.0 - 15.5

Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.06.19 08.05 Basis: Wet Weight Seq Number: 3106634

SUB: T104704215-19-30

Prep Method: SW3050B

11.06.19 22.31

11.06.19 22.31

U

U

10

10

% Moisture:

mg/kg

mg/kg

Result RL**Parameter** Cas Number Dil **Analysis Date** BRL Mercury 7439-97-6 0.0189 mg/kg 11.06.19 13.46 U 1

Analytical Method: Metals, RCRA List, by SW 6020

7782-49-2

7440-22-4

PJB Tech:

Selenium

Silver

Analyst: DEP Basis: Wet Weight Date Prep: 11.06.19 10.55 Seq Number: 3106705 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag Arsenic 7440-38-2 20.6 1.92 mg/kg 11.06.19 22.31 10 3.85 11.06.19 22.31 Barium 7440-39-3 149 10 mg/kg Cadmium 7440-43-9 BRL 1.92 mg/kg 11.06.19 22.31 U 10 Chromium 7440-47-3 14.0 3.85 11.06.19 22.31 10 mg/kg Lead 7439-92-1 13.0 1.92 11.06.19 22.31 10 mg/kg

BRL

BRL

1.92

1.92

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-15.0-15.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-040
 Date Collected: 11.03.19 15.55
 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 16.06 Basis: Wet Weight

Seq Number: 3106745 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 23.23	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.07.19 23.23	U	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date F	ag	
Nitrobenzene-d5		117	%	31-130	11.07	.19 23.23		
2-Fluorobiphenyl		123	%	51-133	11.07	.19 23.23		
Terphenyl-D14		124	%	46-137	11.07	.19 23.23		

Prep Method: SW7471P

Prep Method: SW3050B

11.07.19 15.07

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B27-20.0-20.5** Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-041 Date Collected: 11.03.19 16.20 Sample Depth: 20.0 - 20.5

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.06.19 13.04
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Fraction Organic Carbon

 Analyst:
 DEP
 Date Prep:
 11.06.19 10.55
 Basis:
 Wet Weight

 Seq Number:
 3106705
 SUB: T104704215-19-30

Result RL Parameter Cas Number Dil Units **Analysis Date** Flag 15.2 Arsenic 7440-38-2 1.92 11.06.19 22.34 10 mg/kg 11.06.19 22.34 Barium 7440-39-3 202 3.85 10 mg/kg Cadmium 7440-43-9 BRL 1.92 mg/kg 11.06.19 22.34 U 10 Chromium 7440-47-3 5.12 3.85 11.06.19 22.34 10 mg/kg Lead 7439-92-1 17.0 1.92 11.06.19 22.34 10 mg/kg Selenium 7782-49-2 BRL 1.92 11.06.19 22.34 U 10 mg/kg U Silver 7440-22-4 BRL 1.92 mg/kg 11.06.19 22.34 10

Analytical Method: FOC By ASTM D2974

FOC

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight Seq Number: 3106776

Parameter Cas Number Result RL Units Analysis Date Flag Dil

0.800

0.0100

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-20.0-20.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-041
 Date Collected: 11.03.19 16.20
 Sample Depth: 20.0 - 20.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 16.09 Basis: Wet Weight

Seq Number: 3106745 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		IInit-	Amalwaia D-4-	Flog	Dil
	Cas Number				Units	Analysis Date	Flag	DII
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Chrysene	218-01-9	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Fluoranthene	206-44-0	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.07.19 23.40	U	1
Phenanthrene	85-01-8	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
Pyrene	129-00-0	BRL	0.00166		mg/kg	11.07.19 23.40	U	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		118	%	31-130	11.07	.19 23.40		
2-Fluorobiphenyl		121	%	51-133		.19 23.40		
Terphenyl-D14		123	%	46-137	11.07	.19 23.40		

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-25.0-25.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-042
 Date Collected: 11.03.19 16.30
 Sample Depth: 25.0 - 25.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 09.05 Basis: Wet Weight

Seq Number: 3106613 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.06.19 14.08
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Tech:

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.1	1.72	mg/kg	11.06.19 22.37		10
Barium	7440-39-3	41.6	3.45	mg/kg	11.06.19 22.37		10
Cadmium	7440-43-9	BRL	1.72	mg/kg	11.06.19 22.37	U	10
Chromium	7440-47-3	6.93	3.45	mg/kg	11.06.19 22.37		10
Lead	7439-92-1	12.2	1.72	mg/kg	11.06.19 22.37		10
Selenium	7782-49-2	BRL	1.72	mg/kg	11.06.19 22.37	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	11.06.19 22.37	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-25.0-25.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-042
 Date Collected: 11.03.19 16.30
 Sample Depth: 25.0 - 25.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 16.12 Basis: Wet Weight

Seq Number: 3106745 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 23.56	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.07.19 23.56	U	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fla	ag	
Nitrobenzene-d5		118	%	31-130		.19 23.56		
2-Fluorobiphenyl		122	%	51-133		.19 23.56		
Terphenyl-D14		121	%	46-137	11.07	.19 23.56		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD02-110319 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-043 Date Collected: 11.03.19 16.35

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 09.05 Basis: Wet Weight

Seq Number: 3106613 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0179
 mg/kg
 11.06.19 14.10
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	13.1	1.89	mg/kg	11.06.19 22.40		10
Barium	7440-39-3	42.7	3.77	mg/kg	11.06.19 22.40		10
Cadmium	7440-43-9	BRL	1.89	mg/kg	11.06.19 22.40	U	10
Chromium	7440-47-3	7.93	3.77	mg/kg	11.06.19 22.40		10
Lead	7439-92-1	11.9	1.89	mg/kg	11.06.19 22.40		10
Selenium	7782-49-2	BRL	1.89	mg/kg	11.06.19 22.40	U	10
Silver	7440-22-4	BRL	1.89	mg/kg	11.06.19 22.40	U	10

% Moisture:

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD02-110319 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-043 Date Collected: 11.03.19 16.35

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 09.09 Basis: Wet Weight

Seq Number: 3106710 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Benzo(a)pyrene	50-32-8	0.00198	0.00167		mg/kg	11.07.19 00.15		1
Benzo(b)fluoranthene	205-99-2	0.00204	0.00167		mg/kg	11.07.19 00.15		1
Benzo(g,h,i)perylene	191-24-2	0.00264	0.00167		mg/kg	11.07.19 00.15		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Fluoranthene	206-44-0	0.00218	0.00167		mg/kg	11.07.19 00.15		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00178	0.00167		mg/kg	11.07.19 00.15		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 00.15	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.07.19 00.15	U	1
Pyrene	129-00-0	0.00250	0.00167		mg/kg	11.07.19 00.15		1
		%						
Surrogate		Recovery	Units	Limits		ysis Date Fla	ıg	
Nitrobenzene-d5		106	%	31-130		.19 00.15		
2-Fluorobiphenyl		114	%	51-133		.19 00.15		
Terphenyl-D14		133	%	46-137	11.07	.19 00.15		

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Date Received:11.05.19 10.00 Sample Id: D-B26-2.5-3.0 Matrix: Soil Lab Sample Id: 642000-044 Date Collected: 11.01.19 14.15 Sample Depth: 2.5 - 3.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture: Tech:

Analyst: ANJ Basis: Wet Weight Date Prep: 11.06.19 09.05

Seq Number: 3106613 SUB: T104704215-19-30

Cas Number Result RL**Parameter** Analysis Date Flag Dil 7439-97-6 BRL 0.0189 11.06.19 14.12 Mercury U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP 11.06.19 10.55 Basis: Wet Weight Date Prep: Seq Number: 3106705 SUB: T104704215-19-30

DТ

Parameter	Cas Number	Result	KL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	11.7	1.79	mg/kg	11.06.19 22.43		10
Barium	7440-39-3	112	3.57	mg/kg	11.06.19 22.43		10
Cadmium	7440-43-9	BRL	1.79	mg/kg	11.06.19 22.43	U	10
Chromium	7440-47-3	11.8	3.57	mg/kg	11.06.19 22.43		10
Lead	7439-92-1	9.72	1.79	mg/kg	11.06.19 22.43		10
Selenium	7782-49-2	BRL	1.79	mg/kg	11.06.19 22.43	U	10
Silver	7440-22-4	BRL	1.79	mg/kg	11.06.19 22.43	U	10

Seq Number: 3106710

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B26-2.5-3.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-044 Date Collected: 11.01.19 14.15 Sample Depth: 2.5 - 3.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 09.12 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 00.32	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 00.32	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 00.32	U	1
Benzo(a)anthracene	56-55-3	0.00264	0.00167		mg/kg	11.07.19 00.32		1
Benzo(a)pyrene	50-32-8	0.00395	0.00167		mg/kg	11.07.19 00.32		1
Benzo(b)fluoranthene	205-99-2	0.00455	0.00167		mg/kg	11.07.19 00.32		1
Benzo(g,h,i)perylene	191-24-2	0.00507	0.00167		mg/kg	11.07.19 00.32		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.07.19 00.32	U	1
Chrysene	218-01-9	0.00307	0.00167		mg/kg	11.07.19 00.32		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 00.32	U	1
Fluoranthene	206-44-0	0.00860	0.00167		mg/kg	11.07.19 00.32		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 00.32	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00350	0.00167		mg/kg	11.07.19 00.32		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 00.32	U	1
Phenanthrene	85-01-8	0.00604	0.00167		mg/kg	11.07.19 00.32		1
Pyrene	129-00-0	0.0101	0.00167		mg/kg	11.07.19 00.32		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		77	%	31-130		.19 00.32		
2-Fluorobiphenyl		85	%	51-133		.19 00.32		
Terphenyl-D14		125	%	46-137	11.07	.19 00.32		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD05-110119** Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-045 Date Collected: 11.01.19 14.20

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 09.05 Basis: Wet Weight

Seq Number: 3106613 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.06.19 14.14
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	13.4	1.69	mg/kg	11.06.19 22.46		10
Barium	7440-39-3	130	3.39	mg/kg	11.06.19 22.46		10
Cadmium	7440-43-9	BRL	1.69	mg/kg	11.06.19 22.46	U	10
Chromium	7440-47-3	11.7	3.39	mg/kg	11.06.19 22.46		10
Lead	7439-92-1	11.2	1.69	mg/kg	11.06.19 22.46		10
Selenium	7782-49-2	BRL	1.69	mg/kg	11.06.19 22.46	U	10
Silver	7440-22-4	BRL	1.69	mg/kg	11.06.19 22.46	U	10

% Moisture:

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD05-110119 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-045 Date Collected: 11.01.19 14.20

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: 11.06.19 09.15 Basis: Wet Weight Date Prep:

Seq Number: 3106710 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 00.49	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 00.49	U	1
Pyrene	129-00-0	0.00410	0.00167	mg/kg	11.07.19 00.49		1
		%					
Surrogate		Recovery	Units	Limits Anal	ysis Date Fla	g	
Nitrobenzene-d5		98	%	31-130 11.07	.19 00.49		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	98	%	31-130	11.07.19 00.49	
2-Fluorobiphenyl	106	%	51-133	11.07.19 00.49	
Terphenyl-D14	130	%	46-137	11.07.19 00.49	

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B26-5.0-5.5** Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-046 Date Collected: 11.01.19 14.30 Sample Depth: 5.0 - 5.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0175
 mg/kg
 11.06.19 12.48
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	21.2	1.67	mg/kg	11.06.19 22.55		10
Barium	7440-39-3	81.2	3.33	mg/kg	11.06.19 22.55		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.06.19 22.55	U	10
Chromium	7440-47-3	9.13	3.33	mg/kg	11.06.19 22.55		10
Lead	7439-92-1	9.02	1.67	mg/kg	11.06.19 22.55		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.06.19 22.55	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.06.19 22.55	U	10

Analytical Method: FOC By ASTM D2974

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106776

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilFraction Organic CarbonFOC1.500.0100%11.07.19 15.07+1

Seq Number: 3106710

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B26-5.0-5.5 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-046 Date Collected: 11.01.19 14.30 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 09.18 Basis: Wet Weight

Parameter	Cas Number	Result	RL		TT -14	A . I . I . D. A	Tall	Dil
Parameter	Cas Number	Result	KL		Units	Analysis Date	Flag	ווע
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.06.19 23.24	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.06.19 23.24	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.06.19 23.24	U	1
Benzo(a)anthracene	56-55-3	0.00177	0.00167		mg/kg	11.06.19 23.24		1
Benzo(a)pyrene	50-32-8	0.00299	0.00167		mg/kg	11.06.19 23.24		1
Benzo(b)fluoranthene	205-99-2	0.00400	0.00167		mg/kg	11.06.19 23.24		1
Benzo(g,h,i)perylene	191-24-2	0.00464	0.00167		mg/kg	11.06.19 23.24		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.06.19 23.24	U	1
Chrysene	218-01-9	0.00231	0.00167		mg/kg	11.06.19 23.24		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.06.19 23.24	U	1
Fluoranthene	206-44-0	0.00726	0.00167		mg/kg	11.06.19 23.24		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.06.19 23.24	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00299	0.00167		mg/kg	11.06.19 23.24		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.06.19 23.24	U	1
Phenanthrene	85-01-8	0.00574	0.00167		mg/kg	11.06.19 23.24		1
Pyrene	129-00-0	0.00841	0.00167		mg/kg	11.06.19 23.24		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fla	ag	
Nitrobenzene-d5		119	%	31-130		.19 23.24		
2-Fluorobiphenyl		128	%	51-133		.19 23.24		
Terphenyl-D14		132	%	46-137	11.06	.19 23.24		

Wet Weight

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 09.05

Basis:

Sample Id: D-B26-7.5-8.0 Matrix: Soil Date Received:11.05.19 10.00 Lab Sample Id: 642000-047 Date Collected: 11.02.19 09.50 Sample Depth: 7.5 - 8.0

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture: Tech:

ANJ

Date Prep: Seq Number: 3106613 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil **Analysis Date** Mercury 7439-97-6 BRL 0.0192 11.06.19 14.16 U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst:

Analyst: DEP Basis: Wet Weight Date Prep: 11.06.19 10.55

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	21.6	1.82	mg/kg	11.06.19 23.07		10
Barium	7440-39-3	96.3	3.64	mg/kg	11.06.19 23.07		10
Cadmium	7440-43-9	BRL	1.82	mg/kg	11.06.19 23.07	U	10
Chromium	7440-47-3	7.89	3.64	mg/kg	11.06.19 23.07		10
Lead	7439-92-1	14.1	1.82	mg/kg	11.06.19 23.07		10
Selenium	7782-49-2	BRL	1.82	mg/kg	11.06.19 23.07	U	10
Silver	7440-22-4	BRL	1.82	mg/kg	11.06.19 23.07	U	10

Analytical Method: FOC By ASTM D2974

Tech: YAV % Moisture:

YAV Wet Weight Analyst: Basis:

Seq Number: 3106776

RLCas Number Result **Parameter** Units **Analysis Date** Dil Flag **Fraction Organic Carbon** 1.70 0.0100 11.07.19 15.07 FOC

Seq Number: 3106710

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-B26-7.5-8.0 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-047 Date Collected: 11.02.19 09.50 Sample Depth: 7.5 - 8.0

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 09.27 Basis: Wet Weight

83-32-9	BRL					
	DILL	0.00167	mg/kg	11.07.19 01.06	U	1
208-96-8	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
120-12-7	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
56-55-3	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
50-32-8	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
205-99-2	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
191-24-2	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
207-08-9	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
218-01-9	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
53-70-3	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
206-44-0	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
86-73-7	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
193-39-5	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
91-20-3	BRL	0.0167	mg/kg	11.07.19 01.06	U	1
85-01-8	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
129-00-0	BRL	0.00167	mg/kg	11.07.19 01.06	U	1
	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8	56-55-3 BRL 50-32-8 BRL 205-99-2 BRL 191-24-2 BRL 207-08-9 BRL 218-01-9 BRL 53-70-3 BRL 206-44-0 BRL 86-73-7 BRL 193-39-5 BRL 91-20-3 BRL 85-01-8 BRL	56-55-3 BRL 0.00167 50-32-8 BRL 0.00167 205-99-2 BRL 0.00167 191-24-2 BRL 0.00167 207-08-9 BRL 0.00167 218-01-9 BRL 0.00167 53-70-3 BRL 0.00167 206-44-0 BRL 0.00167 86-73-7 BRL 0.00167 193-39-5 BRL 0.00167 91-20-3 BRL 0.0167 85-01-8 BRL 0.00167 129-00-0 BRL 0.00167	56-55-3 BRL 0.00167 mg/kg 50-32-8 BRL 0.00167 mg/kg 205-99-2 BRL 0.00167 mg/kg 191-24-2 BRL 0.00167 mg/kg 207-08-9 BRL 0.00167 mg/kg 218-01-9 BRL 0.00167 mg/kg 53-70-3 BRL 0.00167 mg/kg 206-44-0 BRL 0.00167 mg/kg 86-73-7 BRL 0.00167 mg/kg 193-39-5 BRL 0.00167 mg/kg 91-20-3 BRL 0.0167 mg/kg 85-01-8 BRL 0.00167 mg/kg 129-00-0 BRL 0.00167 mg/kg	56-55-3 BRL 0.00167 mg/kg 11.07.19 01.06 50-32-8 BRL 0.00167 mg/kg 11.07.19 01.06 205-99-2 BRL 0.00167 mg/kg 11.07.19 01.06 191-24-2 BRL 0.00167 mg/kg 11.07.19 01.06 207-08-9 BRL 0.00167 mg/kg 11.07.19 01.06 218-01-9 BRL 0.00167 mg/kg 11.07.19 01.06 53-70-3 BRL 0.00167 mg/kg 11.07.19 01.06 206-44-0 BRL 0.00167 mg/kg 11.07.19 01.06 86-73-7 BRL 0.00167 mg/kg 11.07.19 01.06 193-39-5 BRL 0.00167 mg/kg 11.07.19 01.06 85-01-8 BRL 0.00167 mg/kg 11.07.19 01.06 129-00-0 BRL 0.00167 mg/kg 11.07.19 01.06	56-55-3 BRL 0.00167 mg/kg 11.07.19 01.06 U 50-32-8 BRL 0.00167 mg/kg 11.07.19 01.06 U 205-99-2 BRL 0.00167 mg/kg 11.07.19 01.06 U 191-24-2 BRL 0.00167 mg/kg 11.07.19 01.06 U 207-08-9 BRL 0.00167 mg/kg 11.07.19 01.06 U 218-01-9 BRL 0.00167 mg/kg 11.07.19 01.06 U 53-70-3 BRL 0.00167 mg/kg 11.07.19 01.06 U 206-44-0 BRL 0.00167 mg/kg 11.07.19 01.06 U 86-73-7 BRL 0.00167 mg/kg 11.07.19 01.06 U 193-39-5 BRL 0.00167 mg/kg 11.07.19 01.06 U 91-20-3 BRL 0.00167 mg/kg 11.07.19 01.06 U 85-01-8 BRL 0.00167 mg/kg 11.07.19 01.06 U 129-00-0 BRL 0.00167 mg/kg 11.07.19 01.06 U

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	120	%	31-130	11.07.19 01.06	
2-Fluorobiphenyl	124	%	51-133	11.07.19 01.06	
Terphenyl-D14	130	%	46-137	11.07.19 01.06	

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B26-10.0-10.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-048
 Date Collected: 11.02.19 10.15
 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 08.05 Basis: Wet Weight

Seq Number: 3106634 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.06.19 13.21
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

 Analyst:
 DEP
 Date Prep:
 11.06.19 10.55
 Basis:
 Wet Weight

 Seq Number:
 3106705
 SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag 17.3 Arsenic 7440-38-2 1.75 11.06.19 23.10 10 mg/kg 11.06.19 23.10 Barium 7440-39-3 241 3.51 10 mg/kg Cadmium 7440-43-9 BRL 1.75 mg/kg 11.06.19 23.10 U 10 8.54 Chromium 7440-47-3 3.51 mg/kg 11.06.19 23.10 10 Lead 7439-92-1 17.4 1.75 11.06.19 23.10 10 mg/kg Selenium 7782-49-2 BRL 1.75 11.06.19 23.10 U 10 mg/kg U Silver 7440-22-4 BRL 1.75 mg/kg 11.06.19 23.10 10

Analytical Method: FOC By ASTM D2974

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106776

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Fraction Organic Carbon
 FOC
 1.00
 0.0100
 %
 11.07.19 15.07
 +
 1

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ APS MGP Douglas, AZ

 Sample Id:
 D-B26-10.0-10.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-048
 Date Collected: 11.02.19 10.15
 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 09.30 Basis: Wet Weight

Seq Number: 3106710 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00834		mg/kg	11.07.19 10.52	2 U	5
Acenaphthylene	208-96-8	BRL	0.00834		mg/kg	11.07.19 10.52	2 U	5
Anthracene	120-12-7	BRL	0.00834		mg/kg	11.07.19 10.52	2 U	5
Benzo(a)anthracene	56-55-3	BRL	0.00834		mg/kg	11.07.19 10.52	2 U	5
Benzo(a)pyrene	50-32-8	0.0107	0.00834		mg/kg	11.07.19 10.52	2	5
Benzo(b)fluoranthene	205-99-2	0.0163	0.00834		mg/kg	11.07.19 10.52	2	5
Benzo(g,h,i)perylene	191-24-2	0.0157	0.00834		mg/kg	11.07.19 10.52	2	5
Benzo(k)fluoranthene	207-08-9	BRL	0.00834		mg/kg	11.07.19 10.52	2 U	5
Chrysene	218-01-9	0.00933	0.00834		mg/kg	11.07.19 10.52	2	5
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00834		mg/kg	11.07.19 10.52	2 U	5
Fluoranthene	206-44-0	0.0194	0.00834		mg/kg	11.07.19 10.52	2	5
Fluorene	86-73-7	BRL	0.00834		mg/kg	11.07.19 10.52	2 U	5
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0102	0.00834		mg/kg	11.07.19 10.52	2	5
Naphthalene	91-20-3	BRL	0.0834		mg/kg	11.07.19 10.52	2 U	5
Phenanthrene	85-01-8	0.00888	0.00834		mg/kg	11.07.19 10.52	2	5
Pyrene	129-00-0	0.0238	0.00834		mg/kg	11.07.19 10.52	2	5
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		90	%	31-130		.19 10.52		
2-Fluorobiphenyl		99	%	51-133		.19 10.52		
Terphenyl-D14		110	%	46-137	11.07	.19 10.52		

ADS

ANJ

Seq Number: 3106613

Tech: Analyst:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Date Received:11.05.19 10.00 Sample Id: D-B26-15.0-15.5 Matrix: Soil Lab Sample Id: 642000-049 Date Collected: 11.02.19 10.35

Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Basis: Wet Weight Date Prep: 11.06.19 09.05

SUB: T104704215-19-30

Cas Number Result RL**Parameter** Analysis Date Flag Dil 7439-97-6 BRL 0.0185 11.06.19 14.17 Mercury U 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106705

Analyst: DEP 11.06.19 10.55 Date Prep:

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	16.9	1.67	mg/kg	11.06.19 23.22		10
Barium	7440-39-3	134	3.33	mg/kg	11.06.19 23.22		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.06.19 23.22	U	10
Chromium	7440-47-3	3.78	3.33	mg/kg	11.06.19 23.22		10
Lead	7439-92-1	9.47	1.67	mg/kg	11.06.19 23.22		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.06.19 23.22	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.06.19 23.22	U	10

Seq Number: 3106710

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B26-15.0-15.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-049
 Date Collected: 11.02.19 10.35
 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM

Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 09.39 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Acenaphthylene	208-96-8	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Anthracene	120-12-7	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Chrysene	218-01-9	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Fluoranthene	206-44-0	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Fluorene	86-73-7	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Naphthalene	91-20-3	BRL	0.0166	mg/kg	11.07.19 02.14	U	1
Phenanthrene	85-01-8	BRL	0.00166	mg/kg	11.07.19 02.14	U	1
Pyrene	129-00-0	BRL	0.00166	mg/kg	11.07.19 02.14	U	1

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	126	%	31-130	11.07.19 02.14	
2-Fluorobiphenyl	129	%	51-133	11.07.19 02.14	
Terphenyl-D14	133	%	46-137	11.07.19 02.14	

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B26-20.0-20.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-050
 Date Collected: 11.02.19 10.50
 Sample Depth: 20.0 - 20.5

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 09.05 Basis: Wet Weight

Seq Number: 3106613 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0189
 mg/kg
 11.06.19 14.19
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	18.2	1.96	mg/kg	11.06.19 23.31		10
Barium	7440-39-3	906	3.92	mg/kg	11.06.19 23.31		10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.06.19 23.31	U	10
Chromium	7440-47-3	16.1	3.92	mg/kg	11.06.19 23.31		10
Lead	7439-92-1	11.6	1.96	mg/kg	11.06.19 23.31		10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.06.19 23.31	U	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.06.19 23.31	U	10

Analytical Method: FOC By ASTM D2974

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3106776

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilFraction Organic CarbonFOC3.600.0100%11.07.19 15.07+1

APS, Phoenix, AZ APS MGP Douglas, AZ

11.06.19 09.42

Sample Id: Matrix: Soil Date Received:11.05.19 10.00 D-B26-20.0-20.5 Lab Sample Id: 642000-050 Date Collected: 11.02.19 10.50

Analytical Method: PAHs by 8270D SIM

Tech:

DRU DNE Analyst: Date Prep:

Seq Number: 3106710

Terphenyl-D14

Sample Depth: 20.0 - 20.5

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

11.07.19 02.31

46-137

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 02.31	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 02.31	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 02.31	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.07.19 02.31	U	1
Benzo(a)pyrene	50-32-8	0.00268	0.00167		mg/kg	11.07.19 02.31		1
Benzo(b)fluoranthene	205-99-2	0.00353	0.00167		mg/kg	11.07.19 02.31		1
Benzo(g,h,i)perylene	191-24-2	0.00376	0.00167		mg/kg	11.07.19 02.31		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.07.19 02.31	U	1
Chrysene	218-01-9	0.00216	0.00167		mg/kg	11.07.19 02.31		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 02.31	U	1
Fluoranthene	206-44-0	0.00517	0.00167		mg/kg	11.07.19 02.31		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 02.31	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00252	0.00167		mg/kg	11.07.19 02.31		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 02.31	U	1
Phenanthrene	85-01-8	0.00348	0.00167		mg/kg	11.07.19 02.31		1
Pyrene	129-00-0	0.00657	0.00167		mg/kg	11.07.19 02.31		1
		0/0						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fla	ıg	
Nitrobenzene-d5		109	%	31-130	11.07	.19 02.31		
2-Fluorobiphenyl		114	%	51-133	11.07	.19 02.31		

127

Prep Method: SW7471P

Prep Method: SW3050B

% Moisture:

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B26-25.0-25.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-051
 Date Collected: 11.02.19 11.15
 Sample Depth: 25.0 - 25.5

Analytical Method: Mercury by SW 7471B

Tech: ADS

Analyst: ANJ Date Prep: 11.06.19 09.05 Basis: Wet Weight

Seq Number: 3106613 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.06.19 14.21
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.17	1.67	mg/kg	11.06.19 23.34		10
Barium	7440-39-3	54.5	3.33	mg/kg	11.06.19 23.34		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.06.19 23.34	U	10
Chromium	7440-47-3	9.34	3.33	mg/kg	11.06.19 23.34		10
Lead	7439-92-1	4.13	1.67	mg/kg	11.06.19 23.34		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.06.19 23.34	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.06.19 23.34	U	10

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: Matrix: Soil Date Received:11.05.19 10.00 D-B26-25.0-25.5 Lab Sample Id: 642000-051 Date Collected: 11.02.19 11.15 Sample Depth: 25.0 - 25.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

DRU % Moisture:

DNE Analyst: 11.06.19 09.45 Basis: Wet Weight Date Prep:

Seq Number: 3106710 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.07.19 02.48	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.07.19 02.48	U	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date F	ag	
Nitrobenzene-d5		127	%	31-130	11.07	.19 02.48		
2-Fluorobiphenyl		129	%	51-133	11.07	.19 02.48		
Ternhenyl-D1/		133	0/0	46-137	11.07	10.02.48		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	127	%	31-130	11.07.19 02.48	
2-Fluorobiphenyl	129	%	51-133	11.07.19 02.48	
Terphenyl-D14	133	%	46-137	11.07.19 02.48	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD01-110219 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-052 Date Collected: 11.02.19 09.55

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.06.19 09.05 Basis: Wet Weight

Seq Number: 3106613 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.06.19 14.23
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Moisture:

Analyst: DEP Date Prep: 11.06.19 10.55 Basis: Wet Weight

Seq Number: 3106705 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.1	1.85	mg/kg	11.06.19 23.37		10
Barium	7440-39-3	18.9	3.70	mg/kg	11.06.19 23.37		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.06.19 23.37	U	10
Chromium	7440-47-3	5.26	3.70	mg/kg	11.06.19 23.37		10
Lead	7439-92-1	8.24	1.85	mg/kg	11.06.19 23.37		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.06.19 23.37	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.06.19 23.37	U	10

Seq Number: 3106710

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-FD01-110219 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-052 Date Collected: 11.02.19 09.55

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.06.19 09.48 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 03.05	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.07.19 03.05	U	1
Surrogata		% Recovery	Unite	Limite Anal	veie Data - Fle		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	115	%	31-130	11.07.19 03.05	
2-Fluorobiphenyl	120	%	51-133	11.07.19 03.05	
Terphenyl-D14	135	%	46-137	11.07.19 03.05	

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B26-30.0-30.5
 Matrix:
 Soil

 Lab Sample Id:
 642000-053
 Date Collected: 11.02.19 13.25

Date Received:11.05.19 10.00 Sample Depth: 30.0 - 30.5

Analytical Method: FOC By ASTM D2974

Tech: YAV

Analyst: YAV

Seq Number: 3106776

% Moisture:

Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Fraction Organic Carbon	FOC	1.60	0.0100	%	11.07.19 15.07	+	1	

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Seq Number: 3106710

Analyst: DNE Date Prep: 11.06.19 09.51

Prep Method: SW3550

% Moisture:
Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Acenaphthylene	208-96-8	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Anthracene	120-12-7	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Chrysene	218-01-9	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Fluoranthene	206-44-0	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Fluorene	86-73-7	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Naphthalene	91-20-3	BRL	0.0166	mg/kg	11.07.19 03.22	U	1
Phenanthrene	85-01-8	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
Pyrene	129-00-0	BRL	0.00166	mg/kg	11.07.19 03.22	U	1
		21					

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	117	%	31-130	11.07.19 03.22	
2-Fluorobiphenyl	119	%	51-133	11.07.19 03.22	
Terphenyl-D14	123	%	46-137	11.07.19 03.22	

Wet Weight

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Date Received:11.05.19 10.00 Sample Id: D-B27-30.0-30.5 Matrix: Soil Lab Sample Id: 642000-054 Date Collected: 11.04.19 09.50 Sample Depth: 30.0 - 30.5

Analytical Method: FOC By ASTM D2974

YAV Tech:

% Moisture: Analyst: YAV Basis:

Seq Number: 3106776

Cas Number Result RL**Parameter** Units **Analysis Date** Dil Flag 0.500 0.0100 11.07.19 15.07 **Fraction Organic Carbon** FOC 1

Analytical Method: PAHs by 8270D SIM

DRU Tech:

Analyst: DNE 11.06.19 09.54 Basis: Wet Weight Date Prep:

Seq Number: 3106710

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 03.39	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 03.39	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.07.19 03.39	U	1

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	122	%	31-130	11.07.19 03.39	
2-Fluorobiphenyl	123	%	51-133	11.07.19 03.39	
Terphenyl-D14	131	%	46-137	11.07.19 03.39	

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B27-40.0-40.5
 Matrix:
 Soil
 Date Received:11.05.19 10.00

 Lab Sample Id:
 642000-055
 Date Collected: 11.04.19 11.05
 Sample Depth: 40.0 - 40.5

Analytical Method: PAHs by 8270D SIM

Tech: DRU

Analyst: DNE Date Prep: 11.06.19 09.57

Seq Number: 3106710

2-Fluorobiphenyl

Terphenyl-D14

Prep Method: SW3550

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.07.19 03.56	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.07.19 03.56	U	1
		%					
Surrogate		Recovery	Units	Limits Ana	lysis Date Fla	g	
Nitrobenzene-d5		121	%	31-130 11.07	7.19 03.56		

122

131

%

%

51-133

46-137

11.07.19 03.56

11.07.19 03.56

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-TB01-102919 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-056 Date Collected: 10.29.19 00.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.00 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,1-Dichloroethane	75-34-3	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,1-Dichloroethene	75-35-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,1-Dichloropropene	563-58-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2-Dibromoethane	106-93-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2-Dichloroethane	107-06-2	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,2-Dichloropropane	78-87-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,3-Dichloropropane	142-28-9	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.250	mg/kg	11.05.19 15.47	U	50
2,2-Dichloropropane	594-20-7	BRL	0.250	mg/kg	11.05.19 15.47	U	50
2-Butanone	78-93-3	BRL	1.00	mg/kg	11.05.19 15.47	U	50
2-Chlorotoluene	95-49-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
2-Hexanone	591-78-6	BRL	2.50	mg/kg	11.05.19 15.47	U	50
4-Chlorotoluene	106-43-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.50	mg/kg	11.05.19 15.47	U	50
Acetone	67-64-1	BRL	5.00	mg/kg	11.05.19 15.47	U	50
Benzene	71-43-2	BRL	0.0500	mg/kg	11.05.19 15.47	U	50
Bromobenzene	108-86-1	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Bromochloromethane	74-97-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Bromodichloromethane	75-27-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Bromoform	75-25-2	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Bromomethane	74-83-9	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Carbon Disulfide	75-15-0	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Carbon Tetrachloride	56-23-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Chlorobenzene	108-90-7	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Chloroethane	75-00-3	BRL	0.500	mg/kg	11.05.19 15.47	U	50
Chloroform	67-66-3	BRL	0.250	mg/kg	11.05.19 15.47	U	50

SAD

Seq Number: 3106502

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ APS MGP Douglas, AZ

Sample Id: D-TB01-102919 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-056 Date Collected: 10.29.19 00.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.05.19 15.00 Basis: Wet Weight

SUB: T104704215-19-30

Chloromethane 74.87-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 cis-1.3-Dichichlomorpopene 10061-01-5 BRL 0.250 mg/kg 11.05.1915.47 U 50 Dibromochloromethane 124.48-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Dibromochloromethane 74.95-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 Elhylbenzene 10041-4 BRL 0.250 mg/kg 11.05.1915.47 U 50 Elhylbenzene 10041-4 BRL 0.0500 mg/kg 11.05.1915.47 U 50 Elhylbenzene 10041-4 BRL 0.0500 mg/kg 11.05.1915.47 U 50 Elhylbenzene 10041-4 BRL 0.0500 mg/kg 11.05.1915.47 U 50 Beck (Methyloide) 73.68-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 koppopylbenzene 98-82-8 BRL 0	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichloropropene 10061-01-5 BRIL 0.250 mg/kg 11.051.915.47 U 50 Dichmomochloromethane 124-48-1 BRIL 0.250 mg/kg 11.051.915.47 U 50 Dichlorodifiloromethane 75-71-8 BRIL 0.250 mg/kg 11.051.915.47 U 50 Ethylkenzene 100-41-4 BRIL 0.050 mg/kg 11.051.915.47 U 50 Ichomethane (Methyl Iodide) 74-88-3 BRIL 0.250 mg/kg 11.051.915.47 U 50 Icopropherazene 98-82-8 BRIL 0.250 mg/kg 11.051.915.47 U 50 McHylene Clloride 75-90-2 BRIL 0.100 mg/kg 11.051.915.47 U 50 MTBE 1634-04-4 BRIL 0.250 mg/kg 11.051.915.47 U 50 Naphthalene 91-0-3 BRIL 0.50 mg/kg 11.051.915.47 U 50 n-Brutylbenzene 104-51-8 BRIL </td <td>Chloromethane</td> <td>74-87-3</td> <td>BRL</td> <td>0.250</td> <td>mg/kg</td> <td>11.05.19 15.47</td> <td>U</td> <td>50</td>	Chloromethane	74-87-3	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Dibromochlarone 124-48-1 Dibromochlarone 124-48-1 Dibromochlarone 174-95-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 75-71-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 75-71-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-41-4 BRL 0.0500 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-41-4 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-41-4 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 179-601-23-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 179-601-23-1 BRL 0.100 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 179-601-23-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 191-20-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 103-65-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 103-65-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 103-65-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 103-65-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 103-65-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 103-65-1 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-42-5 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-42-5 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-42-5 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-42-5 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-42-5 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-61-2-6 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-61-2-6 BRL 0.250 mg/kg 11.05.1915.47 U 50 Color Dibromochlarone 100-61-2-6 BRL 0.	cis-1,2-Dichloroethene	156-59-2	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Dibromomethane 74-95-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 Dichlorodifluoromethane 75-71-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 Elkhylbenzene 100-411-4 BRL 0.250 mg/kg 11.05.1915.47 U 50 Hexachlorobutudiene 87-68-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 Ropropylbenzene 98-82-8 BRL 1.00 mg/kg 11.05.1915.47 U 50 Methylene Chloride 75-09-2 BRL 0.10 mg/kg 11.05.1915.47 U 50 MTBE 1634-04-4 BRL 0.250 mg/kg 11.05.1915.47 U 50 n-Butylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 n-Butylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 n-Propylbenzene 104-51-8 BRL 0.250	cis-1,3-Dichloropropene	10061-01-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Dichlorodifluoromethane 75-71-8 BRL 0.250 mg/kg 1.05.1915.47 U 50 Elhylbenzene 100-41-4 BRL 0.0500 mg/kg 1.05.1915.47 U 50 Hexachlorobutadine 87-68-3 BRL 0.250 mg/kg 11.05.1915.47 U 50 Isopropylbenzene 98-82-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 Mchylene Chloride 75-69-2 BRL 0.100 mg/kg 11.05.1915.47 U 50 MTBE 163-40-44 BRL 0.250 mg/kg 11.05.1915.47 U 50 Naphthalene 91-20-3 BRL 0.500 mg/kg 11.05.1915.47 U 50 n-Burylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 n-Propylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.1915.47 U 50 See-Burylbenzene 105-67-6 BRL 0.250	Dibromochloromethane	124-48-1	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Ethylbenzene 100-41-4 8RL 0.0500 mg/kg 1.05.19 1.5.47 0 0.0500 1.05.19 1.5.47 0 0.0500 1.05.19 1.5.47 0 0.0500 1.05.19 1.5.47 0 0.0500 0.0	Dibromomethane	74-95-3	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Hexachlorobutaldiene	Dichlorodifluoromethane	75-71-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Total Part P	Ethylbenzene	100-41-4	BRL	0.0500	mg/kg	11.05.19 15.47	U	50
Ropropylbenzene 98-82-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylene Chloride 75-09-2 BRL 1.00 mg/kg 11.05.19 15.47 U 50 Methylene Chloride 75-09-2 BRL 1.00 mg/kg 11.05.19 15.47 U 50 Methylene Chloride 75-09-2 BRL 1.00 mg/kg 11.05.19 15.47 U 50 Methylene Chloride 91-20-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Maphthalene 91-20-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Methylenzene 104-51-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 103-65-1 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 95-47-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 95-47-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 133-02-07 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 133-02-07 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10-26 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylenzene 100-10	Hexachlorobutadiene	87-68-3	BRL	0.250	mg/kg	11.05.19 15.47	U	50
m.pXylenes 179601-23-1 BRL 0.100 mg/kg 11.05.19 15.47 U 50 Methylene Chloride 75-09-2 BRL 1.00 mg/kg 11.05.19 15.47 U 50 MTBE 1634-04-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Naphthalene 91-20-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Butylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 n-Propylbenzene 103-65-1 BRL 0.250 mg/kg 11.05.19 15.47 U 50 o-Xylene 95-47-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Stylene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg	Iodomethane (Methyl Iodide)	74-88-4	BRL	1.00	mg/kg	11.05.19 15.47	U	50
Methylene Chloride 75-09-2 BRL 1.00 mg/kg 11.05.19 15.47 U 50 MTBE 1634-04-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Naphthalene 91-20-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Butylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 n-Propylbenzene 103-65-1 BRL 0.250 mg/kg 11.05.19 15.47 U 50 c-Xylene 95-47-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Sec-Butylbenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Iter-Butylbenzene 105-80-6 BRL 0.250	Isopropylbenzene	98-82-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
MTBE 1634-04-4 BRL 0.250 mg/kg 1.05.19 15.47 U 50 Naphthalene 91-20-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Butylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 o-Yopplenzene 103-65-1 BRL 0.050 mg/kg 11.05.19 15.47 U 50 o-Yopplenzene 95-47-6 BRL 0.050 mg/kg 11.05.19 15.47 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Sec-Butylbenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Eter-Butylbenzene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Eter-Butylbenzene 105-60-6 BRL 0.250	m,p-Xylenes	179601-23-1	BRL	0.100	mg/kg	11.05.19 15.47	U	50
Naphthalene 91-20-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Butylbenzene 104-51-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 n-Propylbenzene 103-65-1 BRL 0.250 mg/kg 11.05.19 15.47 U 50 o-Xylene 95-47-6 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 p-Cymene (p-Isopropyloluene) 99-87-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Sec-Butylbenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 tert-Butylbenzene 98-06-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tolulene 108-88-3 BRL 0.250 <td>Methylene Chloride</td> <td>75-09-2</td> <td>BRL</td> <td>1.00</td> <td>mg/kg</td> <td>11.05.19 15.47</td> <td>U</td> <td>50</td>	Methylene Chloride	75-09-2	BRL	1.00	mg/kg	11.05.19 15.47	U	50
n-Butylbenzene 104-51-8 BRL 0.250 mg/kg 1.05.19 15.47 U 50 n-Propylbenzene 103-65-1 BRL 0.250 mg/kg 1.05.19 15.47 U 50 o-Xylene 95-47-6 BRL 0.0500 mg/kg 1.05.19 15.47 U 50 Sec-Butylbenzene 135-98-8 BRL 0.250 mg/kg 1.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 1.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 1.05.19 15.47 U 50 tetr-Butylbenzene 98-06-6 BRL 0.250 mg/kg 1.05.19 15.47 U 50 tetr-Butylbenzene 98-06-6 BRL 0.250 mg/kg 1.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 1.05.19 15.47 U 50 Tolulene 108-8-8-3 BRL 0.250 mg/kg <td>MTBE</td> <td>1634-04-4</td> <td>BRL</td> <td>0.250</td> <td>mg/kg</td> <td>11.05.19 15.47</td> <td>U</td> <td>50</td>	MTBE	1634-04-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
n-Propylbenzene 103-65-1 BRL 0.250 mg/kg 11.05.19 15.47 U 50 o-Xylene 95-47-6 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Sec-Butylbenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 tert-Butylbenzene 98-06-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trichlorofluoromethane 79-01-6	Naphthalene	91-20-3	BRL	0.500	mg/kg	11.05.19 15.47	U	50
o-Xylene 95-47-6 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Sec-Butylbenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 tert-Butylbenzene 98-06-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 108-88-3 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.0250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 79-01-6	n-Butylbenzene	104-51-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Sec-Butylbenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 tert-Butylbenzene 98-06-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Toluene 108-88-3 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL<	n-Propylbenzene	103-65-1	BRL	0.250	mg/kg	11.05.19 15.47	U	50
See-Butylbenzene 135-98-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 tert-Butylbenzene 98-06-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Toluene 108-88-3 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichloroethene 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL	o-Xylene	95-47-6	BRL	0.0500	mg/kg	11.05.19 15.47	U	50
Styrene 100-42-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 tert-Butylbenzene 98-06-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Toluene 108-88-3 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloropthene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
tert-Butylbenzene 98-06-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Toluene 108-88-3 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichloroethene 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-84-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 110-54-3 BRL 0.500 mg/k	Sec-Butylbenzene	135-98-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Tetrachloroethylene 127-18-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Toluene 108-88-3 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 <td< td=""><td>Styrene</td><td>100-42-5</td><td>BRL</td><td>0.250</td><td>mg/kg</td><td>11.05.19 15.47</td><td>U</td><td>50</td></td<>	Styrene	100-42-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Toluene 108-88-3 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichloroethene 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL	tert-Butylbenzene	98-06-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Total Xylenes 1330-20-7 BRL 0.0500 mg/kg 11.05.19 15.47 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichloroethene 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BR	Tetrachloroethylene	127-18-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.250 mg/kg 11.05.19 15.47 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichloroethene 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 110-54-3 B	Toluene	108-88-3	BRL	0.250	mg/kg	11.05.19 15.47	U	50
trans-1,3-dichloropropene 10061-02-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichloroethene 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 A-Ethyltoluene 622-96-8	Total Xylenes	1330-20-7	BRL	0.0500	mg/kg	11.05.19 15.47	U	50
Trichloroethene 79-01-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 <td>trans-1,2-dichloroethene</td> <td>156-60-5</td> <td>BRL</td> <td>0.250</td> <td>mg/kg</td> <td>11.05.19 15.47</td> <td>U</td> <td>50</td>	trans-1,2-dichloroethene	156-60-5	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Trichlorofluoromethane 75-69-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Vinyl Acetate 108-05-4 BRL 0.500 mg/kg 11.05.19 15.47 U 50 Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	Trichloroethene	79-01-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Vinyl Chloride 75-01-4 BRL 0.250 mg/kg 11.05.19 15.47 U 50 1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	Trichlorofluoromethane	75-69-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
1,3-Butadiene 106-99-0 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	Vinyl Acetate	108-05-4	BRL	0.500	mg/kg	11.05.19 15.47	U	50
Cyclohexane 110-82-7 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	Vinyl Chloride	75-01-4	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Dicyclopentadiene 77-73-6 BRL 0.250 mg/kg 11.05.19 15.47 U 50 Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	1,3-Butadiene	106-99-0	BRL	0.250	mg/kg	11.05.19 15.47	U	50
Methylcyclohexane 108-87-2 BRL 0.500 mg/kg 11.05.19 15.47 U 50 n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	Cyclohexane	110-82-7	BRL	0.250	mg/kg	11.05.19 15.47	U	50
n-Hexane 110-54-3 BRL 0.500 mg/kg 11.05.19 15.47 U 50 4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	Dicyclopentadiene	77-73-6	BRL	0.250	mg/kg	11.05.19 15.47	U	50
4-Ethyltoluene 622-96-8 BRL 0.250 mg/kg 11.05.19 15.47 U 50	Methylcyclohexane	108-87-2	BRL	0.500	mg/kg	11.05.19 15.47	U	50
	n-Hexane	110-54-3	BRL	0.500	mg/kg	11.05.19 15.47	U	50
Propene 115-07-1 BRL 0.250 mg/kg 11.05.19 15.47 U 50	4-Ethyltoluene	622-96-8	BRL	0.250	mg/kg	11.05.19 15.47	U	50
	Propene	115-07-1	BRL	0.250	mg/kg	11.05.19 15.47	U	50

Tech:

Certificate of Analytical Results 642000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TB01-102919 Matrix: Soil Date Received:11.05.19 10.00

Lab Sample Id: 642000-056 Date Collected: 10.29.19 00.00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Moisture:

Analyst: SAD Date Prep: 11.05.19 15.00 Basis: Wet Weight

Seq Number: 3106502 SUB: T104704215-19-30

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	86	%	53-142	11.05.19 15.47	
1,2-Dichloroethane-D4	99	%	56-150	11.05.19 15.47	
Toluene-D8	102	%	70-130	11.05.19 15.47	
4-Bromofluorobenzene	96	%	68-152	11.05.19 15.47	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Date Received:11.05.19 10.00 Sample Id: D-EB01-102919 Matrix: Water

Date Prep:

Lab Sample Id: 642000-057 Date Collected: 10.29.19 10.20

Analytical Method: Recoverable Metals, Total, by EPA 200.8

MLI Tech:

DEP Analyst:

Seq Number: 3106670

11.06.19 09.45

Prep Method: E200.8P

% Moisture:

SUB: T104704215-19-30

Prep Method: E245.1P

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	BRL	0.00400	mg/L	11.07.19 02.58	U	1
Barium	7440-39-3	0.00711	0.00400	mg/L	11.07.19 02.58		1
Cadmium	7440-43-9	BRL	0.00200	mg/L	11.07.19 02.58	U	1
Chromium	7440-47-3	BRL	0.00400	mg/L	11.07.19 02.58	U	1
Lead	7439-92-1	BRL	0.00200	mg/L	11.07.19 02.58	U	1
Selenium	7782-49-2	BRL	0.00200	mg/L	11.07.19 02.58	U	1
Silver	7440-22-4	BRL	0.00200	mg/L	11.07.19 02.58	U	1

Analytical Method: Mercury, Total by EPA 245.1

ADS Tech:

ANJ Analyst:

Seq Number: 3106796

11.07.19 08.30 Date Prep:

Parameter Cas Number Result RLDil Units **Analysis Date** Flag 0.000200 7439-97-6 BRL 11.07.19 16.13 U Mercury mg/L

Page 149 of 194

Final 1.000

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-EB01-102919 Matrix: Water Date Received:11.05.19 10.00

Lab Sample Id: 642000-057 Date Collected: 10.29.19 10.20

Analytical Method: PAHs by SW846 8270D SIM

Prep Method: SW3511 Tech: % Moisture:

AHI DNE Analyst: 11.05.19 14.44 Date Prep:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
1-Methylnaphthalene	90-12-0	BRL	0.000194		mg/L	11.06.19 18.58	U	1
2-Methylnaphthalene	91-57-6	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Acenaphthene	83-32-9	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Acenaphthylene	208-96-8	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Anthracene	120-12-7	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Benzo(a)anthracene	56-55-3	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Benzo(a)pyrene	50-32-8	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Chrysene	218-01-9	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Dibenz(a,h)anthracene	53-70-3	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Fluoranthene	206-44-0	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Fluorene	86-73-7	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Naphthalene	91-20-3	BRL	0.000387		mg/L	11.06.19 18.58	U	1
Phenanthrene	85-01-8	BRL	0.000194		mg/L	11.06.19 18.58	U	1
Pyrene	129-00-0	BRL	0.000194		mg/L	11.06.19 18.58	U	1
		%						
Surrogate		Recovery	Units	Limits		ysis Date Fl	ag	
2-Fluorobiphenyl		132	%	54-146		.19 18.58		
Nitrobenzene-d5		134	%	46-151		.19 18.58		
Terphenyl-D14		102	%	51-139	11.06	.19 18.58		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-EB01-102919 Matrix: Water Date Received:11.05.19 10.00

Lab Sample Id: 642000-057 Date Collected: 10.29.19 10.20

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Moisture:

EZA Tech:

EZA Analyst:

11.05.19 17.14 Date Prep:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	BRL	0.100	mg/L	11.05.19 17.36	U	1
Benzene	71-43-2	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Bromobenzene	108-86-1	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Bromochloromethane	74-97-5	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Bromodichloromethane	75-27-4	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Bromoform	75-25-2	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Methyl bromide	74-83-9	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Methyl ethyl ketone	78-93-3	BRL	0.0500	mg/L	11.05.19 17.36	U	1
n-Butylbenzene	104-51-8	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Sec-Butylbenzene	135-98-8	BRL	0.00100	mg/L	11.05.19 17.36	U	1
tert-Butylbenzene	98-06-6	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Carbon Disulfide	75-15-0	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Carbon Tetrachloride	56-23-5	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Chlorobenzene	108-90-7	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Chloroethane	75-00-3	BRL	0.0100	mg/L	11.05.19 17.36	U	1
Chloroform	67-66-3	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1-Chlorohexane	544-10-5	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Methyl Chloride	74-87-3	BRL	0.0100	mg/L	11.05.19 17.36	U	1
2-Chlorotoluene	95-49-8	BRL	0.00100	mg/L	11.05.19 17.36	U	1
4-Chlorotoluene	106-43-4	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Cyclohexane	110-82-7	BRL	0.00500	mg/L	11.05.19 17.36	U*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Dibromochloromethane	124-48-1	BRL	0.00500	mg/L	11.05.19 17.36	U	1
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,2-Dibromoethane	106-93-4	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Methylene Bromide	74-95-3	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,2-Dichlorobenzene	95-50-1	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,3-Dichlorobenzene	541-73-1	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,4-Dichlorobenzene	106-46-7	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Dichlorodifluoromethane	75-71-8	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,1-Dichloroethane	75-34-3	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,2-Dichloroethane	107-06-2	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,1-Dichloroethene	75-35-4	BRL	0.00100	mg/L	11.05.19 17.36	U	1
cis-1,2-Dichloroethylene	156-59-2	BRL	0.00100	mg/L	11.05.19 17.36	U	1
trans-1,2-dichloroethylene	156-60-5	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,2-Dichloropropane	78-87-5	BRL	0.00500	mg/L	11.05.19 17.36	U	1
1,3-Dichloropropane	142-28-9	BRL	0.00500	mg/L	11.05.19 17.36	U	1
2,2-Dichloropropane		BRL	0.00500			U	1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-EB01-102919 Matrix: Water Date Received:11.05.19 10.00

Lab Sample Id: 642000-057 Date Collected: 10.29.19 10.20

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Moisture:

Analyst: EZA Date Prep: 11.05.19 17.14

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	BRL	0.00500	mg/L	11.05.19 17.36	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	0.00500	mg/L	11.05.19 17.36	U	1
trans-1,3-dichloropropene	10061-02-6	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Ethylbenzene	100-41-4	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Hexachlorobutadiene	87-68-3	BRL	0.00500	mg/L	11.05.19 17.36	U	1
2-Hexanone	591-78-6	BRL	0.0500	mg/L	11.05.19 17.36	U	1
Isopropylbenzene	98-82-8	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Methylcyclohexane	108-87-2	BRL	0.0100	mg/L	11.05.19 17.36	U	1
Methylene Chloride	75-09-2	BRL	0.0100	mg/L	11.05.19 17.36	U	1
Methyl iodide	74-88-4	BRL	0.0200	mg/L	11.05.19 17.36	U	1
4-Methyl-2-Pentanone	108-10-1	BRL	0.0500	mg/L	11.05.19 17.36	U	1
MTBE	1634-04-4	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Naphthalene	91-20-3	BRL	0.0100	mg/L	11.05.19 17.36	U	1
n-Propylbenzene	103-65-1	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Styrene	100-42-5	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Tetrachloroethene	127-18-4	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Toluene	108-88-3	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	0.00500	mg/L	11.05.19 17.36	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	0.00500	mg/L	11.05.19 17.36	U	1
1,1,1-Trichloroethane	71-55-6	BRL	0.00500	mg/L	11.05.19 17.36	U	1
1,1,2-Trichloroethane	79-00-5	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Trichloroethylene	79-01-6	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Trichlorofluoromethane	75-69-4	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,2,3-Trichloropropane	96-18-4	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	0.00100	mg/L	11.05.19 17.36	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	0.00100	mg/L	11.05.19 17.36	U	1
o-Xylene	95-47-6	BRL	0.00100	mg/L	11.05.19 17.36	U	1
m,p-Xylenes	179601-23-1	BRL	0.0100	mg/L	11.05.19 17.36	U	1
Vinyl Acetate	108-05-4	BRL	0.0500	mg/L	11.05.19 17.36	U	1
Vinyl Chloride	75-01-4	BRL	0.00200	mg/L	11.05.19 17.36	U	1
1,3-Butadiene	106-99-0	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Dicyclopentadiene	77-73-6	BRL	0.00500	mg/L	11.05.19 17.36	U	1
n-Hexane	110-54-3	BRL	0.00500	mg/L	11.05.19 17.36	U	1
Total Xylenes	1330-20-7	BRL	0.00100	mg/L	11.05.19 17.36	U	1
Total Trihalomethanes		BRL	0.00100	mg/L	11.05.19 17.36	U	1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-EB01-102919 Matrix: Water Date Received:11.05.19 10.00

Lab Sample Id: 642000-057 Date Collected: 10.29.19 10.20

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Moisture:

Tech: EZA
Analyst: EZA
Date Prep: 11.05.19 17.14

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	104	%	75-131	11.05.19 17.36	
1,2-Dichloroethane-D4	106	%	63-144	11.05.19 17.36	
Toluene-D8	97	%	80-117	11.05.19 17.36	
4-Bromofluorobenzene	103	%	74-124	11.05.19 17.36	

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.06.19 09.45

Date Received:11.05.19 10.00 Sample Id: D-EB01-110219 Matrix: Water

Date Prep:

Lab Sample Id: 642000-058 Date Collected: 11.02.19 15.50

Analytical Method: Recoverable Metals, Total, by EPA 200.8

MLI Tech:

Analyst:

DEP

Seq Number: 3106670

Prep Method: E200.8P

% Moisture:

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	BRL	0.00400	mg/L	11.07.19 03.01	U	1
Barium	7440-39-3	BRL	0.00400	mg/L	11.07.19 03.01	U	1
Cadmium	7440-43-9	BRL	0.00200	mg/L	11.07.19 03.01	U	1
Chromium	7440-47-3	BRL	0.00400	mg/L	11.07.19 03.01	U	1
Lead	7439-92-1	BRL	0.00200	mg/L	11.07.19 03.01	U	1
Selenium	7782-49-2	BRL	0.00200	mg/L	11.07.19 03.01	U	1
Silver	7440-22-4	BRL	0.00200	mg/L	11.07.19 03.01	U	1

Analytical Method: Mercury, Total by EPA 245.1

Tech:

Analyst:

ADS

ANJ Seq Number: 3106796 Date Prep:

11.07.19 08.30

Prep Method: E245.1P

% Moisture:

Parameter Cas Number Result RLDil Units **Analysis Date** Flag 0.000200 7439-97-6 BRL 11.07.19 16.15 U Mercury mg/L

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.05.19 14.53

Sample Id: **D-EB01-110219** Matrix: Water Date Received:11.05.19 10.00

Date Prep:

Lab Sample Id: 642000-058 Date Collected: 11.02.19 15.50

Analytical Method: PAHs by SW846 8270D SIM Prep Method: SW3511

Tech: AHI % Moisture:

Seq Number: 3106671

Analyst:

DNE

Parameter	Cas Number	Result	RL	U	Inits	Analysis Date	Flag	Dil
1-Methylnaphthalene	90-12-0	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
2-Methylnaphthalene	91-57-6	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Acenaphthene	83-32-9	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Acenaphthylene	208-96-8	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Anthracene	120-12-7	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Benzo(a)anthracene	56-55-3	BRL	0.000188	m	ng/L	11.06.19 19.48	U	1
Benzo(a)pyrene	50-32-8	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Chrysene	218-01-9	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Dibenz(a,h)anthracene	53-70-3	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Fluoranthene	206-44-0	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Fluorene	86-73-7	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Naphthalene	91-20-3	BRL	0.000375	n	ng/L	11.06.19 19.48	U	1
Phenanthrene	85-01-8	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
Pyrene	129-00-0	BRL	0.000188	n	ng/L	11.06.19 19.48	U	1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fla	g	
2-Fluorobiphenyl		132	%			.19 19.48		
Nitrobenzene-d5		133	%			.19 19.48		
Terphenyl-D14		90	%	51-139	11.06	.19 19.48		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-EB01-110219 Matrix: Water Date Received:11.05.19 10.00

Lab Sample Id: 642000-058 Date Collected: 11.02.19 15.50

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Moisture:

Analyst: EZA Date Prep: 11.05.19 17.14

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	BRL	0.100	mg/L	11.05.19 18.00	U	1
Benzene	71-43-2	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Bromobenzene	108-86-1	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Bromochloromethane	74-97-5	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Bromodichloromethane	75-27-4	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Bromoform	75-25-2	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Methyl bromide	74-83-9	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Methyl ethyl ketone	78-93-3	BRL	0.0500	mg/L	11.05.19 18.00	U	1
n-Butylbenzene	104-51-8	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Sec-Butylbenzene	135-98-8	BRL	0.00100	mg/L	11.05.19 18.00	U	1
tert-Butylbenzene	98-06-6	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Carbon Disulfide	75-15-0	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Carbon Tetrachloride	56-23-5	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Chlorobenzene	108-90-7	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Chloroethane	75-00-3	BRL	0.0100	mg/L	11.05.19 18.00	U	1
Chloroform	67-66-3	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1-Chlorohexane	544-10-5	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Methyl Chloride	74-87-3	BRL	0.0100	mg/L	11.05.19 18.00	U	1
2-Chlorotoluene	95-49-8	BRL	0.00100	mg/L	11.05.19 18.00	U	1
4-Chlorotoluene	106-43-4	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Cyclohexane	110-82-7	BRL	0.00500	mg/L	11.05.19 18.00	U^*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Dibromochloromethane	124-48-1	BRL	0.00500	mg/L	11.05.19 18.00	U	1
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,2-Dibromoethane	106-93-4	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Methylene Bromide	74-95-3	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,2-Dichlorobenzene	95-50-1	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,3-Dichlorobenzene	541-73-1	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,4-Dichlorobenzene	106-46-7	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Dichlorodifluoromethane	75-71-8	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,1-Dichloroethane	75-34-3	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,2-Dichloroethane	107-06-2	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,1-Dichloroethene	75-35-4	BRL	0.00100	mg/L	11.05.19 18.00	U	1
cis-1,2-Dichloroethylene	156-59-2	BRL	0.00100	mg/L	11.05.19 18.00	U	1
trans-1,2-dichloroethylene	156-60-5	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,2-Dichloropropane	78-87-5	BRL	0.00500	mg/L	11.05.19 18.00	U	1
1,3-Dichloropropane	142-28-9	BRL	0.00500	mg/L	11.05.19 18.00	U	1
2,2-Dichloropropane	594-20-7	BRL	0.00500	mg/L	11.05.19 18.00	U	1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-EB01-110219** Matrix: Water Date Received:11.05.19 10.00

Lab Sample Id: 642000-058 Date Collected: 11.02.19 15.50

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Moisture:

Analyst: EZA Date Prep: 11.05.19 17.14

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	BRL	0.00500	mg/L	11.05.19 18.00	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	0.00500	mg/L	11.05.19 18.00	U	1
trans-1,3-dichloropropene	10061-02-6	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Ethylbenzene	100-41-4	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Hexachlorobutadiene	87-68-3	BRL	0.00500	mg/L	11.05.19 18.00	U	1
2-Hexanone	591-78-6	BRL	0.0500	mg/L	11.05.19 18.00	U	1
Isopropylbenzene	98-82-8	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Methylcyclohexane	108-87-2	BRL	0.0100	mg/L	11.05.19 18.00	U	1
Methylene Chloride	75-09-2	BRL	0.0100	mg/L	11.05.19 18.00	U	1
Methyl iodide	74-88-4	BRL	0.0200	mg/L	11.05.19 18.00	U	1
4-Methyl-2-Pentanone	108-10-1	BRL	0.0500	mg/L	11.05.19 18.00	U	1
MTBE	1634-04-4	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Naphthalene	91-20-3	BRL	0.0100	mg/L	11.05.19 18.00	U	1
n-Propylbenzene	103-65-1	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Styrene	100-42-5	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Tetrachloroethene	127-18-4	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Toluene	108-88-3	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	0.00500	mg/L	11.05.19 18.00	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	0.00500	mg/L	11.05.19 18.00	U	1
1,1,1-Trichloroethane	71-55-6	BRL	0.00500	mg/L	11.05.19 18.00	U	1
1,1,2-Trichloroethane	79-00-5	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Trichloroethylene	79-01-6	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Trichlorofluoromethane	75-69-4	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,2,3-Trichloropropane	96-18-4	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	0.00100	mg/L	11.05.19 18.00	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	0.00100	mg/L	11.05.19 18.00	U	1
o-Xylene	95-47-6	BRL	0.00100	mg/L	11.05.19 18.00	U	1
m,p-Xylenes	179601-23-1	BRL	0.0100	mg/L	11.05.19 18.00	U	1
Vinyl Acetate	108-05-4	BRL	0.0500	mg/L	11.05.19 18.00	U	1
Vinyl Chloride	75-01-4	BRL	0.00200	mg/L	11.05.19 18.00	U	1
1,3-Butadiene	106-99-0	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Dicyclopentadiene	77-73-6	BRL	0.00500	mg/L	11.05.19 18.00	U	1
n-Hexane	110-54-3	BRL	0.00500	mg/L	11.05.19 18.00	U	1
Total Xylenes	1330-20-7	BRL	0.00100	mg/L	11.05.19 18.00	U	1
Total Trihalomethanes		BRL	0.00100	mg/L	11.05.19 18.00	U	1

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.05.19 17.14

Sample Id: D-EB01-110219 Matrix: Water Date Received:11.05.19 10.00

Lab Sample Id: 642000-058 Date Collected: 11.02.19 15.50

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Moisture:

EZA Tech: EZA Analyst: Date Prep:

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	103	%	75-131	11.05.19 18.00	
1,2-Dichloroethane-D4	105	%	63-144	11.05.19 18.00	
Toluene-D8	96	%	80-117	11.05.19 18.00	
4-Bromofluorobenzene	102	%	74-124	11.05.19 18.00	

APS

APS MGP Douglas, AZ

Analytical Method:Total Cyanide by SW 9012Prep Method:E335.4PSeq Number:3106614Matrix: SolidDate Prep:11.06.19

MB Sample Id: 7689738-1-BLK LCS Sample Id: 7689738-1-BKS

Parameter

MB Spike LCS LCS Limits

Units Analysis Flag

Result Amount Result %Rec

Date

Cyanide, Total <0.0297 1.20 1.14 95 85-115 mg/kg 11.06.19 12:20

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

 Seq Number:
 3106614
 Matrix:
 Soil
 Date Prep:
 11.06.19

 Parent Sample Id:
 642000-001
 MS Sample Id:
 642000-001 S
 MSD Sample Id:
 642000-001 SD

Parent Spike MS MS %RPD RPD Limit Units **MSD** MSD Limits Analysis Flag **Parameter** Amount Result %Rec Date Result Result %Rec

Cyanide, Total <0.0291 2.35 2.11 90 2.15 92 85-115 2 20 mg/kg 11.06.19 12:24

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106627
 Matrix:
 Solid
 Date Prep:
 11.06.19

 MB Sample Id:
 7689679-1-BLK
 LCS Sample Id:
 7689679-1-BKS
 LCSD Sample Id:
 7689679-1-BSD

Description MB Spike LCS LCS LCSD LCSD Limits %RPD RPD Limit Units Analysis

Parameter Result %Rec Date Result Amount Result %Rec 11.06.19 10:49 < 0.0172 0.189 0.179 95 0.178 94 80-120 20 Mercury mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106634
 Matrix:
 Solid
 Date Prep:
 11.06.19

 MB Sample Id:
 7689691-1-BLK
 LCS Sample Id:
 7689691-1-BKS
 LCSD Sample Id:
 7689691-1-BSD

LCS LCS %RPD RPD Limit Units MB Spike LCSD LCSD Limits Analysis Flag **Parameter** Result Amount Result %Rec Date Result %Rec

Mercury <0.0172 0.175 0.171 98 0.172 98 80-120 1 20 mg/kg 11.06.19 12:44

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106613
 Matrix:
 Solid
 Date Prep:
 11.06.19

 MB Sample Id:
 7689712-1-BLK
 LCS Sample Id:
 7689712-1-BKS
 LCSD Sample Id:
 7689712-1-B

MB Sample Id: 7689712-1-BLK LCS Sample Id: 7689712-1-BKS LCSD Sample Id: 7689712-1-BSD

MB Spike LCS LCS LCSD LCSD Limits %RPD RPD Limit Units Analysis

MB Spike LCS LCS Limits Analysis LCSD LCSD Flag **Parameter** Result Result Date Amount %Rec Result %Rec

= MSD/LCSD Result

Flag

APS

APS MGP Douglas, AZ

Analytical Method: Mercury by SW 7471B	
--	--

 Seq Number:
 3106627
 Matrix:
 Soil
 Date Prep:
 11.06.19

 Parent Sample Id:
 642000-015
 MS Sample Id:
 642000-015 SD
 MSD Sample Id:
 642000-015 SD

Spike MS MS Limits %RPD RPD Limit Units Parent **MSD MSD** Analysis Flag **Parameter** Result Amount Result Date %Rec %Rec Result 11.06.19 10:55 Mercury 0.0450 0.192 0.200 81 0.197 80 75-125 2 20 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Seq Number: 3106627 Matrix: Soil Date Prep: 11.06.19

Parent Sample Id: 642000-039 MS Sample Id: 642000-039 S MSD Sample Id: 642000-039 SD

Spike MS MS %RPD RPD Limit Units Parent **MSD** MSD Limits Analysis Flag **Parameter** %Rec Result Date Result Amount Result %Rec Mercury < 0.00356 0.185 0.196 106 0.181 98 75-125 8 20 mg/kg 11.06.19 11:25

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106634
 Matrix:
 Soil
 Date Prep:
 11.06.19

 Parent Sample Id:
 642000-046
 MS Sample Id:
 642000-046 S
 MSD Sample Id:
 642000-046 SD

MS MS %RPD RPD Limit Units Parent Spike **MSD MSD** Limits Analysis Flag **Parameter** Result Date Result Amount %Rec Result %Rec 11.06.19 12:49 < 0.00370 0.192 0.193 101 0.191 99 75-125 20 Mercury mg/kg

Analytical Method: Mercury by SW 7471B

 Seq Number:
 3106634
 Matrix:
 Soil
 Date Prep:
 11.06.19

 Parent Sample Id:
 642000-048
 MS Sample Id:
 642000-048 S
 MSD Sample Id:
 642000-048 SD

MS %RPD RPD Limit Units Parent Spike MS **MSD** MSD Limits Analysis Flag **Parameter** Amount Result %Rec Date Result Result %Rec 0.00452 0.192 0.191 97 0.196 98 75-125 3 20 11.06.19 13:23 Mercury mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3106613
 Matrix:
 Soil
 Date Prep:
 11.06.19

 Parent Sample Id:
 642000-029
 MS Sample Id:
 642000-029 S
 MSD Sample Id:
 642000-029 SD

Parent Spike MS MS Limits %RPD RPD Limit Units Analysis **MSD MSD** Flag **Parameter** Result Date Result Amount %Rec Result %Rec Mercury 0.0304 0.196 0.206 90 0.208 91 75-125 20 mg/kg 11.06.19 13:55

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(\text{C-A}) \, / \, B \\ RPD &= 200* \mid (\text{C-E}) \, / \, (\text{C+E}) \mid \\ [D] &= 100*(\text{C}) \, / \, [\text{B}] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

SW7471P

SW7471P

Prep Method:

Prep Method:

APS

APS MGP Douglas, AZ

Analytical Method: Mercury by SW 7471B

Prep Method: Seq Number: 3106613 Matrix: Soil Date Prep: 11.06.19 MS Sample Id: 642000-030 S

MSD Sample Id: 642000-030 SD Parent Sample Id: 642000-030

MS Parent Spike MS Limits %RPD RPD Limit Units **MSD** MSD Analysis Flag **Parameter** Result Amount Result Date %Rec Result %Rec 0.0154 93 75-125 20 11.06.19 14:30 Mercury 0.192 0.191 91 0.193 mg/kg

Analytical Method: Metals, RCRA List, by SW 6020 SW3050B Prep Method:

Seq Number: 3106697 Matrix: Solid Date Prep: 11.05.19

LCS Sample Id: 7689694-1-BKS LCSD Sample Id: 7689694-1-BSD MB Sample Id: 7689694-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Arsenic	< 0.200	10.0	9.84	98	9.85	99	80-120	0	20	mg/kg	11.06.19 17:04
Barium	< 0.400	10.0	10.0	100	9.96	100	80-120	0	20	mg/kg	11.06.19 17:04
Cadmium	< 0.200	10.0	9.86	99	10.0	100	80-120	1	20	mg/kg	11.06.19 17:04
Chromium	< 0.400	10.0	9.75	98	9.82	98	80-120	1	20	mg/kg	11.06.19 17:04
Lead	< 0.200	10.0	9.84	98	9.85	99	80-120	0	20	mg/kg	11.06.19 17:04
Selenium	< 0.200	10.0	9.80	98	9.74	97	80-120	1	20	mg/kg	11.06.19 17:04
Silver	< 0.200	5.00	4.97	99	5.04	101	80-120	1	20	mg/kg	11.06.19 17:04

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B Seq Number: 3106630 Matrix: Solid Date Prep: 11.06.19

MB Sample Id: LCS Sample Id: 7689709-1-BKS LCSD Sample Id: 7689709-1-BSD 7689709-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Arsenic	< 0.200	10.0	9.83	98	9.90	99	80-120	1	20	mg/kg	11.06.19 15:17
Barium	< 0.400	10.0	9.79	98	9.84	98	80-120	1	20	mg/kg	11.06.19 15:17
Cadmium	< 0.200	10.0	9.90	99	9.88	99	80-120	0	20	mg/kg	11.06.19 15:17
Chromium	< 0.400	10.0	9.85	99	9.77	98	80-120	1	20	mg/kg	11.06.19 15:17
Lead	< 0.200	10.0	9.87	99	9.82	98	80-120	1	20	mg/kg	11.06.19 15:17
Selenium	< 0.200	10.0	9.88	99	9.82	98	80-120	1	20	mg/kg	11.06.19 15:17
Silver	< 0.200	5.00	5.01	100	5.02	100	80-120	0	20	mg/kg	11.06.19 15:17

SW3050B Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: Seq Number: 3106705 Matrix: Solid Date Prep: 11.06.19

MB Sample Id: 7689732-1-BLK LCS Sample Id: 7689732-1-BKS LCSD Sample Id: 7689732-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date
Arsenic	< 0.200	10.0	10.1	101	10.2	102	80-120	1	20	mg/kg	11.06.19 21:47
Barium	< 0.400	10.0	9.93	99	9.86	99	80-120	1	20	mg/kg	11.06.19 21:47
Cadmium	< 0.200	10.0	10.1	101	10.1	101	80-120	0	20	mg/kg	11.06.19 21:47
Chromium	< 0.400	10.0	10.0	100	10.1	101	80-120	1	20	mg/kg	11.06.19 21:47
Lead	< 0.200	10.0	10.2	102	10.1	101	80-120	1	20	mg/kg	11.06.19 21:47
Selenium	< 0.200	10.0	10.2	102	10.4	104	80-120	2	20	mg/kg	11.06.19 21:47
Silver	< 0.200	5.00	5.12	102	5.14	103	80-120	0	20	mg/kg	11.06.19 21:47

MS/MSD Percent Recovery [D] = 100*(C-A) / BRelative Percent Difference RPD = 200* | (C-E) / (C+E) |LCS/LCSD Recovery [D] = 100 * (C) / [B]

Log Difference Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample

C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike A = Parent Result B = Spike AddedD = MSD/LCSD % Rec

SW7471P

Flag

Flag

Flag

APSAPS MGP Douglas, AZ

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW 3050BSeq Number:3106697Matrix:SoilDate Prep:11.05.19Parent Sample Id:641645-001MS Sample Id:641645-001 SMSD Sample Id:641645-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	<1.69	8.47	10.2	120	11.5	117	75-125	12	30	mg/kg	11.06.19 17:13	
Barium	52.1	8.47	57.5	64	65.3	135	75-125	13	30	mg/kg	11.06.19 17:13	X
Cadmium	< 1.69	8.47	8.49	100	9.86	101	75-125	15	30	mg/kg	11.06.19 17:13	
Chromium	<3.39	8.47	11.4	135	13.1	134	75-125	14	30	mg/kg	11.06.19 17:13	X
Lead	1.87	8.47	10.2	98	11.7	100	75-125	14	30	mg/kg	11.06.19 17:13	
Selenium	< 1.69	8.47	8.73	103	9.71	99	75-125	11	30	mg/kg	11.06.19 17:13	
Silver	< 1.69	4.24	4.00	94	4.63	94	75-125	15	30	mg/kg	11.06.19 17:13	

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

 Seq Number:
 3106630
 Matrix:
 Soil
 Date Prep:
 11.06.19

 Parent Sample Id:
 642000-015
 MS Sample Id:
 642000-015 S
 MSD Sample Id:
 642000-015 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Arsenic	10.8	9.26	22.9	131	22.8	125	75-125	0	30	mg/kg	11.06.19 15:29	X
Barium	141	9.26	173	346	173	333	75-125	0	30	mg/kg	11.06.19 15:29	X
Cadmium	<1.85	9.26	11.0	119	11.2	116	75-125	2	30	mg/kg	11.06.19 15:29	
Chromium	11.1	9.26	23.1	130	23.8	132	75-125	3	30	mg/kg	11.06.19 15:29	X
Lead	30.5	9.26	46.2	170	46.2	163	75-125	0	30	mg/kg	11.06.19 15:29	X
Selenium	<1.85	9.26	11.1	120	10.9	113	75-125	2	30	mg/kg	11.06.19 15:29	
Silver	< 1.85	4.63	4.97	107	5.08	106	75-125	2	30	mg/kg	11.06.19 15:29	

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW3050BSeq Number:3106705Matrix: SoilDate Prep:11.06.19

Parent Sample Id: 642000-039 MS Sample Id: 642000-039 S MSD Sample Id: 642000-039 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Arsenic	20.7	9.26	30.5	106	31.7	114	75-125	4	30	mg/kg	11.06.19 22:19	
Barium	84.7	9.26	93.2	92	97.9	137	75-125	5	30	mg/kg	11.06.19 22:19	X
Cadmium	<1.85	9.26	9.21	99	10.0	104	75-125	8	30	mg/kg	11.06.19 22:19	
Chromium	16.5	9.26	25.7	99	27.0	109	75-125	5	30	mg/kg	11.06.19 22:19	
Lead	11.1	9.26	20.4	100	21.7	110	75-125	6	30	mg/kg	11.06.19 22:19	
Selenium	<1.85	9.26	10.1	109	10.6	110	75-125	5	30	mg/kg	11.06.19 22:19	
Silver	<1.85	4.63	4.30	93	4.70	98	75-125	9	30	mg/kg	11.06.19 22:19	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(C\text{-A}) \, / \, B \\ RPD &= 200* \mid (C\text{-E}) \, / \, (C\text{+E}) \mid \\ [D] &= 100*(C) \, / \, [B] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result C = MS/LCS Result

E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APSAPS MGP Douglas, AZ

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW 3050BSeq Number:3106705Matrix:SoilDate Prep:11.06.19Parent Sample Id:642000-046MS Sample Id:642000-046 SMSD Sample Id:642000-046 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	21.2	9.43	33.1	126	32.0	119	75-125	3	30	mg/kg	11.06.19 22:58	X
Barium	81.2	9.43	98.8	187	95.6	158	75-125	3	30	mg/kg	11.06.19 22:58	X
Cadmium	< 1.89	9.43	9.65	102	9.80	108	75-125	2	30	mg/kg	11.06.19 22:58	
Chromium	9.13	9.43	19.7	112	19.3	112	75-125	2	30	mg/kg	11.06.19 22:58	
Lead	9.02	9.43	19.6	112	19.4	114	75-125	1	30	mg/kg	11.06.19 22:58	
Selenium	< 1.89	9.43	10.3	109	10.2	112	75-125	1	30	mg/kg	11.06.19 22:58	
Silver	<1.89	4.72	4.52	96	4.44	98	75-125	2	30	mg/kg	11.06.19 22:58	

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

 Seq Number:
 3106705
 Matrix:
 Soil
 Date Prep:
 11.06.19

 Parent Sample Id:
 642000-048
 MS Sample Id:
 642000-048 S
 MSD Sample Id:
 642000-048 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	17.3	9.09	26.6	102	25.8	95	75-125	3	30	mg/kg	11.06.19 23:13	
Barium	241	9.09	246	55	239	0	75-125	3	30	mg/kg	11.06.19 23:13	X
Cadmium	< 1.82	9.09	9.83	108	9.86	110	75-125	0	30	mg/kg	11.06.19 23:13	
Chromium	8.54	9.09	18.0	104	17.8	104	75-125	1	30	mg/kg	11.06.19 23:13	
Lead	17.4	9.09	27.0	106	25.9	95	75-125	4	30	mg/kg	11.06.19 23:13	
Selenium	<1.82	9.09	10.4	114	10.3	115	75-125	1	30	mg/kg	11.06.19 23:13	
Silver	< 1.82	4.55	4.57	100	4.53	102	75-125	1	30	mg/kg	11.06.19 23:13	

Analytical Method:Recoverable Metals, Total, by EPA 200.8Prep Method:E200.8PSeq Number:3106670Matrix: WaterDate Prep:11.06.19

 Seq Number:
 31066/0
 Matrix:
 Water
 Date Prep:
 11.06.19

 MB Sample Id:
 7689704-1-BLK
 LCS Sample Id:
 7689704-1-BKS
 LCSD Sample Id:
 7689704-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.00400	0.100	0.0975	98	0.0983	98	85-115	1	20	mg/L	11.07.19 02:22	
Barium	< 0.00400	0.100	0.0972	97	0.0963	96	85-115	1	20	mg/L	11.07.19 02:22	
Cadmium	< 0.00200	0.100	0.0997	100	0.0996	100	85-115	0	20	mg/L	11.07.19 02:22	
Chromium	< 0.00400	0.100	0.0998	100	0.101	101	85-115	1	20	mg/L	11.07.19 02:22	
Lead	< 0.00200	0.100	0.0985	99	0.0976	98	85-115	1	20	mg/L	11.07.19 02:22	
Selenium	< 0.00200	0.100	0.100	100	0.101	101	85-115	1	20	mg/L	11.07.19 02:22	
Silver	< 0.00200	0.0500	0.0496	99	0.0501	100	85-115	1	20	mg/L	11.07.19 02:22	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(C\text{-A}) \, / \, B \\ RPD &= 200* \mid (C\text{-E}) \, / \, (C\text{+E}) \mid \\ [D] &= 100*(C) \, / \, [B] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

XENCO

Silver

QC Summary 642000

APS

APS MGP Douglas, AZ

Analytical Method:	Recoverable Metals, Total, by E	PA 200.8		Prep Method:	E200.8P
Seq Number:	3106670	Matrix:	Water	Date Prep:	11.06.19
Parent Sample Id:	641966-001	MS Sample Id:	641966-001 S	MSD Sample Id:	641966-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Limit U		Units	Analysis Date	Flag
Arsenic	< 0.00400	0.100	0.102	102	0.102	102	70-130	0	20	mg/L	11.07.19 02:30	
Barium	0.0872	0.100	0.188	101	0.186	99	70-130	1	20	mg/L	11.07.19 02:30	
Cadmium	< 0.00200	0.100	0.0971	97	0.0977	98	70-130	1	20	mg/L	11.07.19 02:30	
Chromium	< 0.00400	0.100	0.102	102	0.102	102	70-130	0	20	mg/L	11.07.19 02:30	
Lead	0.00656	0.100	0.108	101	0.108	101	70-130	0	20	mg/L	11.07.19 02:30	
Selenium	< 0.00200	0.100	0.102	102	0.103	103	70-130	1	20	mg/L	11.07.19 02:30	

0.0481

70-130

96

0

20

mg/L

Analytical Method: TCLP Mercury by SW-846 1311/7470A Prep Method: SW7470P

0.0481

0.0500

< 0.00200

 Seq Number:
 3106790
 Matrix:
 Water
 Date Prep:
 11.07.19

 MB Sample Id:
 7689820-1-BLK
 LCS Sample Id:
 7689820-1-BKS
 LCSD Sample Id:
 7689820-1-BSD

96

MB Spike LCS LCS Limits %RPD RPD Limit Units Analysis LCSD LCSD **Parameter** Flag Result Amount Result %Rec Date Result %Rec 11.07.19 14:58 0.0000370 0.00200 0.00180 90 0.00182 80-120 20 Mercury 91 mg/L

Analytical Method: TCLP Mercury by SW-846 1311/7470A Prep Method: SW7470P

 Seq Number:
 3106790
 Matrix:
 Solid
 Date Prep:
 11.07.19

 Parent Sample Id:
 641901-001
 MS Sample Id:
 641901-001 S
 MSD Sample Id:
 641901-001 SD

%RPD RPD Limit Units Parent Spike MS MS Analysis MSD MSD Limits **Parameter** Flag Result Result Date Amount %Rec Result %Rec 0.0000760 11.07.19 15:04 Mercury 0.00200 0.00187 0.00186 89 75-125 20 mg/L

Analytical Method: TCLP Metals per ICP/MS by EPA 6020 Prep Method: SW3010A

 Seq Number:
 3106707
 Matrix:
 Water
 Date Prep:
 11.06.19

 MB Sample Id:
 7689708-1-BLK
 LCS Sample Id:
 7689708-1-BKS
 LCSD Sample Id:
 7689708-1-BSD

%RPD RPD Limit Units LCS LCS MR Spike LCSD LCSD Limits Analysis **Parameter** Result Amount Result %Rec %Rec Date Result 11.06.19 19:30 Arsenic < 0.000246 0.100 0.0998 100 0.0984 98 80-120 20 mg/L Barium < 0.000484 0.100 0.101 101 0.0982 98 80-120 3 20 mg/L 11.06.19 19:30 Cadmium < 0.000147 0.100 0.106 106 0.102 102 80-120 4 20 mg/L11.06.19 19:30 < 0.000525 0.104 20 11 06 19 19:30 Chromium 0.100 104 0.100 100 80-120 4 mg/L < 0.000152 Lead 0.100 0.103 103 0.100 100 80-120 3 20 mg/L 11.06.19 19:30 < 0.000454 0.100 0.0988 80-120 11.06.19 19:30 Selenium 0.100 100 99 1 20 mg/L Silver < 0.00200 0.0500 0.0531 106 0.0516 103 80-120 3 20 11.06.19 19:30 mg/L

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(\text{C-A}) \, / \, \text{B} \\ \text{RPD} &= 200* \mid (\text{C-E}) \, / \, (\text{C+E}) \mid \\ [D] &= 100*(\text{C}) \, / \, [\text{B}] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec Flag

11.07.19 02:30

APS

APS MGP Douglas, AZ

Analytical Method: TCLP Metals per ICP/MS by EPA 6020 SW3010A Prep Method: Seq Number: 3106707 Matrix: Soil Date Prep: 11.06.19

MS Sample Id: 639758-002 S Parent Sample Id: 639758-002

MSD Sample Id: 639758-002 SD

Spike MS MS Limits %RPD RPD Limit Units Parent **MSD MSD** Analysis Flag **Parameter** Result Result Date Amount %Rec %Rec Result 11.06.19 19:39 Arsenic < 0.0200 0.500 0.507 101 0.498 100 75-125 2 20 mg/L 11.06.19 19:39 0.500 2.06 118 75-125 2 20 Barium 110 2.10 mg/L 1.51 11.06.19 19:39 Cadmium < 0.0100 0.500 0.503 101 0.497 99 75-125 1 20 mg/L Chromium < 0.0200 0.500 0.512 102 0.507 101 75-125 20 11.06.19 19:39 mg/L 11.06.19 19:39 Lead 0.0349 0.500 0.543 102 0.550 103 75-125 20 1 mg/L Selenium 0.500 0.510 102 0.500 75-125 20 mg/L 11.06.19 19:39 < 0.0100 100 2. 11.06.19 19:39 Silver 0.250 0.256 102 0.251 100 75-125 2 20 < 0.0100 mg/L

Analytical Method: FOC By ASTM D2974

Seq Number: 3106776 Matrix: Solid

MB Sample Id: 3106776-1-BLK

MB Units Analysis **Parameter** Flag Result Date 11.07.19 15:07 Fraction Organic Carbon BRL %

Analytical Method: FOC By ASTM D2974

Seq Number: 3106776 Matrix: Soil

MD Sample Id: 642000-039 D Parent Sample Id: 642000-039

MD %RPD RPD Limit Units Parent Analysis **Parameter** Flag Result Result Date 11.07.19 15:07 Fraction Organic Carbon 1.50 1.60 25 %

Analytical Method: Flash Point (CC) SW-846 1010

Seq Number: 3106624 Matrix: Solid

Parent Sample Id: 641912-001 MD Sample Id: 641912-001 D

MD %RPD RPD Limit Units Analysis Parent **Parameter** Flag Result Result Date 11.06.19 10:04 Flash Point >180 >180 0 25 Deg F

Analytical Method: Flash Point (CC) SW-846 1010

Seq Number: 3106624 Matrix: Sludge

MD Sample Id: 642061-001 D Parent Sample Id: 642061-001

MD %RPD RPD Limit Units Parent Analysis Flag **Parameter** Result Result Date 11.06.19 13:10 Flash Point 134 136 25 Deg F

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) |

[D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result = MS/LCS Result

B = Spike Added D = MSD/LCSD % Rec = MSD/LCSD Result

MS = Matrix Spike

Parameter

QC Summary 642000

APS

APS MGP Douglas, AZ

LCSD

LCSD

Limits

%RPD RPD Limit Units

Analysis

Flag

Analytical Method: Mercury, Total by EPA 245.1 E245.1P Prep Method:

LCS

Seq Number: 3106796 Matrix: Water Date Prep: 11.07.19

LCS Sample Id: LCSD Sample Id: 7689798-1-BSD 7689798-1-BKS MB Sample Id: 7689798-1-BLK LCS

Result Amount Result %Rec Date %Rec Result < 0.0000263 11.07.19 15:43 Mercury 0.00200 0.00197 99 0.00196 98 85-115 20 mg/L

E245.1P Analytical Method: Mercury, Total by EPA 245.1 Prep Method:

Seq Number: 3106796 Matrix: Waste Water Date Prep: 11.07.19

641703-001 S Parent Sample Id: 641703-001 MS Sample Id: MSD Sample Id: 641703-001 SD

Spike MS MS %RPD RPD Limit Units Parent **MSD MSD** Limits Analysis Flag **Parameter** Result %Rec Date Result Amount Result %Rec

Mercury 0.0000540 0.00400 0.00390 96 0.00394 97 70-130 20 mg/L 11.07.19 15:48

Analytical Method: Mercury, Total by EPA 245.1 Prep Method: E245.1P

Seq Number: 3106796 Matrix: Waste Water Date Prep: 11.07.19 MS Sample Id: 641728-006 S MSD Sample Id: 641728-006 SD Parent Sample Id: 641728-006

MS %RPD RPD Limit Units Parent Spike MS **MSD MSD** Limits Analysis Flag **Parameter** Result Date Result %Rec Amount Result %Rec

11.07.19 16:18 < 0.0000527 0.00400 0.00366 92 0.00374 94 70-130 2 20 Mercury mg/L

Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3106597 Matrix: Soil

MR

Spike

MD Sample Id: 641882-004 D Parent Sample Id: 641882-004

MD %RPD RPD Limit Units Parent Analysis Flag **Parameter** Result Result Date Paint Filter Pass Pass 0 0 11.06.19 13:30

Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3106597 Matrix: Soil

MD Sample Id: 642000-023 D Parent Sample Id: 642000-023

Parent MD %RPD RPD Limit Units Analysis Flag Parameter Result Date Result

Paint Filter Pass Pass 0 0 11.06.19 13:30

= MSD/LCSD Result

APS APS MGP Douglas, AZ

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3106588 Matrix: Solid

MD Sample Id: 641912-001 D Parent Sample Id: 641912-001

MD Parent %RPD RPD Limit Units Analysis Flag **Parameter** Result Result Date рΗ 8.10 8.11 0 20 SU 11.06.19 11:26 25.4 25.4 0 25 11.06.19 11:26 Temperature Deg C

Analytical Method: PAHs by 8270D SIM

SW3550 Prep Method: Date Prep: 3106710 Matrix: Solid 11.06.19 Seq Number:

LCS Sample Id: 7689698-1-BKS LCSD Sample Id: 7689698-1-BSD MB Sample Id: 7689698-1-BLK

/689698-1-BLK		LCS Sample Id. 7009090-1-BKS			LC3D Sample Id. 7009090-1-D3D						
MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP	D RPD Lim	it Units	Analysis Date	Flag
< 0.00167	0.0333	0.0264	79	0.0249	75	42-116		25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0253	76	0.0241	72	42-121	5	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0262	79	0.0258	77	44-120	2	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0276	83	0.0285	86	52-121	3	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0280	84	0.0288	86	50-128	3	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0304	91	0.0316	95	49-137	4	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0286	86	0.0296	89	47-132	3	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0282	85	0.0291	87	48-133	3	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0270	81	0.0282	85	54-113	4	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0297	89	0.0304	91	48-133	2	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0287	86	0.0296	89	54-128	3	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0264	79	0.0253	76	44-118	4	25	mg/kg	11.06.19 20:21	
e <0.00167	0.0333	0.0294	88	0.0304	91	49-129	3	25	mg/kg	11.06.19 20:21	
< 0.0167	0.0333	0.0257	77	0.0239	72	40-135	7	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0273	82	0.0272	82	44-119	0	25	mg/kg	11.06.19 20:21	
< 0.00167	0.0333	0.0269	81	0.0280	84	50-126	4	25	mg/kg	11.06.19 20:21	
MB %Rec	MB Flag					_		Limits	Units	Analysis Date	
91		ģ	97		89			31-130	%	11.06.19 20:21	
100		1	02		94			51-133	%	11.06.19 20:21	
105		1	05		105			46-137	%	11.06.19 20:21	
	MB Result <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167 <0.00167	MB Result Spike Amount <0.00167	MB Result Spike Amount LCS Result <0.00167	MB Result Spike Amount LCS Result LCS %Rec <0.00167	MB Result Spike Amount LCS Result LCS WRec LCSD Result <0.00167	MB Result Spike Amount LCS Result LCS Result LCSD Result CSD Result MRec Result %Rec Result %Rec <0.00167	MB	MB	MB Spike Result Amount Result WRec WRe	MB Result Amount Result Amount Result Amount Result Amount Result Amount Result Amount Result Amount Result Amount Result Amount Result Amount Amount	MB Spike LCS LCS Result %Rec Result Resul

APS APS MGP Douglas, AZ

Prep Method: SW3550 Analytical Method: PAHs by 8270D SIM Seq Number: 3106739 Matrix: Solid Date Prep: 11.06.19

LCS Sample Id: 7689696-1-BKS MB Sample Id: 7689696-1-BLK

LCSD Sample Id: 7689696-1-BSD Flag

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Acenaphthene	< 0.00167	0.0333	0.0251	75	0.0261	78	42-116	4	25	mg/kg	11.06.19 21:11
Acenaphthylene	< 0.00167	0.0333	0.0243	73	0.0253	76	42-121	4	25	mg/kg	11.06.19 21:11
Anthracene	< 0.00167	0.0333	0.0261	78	0.0269	81	44-120	3	25	mg/kg	11.06.19 21:11
Benzo(a)anthracene	< 0.00167	0.0333	0.0292	88	0.0292	88	52-121	0	25	mg/kg	11.06.19 21:11
Benzo(a)pyrene	< 0.00167	0.0333	0.0300	90	0.0299	90	50-128	0	25	mg/kg	11.06.19 21:11
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0324	97	0.0329	99	49-137	2	25	mg/kg	11.06.19 21:11
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0304	91	0.0303	91	47-132	0	25	mg/kg	11.06.19 21:11
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0307	92	0.0293	88	48-133	5	25	mg/kg	11.06.19 21:11
Chrysene	< 0.00167	0.0333	0.0290	87	0.0283	85	54-113	2	25	mg/kg	11.06.19 21:11
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0316	95	0.0315	95	48-133	0	25	mg/kg	11.06.19 21:11
Fluoranthene	< 0.00167	0.0333	0.0296	89	0.0297	89	54-128	0	25	mg/kg	11.06.19 21:11
Fluorene	< 0.00167	0.0333	0.0254	76	0.0265	80	44-118	4	25	mg/kg	11.06.19 21:11
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0313	94	0.0311	93	49-129	1	25	mg/kg	11.06.19 21:11
Naphthalene	< 0.0167	0.0333	0.0235	71	0.0248	74	40-135	5	25	mg/kg	11.06.19 21:11
Phenanthrene	< 0.00167	0.0333	0.0269	81	0.0277	83	44-119	3	25	mg/kg	11.06.19 21:11
Pyrene	< 0.00167	0.0333	0.0279	84	0.0280	84	50-126	0	25	mg/kg	11.06.19 21:11

Surrogate	MB MB %Rec Flag	LCS LCS %Rec Flag	LCSD LCSD %Rec Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	85	88	91	31-130	%	11.06.19 21:11
2-Fluorobiphenyl	91	93	97	51-133	%	11.06.19 21:11
Terphenyl-D14	107	108	107	46-137	%	11.06.19 21:11

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

 $LCS = Laboratory \ Control \ Sample$ A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix SpikeB = Spike Added D = MSD/LCSD % Rec

Parameter

Acenaphthene

Anthracene

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

Acenaphthylene

Benzo(a)pyrene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Dibenz(a,h)Anthracene

Indeno(1,2,3-c,d)Pyrene

QC Summary 642000

APS APS MGP Douglas, AZ

Analytical Method: PAHs by 8270D SIM SW3550 Prep Method: Seq Number: 3106745 Matrix: Solid Date Prep: 11.06.19

MB Sample Id: 7689697-1-BLK

< 0.00167

< 0.00167

0.0333

0.0333

0.0353

0.0367

LCS Sample Id: 7689697-1-BKS LCSD Sample Id: 7689697-1-BSD MB Spike LCS LCS Limits %RPD RPD Limit Units LCSD LCSD Analysis Flag Result Amount Result %Rec Date Result %Rec 42-116 11.06.19 22:01 < 0.00167 0.0333 0.0329 99 0.0318 95 3 25 mg/kg 0.0321 0.0311 93 42-121 25 11.06.19 22:01 < 0.00167 0.0333 96 3 mg/kg 102 0.0328 25 11.06.19 22:01 < 0.00167 0.0333 0.0340 98 44-120 4 mg/kg 0.0333 0.0355 107 0.0340 102 52-121 4 25 11.06.19 22:01 < 0.00167 mg/kg 11.06.19 22:01 < 0.00167 0.0333 0.0369 111 0.0350 105 50-128 5 25 mg/kg 0.0384 115 0.0366 49-137 25 11.06.19 22:01 < 0.00167 0.0333 110 5 mg/kg 0.0373112 0.0352 47-132 25 11.06.19 22:01 < 0.00167 0.0333 106 6 mg/kg < 0.00167 0.03330.0378 114 0.0357 107 48-133 6 25 mg/kg 11.06.19 22:01 25 11.06.19 22:01 < 0.00167 0.0333 0.0349 105 0.0333 100 54-113 5 mg/kg 25 11.06.19 22:01 0.0333 0.0379 114 0.0365 110 48-133 4 < 0.00167 mg/kg 115 0.0359 108 7 25 11.06.19 22:01 < 0.00167 0.0333 0.0384 54-128 mg/kg < 0.00167 0.0333 0.0331 99 0.0323 97 44-118 2 25 11.06.19 22:01 mg/kg 11.06.19 22:01 < 0.00167 0.0333 0.0380 114 0.0361 108 49-129 5 25 mg/kg 0.0333 0.0317 95 0.0303 91 40-135 25 11.06.19 22:01 < 0.0167 5 mg/kg 11.06.19 22:01 106 25

102

102

44-119

50-126

4

8

25

mg/kg

mg/kg

11.06.19 22:01

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	111		124		117		31-130	%	11.06.19 22:01
2-Fluorobiphenyl	115		127		119		51-133	%	11.06.19 22:01
Terphenyl-D14	122		134		127		46-137	%	11.06.19 22:01

110

0.0340

0.0339

APS APS MGP Douglas, AZ

Prep Method: SW3550 Analytical Method: PAHs by 8270D SIM Seq Number: 3106710 Matrix: Soil Date Prep: 11.06.19

642000-046 MS Sample Id: 642000-046 S Parent Sample Id:

MSD Sample Id: 642000-046 SD ag

raient Sample Id. 0420	00-040		1415 Sample Id. 042000-040 5					MSD Sample Id. 042000-040 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0337	101	0.0336	101	42-116	0	25	mg/kg	11.06.19 23:41	
Acenaphthylene	< 0.00167	0.0333	0.0324	97	0.0319	96	42-121	2	25	mg/kg	11.06.19 23:41	
Anthracene	< 0.00167	0.0333	0.0346	104	0.0345	104	44-120	0	25	mg/kg	11.06.19 23:41	
Benzo(a)anthracene	0.00177	0.0333	0.0358	102	0.0358	102	52-121	0	25	mg/kg	11.06.19 23:41	
Benzo(a)pyrene	0.00299	0.0333	0.0374	103	0.0374	103	50-128	0	25	mg/kg	11.06.19 23:41	
Benzo(b)fluoranthene	0.00400	0.0333	0.0401	108	0.0402	109	49-137	0	25	mg/kg	11.06.19 23:41	
Benzo(g,h,i)perylene	0.00464	0.0333	0.0383	101	0.0388	103	47-132	1	25	mg/kg	11.06.19 23:41	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0355	107	0.0348	105	48-133	2	25	mg/kg	11.06.19 23:41	
Chrysene	0.00231	0.0333	0.0352	99	0.0358	101	54-113	2	25	mg/kg	11.06.19 23:41	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0377	113	0.0376	113	48-133	0	25	mg/kg	11.06.19 23:41	
Fluoranthene	0.00726	0.0333	0.0395	97	0.0392	96	54-128	1	25	mg/kg	11.06.19 23:41	
Fluorene	< 0.00167	0.0333	0.0339	102	0.0337	101	44-118	1	25	mg/kg	11.06.19 23:41	
Indeno(1,2,3-c,d)Pyrene	0.00299	0.0333	0.0386	107	0.0387	107	49-129	0	25	mg/kg	11.06.19 23:41	
Naphthalene	< 0.0167	0.0333	0.0325	98	0.0324	97	40-135	0	25	mg/kg	11.06.19 23:41	
Phenanthrene	0.00574	0.0333	0.0365	92	0.0366	93	44-119	0	25	mg/kg	11.06.19 23:41	
Pyrene	0.00841	0.0333	0.0374	87	0.0382	89	50-126	2	25	mg/kg	11.06.19 23:41	
Surrogate				AS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	121		122		31-130	%	11.06.19 23:41
2-Fluorobiphenyl	127		128		51-133	%	11.06.19 23:41
Terphenyl-D14	131		134		46-137	%	11.06.19 23:41

APS APS MGP Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106710Matrix:SoilDate Prep:11.06.19

Parent Sample Id: 642000-048 MS Sample Id: 642000-048 S

Date Prep: 11.06.19 MSD Sample Id: 642000-048 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag	
Acenaphthene	< 0.00834	0.0333	0.0275	83	0.0273	82	42-116	1	25	mg/kg	11.07.19 11:08		
Acenaphthylene	< 0.00834	0.0333	0.0282	85	0.0319	96	42-121	12	25	mg/kg	11.07.19 11:08		
Anthracene	< 0.00834	0.0333	0.0297	89	0.0313	94	44-120	5	25	mg/kg	11.07.19 11:08		
Benzo(a)anthracene	< 0.00834	0.0333	0.0343	103	0.0395	119	52-121	14	25	mg/kg	11.07.19 11:08		
Benzo(a)pyrene	0.0107	0.0333	0.0367	78	0.0444	101	50-128	19	25	mg/kg	11.07.19 11:08	11:08	
Benzo(b)fluoranthene	0.0163	0.0333	0.0383	66	0.0468	92	49-137	20	25	mg/kg	11.07.19 11:08		
Benzo(g,h,i)perylene	0.0157	0.0333	0.0364	62	0.0435	83	47-132	18	25	mg/kg	11.07.19 11:08		
Benzo(k)fluoranthene	< 0.00834	0.0333	0.0341	102	0.0387	116	48-133	13	25	mg/kg	11.07.19 11:08		
Chrysene	0.00933	0.0333	0.0333	72	0.0405	94	54-113	20	25	mg/kg	11.07.19 11:08		
Dibenz(a,h)Anthracene	< 0.00834	0.0333	0.0307	92	0.0310	93	48-133	1	25	mg/kg	11.07.19 11:08		
Fluoranthene	0.0194	0.0333	0.0438	73	0.0675	144	54-128	43	25	mg/kg	11.07.19 11:08	XF	
Fluorene	< 0.00834	0.0333	0.0269	81	0.0282	85	44-118	5	25	mg/kg	11.07.19 11:08		
Indeno(1,2,3-c,d)Pyrene	0.0102	0.0333	0.0356	76	0.0407	92	49-129	13	25	mg/kg	11.07.19 11:08		
Naphthalene	< 0.0834	0.0333	0.0268	80	0.0310	93	40-135	15	25	mg/kg	11.07.19 11:08		
Phenanthrene	0.00888	0.0333	0.0370	84	0.0634	164	44-119	53	25	mg/kg	11.07.19 11:08	XF	
Pyrene	0.0238	0.0333	0.0475	71	0.0785	164	50-126	49	25	mg/kg	11.07.19 11:08	XF	

Surrogate	MS MS %Rec Flag	MSD MSD %Rec Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	97	96	31-130	%	11.07.19 11:08
2-Fluorobiphenyl	105	102	51-133	%	11.07.19 11:08
Terphenyl-D14	112	110	46-137	%	11.07.19 11:08

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS ResultE = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS APS MGP Douglas, AZ

Analytical Method: PAHs by 8270D SIM SW3550 Prep Method: Seq Number: 3106739 Matrix: Soil Date Prep: 11.06.19

MS Sample Id: 642000-015 S Parent Sample Id: 642000-015

0.0776

0.0333

0.169

MSD Sample Id: 642000-015 SD Spike MS MS Limits %RPD RPD Limit Units Parent **MSD MSD** Analysis Flag **Parameter** Result Amount Result Date %Rec %Rec Result 42-116 9 11.08.19 01:04 Acenaphthene < 0.00833 0.0333 0.0263 79 0.0240 72 25 mg/kg 0.0401 92 0.0297 25 11.08.19 01:04 F Acenaphthylene 0.00936 0.0333 61 42-121 30 mg/kg 91 0.0293 25 11.08.19 01:04 F Anthracene 0.008780.0333 0.0391 62 44-120 29 mg/kg 0.0242 0.0333 0.0606 109 0.0385 43 52-121 45 25 11.08.19 01:04 XF Benzo(a)anthracene mg/kg 11.08.19 01:04 Benzo(a)pyrene 0.0329 0.0333 0.0741 124 0.0439 33 50-128 51 25 XF mg/kg 0.0962 153 0.0525 49-137 25 11.08.19 01:04 Benzo(b)fluoranthene 0.0454 0.0333 21 59 XF mg/kg 0.02280.0394 50 0.0300 22 47-132 27 25 11.08.19 01:04 XF Benzo(g,h,i)perylene 0.0333 mg/kg Benzo(k)fluoranthene 0.00917 0.0333 0.0491 120 0.0376 85 48-133 27 25 mg/kg 11.08.19 01:04 F 105 0.0450 25 11.08.19 01:04 Chrysene 0.0341 0.0333 0.0692 33 54-113 42 mg/kg XF 0 25 11.08.19 01:04 < 0.00833 0.0333 0.0209 63 0.0209 63 48-133 Dibenz(a,h)Anthracene mg/kg 230 0.0625 0 25 11.08.19 01:04 Fluoranthene 0.0644 0.0333 0.141 54-128 77 mg/kg XF Fluorene < 0.00833 0.0333 0.0295 89 0.0257 77 44-118 14 25 11.08.19 01:04 mg/kg 49-129 11.08.19 01:04 Indeno(1,2,3-c,d)Pyrene 0.0149 0.0333 0.0354 62 0.0262 34 30 25 XF mg/kg 0.00935 0.0333 0.0295 61 0.0271 53 40-135 8 25 11.08.19 01:04 Naphthalene mg/kg 206 44-119 25 11.08.19 01:04 XF Phenanthrene 0.0504 0.0333 0.119 0.0544 12 75 mg/kg

0.0713

0

50-126

81

25

mg/kg

11.08.19 01:04

XF

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	95		84		31-130	%	11.08.19 01:04
2-Fluorobiphenyl	100		89		51-133	%	11.08.19 01:04
Terphenyl-D14	105		94		46-137	%	11.08.19 01:04

274

Pyrene

APS APS MGP Douglas, AZ

Prep Method: SW3550 Analytical Method: PAHs by 8270D SIM Seq Number: 3106745 Matrix: Soil Date Prep: 11.06.19

MS Sample Id: 642000-039 S Parent Sample Id: 642000-039

MSD Sample Id: 642000-039 SD ag

Tarent Bampie ia.												
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00166	0.0333	0.0311	93	0.0278	83	42-116	11	25	mg/kg	11.06.19 22:51	
Acenaphthylene	< 0.00166	0.0333	0.0307	92	0.0270	81	42-121	13	25	mg/kg	11.06.19 22:51	
Anthracene	< 0.00166	0.0333	0.0328	98	0.0285	86	44-120	14	25	mg/kg	11.06.19 22:51	
Benzo(a)anthracene	< 0.00166	0.0333	0.0346	104	0.0296	89	52-121	16	25	mg/kg	11.06.19 22:51	
Benzo(a)pyrene	< 0.00166	0.0333	0.0354	106	0.0299	90	50-128	17	25	mg/kg	11.06.19 22:51	
Benzo(b)fluoranthene	< 0.00166	0.0333	0.0373	112	0.0324	97	49-137	14	25	mg/kg	11.06.19 22:51	
Benzo(g,h,i)perylene	< 0.00166	0.0333	0.0368	111	0.0301	90	47-132	20	25	mg/kg	11.06.19 22:51	
Benzo(k)fluoranthene	< 0.00166	0.0333	0.0358	108	0.0300	90	48-133	18	25	mg/kg	11.06.19 22:51	
Chrysene	< 0.00166	0.0333	0.0342	103	0.0287	86	54-113	17	25	mg/kg	11.06.19 22:51	
Dibenz(a,h)Anthracene	< 0.00166	0.0333	0.0366	110	0.0315	95	48-133	15	25	mg/kg	11.06.19 22:51	
Fluoranthene	< 0.00166	0.0333	0.0362	109	0.0307	92	54-128	16	25	mg/kg	11.06.19 22:51	
Fluorene	< 0.00166	0.0333	0.0314	94	0.0281	84	44-118	11	25	mg/kg	11.06.19 22:51	
Indeno(1,2,3-c,d)Pyrene	< 0.00166	0.0333	0.0372	112	0.0311	93	49-129	18	25	mg/kg	11.06.19 22:51	
Naphthalene	< 0.0166	0.0333	0.0299	90	0.0267	80	40-135	11	25	mg/kg	11.06.19 22:51	
Phenanthrene	< 0.00166	0.0333	0.0335	101	0.0292	88	44-119	14	25	mg/kg	11.06.19 22:51	
Pyrene	< 0.00166	0.0333	0.0341	102	0.0290	87	50-126	16	25	mg/kg	11.06.19 22:51	
Surrogate				AS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	119		106		31-130	%	11.06.19 22:51
2-Fluorobiphenyl	121		106		51-133	%	11.06.19 22:51
Terphenyl-D14	132		111		46-137	%	11.06.19 22:51

 $LCS = Laboratory\ Control\ Sample$ A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix SpikeB = Spike Added D = MSD/LCSD % Rec

APS APS MGP Douglas, AZ

Analytical Method: PAHs by SW846 8270D SIM SW3511 Prep Method: Seq Number: 3106671 Matrix: Water Date Prep: 11.05.19 LCS Sample Id: 7689653-1-BKS LCSD Sample Id: 7689653-1-BSD MB Sample Id: 7689653-1-BLK

MB Spike LCS LCS Limits %RPD RPD Limit Units LCSD LCSD Analysis Flag **Parameter** Result Amount Result %Rec Date %Rec Result < 0.000182 11.06.19 18:25 1-Methylnaphthalene 0.0182 0.0187 103 0.0203 112 70-126 8 30 mg/L < 0.000182 0.0182 100 0.0196 7 30 11.06.19 18:25 2-Methylnaphthalene 0.0182 108 74-121 mg/L < 0.000182 102 0.0200 8 30 11.06.19 18:25 Acenaphthene 0.01820.0185110 75-127 mg/L Acenaphthylene < 0.000182 0.0182 0.0189 104 0.0203 112 78-133 7 30 11.06.19 18:25 mg/L < 0.000182 mg/L 11.06.19 18:25 Anthracene 0.0182 0.0193 106 0.0211 116 73-145 9 30 0.0182 < 0.000182 0.0185 102 0.0199 77-131 7 30 11.06.19 18:25 Benzo(a)anthracene 109 mg/L < 0.000182 11.06.19 18:25 0.0182 0.0171 94 0.0185 56-163 8 30 Benzo(a)pyrene 102 mg/L Benzo(b)fluoranthene < 0.000182 0.0182 0.0181 99 0.0191 105 74-138 5 30 mg/L 11.06.19 18:25 < 0.000182 0.0175 30 11.06.19 18:25 Benzo(g,h,i)perylene 0.0182 0.0161 88 96 77-127 8 mg/L < 0.000182 0.0182 67-142 30 11.06.19 18:25 Benzo(k)fluoranthene 0.0156 86 0.0176 97 12 mg/L < 0.000182 0.0182 0.0167 92 66-126 6 30 11.06.19 18:25 Chrysene 0.0177 97 mg/L Dibenz(a,h)anthracene < 0.000182 0.0182 0.0168 92 0.0182 100 71-142 8 30 mg/L 11.06.19 18:25 < 0.000182 11.06.19 18:25 Fluoranthene 0.0182 0.0197 108 0.0216 119 78-138 30 mg/L 0.0190 < 0.000182 0.0182 104 0.0205 79-128 30 11.06.19 18:25 Fluorene 113 8 mg/L < 0.000182 0.016892 30 Indeno(1,2,3-c,d)Pyrene 0.01820.0182 100 76-140 8 11.06.19 18:25 mg/L Naphthalene < 0.000364 0.0182 0.0176 97 0.0191 105 72-122 8 30 mg/L 11.06.19 18:25 < 0.000182 0.0182 0.0189 104 0.0207 76-129 9 30 11.06.19 18:25 Phenanthrene 114 mg/L < 0.000182 0.0182 0.0180 99 0.0194 107 74-138 7 30 mg/L11.06.19 18:25 Pyrene

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
2-Fluorobiphenyl	133		133		137		54-146	%	11.06.19 18:25
Nitrobenzene-d5	135		132		138		46-151	%	11.06.19 18:25
Terphenyl-D14	136		125		128		51-139	%	11.06.19 18:25

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

= MS/LCS Result = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APS APS MGP Douglas, AZ

Prep Method: SW3511 Analytical Method: PAHs by SW846 8270D SIM 3106671 Seq Number: Matrix: Water Date Prep: 11.05.19

ala Id. 642000 057 9

Parent Sample Id:	642000-057		MS Sar	nple Id:	642000-03	57 S		N	ASD Sample	e Id: 642	000-057 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RF	D RPD Lim	it Units	Analysis Date	Flag
1-Methylnaphthalene	< 0.000188	0.0188	0.0211	112	0.0201	106	70-126	5	30	mg/L	11.06.19 19:15	
2-Methylnaphthalene	< 0.000188	0.0188	0.0205	109	0.0194	102	74-121	6	30	mg/L	11.06.19 19:15	
Acenaphthene	< 0.000188	0.0188	0.0208	111	0.0199	105	75-127	4	30	mg/L	11.06.19 19:15	
Acenaphthylene	< 0.000188	0.0188	0.0211	112	0.0199	105	78-133	6	30	mg/L	11.06.19 19:15	
Anthracene	< 0.000188	0.0188	0.0212	113	0.0204	107	73-145	4	30	mg/L	11.06.19 19:15	
Benzo(a)anthracene	< 0.000188	0.0188	0.0169	90	0.0171	90	77-131	1	30	mg/L	11.06.19 19:15	
Benzo(a)pyrene	< 0.000188	0.0188	0.0145	77	0.0154	81	56-163	6	30	mg/L	11.06.19 19:15	
Benzo(b)fluoranthene	< 0.000188	0.0188	0.0161	86	0.0162	85	74-138	1	30	mg/L	11.06.19 19:15	
Benzo(g,h,i)perylene	< 0.000188	0.0188	0.0131	70	0.0139	73	77-127	6	30	mg/L	11.06.19 19:15	X
Benzo(k)fluoranthene	< 0.000188	0.0188	0.0122	65	0.0139	73	67-142	13	30	mg/L	11.06.19 19:15	X
Chrysene	< 0.000188	0.0188	0.0146	78	0.0153	81	66-126	5	30	mg/L	11.06.19 19:15	
Dibenz(a,h)anthracene	< 0.000188	0.0188	0.0132	70	0.0143	75	71-142	8	30	mg/L	11.06.19 19:15	X
Fluoranthene	< 0.000188	0.0188	0.0211	112	0.0202	106	78-138	4	30	mg/L	11.06.19 19:15	
Fluorene	< 0.000188	0.0188	0.0212	113	0.0201	106	79-128	5	30	mg/L	11.06.19 19:15	
Indeno(1,2,3-c,d)Pyrene	< 0.000188	0.0188	0.0134	71	0.0144	76	76-140	7	30	mg/L	11.06.19 19:15	X
Naphthalene	< 0.000376	0.0188	0.0199	106	0.0190	100	72-122	5	30	mg/L	11.06.19 19:15	
Phenanthrene	< 0.000188	0.0188	0.0209	111	0.0199	105	76-129	5	30	mg/L	11.06.19 19:15	
Pyrene	< 0.000188	0.0188	0.0196	104	0.0188	99	74-138	4	30	mg/L	11.06.19 19:15	
Surrogate				AS Rec	MS Flag	MSD %Re			Limits	Units	Analysis Date	
2-Fluorobiphenyl			1	.37		130)		54-146	%	11.06.19 19:15	
Nitrobenzene-d5			1	.42		134			46-151	%	11.06.19 19:15	
Tarphanyl D14			1	00		105			51 130	0%	11 06 19 19:15	

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control SampleA = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix SpikeB = Spike Added D = MSD/LCSD % Rec

APSAPS MGP Douglas, AZ

Analytical Method:TCLP VOCs by SW-846 8260CPrep Method:SW5030BSeq Number:3106619Matrix:WaterDate Prep:11.06.19MB Sample Id:7689730-1-BLKLCS Sample Id:7689730-1-BKSLCSD Sample Id:7689730-1-BSD

MB Sample Id.	/009/30-1-DLK		LCS San	iipic ia.	1007130-	I-DIXS	Lebb bample ld. 7007730-1-bbb					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI	RPD Limit	t Units	Analysis Date	Flag
Benzene	< 0.00500	0.250	0.264	106	0.245	98	66-142	7	25	mg/L	11.06.19 11:08	
Methyl ethyl ketone	< 0.250	1.25	1.19	95	1.28	102	60-140	7	25	mg/L	11.06.19 11:08	
Carbon Tetrachloride	< 0.0250	0.250	0.308	123	0.284	114	62-125	8	25	mg/L	11.06.19 11:08	
Chlorobenzene	< 0.00500	0.250	0.251	100	0.238	95	60-133	5	25	mg/L	11.06.19 11:08	
Chloroform	< 0.00500	0.250	0.280	112	0.265	106	70-130	6	25	mg/L	11.06.19 11:08	
1,4-Dichlorobenzene	< 0.00500	0.250	0.263	105	0.250	100	75-125	5	25	mg/L	11.06.19 11:08	
1,2-Dichloroethane	< 0.00500	0.250	0.273	109	0.262	105	68-127	4	25	mg/L	11.06.19 11:08	
1,1-Dichloroethene	< 0.00500	0.250	0.308	123	0.284	114	59-172	8	25	mg/L	11.06.19 11:08	
Tetrachloroethylene	< 0.00500	0.250	0.284	114	0.265	106	71-125	7	25	mg/L	11.06.19 11:08	
Trichloroethylene	< 0.0250	0.250	0.255	102	0.243	97	62-137	5	25	mg/L	11.06.19 11:08	
Vinyl Chloride	< 0.0100	0.250	0.270	108	0.265	106	60-140	2	25	mg/L	11.06.19 11:08	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
Dibromofluoromethane	93		1	08		108		-	75-131	%	11.06.19 11:08	
1,2-Dichloroethane-D4	92		1	05		106		(53-144	%	11.06.19 11:08	
Toluene-D8	97		ç	98		100		8	30-117	%	11.06.19 11:08	
4-Bromofluorobenzene	102		1	02		98			74-124	%	11.06.19 11:08	

Analytical Method:TCLP VOCs by SW-846 8260CPrep Method:SW 5030BSeq Number:3106619Matrix:ProductDate Prep:11.06.19Parent Sample Id:641812-006MS Sample Id:641812-006 SMSD Sample Id:641812-006 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.0500	2.50	2.62	105	2.64	106	66-142	1	25	mg/L	11.06.19 11:54
Methyl ethyl ketone	< 2.50	12.5	12.2	98	12.5	100	60-140	2	25	mg/L	11.06.19 11:54
Carbon Tetrachloride	< 0.250	2.50	3.05	122	2.97	119	62-125	3	25	mg/L	11.06.19 11:54
Chlorobenzene	< 0.0500	2.50	2.49	100	2.40	96	60-133	4	25	mg/L	11.06.19 11:54
Chloroform	< 0.0500	2.50	2.75	110	2.66	106	70-130	3	25	mg/L	11.06.19 11:54
1,4-Dichlorobenzene	< 0.0500	2.50	2.53	101	2.39	96	75-125	6	25	mg/L	11.06.19 11:54
1,2-Dichloroethane	< 0.0500	2.50	2.66	106	2.74	110	68-127	3	25	mg/L	11.06.19 11:54
1,1-Dichloroethene	< 0.0500	2.50	3.05	122	2.87	115	59-172	6	25	mg/L	11.06.19 11:54
Tetrachloroethylene	< 0.0500	2.50	2.69	108	2.60	104	71-125	3	25	mg/L	11.06.19 11:54
Trichloroethylene	< 0.250	2.50	2.47	99	2.59	104	62-137	5	25	mg/L	11.06.19 11:54
Vinyl Chloride	< 0.100	2.50	2.56	102	2.52	101	60-140	2	25	mg/L	11.06.19 11:54

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	107		108		75-131	%	11.06.19 11:54
1,2-Dichloroethane-D4	107		111		63-144	%	11.06.19 11:54
Toluene-D8	101		103		80-117	%	11.06.19 11:54
4-Bromofluorobenzene	100		100		74-124	%	11.06.19 11:54

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(C\text{-A}) \, / \, B \\ RPD &= 200* \mid (C\text{-E}) \, / \, (C\text{+E}) \mid \\ [D] &= 100*(C) \, / \, [B] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result C = MS/LCS Result

E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec Flag

APS APS MGP Douglas, AZ

Prep Method: SW5030B Analytical Method: VOCs by SW-846 8260C Seq Number: 3106574 Matrix: Water Date Prep: 11.05.19 LCSD Sample Id: 7689701-1-BSD

LCS Sample Id: 7689701-1-BKS MB Sample Id: 7689701-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acetone	< 0.100	0.250	0.312	125	0.243	97	60-140	25	25	mg/L	11.05.19 09:30	
Benzene	< 0.00100	0.0500	0.0510	102	0.0483	97	66-142	5	25	mg/L	11.05.19 09:30	
Bromobenzene	< 0.00100	0.0500	0.0460	92	0.0456	91	75-125	1	25	mg/L	11.05.19 09:30	
Bromochloromethane	< 0.00100	0.0500	0.0513	103	0.0481	96	60-140	6	25	mg/L	11.05.19 09:30	
Bromodichloromethane	< 0.00100	0.0500	0.0511	102	0.0479	96	75-125	6	25	mg/L	11.05.19 09:30	
Bromoform	< 0.00500	0.0500	0.0510	102	0.0511	102	75-125	0	25	mg/L	11.05.19 09:30	
Methyl bromide	< 0.00500	0.0500	0.0514	103	0.0460	92	60-140	11	25	mg/L	11.05.19 09:30	
Methyl ethyl ketone	< 0.0500	0.250	0.267	107	0.237	95	60-140	12	25	mg/L	11.05.19 09:30	
n-Butylbenzene	< 0.00100	0.0500	0.0490	98	0.0481	96	75-125	2	25	mg/L	11.05.19 09:30	
Sec-Butylbenzene	< 0.00100	0.0500	0.0512	102	0.0488	98	75-125	5	25	mg/L	11.05.19 09:30	
tert-Butylbenzene	< 0.00100	0.0500	0.0492	98	0.0476	95	75-125	3	25	mg/L	11.05.19 09:30	
Carbon Disulfide	< 0.00500	0.0500	0.0509	102	0.0463	93	60-140	9	25	mg/L	11.05.19 09:30	
Carbon Tetrachloride	< 0.00500	0.0500	0.0578	116	0.0522	104	62-125	10	25	mg/L	11.05.19 09:30	
Chlorobenzene	< 0.00100	0.0500	0.0475	95	0.0463	93	60-133	3	25	mg/L	11.05.19 09:30	
Chloroethane	< 0.0100	0.0500	0.0527	105	0.0470	94	60-140	11	25	mg/L	11.05.19 09:30	
Chloroform	< 0.00100	0.0500	0.0522	104	0.0476	95	70-130	9	25	mg/L	11.05.19 09:30	
1-Chlorohexane	< 0.00500	0.0500	0.0481	96	0.0467	93	60-140	3	25	mg/L	11.05.19 09:30	
Methyl Chloride	< 0.0100	0.0500	0.0507	101	0.0457	91	60-140	10	25	mg/L	11.05.19 09:30	
2-Chlorotoluene	< 0.00100	0.0500	0.0481	96	0.0455	91	73-125	6	25	mg/L	11.05.19 09:30	
4-Chlorotoluene	< 0.00100	0.0500	0.0473	95	0.0454	91	74-125	4	25	mg/L	11.05.19 09:30	
Cyclohexane	<0.00100	0.0500	0.0567	113	0.0513	103	70-130	10	25	mg/L	11.05.19 09:30	
p-Cymene (p-Isopropyltoluene)	< 0.00300	0.0500	0.0507	100	0.0313	98	75-125	2	25	mg/L	11.05.19 09:30	
Dibromochloromethane	< 0.00100	0.0500	0.0528	106	0.0520	104	73-125	2	25	mg/L	11.05.19 09:30	
1,2-Dibromo-3-Chloropropane	< 0.00300	0.0500	0.0328	86	0.0320	88	59-125	2	25	mg/L	11.05.19 09:30	
1,2-Dibromoethane	< 0.00500	0.0500	0.0508	102	0.0438	100	73-125	2	25	mg/L	11.05.19 09:30	
Methylene Bromide	< 0.00300	0.0500	0.0308	95	0.0455	90	69-127	5	25	mg/L	11.05.19 09:30	
1,2-Dichlorobenzene	< 0.00100	0.0500	0.0470	94	0.0451	93	75-125	1	25	mg/L	11.05.19 09:30	
1,3-Dichlorobenzene	< 0.00100	0.0500	0.0484	94 97	0.0403	93	75-125 75-125	3	25 25	mg/L	11.05.19 09:30	
1,4-Dichlorobenzene	< 0.00100	0.0500	0.0484	97 95	0.0470	92	75-125 75-125	3	25 25	-	11.05.19 09:30	
Dichlorodifluoromethane		0.0500	0.0474	111	0.0487	97	60-140	13	25 25	mg/L	11.05.19 09:30	
	<0.00100		0.0534		0.0487			9	25 25	mg/L	11.05.19 09:30	
1,1-Dichloroethane	<0.00100 <0.00100	0.0500	0.0313	103 96	0.0471	94 90	72-125 68-127	9 7	25 25	mg/L	11.05.19 09:30	
1,2-Dichloroethane 1,1-Dichloroethene		0.0500					59-172		25 25	mg/L	11.05.19 09:30	
<i>'</i>	<0.00100	0.0500	0.0524 0.0519	105 104	0.0482 0.0480	96	75-125	8 8	25 25	mg/L	11.05.19 09:30	
cis-1,2-Dichloroethylene	<0.00100	0.0500				96				mg/L	11.05.19 09:30	
trans-1,2-dichloroethylene	<0.00100	0.0500	0.0524	105	0.0482	96	75-125 74-125	8	25 25	mg/L	11.05.19 09:30	
1,2-Dichloropropane	<0.00500	0.0500	0.0510	102	0.0482	96	74-125 75-125	6	25 25	mg/L	11.05.19 09:30	
1,3-Dichloropropane	<0.00500	0.0500	0.0503	101	0.0494	99		2		mg/L		
2,2-Dichloropropane	<0.00500	0.0500	0.0570	114	0.0510	102	75-125	11	25	mg/L	11.05.19 09:30	
1,1-Dichloropropene	<0.00500	0.0500	0.0556	111	0.0508	102	75-125	9	25	mg/L	11.05.19 09:30	
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0537	107	0.0505	101	74-125	6	25	mg/L	11.05.19 09:30	
trans-1,3-dichloropropene	<0.00500	0.0500	0.0521	104	0.0510	102	66-125	2	25	mg/L	11.05.19 09:30	
Ethylbenzene	<0.00100	0.0500	0.0487	97	0.0468	94	75-125	4	25	mg/L	11.05.19 09:30	
Hexachlorobutadiene	<0.00500	0.0500	0.0496	99	0.0520	104	75-125	5	25	mg/L	11.05.19 09:30	
2-Hexanone	< 0.0500	0.250	0.233	93	0.225	90	60-140	3	25	mg/L	11.05.19 09:30	
Isopropylbenzene	< 0.00100	0.0500	0.0499	100	0.0475	95	75-125	5	25	mg/L	11.05.19 09:30	
Methylcyclohexane	< 0.0100	0.0500	0.0522	104	0.0484	97	75-125	8	25	mg/L	11.05.19 09:30	
Methylene Chloride	< 0.0100	0.0500	0.0471	94	0.0444	89	75-125	6	25	mg/L	11.05.19 09:30	
Methyl iodide	< 0.0200	0.0500	0.0551	110	0.0506	101	75-125	9	25	mg/L	11.05.19 09:30	
4-Methyl-2-Pentanone	< 0.0500	0.250	0.234	94	0.233	93	60-140	0	25	mg/L	11.05.19 09:30	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery

Log Difference

 $[D] = 100*(C-A) \, / \, B$ RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B]

 $Log\ Diff. = Log(Sample\ Duplicate)\ -\ Log(Original\ Sample)$

 $LCS = Laboratory\ Control\ Sample$

A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix SpikeB = Spike Added D = MSD/LCSD % Rec

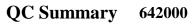
APS APS MGP Douglas, AZ

Analytical Method:VOCs by SW-846 8260CPrep Method:SW5030BSeq Number:3106574Matrix:WaterDate Prep:11.05.19

MB Sample Id: 7689701-1-BLK LCS Sample Id: 7689701-1-BKS

LCSD Sample Id: 7689701-1-BSD

RPD RPD Limit Units Analysis Flag


Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	1
MTBE	< 0.00500	0.0500	0.0516	103	0.0510	102	65-135	1	25	mg/L	11.05.19 09:30	
Naphthalene	< 0.0100	0.0500	0.0467	93	0.0480	96	70-130	3	25	mg/L	11.05.19 09:30	
n-Propylbenzene	< 0.00100	0.0500	0.0489	98	0.0455	91	75-125	7	25	mg/L	11.05.19 09:30	
Styrene	< 0.00100	0.0500	0.0509	102	0.0483	97	75-125	5	25	mg/L	11.05.19 09:30	
1,1,1,2-Tetrachloroethane	< 0.00100	0.0500	0.0502	100	0.0500	100	72-125	0	25	mg/L	11.05.19 09:30	
1,1,2,2-Tetrachloroethane	< 0.00100	0.0500	0.0459	92	0.0470	94	74-125	2	25	mg/L	11.05.19 09:30	
Tetrachloroethene	< 0.00100	0.0500	0.0490	98	0.0471	94	71-125	4	25	mg/L	11.05.19 09:30	
Toluene	< 0.00100	0.0500	0.0482	96	0.0470	94	59-139	3	25	mg/L	11.05.19 09:30	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0466	93	0.0480	96	75-137	3	25	mg/L	11.05.19 09:30	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0465	93	0.0456	91	75-135	2	25	mg/L	11.05.19 09:30	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0548	110	0.0504	101	75-125	8	25	mg/L	11.05.19 09:30	
1,1,2-Trichloroethane	< 0.00100	0.0500	0.0505	101	0.0503	101	75-127	0	25	mg/L	11.05.19 09:30	
Trichloroethylene	< 0.00500	0.0500	0.0514	103	0.0487	97	62-137	5	25	mg/L	11.05.19 09:30	
Trichlorofluoromethane	< 0.00100	0.0500	0.0535	107	0.0470	94	60-140	13	25	mg/L	11.05.19 09:30	
1,2,3-Trichloropropane	< 0.00100	0.0500	0.0453	91	0.0448	90	75-125	1	25	mg/L	11.05.19 09:30	
1,2,4-Trimethylbenzene	< 0.00100	0.0500	0.0464	93	0.0460	92	75-125	1	25	mg/L	11.05.19 09:30	
1,3,5-Trimethylbenzene	< 0.00100	0.0500	0.0482	96	0.0467	93	70-125	3	25	mg/L	11.05.19 09:30	
o-Xylene	< 0.00100	0.0500	0.0494	99	0.0476	95	75-125	4	25	mg/L	11.05.19 09:30	
m,p-Xylenes	< 0.0100	0.100	0.0987	99	0.0942	94	75-125	5	25	mg/L	11.05.19 09:30	
Vinyl Acetate	< 0.0500	0.250	0.273	109	0.262	105	60-140	4	25	mg/L	11.05.19 09:30	
Vinyl Chloride	< 0.00200	0.0500	0.0557	111	0.0492	98	60-140	12	25	mg/L	11.05.19 09:30	
1,3-Butadiene	< 0.00100	0.0500	0.0534	107	0.0476	95	70-150	11	25	mg/L	11.05.19 09:30	
Dicyclopentadiene	< 0.00500	0.0500	0.0481	96	0.0471	94	70-120	2	25	mg/L	11.05.19 09:30	
n-Hexane	< 0.00500	0.0500	0.0565	113	0.0527	105	72-125	7	25	mg/L	11.05.19 09:30	

Surrogate	MB MI %Rec Fla		LCSD LCSD %Rec Flag	Limits	Units	Analysis Date
Dibromofluoromethane	103	106	102	75-131	%	11.05.19 09:30
1,2-Dichloroethane-D4	107	99	98	63-144	%	11.05.19 09:30
Toluene-D8	97	98	100	80-117	%	11.05.19 09:30
4-Bromofluorobenzene	100	97	98	74-124	%	11.05.19 09:30

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Log Difference

APS APS MGP Douglas, AZ

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B 3106574 Seq Number: Matrix: Water Date Prep: 11.05.19

MS Sample Id: 641836-001 S Parent Sample Id: 641836-001

Tarent Sample Id. 041030	-001		IVID Dui	inpic ia.	1050 001 5			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
Acetone	< 0.100	0.250	0.195	78	60-140	mg/L	11.05.19 19:34	
Benzene	0.00125	0.0500	0.0491	96	66-142	mg/L	11.05.19 19:34	
Bromobenzene	< 0.00100	0.0500	0.0426	85	75-125	mg/L	11.05.19 19:34	
Bromochloromethane	< 0.00100	0.0500	0.0467	93	60-140	mg/L	11.05.19 19:34	
Bromodichloromethane	< 0.00100	0.0500	0.0475	95	75-125	mg/L	11.05.19 19:34	
Bromoform	< 0.00500	0.0500	0.0457	91	75-125	mg/L	11.05.19 19:34	
Methyl bromide	< 0.00500	0.0500	0.0467	93	60-140	mg/L	11.05.19 19:34	
Methyl ethyl ketone	< 0.0500	0.250	0.217	87	60-140	mg/L	11.05.19 19:34	
n-Butylbenzene	< 0.00100	0.0500	0.0432	86	75-125	mg/L	11.05.19 19:34	
Sec-Butylbenzene	< 0.00100	0.0500	0.0459	92	75-125	mg/L	11.05.19 19:34	
tert-Butylbenzene	< 0.00100	0.0500	0.0448	90	75-125	mg/L	11.05.19 19:34	
Carbon Disulfide	< 0.00500	0.0500	0.0409	82	60-140	mg/L	11.05.19 19:34	
Carbon Tetrachloride	< 0.00500	0.0500	0.0507	101	62-125	mg/L	11.05.19 19:34	
Chlorobenzene	< 0.00100	0.0500	0.0443	89	60-133	mg/L	11.05.19 19:34	
Chloroethane	< 0.0100	0.0500	0.0446	89	60-140	mg/L	11.05.19 19:34	
Chloroform	< 0.00100	0.0500	0.0486	97	70-130	mg/L	11.05.19 19:34	
1-Chlorohexane	< 0.00500	0.0500	0.0428	86	60-140	mg/L	11.05.19 19:34	
Methyl Chloride	< 0.0100	0.0500	0.0452	90	60-140	mg/L	11.05.19 19:34	
2-Chlorotoluene	< 0.00100	0.0500	0.0433	87	73-125	mg/L	11.05.19 19:34	
4-Chlorotoluene	< 0.00100	0.0500	0.0429	86	74-125	mg/L	11.05.19 19:34	
Cyclohexane	< 0.00500	0.0500	0.0478	96	70-130	mg/L	11.05.19 19:34	
p-Cymene (p-Isopropyltoluene)	< 0.00100	0.0500	0.0445	89	75-125	mg/L	11.05.19 19:34	
Dibromochloromethane	< 0.00500	0.0500	0.0478	96	73-125	mg/L	11.05.19 19:34	
1,2-Dibromo-3-Chloropropane	< 0.00100	0.0500	0.0372	74	59-125	mg/L	11.05.19 19:34	
1,2-Dibromoethane	< 0.00500	0.0500	0.0458	92	73-125	mg/L	11.05.19 19:34	
Methylene Bromide	< 0.00100	0.0500	0.0444	89	69-127	mg/L	11.05.19 19:34	
1,2-Dichlorobenzene	< 0.00100	0.0500	0.0432	86	75-125	mg/L	11.05.19 19:34	
1,3-Dichlorobenzene	< 0.00100	0.0500	0.0434	87	75-125	mg/L	11.05.19 19:34	
1,4-Dichlorobenzene	< 0.00100	0.0500	0.0430	86	75-125	mg/L	11.05.19 19:34	
Dichlorodifluoromethane	< 0.00100	0.0500	0.0398	80	60-140	mg/L	11.05.19 19:34	
1,1-Dichloroethane	< 0.00100	0.0500	0.0479	96	72-125	mg/L	11.05.19 19:34	
1,2-Dichloroethane	0.000860	0.0500	0.0460	90	68-127	mg/L	11.05.19 19:34	
1,1-Dichloroethene	< 0.00100	0.0500	0.0455	91	59-172	mg/L	11.05.19 19:34	
cis-1,2-Dichloroethylene	< 0.00100	0.0500	0.0485	97	75-125	mg/L	11.05.19 19:34	
trans-1,2-dichloroethylene	< 0.00100	0.0500	0.0465	93	75-125	mg/L	11.05.19 19:34	
1,2-Dichloropropane	< 0.00500	0.0500	0.0484	97	74-125	mg/L	11.05.19 19:34	
1,3-Dichloropropane	< 0.00500	0.0500	0.0464	93	75-125	mg/L	11.05.19 19:34	
2,2-Dichloropropane	< 0.00500	0.0500	0.0496	99	75-125 75-125	mg/L	11.05.19 19:34	
1,1-Dichloropropene	< 0.00500	0.0500	0.0490	98	75-125 75-125	mg/L mg/L	11.05.19 19:34	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0430	97	74-125	mg/L	11.05.19 19:34	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0466	93	66-125	mg/L	11.05.19 19:34	
Ethylbenzene	< 0.00100	0.0500	0.0440	88	75-125	mg/L mg/L	11.05.19 19:34	
Hexachlorobutadiene	< 0.00500	0.0500	0.0440	82	75-125 75-125	mg/L mg/L	11.05.19 19:34	
2-Hexanone	< 0.0500	0.0300	0.0410	84	60-140	mg/L	11.05.19 19:34	
Isopropylbenzene	< 0.00100	0.230	0.210	90	75-125	_	11.05.19 19:34	
			0.0448	88		mg/L	11.05.19 19:34	
Methylcyclohexane	< 0.0100	0.0500			75-125	mg/L		
Methylene Chloride Methyl iodide	<0.0100	0.0500	0.0436	87 54	75-125 75-125	mg/L	11.05.19 19:34 11.05.19 19:34	v
•	<0.0200	0.0500	0.0271	54	75-125 60 140	mg/L		X
4-Methyl-2-Pentanone	< 0.0500	0.250	0.227	91	60-140	mg/L	11.05.19 19:34	
MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference	[D] = 100 * ((C-E) / (C+E) (C) / [B]		g(Original Samp	LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result le) E = MSD/LCSD Result	$B = S_1$	Matrix Spike pike Added SD/LCSD % Rec	

Page 179 of 194

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

Final 1.000


APSAPS MGP Douglas, AZ

Analytical Method:VOCs by SW-846 8260CPrep Method:SW5030BSeq Number:3106574Matrix: WaterDate Prep:11.05.19

Parent Sample Id: 641836-001 MS Sample Id: 641836-001 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
MTBE	< 0.00500	0.0500	0.0486	97	65-135	mg/L	11.05.19 19:34	
Naphthalene	< 0.0100	0.0500	0.0377	75	70-130	mg/L	11.05.19 19:34	
n-Propylbenzene	< 0.00100	0.0500	0.0435	87	75-125	mg/L	11.05.19 19:34	
Styrene	< 0.00100	0.0500	0.0456	91	75-125	mg/L	11.05.19 19:34	
1,1,1,2-Tetrachloroethane	< 0.00100	0.0500	0.0462	92	72-125	mg/L	11.05.19 19:34	
1,1,2,2-Tetrachloroethane	< 0.00100	0.0500	0.0432	86	74-125	mg/L	11.05.19 19:34	
Tetrachloroethene	< 0.00100	0.0500	0.0424	85	71-125	mg/L	11.05.19 19:34	
Toluene	< 0.00100	0.0500	0.0444	89	59-139	mg/L	11.05.19 19:34	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0354	71	75-137	mg/L	11.05.19 19:34	X
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0387	77	75-135	mg/L	11.05.19 19:34	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0501	100	75-125	mg/L	11.05.19 19:34	
1,1,2-Trichloroethane	< 0.00100	0.0500	0.0476	95	75-127	mg/L	11.05.19 19:34	
Trichloroethylene	< 0.00500	0.0500	0.0469	94	62-137	mg/L	11.05.19 19:34	
Trichlorofluoromethane	< 0.00100	0.0500	0.0448	90	60-140	mg/L	11.05.19 19:34	
1,2,3-Trichloropropane	< 0.00100	0.0500	0.0422	84	75-125	mg/L	11.05.19 19:34	
1,2,4-Trimethylbenzene	< 0.00100	0.0500	0.0424	85	75-125	mg/L	11.05.19 19:34	
1,3,5-Trimethylbenzene	< 0.00100	0.0500	0.0436	87	70-125	mg/L	11.05.19 19:34	
o-Xylene	< 0.00100	0.0500	0.0453	91	75-125	mg/L	11.05.19 19:34	
m,p-Xylenes	< 0.0100	0.100	0.0892	89	75-125	mg/L	11.05.19 19:34	
Vinyl Acetate	< 0.0500	0.250	0.240	96	60-140	mg/L	11.05.19 19:34	
Vinyl Chloride	< 0.00200	0.0500	0.0458	92	60-140	mg/L	11.05.19 19:34	
1,3-Butadiene	< 0.00100	0.0500	0.0417	83	70-150	mg/L	11.05.19 19:34	
Dicyclopentadiene	< 0.00500	0.0500	0.0431	86	70-120	mg/L	11.05.19 19:34	
n-Hexane	< 0.00500	0.0500	0.0446	89	72-125	mg/L	11.05.19 19:34	
					MC	T::4- T:-:4-	A I	

Surrogate	MS %Rec	MS Flag	Limits	Units	Analysis Date
Dibromofluoromethane	106		75-131	%	11.05.19 19:34
1,2-Dichloroethane-D4	102		63-144	%	11.05.19 19:34
Toluene-D8	98		80-117	%	11.05.19 19:34
4-Bromofluorobenzene	96		74-124	%	11.05.19 19:34

APS APS MGP Douglas, AZ

Prep Method: SW5035A Analytical Method: Volatiles by SW 8260C Seq Number: 3106502 Matrix: Solid Date Prep: 11.05.19

LCS Sample Id: 7689655-1-BKS LCSD Sample Id: 7689655-1-BSD MB Sample Id: 7689655-1-BLK

MB Sample Id: 76896	55-1-BLK		LCS Sai	npie ia:	/089055-	1-BK2		LCS	D Sample	Iu: /68	99033-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0489	98	0.0505	101	72-125	3	25	mg/kg	11.05.19 10:46	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0476	95	0.0491	98	75-125	3	25	mg/kg	11.05.19 10:46	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0485	97	0.0491	98	74-125	1	25	mg/kg	11.05.19 10:46	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0490	98	0.0494	99	75-127	1	25	mg/kg	11.05.19 10:46	
1,1-Dichloroethane	< 0.00500	0.0500	0.0485	97	0.0503	101	72-125	4	25	mg/kg	11.05.19 10:46	
1,1-Dichloroethene	< 0.00500	0.0500	0.0511	102	0.0524	105	59-172	3	25	mg/kg	11.05.19 10:46	
1,1-Dichloropropene	< 0.00500	0.0500	0.0506	101	0.0523	105	75-125	3	25	mg/kg	11.05.19 10:46	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0482	96	0.0508	102	75-137	5	25	mg/kg	11.05.19 10:46	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0474	95	0.0483	97	75-125	2	25	mg/kg	11.05.19 10:46	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0499	100	0.0521	104	75-135	4	25	mg/kg	11.05.19 10:46	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0478	96	0.0489	98	75-125	2	25	mg/kg	11.05.19 10:46	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0441	88	0.0448	90	59-125	2	25	mg/kg	11.05.19 10:46	
1,2-Dibromoethane	< 0.00500	0.0500	0.0480	96	0.0485	97	73-125	1	25	mg/kg	11.05.19 10:46	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0483	97	0.0501	100	75-125	4	25	mg/kg	11.05.19 10:46	
1,2-Dichloroethane	< 0.00500	0.0500	0.0453	91	0.0462	92	68-127	2	25	mg/kg	11.05.19 10:46	
1,2-Dichloropropane	< 0.00500	0.0500	0.0480	96	0.0487	97	74-125	1	25	mg/kg	11.05.19 10:46	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0514	103	0.0530	106	70-130	3	25	mg/kg	11.05.19 10:46	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0491	98	0.0500	100	75-125	2	25	mg/kg	11.05.19 10:46	
1,3-Dichloropropane	< 0.00500	0.0500	0.0496	99	0.0504	101	75-125	2	25	mg/kg	11.05.19 10:46	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0486	97	0.0505	101	75-125	4	25	mg/kg	11.05.19 10:46	
2,2-Dichloropropane	< 0.00500	0.0500	0.0489	98	0.0507	101	75-125	4	25	mg/kg	11.05.19 10:46	
2-Butanone	< 0.0200	0.250	0.195	78	0.195	78	75-125	0	25	mg/kg	11.05.19 10:46	
2-Chlorotoluene	< 0.00500	0.0500	0.193	99	0.0514	103	73-125	3	25	mg/kg	11.05.19 10:46	
2-Hexanone	< 0.0500	0.250	0.214	86	0.216	86	75-125	1	25	mg/kg	11.05.19 10:46	
4-Chlorotoluene	< 0.00500	0.0500	0.0484	97	0.0500	100	74-125	3	25	mg/kg	11.05.19 10:46	
4-Methyl-2-Pentanone	< 0.0500	0.0300	0.225	90	0.0300	90	60-140	0	25	mg/kg	11.05.19 10:46	
Acetone	< 0.100	0.250	0.223	62	0.223	62	50-150	1	25	mg/kg	11.05.19 10:46	
Benzene	< 0.100	0.0500	0.133	96	0.134	98	66-142	2	25	mg/kg	11.05.19 10:46	
Bromobenzene	< 0.00100	0.0500	0.0482	98	0.0491	101	75-125	4	25		11.05.19 10:46	
Bromochloromethane	< 0.00500	0.0500	0.0460	92	0.0300	94	60-140	2	25	mg/kg	11.05.19 10:46	
Bromodichloromethane	< 0.00500	0.0500	0.0469	94	0.0471	96	75-125	2	25	mg/kg	11.05.19 10:46	
Bromoform	< 0.00500		0.0469	99	0.0479		75-125 75-125	3	25 25	mg/kg	11.05.19 10:46	
		0.0500	0.0493	99 77	0.0309	102 81	60-140	5 5	25 25	mg/kg	11.05.19 10:46	
Bromomethane	<0.00500	0.0500						3 4		mg/kg		
Carbon Disulfide	<0.00500	0.0500	0.0560	112	0.0581	116	60-140		25 25	mg/kg	11.05.19 10:46	
Carbon Tetrachloride	<0.00500	0.0500	0.0505	101	0.0525	105	62-125	4	25 25	mg/kg	11.05.19 10:46	
Chlorobenzene	< 0.00500	0.0500	0.0485	97	0.0491	98	60-133	1	25	mg/kg	11.05.19 10:46	
Chloroethane	<0.0100	0.0500	0.0399	80	0.0416	83	60-140	4	25	mg/kg	11.05.19 10:46	
Chloroform	<0.00500	0.0500	0.0458	92	0.0471	94	74-125	3	25	mg/kg	11.05.19 10:46	
Chloromethane	<0.00500	0.0500	0.0454	91	0.0468	94	60-140	3	25	mg/kg	11.05.19 10:46	
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0465	93	0.0475	95	75-125	2	25	mg/kg	11.05.19 10:46	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0496	99	0.0507	101	74-125	2	25	mg/kg	11.05.19 10:46	
Dibromochloromethane	< 0.00500	0.0500	0.0490	98	0.0497	99	73-125	1	25	mg/kg	11.05.19 10:46	
Dibromomethane	< 0.00500	0.0500	0.0471	94	0.0485	97	69-127	3	25	mg/kg	11.05.19 10:46	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0597	119	0.0619	124	65-135	4	25	mg/kg	11.05.19 10:46	
Ethylbenzene	< 0.00100	0.0500	0.0490	98	0.0502	100	75-125	2	25	mg/kg	11.05.19 10:46	
Hexachlorobutadiene	< 0.00500	0.0500	0.0532	106	0.0561	112	75-125	5	25	mg/kg	11.05.19 10:46	
Iodomethane (Methyl Iodide)	< 0.0200	0.0500	0.0404	81	0.0417	83	75-125	3	25	mg/kg	11.05.19 10:46	
Isopropylbenzene	< 0.00500	0.0500	0.0514	103	0.0527	105	75-125	2	25	mg/kg	11.05.19 10:46	
m,p-Xylenes	< 0.00200	0.100	0.0994	99	0.100	100	75-125	1	25	mg/kg	11.05.19 10:46	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

 $[D] = 100*(C-A) \, / \, B$ RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

 $LCS = Laboratory\ Control\ Sample$

A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix SpikeB = Spike Added D = MSD/LCSD % Rec

QC Summary 642000

APS APS MGP Douglas, AZ

Prep Method: SW5035A Analytical Method: Volatiles by SW 8260C Seq Number: 3106502 Matrix: Solid Date Prep: 11.05.19

LCS Sample Id: 7689655-1-BKS MB Sample Id: 7689655-1-BLK

LCSD Sample Id: 7689655-1-BSD Flag

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	F
Methylene Chloride	< 0.0200	0.0500	0.0494	99	0.0508	102	75-125	3	25	mg/kg	11.05.19 10:46	
MTBE	< 0.00500	0.0500	0.0449	90	0.0468	94	60-140	4	25	mg/kg	11.05.19 10:46	
Naphthalene	< 0.0100	0.0500	0.0491	98	0.0522	104	70-130	6	25	mg/kg	11.05.19 10:46	
n-Butylbenzene	< 0.00500	0.0500	0.0504	101	0.0523	105	75-125	4	25	mg/kg	11.05.19 10:46	
n-Propylbenzene	< 0.00500	0.0500	0.0508	102	0.0524	105	75-125	3	25	mg/kg	11.05.19 10:46	
o-Xylene	< 0.00100	0.0500	0.0501	100	0.0519	104	75-125	4	25	mg/kg	11.05.19 10:46	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0482	96	0.0497	99	75-125	3	25	mg/kg	11.05.19 10:46	
Sec-Butylbenzene	< 0.00500	0.0500	0.0502	100	0.0519	104	75-125	3	25	mg/kg	11.05.19 10:46	
Styrene	< 0.00500	0.0500	0.0490	98	0.0502	100	75-125	2	25	mg/kg	11.05.19 10:46	
tert-Butylbenzene	< 0.00500	0.0500	0.0548	110	0.0568	114	75-125	4	25	mg/kg	11.05.19 10:46	
Tetrachloroethylene	< 0.00500	0.0500	0.0533	107	0.0537	107	71-125	1	25	mg/kg	11.05.19 10:46	
Toluene	< 0.00500	0.0500	0.0483	97	0.0495	99	59-139	2	25	mg/kg	11.05.19 10:46	
trans-1,2-dichloroethene	< 0.00500	0.0500	0.0475	95	0.0502	100	75-125	6	25	mg/kg	11.05.19 10:46	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0495	99	0.0501	100	66-125	1	25	mg/kg	11.05.19 10:46	
Trichloroethene	< 0.00500	0.0500	0.0446	89	0.0451	90	62-137	1	25	mg/kg	11.05.19 10:46	
Trichlorofluoromethane	< 0.00500	0.0500	0.0451	90	0.0465	93	67-125	3	25	mg/kg	11.05.19 10:46	
Vinyl Acetate	< 0.0100	0.250	0.198	79	0.201	80	60-140	2	25	mg/kg	11.05.19 10:46	
Vinyl Chloride	< 0.00500	0.0500	0.0466	93	0.0482	96	60-140	3	25	mg/kg	11.05.19 10:46	
1,3-Butadiene	< 0.00500	0.0500	0.0593	119	0.0633	127	70-130	7	25	mg/kg	11.05.19 10:46	
Cyclohexane	< 0.00500	0.0500	0.0494	99	0.0512	102	70-130	4	25	mg/kg	11.05.19 10:46	
Dicyclopentadiene	< 0.00500	0.0500	0.0445	89	0.0461	92	70-120	4	25	mg/kg	11.05.19 10:46	
Methylcyclohexane	< 0.0100	0.0500	0.0522	104	0.0532	106	65-135	2	25	mg/kg	11.05.19 10:46	
n-Hexane	< 0.0100	0.0500	0.0462	92	0.0476	95	72-125	3	25	mg/kg	11.05.19 10:46	
4-Ethyltoluene	< 0.00500	0.0500	0.0507	101	0.0520	104	70-130	3	25	mg/kg	11.05.19 10:46	
Propene	< 0.00500	0.0500	0.0389	78	0.0413	83	70-130	6	25	mg/kg	11.05.19 10:46	

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	101		96		98		53-142	%	11.05.19 10:46
1,2-Dichloroethane-D4	102		101		100		56-150	%	11.05.19 10:46
Toluene-D8	102		102		101		70-130	%	11.05.19 10:46
4-Bromofluorobenzene	97		97		98		68-152	%	11.05.19 10:46

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

 $LCS = Laboratory\ Control\ Sample$ A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix SpikeB = Spike Added D = MSD/LCSD % Rec

QC Summary 642000

APS APS MGP Douglas, AZ

Prep Method: SW5035A Analytical Method: Volatiles by SW 8260C 3106502 Seq Number: Matrix: Soil Date Prep: 11.05.19

MS Sample Id: 641856-005 S Parent Sample Id: 641856-005

Parent Sample Id: 641856	5-005		MS Sar	npie ia: 6	41856-005 8			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00470	0.0470	0.0432	92	72-125	mg/kg	11.05.19 11:32	
1,1,1-Trichloroethane	< 0.00470	0.0470	0.0435	93	75-125	mg/kg	11.05.19 11:32	
1,1,2,2-Tetrachloroethane	< 0.00470	0.0470	0.0450	96	74-125	mg/kg	11.05.19 11:32	
1,1,2-Trichloroethane	< 0.00470	0.0470	0.0411	87	75-127	mg/kg	11.05.19 11:32	
1,1-Dichloroethane	< 0.00470	0.0470	0.0435	93	72-125	mg/kg	11.05.19 11:32	
1,1-Dichloroethene	< 0.00470	0.0470	0.0454	97	59-172	mg/kg	11.05.19 11:32	
1,1-Dichloropropene	< 0.00470	0.0470	0.0454	97	75-125	mg/kg	11.05.19 11:32	
1,2,3-Trichlorobenzene	< 0.00470	0.0470	0.0269	57	75-137	mg/kg	11.05.19 11:32	X
1,2,3-Trichloropropane	< 0.00470	0.0470	0.0434	92	75-125	mg/kg	11.05.19 11:32	
1,2,4-Trichlorobenzene	< 0.00470	0.0470	0.0300	64	75-135	mg/kg	11.05.19 11:32	X
1,2,4-Trimethylbenzene	< 0.000239	0.0470	0.0441	94	75-125	mg/kg	11.05.19 11:32	
1,2-Dibromo-3-Chloropropane	< 0.00470	0.0470	0.0398	85	59-125	mg/kg	11.05.19 11:32	
1,2-Dibromoethane	< 0.00470	0.0470	0.0408	87	73-125	mg/kg	11.05.19 11:32	
1,2-Dichlorobenzene	< 0.00470	0.0470	0.0399	85	75-125	mg/kg	11.05.19 11:32	
1,2-Dichloroethane	< 0.00470	0.0470	0.0385	82	68-127	mg/kg	11.05.19 11:32	
1,2-Dichloropropane	< 0.00470	0.0470	0.0420	89	74-125	mg/kg	11.05.19 11:32	
1,3,5-Trimethylbenzene	< 0.00470	0.0470	0.0487	104	70-130	mg/kg	11.05.19 11:32	
1,3-Dichlorobenzene	< 0.00470	0.0470	0.0419	89	75-125	mg/kg	11.05.19 11:32	
1,3-Dichloropropane	< 0.00470	0.0470	0.0420	89	75-125	mg/kg	11.05.19 11:32	
1,4-Dichlorobenzene	< 0.00470	0.0470	0.0411	87	75-125	mg/kg	11.05.19 11:32	
2,2-Dichloropropane	< 0.00470	0.0470	0.0451	96	75-125	mg/kg	11.05.19 11:32	
2-Butanone	0.0138	0.235	0.161	63	75-125	mg/kg	11.05.19 11:32	X
2-Chlorotoluene	< 0.00470	0.0470	0.0475	101	73-125	mg/kg	11.05.19 11:32	
2-Hexanone	< 0.0470	0.235	0.171	73	75-125	mg/kg	11.05.19 11:32	X
4-Chlorotoluene	< 0.00470	0.0470	0.0454	97	74-125	mg/kg	11.05.19 11:32	
4-Methyl-2-Pentanone	< 0.0470	0.235	0.179	76	60-140	mg/kg	11.05.19 11:32	
Acetone	0.0602	0.235	0.155	40	50-150	mg/kg	11.05.19 11:32	X
Benzene	0.000874	0.0470	0.0430	90	66-142	mg/kg	11.05.19 11:32	
Bromobenzene	< 0.00470	0.0470	0.0448	95	75-125	mg/kg	11.05.19 11:32	
Bromochloromethane	< 0.00470	0.0470	0.0397	84	60-140	mg/kg	11.05.19 11:32	
Bromodichloromethane	< 0.00470	0.0470	0.0401	85	75-125	mg/kg	11.05.19 11:32	
Bromoform	< 0.00470	0.0470	0.0408	87	75-125	mg/kg	11.05.19 11:32	
Bromomethane	< 0.00470	0.0470	0.0386	82	60-140	mg/kg	11.05.19 11:32	
Carbon Disulfide	0.000644	0.0470	0.0509	107	60-140	mg/kg	11.05.19 11:32	
Carbon Tetrachloride	< 0.00470	0.0470	0.0460	98	62-125	mg/kg	11.05.19 11:32	
Chlorobenzene	< 0.00470	0.0470	0.0416	89	60-133	mg/kg	11.05.19 11:32	
Chloroethane	< 0.00939	0.0470	0.0365	78	60-140	mg/kg	11.05.19 11:32	
Chloroform	< 0.00470	0.0470	0.0409	87	74-125	mg/kg	11.05.19 11:32	
Chloromethane	< 0.00470	0.0470	0.0441	94	60-140	mg/kg	11.05.19 11:32	
cis-1,2-Dichloroethene	< 0.00470	0.0470	0.0409	87	75-125	mg/kg	11.05.19 11:32	
cis-1,3-Dichloropropene	< 0.00470	0.0470	0.0416	89	74-125	mg/kg	11.05.19 11:32	
Dibromochloromethane	< 0.00470	0.0470	0.0410	87	73-125	mg/kg	11.05.19 11:32	
Dibromomethane	< 0.00470	0.0470	0.0390	83	69-127	mg/kg	11.05.19 11:32	
Dichlorodifluoromethane	< 0.00470	0.0470	0.0536	114	65-135	mg/kg	11.05.19 11:32	
Ethylbenzene	< 0.000315	0.0470	0.0436	93	75-125	mg/kg	11.05.19 11:32	
Hexachlorobutadiene	< 0.00470	0.0470	0.0343	73	75-125	mg/kg	11.05.19 11:32	X
Iodomethane (Methyl Iodide)	< 0.0188	0.0470	0.0343	73 77	75-125 75-125	mg/kg	11.05.19 11:32	21
Isopropylbenzene	< 0.0188	0.0470	0.0304	95	75-125 75-125	mg/kg	11.05.19 11:32	
m,p-Xylenes	<0.00470	0.0939	0.0870	93	75-125	mg/kg	11.05.19 11:32	
MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference	[D] = 100 * ((C-E) / (C+E)		g(Original Sam	LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result pple) E = MSD/LCSD Result	$B = S_I$	Matrix Spike bike Added SD/LCSD % Rec	

Page 183 of 194

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

Log Difference

Final 1.000

E = MSD/LCSD Result

QC Summary 642000

APS APS MGP Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW 5035ASeq Number:3106502Matrix: SoilDate Prep:11.05.19

Parent Sample Id: 641856-005 MS Sample Id: 641856-005 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
Methylene Chloride	< 0.00396	0.0470	0.0458	97	75-125	mg/kg	11.05.19 11:32	
MTBE	< 0.00470	0.0470	0.0382	81	60-140	mg/kg	11.05.19 11:32	
Naphthalene	< 0.00188	0.0470	0.0304	65	70-130	mg/kg	11.05.19 11:32	X
n-Butylbenzene	< 0.00470	0.0470	0.0439	93	75-125	mg/kg	11.05.19 11:32	
n-Propylbenzene	< 0.00470	0.0470	0.0501	107	75-125	mg/kg	11.05.19 11:32	
o-Xylene	< 0.000939	0.0470	0.0437	93	75-125	mg/kg	11.05.19 11:32	
p-Cymene (p-Isopropyltoluene)	< 0.000299	0.0470	0.0433	92	75-125	mg/kg	11.05.19 11:32	
Sec-Butylbenzene	< 0.00470	0.0470	0.0460	98	75-125	mg/kg	11.05.19 11:32	
Styrene	< 0.00470	0.0470	0.0408	87	75-125	mg/kg	11.05.19 11:32	
tert-Butylbenzene	< 0.00470	0.0470	0.0511	109	75-125	mg/kg	11.05.19 11:32	
Tetrachloroethylene	< 0.00470	0.0470	0.0469	100	71-125	mg/kg	11.05.19 11:32	
Toluene	< 0.000939	0.0470	0.0433	92	59-139	mg/kg	11.05.19 11:32	
trans-1,2-dichloroethene	< 0.00470	0.0470	0.0431	92	75-125	mg/kg	11.05.19 11:32	
trans-1,3-dichloropropene	< 0.00470	0.0470	0.0418	89	66-125	mg/kg	11.05.19 11:32	
Trichloroethene	< 0.00470	0.0470	0.0397	84	62-137	mg/kg	11.05.19 11:32	
Trichlorofluoromethane	< 0.00470	0.0470	0.0411	87	67-125	mg/kg	11.05.19 11:32	
Vinyl Acetate	< 0.00939	0.235	0.0814	35	60-140	mg/kg	11.05.19 11:32	X
Vinyl Chloride	< 0.00470	0.0470	0.0442	94	60-140	mg/kg	11.05.19 11:32	
1,3-Butadiene	< 0.00470	0.0470	0.0546	116	70-130	mg/kg	11.05.19 11:32	
Cyclohexane	< 0.00470	0.0470	0.0436	93	70-130	mg/kg	11.05.19 11:32	
Dicyclopentadiene	< 0.00470	0.0470	0.0421	90	70-120	mg/kg	11.05.19 11:32	
Methylcyclohexane	< 0.00939	0.0470	0.0436	93	65-135	mg/kg	11.05.19 11:32	
n-Hexane	< 0.00939	0.0470	0.0383	81	72-125	mg/kg	11.05.19 11:32	
4-Ethyltoluene	< 0.00470	0.0470	0.0489	104	70-130	mg/kg	11.05.19 11:32	
Propene	< 0.00470	0.0470	0.0348	74	70-130	mg/kg	11.05.19 11:32	

Surrogate	MS MS %Rec Flag	Limits	Units	Analysis Date
Dibromofluoromethane	98	53-142	%	11.05.19 11:32
1,2-Dichloroethane-D4	98	56-150	%	11.05.19 11:32
Toluene-D8	103	70-130	%	11.05.19 11:32
4-Bromofluorobenzene	106	68-152	%	11.05.19 11:32

XENCO

Chain of Custody

Work Order No: 164 2000

Page_

www.xenco.com

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

Midland, TX (432-704-5440) EL Paso, TX (315)585-3443 Lubbock, TX (806)794-1296

Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)

S Box53999, MS 9303 Denix, AZ 85072-3999 2-818-0259 S MGP Douglas, AZ 118600.A.CS.EV.DG.05-1B 0735632 A. Chuchale, M. [Company Name: Jacobs Phone Phone H80-273- Phone Bernice. Bernice. Bernice. Hatt.bra Hatt.b	Jacobs 480-273-4084 Bernice. Kidd@jacobs.com matt.branche@jacobs.com Matt.branche@jaco	34 Id@jacol he@jaco	hs.com			Program: UST/PST☐ PRP☐ State of Project: Ariz	PRP⊟ Brownfields∐ RR⊟ Superfur⊟ Arizona
PO Box53999, MS 9303 Phoenix, AZ 85072-3999 602-818-0259 APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 700735632 700735632	Phone email email: Judith. Heywoo Turn Around Routine R Rush: US hr Kh Due Date: Wet Ice: Yes No	A80-273-400 matt.brance. Kid	34 Id@jacok he@jaco	hs. com			State of Project: Ariz	zona
Phoenix, AZ 85072-3999 602-818-0259 APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 700735632 A. Muchte, M. F	Email: Judith. Heywood Turn Around Routine R Rush: 나용 \\ \text{K} \\ \text{Due Date:} \\ \text{Vet Ice:} \\	Bernice. Kir matt.branc bd@aps.com	id@jacok he@jaco	ns.com	0			
602-818-0259 APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 700735632 1 Shushke, M. F	Email: Judith. Heywood Turn Around Routine 図 Rush: は名h/	als (8 RCRA)		bs.com			Reporting:Level II X Level II	Reporting:Level III X Level III PST/IUST TRRT Level IV
APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 700735632 [A.Shworte, M. R	Shr Shr						Deliverables: EDD	ADaPT ☐ Other:
D3118600.A.CS.EV.DG.05-1B 700735632 [A. Shworte, M. F	8 kg			A	ANALYSIS	S REQUEST	EST	-
700735632 17. Shwarz, M. F	% % %	******	(IR ID:HOU-068 C/F:+0.2
A. Shwarze, M. F	S.		рәл					Temp! 7 Collect /4
	Ves No		resei		lity	_		IR ID:HOU-068 C/F:+0.2
SAMPLE RECEIPT Temp Blank: //ves)No			но:		ideti	әр		lemping Corrected:
Temperature (°C):	er ID		əM)		ւ6յ -	ins/		
No N/A	C/F:+0.2		otal VOCs	Bs Sint Filter	Sr.7 ələit	H I - Total C		Temp: Corrected:
Salliple Custout Seals. Tes IND	,	MI						i de postego i i igni
Sample Identification Matrix Sampled	Time Depth	S 0728		- Z808 89606		9013/9		Sample Comments
7-030-50-55s 11-1-19	0850 5055	X X	×	X	X	XX		Dossoble lanobla
7- EDOI-1101198	1 5590	XXX	X	X	X	X		
) s\Sign-0.01-0.64-C	501-0:01 0160	XX						>
5-150-150-150 s	551-051 SIND	XX						
1-820-195-195-001s	2930 19,5-200	XX						
1-1321-2.5.3.0s		XXT	X	X	X	X		lamo black
1- FD02-110119 s	1 - Sto	XXX	X	X	X	X		->
1-B21-5.0-5,5s	1055 5:0.55	XX						Lamp Black
- 021-7,5-80 S	1115 FS-8,0	XX						Lamb Black?
- 1521-10.0.10.513 VI	125 10,0-10,S	X X)

			11.5.
9	ard terms and conditions tances beyond the control evicusly negotiated.	Received by: (Signature)	all
	purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control f\$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Relinquished by: (Signature)	Fedéx
מומי מס מיים מס ומוס	m client company to Xenco, its and losses or expenses incurred I submitted to Xenco, but not and	Date/Time	11-4-19, 1300
פס מומולדסם	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Received by: (Signature)	Fodex
חומים ווימונים (כ) מנום ווימומים) וכי בי מומול בים	Notice: Signature of this document and relinquishment of samples constitutes a valid of service. Xenco will be liable only for the cost of samples and shall not assume any of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of	Relinquished by: (Signature)	med

Revised Date 051418 Rev. 2018.

Date/Time

Work Order No: 642000

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334
Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)

		Hobbs, NM (575-392-	Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)	(0-355-0900)	Atlanta, G	A (770-44	D-8800) T	ampa,FL	(813-620-2000)	www.xe	www.xenco.com	Page	Lot
Project Manager:	Judy Heywood		Send results to	Bernice Kidd Matt Branche	idd					Work	Work Order Comments	ments	
Company Name:	APS		Company Name:	Jacobs					Program:	Program: UST/PST□ PRP	PRF☐ Brownfields	4 RR□	Superfur
Address:	PO Box53999, MS 9303		Phone	480-273-4084	1084				State o	State of Project: Ari	Arizona		
City, State ZIP:	Phoenix, AZ 85072-3999		email	Bernice. Kidd@jacobs.com matt. branche@jacobs.com	Kidd@ja nche@ja	cobs.co	티틸		Reporting:	Reporting:Level IIIX Level III□ PST/US-□ TRR-□ Level IV□	III PST/US	TRRP	Level IV
Phone;	602-818-0259	Email	Email: Judith.Heywood@aps.com	@aps.com					Deliverables: EDD	es: EDD 🖂	ADaPT	Other:	
Project Name:	APS MGP Douglas, AZ	T.	Turn Around				ANAL	ANALYSIS REQUEST	QUEST			OSO LICITION OF	SO CABLED
Project Number:	D3118600.A.CS.EV.DG.05-1B		Routine 🛪								F L	no	Sorrected: //
O.O. Number:	700735632	Rush:	イタウ	(AS								1.5	1.7
Sampler's Name:	17. Shunder	M Branchy Due	Due Date:	в всі			, Yti				R F	D:HOU-0	IR ID:HOU-068 C/F:+0.2
SAMPLE RECEIPT	Temp Blank:	Yes) No Wet Ice:	(Yes) No	i) slei	nege London		lidsti		əţ		5	3.	2.1 confected 23
Femperature (°C):	(Thermometer ID		эш ן					vanio		Œ⊦	IR ID:HOU-068	68 C/F·+0
Received Intact:	Ves No	IR ID:HOU-068	7	-	100				al C		<u> </u>	ng: N	
Cooler Custody Seals:	AIS: (Yes) No N/A	Temp: Corrected:	Ú			S			JoT.		TA	TAT Starts IIIe day	w S
Sample Custody Seals:	sals: Yes No (N/A)	9.				cB	3.00	Hq -	- bl			lab, if receiv	lab, if received by 4:30pm
Sample Identification	ntification Matrix	Date Time Sampled Sampled	Depth Numbe	IS 0728	8260B	1 - 2808	99806 978MS	89 1 06	06/2106			Sample	Sample Comments
0-621	-15.0-15.5s	11-1-19 1135	15.0-15.5	×								(Jave)	and black
N-B71	1-19.5-20,0s	541111	19.5.20,0	×		İ						7	
0-62	1.24.5.25.0s	1305	245-80 1	X									
D-PIS.	s 51-01-	SS6	1.0HS	×								Carol	black
D-1315	-2.5.3.0 s	0171	2.5.30 1	×	.,					1	2	SMSI	1
0-815-	S. S. S. S.	1425	3,0-55 4	^ ×	X	X	X	×	X				
D-FD03	s 511011-0	11435	J	×	X	X	X	X	X				
D-135-	-7.5.8.0 s	SHHI	1.5.80	XX		10				***			
D-1315	-10.0-10,5 S	11480	10.0-10.5	×	,								-
O- FOOH	4-11011915	SSHI		X								3	>

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
mush	Feel 60	11-4-1911300	2 Fallox	Alle	11.5.19,000
3			4		
2			9		
					Revised Date 051418 Rev. 2018 1

₽.

1631 / 245.1 / 7470 / 7471

K Se Ag SiO2 Na Sr Tl Sn U V Zn

Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni

Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI

TCLP / SPLP 6010: 8RCRA

Circle Method(s) and Metal(s) to be analyzed

otal 200.7 / 6010

13PPM

8RCRA

Work Order No: 1942000

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296

	Hobbs, NM (575	392-7550) Phoenix,AZ (4	Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)	3-620-2000) www.xenco.com Page of
			Bernice Kidd	
Manager:	Manager: Judy Heywood	Send results to	esults to Matt Branche	Work Order Comments
ny Name: APS	APS	Company Name: Jacobs	Jacobs	Program: UST/PST☐ PRP☐ Brownfields☐ RR☐ Superfur
1.5	PO Box53999, MS 9303	Phone	480-273-4084	State of Project: Arizona
ate ZIP:	Phoenix, AZ 85072-3999	email	Bernice. Kidd@jacobs.com matt.branche@jacobs.com	Reporting:Level III X Level III PST/US-P TRRP Level IV
		Email: Judith. Heywood	.Heywood@aps.com	Deliverables: EDD ☐ ADaPT ☐ Other:

Addres

Compa

City, St. Phone:

Project Name:	APS MGP Douglas, AZ	AZ	Turn Around					ANAL	YSIS R	ANALYSIS REQUEST			IR ID:HOU-068 C/F:+0.2
Project Number:	D3118600.A.CS.EV.DG.05-1B	.DG.05-1B	Routine 🛪										Temp: / 2 Corrected: / L
O.O. Number:	700735632		Rush: 48/		(AЯ	(pən							CA:+050
Sampler's Name:	A Shundar	W. Bren	Branchy Due Date:		(8 RC	oreser		lity					Temp: / Corrected: /
SAMPLE RECEIPT	IPT Temp Blank:	ink: Res No	Wet Ice: Yes No	S.	stals	HO		idabir		әр			6.7 17
Temperature (°C):	(Ė	Thermometer ID	ıəui	ew p	•W) :		_		yani			Tems: C/F:+0.2
Received Intact:	(Yes/ No	IR ID:HOU-068	U-068 C/E:±0.1		-	oc				al C			Someted:
Cooler Custody Seals:	S: (Ves No N/A		, Corrected:	+		VIE				юТ			TAT starts the gav received
Sample Custody Seals:	als: Yes No ANA	4	0.6	to 16	-	JoT -			+	- †1(lab, if received by 4:30pm
Sample Identification	Itification Matrix	rix Date Sampled	Time Depth	qunN	IS 0728	82608	1 - 2808	958WS	89706	06/2106			Sample Comments
DRIS-1	150 s	11-1-19	1 XON 145-15										
1064-0	V \$ P11011-		- 0800 - 0800	-		X							
D- 819	- 2,5-20s		1540 25-30	À	×	X	X	X	X	X			Jano black
0-1319	-S.O.S.Ss		18555.0.55		X								
0/E1-C1	1-7,5-8,0s	>	1605 75-80		X								
D-1819-	S-01-0-0	11.2-19	Sat 0.01 COSO	\	X					10			
D-219.	S.S0.S	-	531-0.51 0180	_	X								
D- B19-1	19.5-20.0 s		0825 9520	\ -	X		Ap					7	
D-1820-	7.5-8.0 8		0936 7.5-80		X	I					1		
0-B20-	-9.5-10.0 S	>	0930 9.5-100	-	X								lamp black
								The second second					

of service. Aenco will be liable only for the cost of samples and shall not assume any responsibility for any losses of expenses incurred by the chemical and a charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ach	arge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.		reviously negotiated.	
elinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	

1631 / 245.1 / 7470 / 7471 : Hg

8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Tl Sn U V Zn

Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U

TCLP / SPLP 6010: 8RCRA

Circle Method(s) and Metal(s) to be analyzed

200.8 / 6020:

Total 200.7 / 6010

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
man	Feder	11-4-19:1300	2 False	LON	U519 10:00
8	,	7	+		
5		9			
					Revised Date 051418 Rev 2018

Work Order No: [0H 2000

Page_

www.xenco.com

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

Hobbs, NM (675-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296

Project Manager:	Judy Heywood	Send results to	Bernice Kidd Matt Branche						Work Order Comments	Comments
Company Name:	APS	Company Name:	Jacobs				Program	UST/PST□	Program: UST/PST☐ PRP☐ Brownfields☐	nfields RR□ Superfur□
Address:	PO Box53999, MS 9303	Phone	480-273-4084				State	State of Project:	Arizona	
City, State ZIP:	Phoenix, AZ 85072-3999	email	Bernice.Kidd@jacobs.com matt.branche@jacobs.com	jacobs.com jacobs.com			Reporting	Tevel II X L	evel III PST	Reporting:Level III X Level III□ PST/US-□ TRRP□ Level IV□
Phone:	602-818-0259 Emai	Email: Judith. Heywood@aps.com	gaps.com				Deliverab	Deliverables: EDD C	☐ ADaPT ☐	T ☐ Other:
Project Name:	APS MGP Douglas, AZ	Turn Around			ANALYSIS	REQUEST	Ŀ			C/F:+0.2
Project Number:	D3118600.A.CS.EV.DG.05-1B Rou	Routine 🛪								rect
P.O. Number:	700735632 Rus	Rush: 48hr	AL C					4		7.7
Sampler's Name:	A. Shunde, M. Branche Due	Due Date:			lity					IR ID:HOU-068 C/F:+U.2
SAMPLE RECEIPT	EIPT Temp Blank. (Yes) No Wet Ice:	(Yes) No			idstir	әр		576		1.8 2.3
Temperature (°C):	Thermometer ID)			161 -	iue/				IR ID:HOU-068 C/F:+0.2
Received Intact:	(Yes) No IR ID:HOU-068		Fota		21.7	થા હે				Temp: Corrected:
Cooler Custody Seals: Sample Custody Seals:	IS: Yes No N/A Temp: O. Corrected: 8	ited:			rticle 7	ј оТ - 4	7 7	N d		lab, if received by 4:30pm
		la I	721	Ы		-				
Sample Identification	ntification Matrix Sampled Sampled	Depth	\$ 0728 480108	- 2808	9045B			121 121		Sample Comments
D-620	Shb0 6-2-11 sps 5-12-026	1 ps. 5.41 9								land black?
D-826-	19.5.20.018 1 0.055	1 1002-561	XX							
2-12-10	0080 91-511 S 10)					X	×		The
	S							1		1
	Ø								1	
	w					,		/		
	w									
	S			100			17			
					1	-				

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U

TCLP / SPLP 6010: 8RCRA

Circle Method(s) and Metal(s) to be analyzed

200.8 / 6020:

Total 200.7 / 6010

1631 / 245.1 / 7470 / 7471 : Hg

8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Tl Sn U V Zn

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
hall	74/80	E05/16271	2 FAB	Mr	00/61.5.11
n			4		
5			ග		
					Revised Date 051418 Rev 2018 1

XENCO LABORATORIES

Chain of Custody

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296

Page.

www.xenco.com

Work Order No:

Project Manager:	Judy Heywood				Send results to		Matt Branche						Work	Work Order Comments	nments	
Company Name:	APS				Company Name:		Jacobs					Program: U	Program: UST/PST☐ PRP☐ Brownfields☐	☐ Brownfiel	RR	Superfur□
Address:	PO Box53999, MS 9303	9303			Phone	480	480-273-4084					State of Project:		Arizona		
City, State ZIP:	Phoenix, AZ 85072-3999	-3999			email	Ber	Bernice. Kidd@jacobs.com matt. branche@jacobs.com	@jacobs @jacobs	s.com			Reporting:Le	Reporting:Level III X Level III□ PST/UST TRRID Level IV□	ll⊐ PST/US	.P тяяР ц	evel IV
Phone:	602-818-0259			Email:	Email: Judith.Heywo	rood@aps.com	moo:					Deliverables:	: EDD :	ADaPT	1 Other:	
Project Name:	APS MGP Douglas, AZ	s, AZ		Tu	Turn Around				AN	ANALYSIS	REQUEST	EST		. 또	IR ID:HOU-068	068 C/F:10.7
Project Number:	D3118600.A.CS.EV.DG.05-1B	V.DG.05-1	IB	Routi	Routine X			- (Tel	Temp: / 7 Corrected:	ected:
P.O. Number:	700735632			Rush	Rush: 48 Hrs.		(AЯ	rved)				(7.10 ACID ACID ACID ACID ACID ACID ACID ACID	1.4
Sampler's Name:	IKa D. Bro	D. Binkelman	4	Due Date:	Date:		S RC	nesei		lity		s <i>o</i> -			Temp: Corrected:	C/F:+0.2
SAMPLE RECEIPT	EIPT Temp Blank:	110	Yes No	Wet Ice:	Yes No	S	stals	1 HO		idstir	əpi	Ы		IRID	IR ID:HOILDES	2.3
Temperature (°C):)	The) _	ıəu	ew j	϶W)		161 -	iue/	H(Temp	Correct	C/F:+0.2
Received Intact:	(Yes) NC		IR ID:HOU-068 Temp: Corre		C/F:+0.2	- Const		I AOC2	t Filter	. 21.7 əl	O lato	00 H		_	3.3 Collected (3.5)	100 100
Sample Custody Seals:	No Yes No	ا ما	2.5	6	0.0	17.10			nis9 -		-	1S¥)		7	latistics and lateral by the lab, if received by 4:30pm	scevied by the by 4:30pm
Sample Identification		Matrix Sar	Date Sampled	Time	Depth	dmuN IS 0728	L/80109	- 80928 - 1 - 2808	- 8 9606	9045B	06/2106) JOH			Sample Comments	nments
D-826-40.0-40.5	8 5°24-0	2/11	1 16	14:30	S.OH-O.O.	X										
D-827-2.5-3.0	-3.0 s	3 11	611	00:01	25-3.0	X N	X	-								
D-827-5.0-5.5	-5.5 s	11/3	119	10:10	5.0-5.5	メ	X									
D-FDO1-110319	s 81501	11,13,	19	50.01	NA	×	X									
D-B-7-7-5-8.0	S 0.8-	11/3	61	15:15	7.5-8.0	XX	X						1			
D-627-10.0-10.5	-10.5 S	11/13	61	15:35	10.0-10.5	S	X					X			HS/MSD	
D-827-15.0-15.5	s -15.5 s	11/3	19	15:55	15.0-15.5	2 V	X								,	
D-B27- 20.0-20.5	8-30.5	11/1	19118	00:31	20-30.5	3 X	×	W				X				
D-627-25.0-25.	0-35.5	(i./s	3/19	6:30	25.0-255	S S	X									
D-FD02-110319	0319	ME	3/19	16:35	¥/2	X, CO	X	-								
Total 200.7 / 6010	otal 200.7 / 6010 200.8 / 6020:): by analyze	8RC	3A 13PP	8RCRA 13PPM Texas 11	Al Sb /	As Ba E	Be B Cd	C C	r Co Cu Fe Pb M	Fe Pb	B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K	Ni K Se Ag	SiO2	SiO2 Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Ha	7471 : Ha
CISCIA MOID	מוס ומוסימום מוס (סום	and and			200	1111	2	3	3	2		3		5.002.00		

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Samples and shall not assume any responsibility for any losses or expenses, incurred by the client if such losses are due to circumstances beyond the control of Samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Samples and shall not assume any responsibility for any losses or expenses incurred by the client if such control of samples and a client if such assumes any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and shall not assume any resp

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
man	Fallex	0021:5Lh-11	2 Fallo	COOX.	000/ 6/5/
n			4	6	
5			9		
					Revised Date 051418 Rev. 2018 1

Work Order No: 64200

 ∞

Page 6 of

www.xenco.com

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

	3-620-2000)	
Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296	Tampa,FL (81	
Lubbock, TX (i	70-449-8800)	
915)585-3443	Atlanta, GA (7	1:20
EL Paso,TX ((80-355-0900)	Deining Line
32-704-5440)	Phoenix, AZ (4	
Midland, TX (43	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	
	MN, sddoH	

Work Order Comments	Program: UST/PST	State of Project: Arizona	Reporting:Level IIIX Level IIII PST/UST TRRM Level IV	Deliverables: EDD		Temp://o Corrected/		Temp, Correc	bZI	IR ID:HOU-008		478		Sample Comments			X HS/MSD (Metals	X	X MSD (Metals		X			
			s.com		ANALYSIS REQUEST			V ţ		u6j -	SI.T	aint F ticle	sq - hA fq -	89606 89606								lo		
Bernice Kidd Matt Branche	Jacobs	480-273-4084	Bernice.Kidd@jacobs.com matt.branche@jacobs.com	gaps.com							stoT	- Ar V leto	747 oT -	82078 (8260B	XX	XX	××	X X	XX	X	X	X	×	×
Send results to	Company Name:	Phone	email	Email: Judith.Heywood@aps.com	Turn Around	Routine X	Rush: 48 Hvs.	Due Date:	Ves No	٥٠٠	П	1		Depth Rush	2.5-3.0		5.0-5.5 2	7.5-8.0 2		15.2-15.5	" 2	250-25.51		30-30.5 2
				Ema			Ru		Yes No Wet Ice:	4 Thurman	IR ID:HOU-068	0.0	Total Collitaliters.	Date Time Sampled Sampled	111/19 14:15	08.41 PILLI	11/19 14:30	11/2/19 9:50	11/2/19 10:15	11/2/19/10:35	05:01 16:12/1	1/2/19 11:15	11/2/19 9:55	11/2/19 13:25
Judy Heywood	APS	PO Box53999, MS 9303	Phoenix, AZ 85072-3999	602-818-0259	APS MGP Douglas, AZ	D3118600.A.CS.EV.DG.05-1B	700735632	Ile D. Dinkelman	T Temp Blank:	(ON See	(les) No	Yes No	ication Matrix	S	8 61	s 5.5	S 0.8-	-10.5 S	15.5 S	-30.5 s	-35.5 S	1219	
Project Manager: Jud	Company Name: AP	Address: PC	City, State ZIP: Ph	Phone: 60	Project Name: AP	Project Number: D3	P.O. Number: 70	Sampler's Name:	SAMPLE RECEIPT	Temperature (°C);	Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Sample Identification	D-8-26-2.5-3.0	D-FD05-110119	D-826-5.0-5.5	0-876-7.5-8.0	D-826-100-105	D-826- 15.0-15.5	D-626-20.0-20.5	D-826-25.0-25.5	D-FD01-110219	D-826-30.0-30.5

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be enforced unless previously negotiated. Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions

Relinquished by: (Signature)	Received by: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
mash	Palco	008/13/-6-11	2 Falso	COOL	11579 100
n			4		
2			9		
					Revised Date 051418 Rev 2018 1

Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)

6	\preceq
26	3
17.1	5
	No:
	Order
	Work

Page

www.xenco.com

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296

Project Manager:	Judy Heywood			Send results to		Matt Branche				Ī		W	Work Order Comments	ts	
	APS			Company Nam	e:	Jacobs					Progra	m: UST/PST□ P	Program: UST/PST☐ PRP☐ Brownfields☐ RRŪ	RR□ Superfur□	
Address:	PO Box53999, MS 9303	MS 9303		Phone	48	480-273-4084					Sta	State of Project:	Arizona		
City, State ZIP:	Phoenix, AZ 85072-3999	072-3999		email		Bernice. Kidd@jacobs.com matt. branche@jacobs.com	@jacok @jacok	s.com			Report	ing:Level II X Lev	Reporting:Level III本 PST/US书 TRR년 Level IV	RRP Level IV□	
Phone:	602-818-0259		Email:	Email: Judith. Heywo	od@aps.com	s.com					Deliver	Deliverables: EDD	ADaPT	Other:	
Project Name:	APS MGP Douglas, AZ	ılas, AZ	T	Turn Around				A	ANALYSIS REQUEST	S REQU	EST		H.UI BI	IR ID:HOI I-068 C/F:+0.2	
Project Number:	D3118600.A.CS.EV.DG.05-1B	3.EV.DG.05-1B	Rout	Routine X									Temp:	Corrected:	
P.O. Number:	700735632		Rush	Rush: 48 Hours		AC IS	(pəʌɹ				(_	61 7.	-
Sampler's Name:	Tika D.	Binkelman	Due	Due Date:		- 1	resei		Viity		50-		IR ID:I	IR ID:HOU-068 C/F:+0.2	- 0
SAMPLE RECEIPT		Temp Blank: Yes No	Wet Ice:	Vies) No	S		но:		idatir	әр				2.1 CUITECTED: 2.3	100
Temperature (°C):	6		Thermometer ID	ا و	ıəui		aM) s		ո6լ -	insy	-		Temp:	Temp: C/F:+0.2	_
Received Intact:	168	No IR ID:H	IR ID:HOU-068	C/F:+0.2		stoT	500	ilter	21.7	Cal C	-		.00.	3.3 Corrected:	_
Cooler Custody Seals: Sample Custody Seals;	S: (Yes No	AN AN	Temp: Corrected 0.8	- 8.0		- A17t		7335	eloith,				TAT star lab,	TAT starts the Lay, 5.5 lab, if received by 4:30pm	
Sample Identification	cation	4 2	Time	Depth	nis uzza iəquin	7L/80108	- 80928 - PO	99606	A 8₽8W2	I - 83406	1)203		Sai	Sample Comments	
D-627-30.0-30.5		9 h 11 s	4:50	30-30.5	/			H			1				_
1- 627 - 40.0 - 40.5	10	b1/t/11 s	1105	40.0-40.S	-	\ <u>\</u>									
							+			+			1		
		S								1	1				
		S					+	1				1			_
		S		1	1					,					
		S													
		S						la-							
					H		+	\parallel					I		
Total 200.7 / 6010	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed		8RCRA 13PPM Texa: TCLP / SPLP 6010:	M Texas 11 LP 6010: 8RC	R A	Sb As Ba Be Sb As Ba Be	e B Cd Se Cd C	cr Co	r Co Ci Cu Pb	u Fe Pb Mn Mo	Mg Mi Ni Se	3a Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Ag SiO2 Na Sr TI Sn U V Zn 1631/245.1/7470/747	Sn U V Zn 1 / 7470 / 7471 : Hg	
Notice: Signature of this of service. Xenco will be of Xenco. A minimum ch:	document and relinguisable only for the cosarge of \$75.00 will be	Votice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	itutes a valid pu t assume any re d a charge of \$!	urchase order from sponsibility for any 5 for each sample s	client con losses of ubmitted	npany to Xenc r expenses inc to Xenco, but I	o, its affill urred by u	the client red. These	subcontrac if such loss terms will	tors, It ass ses are due be enforce	igns stand to circums d unless pr	client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions races or expenses incurred by the client if such losses are due to circumstances beyond the controubmitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ions introl		
Relinquished by: (Signature)	: (Signature)	Received	Received by: (Signature)	ıre)	Dê	Date/Time		Relinqu	Relinquished by: (Signature)	: (Signat	ture)	Received	Received by: (Signature)	Date/Time	
gran	1	Tedop	0		1-4-1	11-4-19:1300	3 2		Fellor	15		John John John John John John John John	a	20/615:11	,
							-					۷			_

Revised Date 051418 Rev 2018.

(\geq
(以
2	1
•	7
-	\sim
	.:
	Ž
	er
	p
	ô
	P
	3

	X (210) 509-3334	(806)794-1296) Tampa El (813-620-2000)	(0007-070-000)
facione in initial	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334	Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296	Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa FI (813-620-2000)	Bernice Kidd

	Hobbs, NM (575-392	-7550) Phoenix,AZ (48	Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)	a,FL (813-620-2000) www.xenco.com Page & A
Project Manager: Judy Heywood		Send results to	Bernice Kidd Matt Branche	
Company Name; APS		Company Name:	Jacobs	Work Order Comments
Address: PO Box53999, MS 9	9303	Phone	480-273-4084	Program: UST/PST PRP Brownfields RR Superfur
City, State ZIP: Phoenix, AZ 85072-3999	3999	email	Bernice, Kidd@jacobs.com matt.branche@jacobs.com	Reporting: Level III X Level III PST//IIS- TRRE
Phone: 602-818-0259	Emai	Email: Judith. Heywood(wood@aps.com	Deliverables: EDD ADaPT Other
Project Name: APS MGP Douglas, AZ		Turn Around	ANALYSIS BEOLIEST	(Control of the control of the contr
Project Number: D3118600.A.CS.EV.DG.05-1B	Ro	Routine		
P.O. Number: 700735632	Rush:	×	(1	1.2 2.1.1
Sampler's Name: MTT G NANCHE		Due Date: 48 1/6	θίλeq	IR ID:HOU-068 C/F:+0.2
SAMPLE RECEIPT Temp Blank:	ank: Yes No Wet Ice:	Yes) No	pres	S. Corrected: 3.3
Temperature (°C):	Thermometer ID: HOU-068	C/F:+0.2 +		IR ID:HOU-068 C/F:+0.2
Seals: Yes	1	ected: 8 Cont	als (8 PC	7.3 Corrected: 3.5
	Date			lab, if received by 4:30pm
Sample Identification Matrix	Sampled	Depth un	7.00 <u>s</u>	Sample
D-TB01-102919 W	1		8	Silamino
1	020/ 516001	9	\$ \$	
M 6/2001 10007 A	11-2-19 (55-6	1	×	
M				
W				A
M				
M				
≫			8	
and the state of t				
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	BRCRA 13PPM analyzed TCLP / SPLP	CRA 13PPM Texas 11 Al S TCLP / SPLP 6010: 8RCRA	Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb M	SiO;
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of Service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced in less project.	t of samples constitutes a valid pur imples and shall not assume any res to each project and a charge of \$\$	chase order from client or ponsibility for any losses for each sample submitt	company to Xenco, its affiliates and subcontractors. s or expenses incurred by the client if such losses ar led to Xenco, but not analyzed. These terms will be er	It assigns standard terms and conditions due to circumstances beyond the control
Relinquished by: (Signature)	Received by: (Signature)	(e)	Date/Time Relinquished by: (Signature)	, The section of the
myer	Fedly	トーカ	4-4-15 (1300 2 Fells	Am Market
2 10			4	Charl 11511
			9	
				Revised Date 051418 Rev 2018 ;

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Analyst: MDS

Date/ Time Received: 11/05/2019 10:00:00 AM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Date: 11/05/2019

Work Order #: 642000 Temperature Measuring device used : HOU-068

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		.8	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping conta	iner/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	?	N/A	
#6*Custody Seals Signed and dated?		Yes	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		Yes	Limited sample for VOC analysis on sample ID#D-TAR-01 (033)
#9 Chain of Custody signed when relinquis	hed/ received?	Yes	
#10 Chain of Custody agrees with sample	abels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated	test(s)?	Yes	
#16 All samples received within hold time?		Yes	
#17 Subcontract of sample(s)?		No	
#18 Water VOC samples have zero heads	pace?	Yes	

Must be completed for after-hours delive	ry of samples prior to	placing in the refrigerator
--	------------------------	-----------------------------

Checklist completed by:	Ausflo Monica Shakhshir	Date: <u>11/05/2019</u>	
Checklist reviewed by:	(mint December)		

PH Device/Lot#: 10BDH0681

Analytical Report 642303

for APS

Project Manager: Judy Heywood APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-18 11-NOV-19

Collected By: Client

4147 Greenbriar Dr. Stafford, TX 77477

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092)

Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

11-NOV-19

Project Manager: Judy Heywood

APS

P.O. Box 53999 Mail Station 8376 Phoenix, AZ 85072

Reference: XENCO Report No(s): 642303

APS MGP Douglas, AZ

Project Address:

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 642303. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 642303 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

XENCO

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

 Project ID:
 D3118600.A. CS. EV. DG.0
 Report Date:
 11-NOV-19

 Work Order Number(s):
 642303
 Date Received:
 11/07/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3106889 PAHs by 8270D SIM

Surrogate 2-Fluorobiphenyl, Surrogate Nitrobenzene-d5 recovered below QC limits. Matrix interferences is

suspected; data confirmed by re-analysis.

Samples affected are: 642303-003,642303-005.

Batch: LBA-3106917 Metals, RCRA List, by SW 6020

Lab Sample ID 642303-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium, Silver recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642303-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014.

The Laboratory Control Sample for Silver, Barium is within laboratory Control Limits, therefore the data was accepted.

Page 3 of 40

Final 1.000

Flagging Criteria

Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

Sample Cross Reference 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D-B18-10.0-10.5	S	11-05-19 12:45	10.0 - 10.5	642303-001
D-B18-15.0-15.5	S	11-05-19 12:55	15.0 - 15.5	642303-002
D-B35-10.0-10.5	S	11-05-19 14:00	10.0 - 10.5	642303-003
D-B35-15.0-15.5	S	11-05-19 14:15	15.0 - 15.5	642303-004
D-B35-20.0-20.5	S	11-05-19 14:25	20.0 - 20.5	642303-005
D-B34-10.0-10.5	S	11-06-19 08:25	10.0 - 10.5	642303-006
D-B34-15.0-15.5	S	11-06-19 08:35	15.0 - 15.5	642303-007
D-B34-20.0-20.5	S	11-06-19 08:55	20.0 - 20.5	642303-008
D-B33-10.0-10.5	S	11-06-19 09:35	10.0 - 10.5	642303-009
D-B33-15.0-15.5	S	11-06-19 09:40	15.0 - 15.5	642303-010
D-B33-20.0-20.5	S	11-06-19 09:45	20.0 - 20.5	642303-011
D-B32-10.0-10.5	S	11-06-19 10:25	10.0 - 10.5	642303-012
D-B32-15.0-15.5	S	11-06-19 10:45	15.0 - 15.5	642303-013
D-B32-20.0-20.5	S	11-06-19 10:55	20.0 - 20.5	642303-014

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B18-10.0-10.5**

ADS

ANJ

Seq Number: 3106924

Lab Sample Id: 642303-001

Analytical Method: Mercury by SW 7471B

Matrix: Soil

Date Received: 11.07.19 10.30

Date Collected: 11.05.19 12.45

Sample Depth: 10.0 - 10.5

Prep Method: SW7471P

% Moisture: 0

Basis:

Dry Weight

Date Prep: 11.08.19 10.09

SUB: T104704215-19-30

Parameter Cas Number Result RL**Analysis Date** Flag Dil Units BRL 11.08.19 15.32 Mercury 7439-97-6 0.0196 U mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Seq Number: 3106917

Tech:

Analyst:

Analyst: DEP Date Prep: 11.08.19 10.30

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag 11.08.19 15.54 10 Arsenic 7440-38-2 16.3 1.89 mg/kg Barium 39.5 11.08.19 15.54 7440-39-3 3.77 10 mg/kg Cadmium BRL U 7440-43-9 1.89 mg/kg 11.08.19 15.54 10 Chromium 7440-47-3 8.93 3.77 11.08.19 15.54 10 mg/kg Lead 7439-92-1 13.3 1.89 11.08.19 15.54 10 mg/kg Selenium 7782-49-2 BRL 1.89 mg/kg 11.08.19 15.54 U 10 U Silver BRL 7440-22-4 1.89 11.08.19 15.54 10

DNE

Analyst:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.08.19 09.48

Sample Id: D-B18-10.0-10.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-001 Sample Depth: 10.0 - 10.5 Date Collected: 11.05.19 12.45

Date Prep:

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

Tech: JOZ % Moisture:

> Basis: Wet Weight

Seq Number: 3106889

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Acenaphthylene	208-96-8	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Anthracene	120-12-7	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Chrysene	218-01-9	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Fluoranthene	206-44-0	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Fluorene	86-73-7	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Naphthalene	91-20-3	BRL	0.0166	mg/kg	11.08.19 16.08	U	1
Phenanthrene	85-01-8	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Pyrene	129-00-0	BRL	0.00166	mg/kg	11.08.19 16.08	U	1
Surrogate		% Recovery	Units	Limits Anal	lysis Date Fla	ıg	

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	52	%	31-130	11.08.19 16.08	
2-Fluorobiphenyl	98	%	51-133	11.08.19 16.08	
Terphenyl-D14	93	%	46-137	11.08.19 16.08	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B18-15.0-15.5 Lab Sample Id: 642303-002

Matrix: Soil Date Collected: 11.05.19 12.55

Date Received: 11.07.19 10.30 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B

Prep Method: SW7471P

ADS Tech:

% Moisture: 0

ANJ Analyst:

Date Prep: 11.08.19 10.09 Basis: Dry Weight

Seq Number: 3106924

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits Analysis Date Flag Dil 7439-97-6 11.08.19 15.45 0.0382 0.0182 Mercury mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106917

Analyst: DEP Date Prep: 11.08.19 10.30

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	18.3	1.79	mg/kg	11.08.19 15.56		10
Barium	7440-39-3	98.3	3.57	mg/kg	11.08.19 15.56		10
Cadmium	7440-43-9	BRL	1.79	mg/kg	11.08.19 15.56	U	10
Chromium	7440-47-3	12.3	3.57	mg/kg	11.08.19 15.56		10
Lead	7439-92-1	23.0	1.79	mg/kg	11.08.19 15.56		10
Selenium	7782-49-2	BRL	1.79	mg/kg	11.08.19 15.56	U	10
Silver	7440-22-4	BRL	1.79	mg/kg	11.08.19 15.56	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B18-15.0-15.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-002
 Date Collected: 11.05.19 12.55
 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.08.19 09.51 Basis: Wet Weight

Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.08.19 16.25	U	1
Acenaphthylene	208-96-8	0.00422	0.00166		mg/kg	11.08.19 16.25		1
Anthracene	120-12-7	0.00382	0.00166		mg/kg	11.08.19 16.25		1
Benzo(a)anthracene	56-55-3	0.0139	0.00166		mg/kg	11.08.19 16.25		1
Benzo(a)pyrene	50-32-8	0.0247	0.00166		mg/kg	11.08.19 16.25		1
Benzo(b)fluoranthene	205-99-2	0.0324	0.00166		mg/kg	11.08.19 16.25		1
Benzo(g,h,i)perylene	191-24-2	0.0211	0.00166		mg/kg	11.08.19 16.25		1
Benzo(k)fluoranthene	207-08-9	0.0106	0.00166		mg/kg	11.08.19 16.25		1
Chrysene	218-01-9	0.0188	0.00166		mg/kg	11.08.19 16.25		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.08.19 16.25	U	1
Fluoranthene	206-44-0	0.0418	0.00166		mg/kg	11.08.19 16.25		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.08.19 16.25	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0163	0.00166		mg/kg	11.08.19 16.25		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.08.19 16.25	U	1
Phenanthrene	85-01-8	0.0221	0.00166		mg/kg	11.08.19 16.25		1
Pyrene	129-00-0	0.0508	0.00166		mg/kg	11.08.19 16.25		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		57	%	31-130		.19 16.25		
2-Fluorobiphenyl		96	%	51-133		.19 16.25		
Terphenyl-D14		95	%	46-137	11.08	.19 16.25		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B35-10.0-10.5 Matrix: Soil Date Received: 11.07.19 10.30

Lab Sample Id: 642303-003

Date Collected: 11.05.19 14.00

Sample Depth: 10.0 - 10.5 Prep Method: SW7471P

Analytical Method: Mercury by SW 7471B

% Moisture: 0

Basis:

Tech:

ADS ANJ

Dry Weight

Analyst: Seq Number: 3106924 Date Prep: 11.08.19 10.09

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits Analysis Date Flag Dil 7439-97-6 BRL 11.08.19 15.46 U Mercury 0.0196 mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

Prep Method: SW3050B

% Moisture:

PJB Tech: DEP

Seq Number: 3106917

Analyst:

Date Prep: 11.08.19 10.30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	14.6	1.85	mg/kg	11.08.19 15.59		10
Barium	7440-39-3	132	3.70	mg/kg	11.08.19 15.59		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.08.19 15.59	U	10
Chromium	7440-47-3	11.6	3.70	mg/kg	11.08.19 15.59		10
Lead	7439-92-1	24.1	1.85	mg/kg	11.08.19 15.59		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.08.19 15.59	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.08.19 15.59	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B35-10.0-10.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-003
 Date Collected: 11.05.19 14.00
 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.08.19 09.54 Basis: Wet Weight

Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 16.40	U	1
Acenaphthylene	208-96-8	0.0107	0.00167		mg/kg	11.08.19 16.40		1
Anthracene	120-12-7	0.00893	0.00167		mg/kg	11.08.19 16.40		1
Benzo(a)anthracene	56-55-3	0.0325	0.00167		mg/kg	11.08.19 16.40		1
Benzo(a)pyrene	50-32-8	0.0640	0.00167		mg/kg	11.08.19 16.40		1
Benzo(b)fluoranthene	205-99-2	0.0898	0.00167		mg/kg	11.08.19 16.40		1
Benzo(g,h,i)perylene	191-24-2	0.0502	0.00167		mg/kg	11.08.19 16.40		1
Benzo(k)fluoranthene	207-08-9	0.0255	0.00167		mg/kg	11.08.19 16.40		1
Chrysene	218-01-9	0.0474	0.00167		mg/kg	11.08.19 16.40		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 16.40	U	1
Fluoranthene	206-44-0	0.0934	0.00167		mg/kg	11.08.19 16.40		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 16.40	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0390	0.00167		mg/kg	11.08.19 16.40		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 16.40	U	1
Phenanthrene	85-01-8	0.0408	0.00167		mg/kg	11.08.19 16.40		1
Pyrene	129-00-0	0.114	0.00167		mg/kg	11.08.19 16.40		1
Surrogate		% Recovery	Units	Limits	Anal	ysis Date Fla	ng.	
G		·				•	ıg	
Nitrobenzene-d5		36 60	%	31-130 51-133		.19 16.40 .19 16.40		
2-Fluorobiphenyl Terphenyl-D14		88	% %	46-137		.19 16.40		

Prep Method: SW7471P

Prep Method: SW3050B

0

% Moisture:

0

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B35-15.0-15.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-004
 Date Collected: 11.05.19 14.15
 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B

Tech: ADS % Moisture:

Analyst: ANJ Date Prep: 11.08.19 10.09 Basis: Dry Weight

Seq Number: 3106924 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0172
 mg/kg
 11.08.19 16.02
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.08.19 10.30 Basis: Dry Weight

Seq Number: 3106917 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	13.8	1.85	mg/kg	11.08.19 15.30		10
Barium	7440-39-3	170	3.70	mg/kg	11.08.19 15.30		10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.08.19 15.30	U	10
Chromium	7440-47-3	12.8	3.70	mg/kg	11.08.19 15.30		10
Lead	7439-92-1	13.8	1.85	mg/kg	11.08.19 15.30		10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.08.19 15.30	U	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.08.19 15.30	U	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.08.19 09.39

Sample Id: D-B35-15.0-15.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-004

Date Prep:

Analytical Method: PAHs by 8270D SIM

JOZ

Tech: DNE Analyst:

Seq Number: 3106889

Date Collected: 11.05.19 14.15 Sample Depth: 15.0 - 15.5

Prep Method: SW3550

% Moisture:

Wet Weight Basis:

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 13.37	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.08.19 13.37	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.08.19 13.37	U	1
Benzo(a)anthracene	56-55-3	0.00266	0.00167		mg/kg	11.08.19 13.37		1
Benzo(a)pyrene	50-32-8	0.00431	0.00167		mg/kg	11.08.19 13.37		1
Benzo(b)fluoranthene	205-99-2	0.00604	0.00167		mg/kg	11.08.19 13.37		1
Benzo(g,h,i)perylene	191-24-2	0.00598	0.00167		mg/kg	11.08.19 13.37		1
Benzo(k)fluoranthene	207-08-9	0.00187	0.00167		mg/kg	11.08.19 13.37		1
Chrysene	218-01-9	0.00352	0.00167		mg/kg	11.08.19 13.37		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 13.37	U	1
Fluoranthene	206-44-0	0.00772	0.00167		mg/kg	11.08.19 13.37		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 13.37	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00395	0.00167		mg/kg	11.08.19 13.37		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 13.37	U	1
Phenanthrene	85-01-8	0.00383	0.00167		mg/kg	11.08.19 13.37		1
Pyrene	129-00-0	0.00917	0.00167		mg/kg	11.08.19 13.37		1
		%						
Surrogate		Recovery	Units	Limits	Anal	lysis Date F	lag	
Nitrobenzene-d5		82	%	31-130		.19 13.37		
2-Fluorobiphenyl		97	%	51-133		.19 13.37		
Terphenyl-D14		99	%	46-137	11.08	.19 13.37		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Soil

Sample Id: D-B35-20.0-20.5 Lab Sample Id: 642303-005

Date Collected: 11.05.19 14.25

Date Received: 11.07.19 10.30 Sample Depth: 20.0 - 20.5

Analytical Method: Mercury by SW 7471B

% Moisture: 0

Basis:

ADS Tech: ANJ

Analyst:

Date Prep:

Dry Weight

Seq Number: 3106924

11.08.19 10.09

SUB: T104704215-19-30

Prep Method: SW7471P

Parameter Cas Number Result RL**Analysis Date** Dil Units 7439-97-6 0.0261 0.0167 11.08.19 15.48 Mercury mg/kg 1

Matrix:

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106917

Analyst: DEP Date Prep: 11.08.19 10.30 Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag 14.2 1.85 11.08.19 16.02 10 Arsenic 7440-38-2 mg/kg Barium 34.7 11.08.19 16.02 7440-39-3 3.70 10 mg/kg Cadmium BRL U 7440-43-9 1.85 mg/kg 11.08.19 16.02 10 Chromium 7440-47-3 12.7 3.70 11.08.19 16.02 10 mg/kg Lead 7439-92-1 12.6 1.85 11.08.19 16.02 10 mg/kg Selenium 7782-49-2 BRL 1.85 mg/kg 11.08.19 16.02 U 10 Silver BRL U 1.85 11.08.19 16.02 7440-22-4 10

DNE

Seq Number: 3106889

Analyst:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.08.19 09.57

Sample Id: D-B35-20.0-20.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-005 Date Collected: 11.05.19 14.25 Sample Depth: 20.0 - 20.5

Date Prep:

Analytical Method: PAHs by 8270D SIM

Prep Method: SW3550 % Moisture:

Basis:

Tech: JOZ

Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 16.56	U	1
Acenaphthylene	208-96-8	0.0127	0.00167		mg/kg	11.08.19 16.56		1
Anthracene	120-12-7	0.00962	0.00167		mg/kg	11.08.19 16.56		1
Benzo(a)anthracene	56-55-3	0.0440	0.00167		mg/kg	11.08.19 16.56		1
Benzo(a)pyrene	50-32-8	0.0882	0.00167		mg/kg	11.08.19 16.56		1
Benzo(b)fluoranthene	205-99-2	0.117	0.00167		mg/kg	11.08.19 16.56		1
Benzo(g,h,i)perylene	191-24-2	0.0760	0.00167		mg/kg	11.08.19 16.56		1
Benzo(k)fluoranthene	207-08-9	0.0313	0.00167		mg/kg	11.08.19 16.56		1
Chrysene	218-01-9	0.0629	0.00167		mg/kg	11.08.19 16.56		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 16.56	U	1
Fluoranthene	206-44-0	0.124	0.00167		mg/kg	11.08.19 16.56		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 16.56	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0579	0.00167		mg/kg	11.08.19 16.56		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 16.56	U	1
Phenanthrene	85-01-8	0.0490	0.00167		mg/kg	11.08.19 16.56		1
Pyrene	129-00-0	0.155	0.00167		mg/kg	11.08.19 16.56		1
_		%						
Surrogate		Recovery	Units	Limits	Anal	lysis Date Fl	ag	
Nitrobenzene-d5		34	%	31-130		3.19 16.56		
2-Fluorobiphenyl		59	%	51-133		3.19 16.56		
Terphenyl-D14		81	%	46-137	11.08	3.19 16.56		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Soil

Sample Id: D-B34-10.0-10.5 Lab Sample Id: 642303-006

Date Collected: 11.06.19 08.25

Date Received: 11.07.19 10.30 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B

% Moisture: 0

Basis:

ADS Tech: ANJ

11.08.19 10.09

Dry Weight

Analyst: Seq Number: 3106924 Date Prep:

SUB: T104704215-19-30

Prep Method: SW7471P

Parameter Cas Number Result RLUnits Analysis Date Flag Dil 7439-97-6 BRL 0.0175 11.08.19 15.50 U Mercury mg/kg 1

Matrix:

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106917

Analyst: DEP Date Prep: 11.08.19 10.30 % Moisture:

Basis: Wet Weight

Prep Method: SW3050B

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.7	2.00	mg/kg	11.08.19 16.05		10
Barium	7440-39-3	195	4.00	mg/kg	11.08.19 16.05		10
Cadmium	7440-43-9	BRL	2.00	mg/kg	11.08.19 16.05	U	10
Chromium	7440-47-3	6.74	4.00	mg/kg	11.08.19 16.05		10
Lead	7439-92-1	7.70	2.00	mg/kg	11.08.19 16.05		10
Selenium	7782-49-2	BRL	2.00	mg/kg	11.08.19 16.05	U	10
Silver	7440-22-4	BRL	2.00	mg/kg	11.08.19 16.05	U	10

JOZ

DNE

Tech:

Analyst:

Certificate of Analytical Results 642303

Wet Weight

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B34-10.0-10.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-006
 Date Collected: 11.06.19 08.25
 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Date Prep: 11.08.19 10.00 Basis:

Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		TT - *4	A - 1 - 1 - 10 - 10 - 4	T21	D.I
Parameter	Cas Number	Kesuit	KL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 17.14	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.08.19 17.14	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.08.19 17.14	U	1
Benzo(a)anthracene	56-55-3	0.00405	0.00167		mg/kg	11.08.19 17.14		1
Benzo(a)pyrene	50-32-8	0.00804	0.00167		mg/kg	11.08.19 17.14		1
Benzo(b)fluoranthene	205-99-2	0.00966	0.00167		mg/kg	11.08.19 17.14		1
Benzo(g,h,i)perylene	191-24-2	0.00588	0.00167		mg/kg	11.08.19 17.14		1
Benzo(k)fluoranthene	207-08-9	0.00302	0.00167		mg/kg	11.08.19 17.14		1
Chrysene	218-01-9	0.00499	0.00167		mg/kg	11.08.19 17.14		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 17.14	U	1
Fluoranthene	206-44-0	0.0101	0.00167		mg/kg	11.08.19 17.14		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 17.14	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00452	0.00167		mg/kg	11.08.19 17.14		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 17.14	U	1
Phenanthrene	85-01-8	0.00276	0.00167		mg/kg	11.08.19 17.14		1
Pyrene	129-00-0	0.0140	0.00167		mg/kg	11.08.19 17.14		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		61	%	31-130	11.08	.19 17.14		
2-Fluorobiphenyl		104	%	51-133		.19 17.14		
Terphenyl-D14		100	%	46-137	11.08	.19 17.14		

Prep Method: SW3050B

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B34-15.0-15.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-007
 Date Collected: 11.06.19 08.35
 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Moisture: 0

Analyst: ANJ Date Prep: 11.08.19 10.09 Basis: Dry Weight

Seq Number: 3106924 SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 0.0315
 0.0179
 mg/kg
 11.08.19 15.52
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.08.19 10.30 Basis: Wet Weight

Seq Number: 3106917 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.59	1.82	mg/kg	11.08.19 16.08		10
Barium	7440-39-3	84.2	3.64	mg/kg	11.08.19 16.08		10
Cadmium	7440-43-9	BRL	1.82	mg/kg	11.08.19 16.08	U	10
Chromium	7440-47-3	6.19	3.64	mg/kg	11.08.19 16.08		10
Lead	7439-92-1	10.1	1.82	mg/kg	11.08.19 16.08		10
Selenium	7782-49-2	BRL	1.82	mg/kg	11.08.19 16.08	U	10
Silver	7440-22-4	BRL	1.82	mg/kg	11.08.19 16.08	U	10

Wet Weight

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.08.19 10.03

Sample Id: D-B34-15.0-15.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-007 Sample Depth: 15.0 - 15.5 Date Collected: 11.06.19 08.35

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

JOZ % Moisture:

Tech: DNE Analyst: Basis:

Date Prep: Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.08.19 17.30	U	1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.08.19 17.30	U	1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.08.19 17.30	U	1
Benzo(a)anthracene	56-55-3	0.00634	0.00166		mg/kg	11.08.19 17.30		1
Benzo(a)pyrene	50-32-8	0.0109	0.00166		mg/kg	11.08.19 17.30		1
Benzo(b)fluoranthene	205-99-2	0.0142	0.00166		mg/kg	11.08.19 17.30		1
Benzo(g,h,i)perylene	191-24-2	0.00731	0.00166		mg/kg	11.08.19 17.30		1
Benzo(k)fluoranthene	207-08-9	0.00443	0.00166		mg/kg	11.08.19 17.30		1
Chrysene	218-01-9	0.00809	0.00166		mg/kg	11.08.19 17.30		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.08.19 17.30	U	1
Fluoranthene	206-44-0	0.0158	0.00166		mg/kg	11.08.19 17.30		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.08.19 17.30	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00593	0.00166		mg/kg	11.08.19 17.30		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.08.19 17.30	U	1
Phenanthrene	85-01-8	0.00647	0.00166		mg/kg	11.08.19 17.30		1
Pyrene	129-00-0	0.0196	0.00166		mg/kg	11.08.19 17.30		1
		%						
Surrogate		Recovery	Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		64	%	31-130	11.08	.19 17.30		
2-Fluorobiphenyl		104	%	51-133	11.08	.19 17.30		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	64	%	31-130	11.08.19 17.30	
2-Fluorobiphenyl	104	%	51-133	11.08.19 17.30	
Terphenyl-D14	102	%	46-137	11.08.19 17.30	

ADS

Tech:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B34-20.0-20.5 Matrix: Soil Lab Sample Id: 642303-008 Date Collected: 11.06.19 08.55

Date Received: 11.07.19 10.30 Sample Depth: 20.0 - 20.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.08.19 10.09 Basis: Dry Weight Seq Number: 3106924

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits Analysis Date Flag Dil 7439-97-6 BRL 11.08.19 15.54 U Mercury 0.0196 mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Date Prep: 11.08.19 10.30 Seq Number: 3106917

Prep Method: SW3050B % Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.21	1.67	mg/kg	11.08.19 16.11		10
Barium	7440-39-3	99.1	3.33	mg/kg	11.08.19 16.11		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.08.19 16.11	U	10
Chromium	7440-47-3	11.8	3.33	mg/kg	11.08.19 16.11		10
Lead	7439-92-1	10.8	1.67	mg/kg	11.08.19 16.11		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.08.19 16.11	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.08.19 16.11	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B34-20.0-20.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-008
 Date Collected: 11.06.19 08.55
 Sample Depth: 20.0 - 20.5

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.08.19 10.06 Basis: Wet Weight

Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 17.46	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.08.19 17.46	U	1
a		%	.					
Surrogate		Recovery	Units	Limits		ysis Date Fla	ag	
Nitrobenzene-d5		49	%	31-130		.19 17.46		
2-Fluorobiphenyl		79	%	51-133		.19 17.46		
Terphenyl-D14		80	%	46-137	11.08	.19 17.46		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B33-10.0-10.5**Lab Sample Id: 642303-009

Matrix: Soil

Date Collected: 11.06.19 09.35

Date Received: 11.07.19 10.30 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B

ADS

ANJ

Seq Number: 3106924

Tech:

Analyst:

Prep Method: SW7471P

11.08.19 10.09

% Moisture: 0

Date Prep:

Basis: Dry Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0196
 mg/kg
 11.08.19 15.56
 U
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Seq Number: 3106917

Analyst: DEP Date Prep: 11.08.19 10.30

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.04	1.67	mg/kg	11.08.19 16.14		10
Barium	7440-39-3	65.1	3.33	mg/kg	11.08.19 16.14		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.08.19 16.14	U	10
Chromium	7440-47-3	9.26	3.33	mg/kg	11.08.19 16.14		10
Lead	7439-92-1	11.7	1.67	mg/kg	11.08.19 16.14		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.08.19 16.14	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.08.19 16.14	U	10

JOZ

Seq Number: 3106889

Terphenyl-D14

Tech:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B33-10.0-10.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-009
 Date Collected: 11.06.19 09.35
 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep

Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.08.19 10.09 Basis:

Basis: Wet Weight SUB: T104704215-19-30

11.08.19 22.16

46-137

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.08.19 22.16		1
Acenaphthylene	208-96-8	0.00292	0.00166		mg/kg	11.08.19 22.16	C	1
Anthracene		0.00292	0.00166					1
	120-12-7				mg/kg	11.08.19 22.16		1
Benzo(a)anthracene	56-55-3	0.00986	0.00166		mg/kg	11.08.19 22.16		1
Benzo(a)pyrene	50-32-8	0.0135	0.00166		mg/kg	11.08.19 22.16		1
Benzo(b)fluoranthene	205-99-2	0.0286	0.00166		mg/kg	11.08.19 22.16		1
Benzo(g,h,i)perylene	191-24-2	0.00871	0.00166		mg/kg	11.08.19 22.16		1
Benzo(k)fluoranthene	207-08-9	0.00756	0.00166		mg/kg	11.08.19 22.16		1
Chrysene	218-01-9	0.0143	0.00166		mg/kg	11.08.19 22.16		1
Dibenz(a,h)Anthracene	53-70-3	0.00253	0.00166		mg/kg	11.08.19 22.16		1
Fluoranthene	206-44-0	0.0241	0.00166		mg/kg	11.08.19 22.16		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.08.19 22.16	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00753	0.00166		mg/kg	11.08.19 22.16		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.08.19 22.16	U	1
Phenanthrene	85-01-8	0.0102	0.00166		mg/kg	11.08.19 22.16		1
Pyrene	129-00-0	0.0191	0.00166		mg/kg	11.08.19 22.16		1
		%						
Surrogate		Recovery	Units	Limits	Anal	lysis Date Fl	ag	
Nitrobenzene-d5		54	%	31-130	11.08	.19 22.16		
2-Fluorobiphenyl		87	%	51-133	11.08	.19 22.16		

89

ADS

Tech:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

Soil

Sample Id: D-B33-15.0-15.5 Matrix: Lab Sample Id: 642303-010

Date Collected: 11.06.19 09.40

Date Received: 11.07.19 10.30 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.08.19 10.09 Basis: Dry Weight Seq Number: 3106924

SUB: T104704215-19-30

Parameter Cas Number Result RL**Analysis Date** Flag Dil Units 11.08.19 15.58 Mercury 7439-97-6 BRL 0.0167 U mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106917

Analyst: DEP Date Prep: 11.08.19 10.30 Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Result RL **Parameter** Cas Number Dil Units **Analysis Date** Flag 11.08.19 16.32 10 Arsenic 7440-38-2 32.6 1.89 mg/kg Barium 201 11.08.19 16.32 7440-39-3 3.77 10 mg/kg Cadmium BRL U 7440-43-9 1.89 mg/kg 11.08.19 16.32 10 Chromium 7440-47-3 3.77 11.08.19 16.32 10 16.7 mg/kg Lead 7439-92-1 9.69 1.89 11.08.19 16.32 10 mg/kg Selenium 7782-49-2 BRL 1.89 mg/kg 11.08.19 16.32 U 10 U Silver 7440-22-4 BRL 1.89 11.08.19 16.32 10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B33-15.0-15.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-010
 Date Collected: 11.06.19 09.40
 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.08.19 10.12 Basis: Wet Weight

Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Benzo(b)fluoranthene	205-99-2	0.00198	0.00167		mg/kg	11.08.19 18.02		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Fluoranthene	206-44-0	0.00217	0.00167		mg/kg	11.08.19 18.02		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 18.02	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.08.19 18.02	U	1
Pyrene	129-00-0	0.00226	0.00167		mg/kg	11.08.19 18.02		1
_		%						
Surrogate		Recovery	Units	Limits		ysis Date Fla	ag	
Nitrobenzene-d5		66	%	31-130		.19 18.02		
2-Fluorobiphenyl		106	%	51-133		.19 18.02		
Terphenyl-D14		101	%	46-137	11.08	.19 18.02		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B33-20.0-20.5

Analytical Method: Mercury by SW 7471B

Matrix: Soil Date Received: 11.07.19 10.30

Lab Sample Id: 642303-011

Date Collected: 11.06.19 09.45

Sample Depth: 20.0 - 20.5 Prep Method: SW7471P

% Moisture: 0

ADS Tech: ANJ

Date Prep:

Basis: Dry Weight

Seq Number: 3106924

Analyst:

11.08.19 10.09

SUB: T104704215-19-30

Parameter Cas Number Result RL**Analysis Date** Flag Dil Units 11.08.19 16.00 Mercury 7439-97-6 BRL 0.0172 U mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106917

Analyst: DEP Date Prep: 11.08.19 10.30 Prep Method: SW3050B

% Moisture:

Basis: Wet Weight SUB: T104704215-19-30

Result RL**Parameter** Cas Number Dil Units **Analysis Date** Flag 1.75 11.08.19 16.35 10 Arsenic 7440-38-2 10.0 mg/kg Barium 212 11.08.19 16.35 7440-39-3 3.51 10 mg/kg Cadmium BRL U 7440-43-9 1.75 mg/kg 11.08.19 16.35 10 Chromium 7440-47-3 9.87 3.51 11.08.19 16.35 10 mg/kg Lead 7439-92-1 9.34 1.75 11.08.19 16.35 10 mg/kg Selenium 7782-49-2 BRL 1.75 mg/kg 11.08.19 16.35 U 10 U Silver 7440-22-4 BRL 1.75 11.08.19 16.35 10

JOZ

Seq Number: 3106889

Tech:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B33-20.0-20.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-011 Sample Depth: 20.0 - 20.5 Date Collected: 11.06.19 09.45

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Wet Weight Date Prep: 11.08.19 10.15 Basis:

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 18.21	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.08.19 18.21	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.08.19 18.21	U	1
Benzo(a)anthracene	56-55-3	0.00178	0.00167		mg/kg	11.08.19 18.21		1
Benzo(a)pyrene	50-32-8	0.00274	0.00167		mg/kg	11.08.19 18.21		1
Benzo(b)fluoranthene	205-99-2	0.00552	0.00167		mg/kg	11.08.19 18.21		1
Benzo(g,h,i)perylene	191-24-2	0.00211	0.00167		mg/kg	11.08.19 18.21		1
Benzo(k)fluoranthene	207-08-9	0.00176	0.00167		mg/kg	11.08.19 18.21		1
Chrysene	218-01-9	0.00425	0.00167		mg/kg	11.08.19 18.21		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 18.21	U	1
Fluoranthene	206-44-0	0.00600	0.00167		mg/kg	11.08.19 18.21		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 18.21	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00175	0.00167		mg/kg	11.08.19 18.21		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 18.21	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.08.19 18.21	U	1
Pyrene	129-00-0	0.00750	0.00167		mg/kg	11.08.19 18.21		1
		%						
Surrogate		Recovery	Units	Limits	Anal	lysis Date F	lag	
Nitrobenzene-d5		70	%	31-130		.19 18.21		
2-Fluorobiphenyl		108	%	51-133		.19 18.21		
Terphenyl-D14		98	%	46-137	11.08	.19 18.21		

ADS

Tech:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B32-10.0-10.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-012 Date Collected: 11.06.19 10.25 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

> % Moisture: 0

ANJ Analyst: Date Prep: 11.08.19 10.09 Basis: Dry Weight Seq Number: 3106924

SUB: T104704215-19-30

Parameter Cas Number Result RLUnits Analysis Date Flag Dil 7439-97-6 11.08.19 16.15 0.0336 0.0169 Mercury mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.08.19 10.30 Seq Number: 3106917

Prep Method: SW3050B % Moisture:

Wet Weight SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	8.49	1.67	mg/kg	11.08.19 16.38		10
Barium	7440-39-3	156	3.33	mg/kg	11.08.19 16.38		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.08.19 16.38	U	10
Chromium	7440-47-3	7.09	3.33	mg/kg	11.08.19 16.38		10
Lead	7439-92-1	27.7	1.67	mg/kg	11.08.19 16.38		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.08.19 16.38	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.08.19 16.38	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B32-10.0-10.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-012 Sample Depth: 10.0 - 10.5 Date Collected: 11.06.19 10.25

Analytical Method: PAHs by 8270D SIM

JOZ Tech:

DNE Analyst: Basis: Wet Weight Date Prep: 11.08.19 10.18

Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 22.33	U	1
Acenaphthylene	208-96-8	0.00289	0.00167		mg/kg	11.08.19 22.33		1
Anthracene	120-12-7	0.00379	0.00167		mg/kg	11.08.19 22.33		1
Benzo(a)anthracene	56-55-3	0.0134	0.00167		mg/kg	11.08.19 22.33		1
Benzo(a)pyrene	50-32-8	0.0192	0.00167		mg/kg	11.08.19 22.33		1
Benzo(b)fluoranthene	205-99-2	0.0339	0.00167		mg/kg	11.08.19 22.33		1
Benzo(g,h,i)perylene	191-24-2	0.0110	0.00167		mg/kg	11.08.19 22.33		1
Benzo(k)fluoranthene	207-08-9	0.00799	0.00167		mg/kg	11.08.19 22.33		1
Chrysene	218-01-9	0.0176	0.00167		mg/kg	11.08.19 22.33		1
Dibenz(a,h)Anthracene	53-70-3	0.00245	0.00167		mg/kg	11.08.19 22.33		1
Fluoranthene	206-44-0	0.0288	0.00167		mg/kg	11.08.19 22.33		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 22.33	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00987	0.00167		mg/kg	11.08.19 22.33		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 22.33	U	1
Phenanthrene	85-01-8	0.0107	0.00167		mg/kg	11.08.19 22.33		1
Pyrene	129-00-0	0.0272	0.00167		mg/kg	11.08.19 22.33		1
		9/0						
Surrogate		Recovery	Units	Limits		•	ag	
Nitrobenzene-d5		60	%	31-130		.19 22.33		
2-Fluorobiphenyl		94	%	51-133	11.08	.19 22.33		
Terphenyl-D14		96	%	46-137	11.08	19 22 33		

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	60	%	31-130	11.08.19 22.33	
2-Fluorobiphenyl	94	%	51-133	11.08.19 22.33	
Terphenyl-D14	96	%	46-137	11.08.19 22.33	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B32-15.0-15.5 Lab Sample Id: 642303-013

Matrix: Soil Date Collected: 11.06.19 10.45

Date Received: 11.07.19 10.30 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B

Prep Method: SW7471P

ADS Tech:

% Moisture: 0

ANJ Analyst:

Seq Number: 3106924

Date Prep: 11.08.19 10.09

SUB: T104704215-19-30

Dry Weight

Basis:

Parameter Cas Number Result RLUnits Analysis Date Flag Dil 7439-97-6 BRL 11.08.19 16.16 U Mercury 0.0169 mg/kg 1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106917

Analyst:

DEP Date Prep: 11.08.19 10.30 % Moisture:

Basis: Wet Weight

Prep Method: SW3050B

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	10.3	1.67	mg/kg	11.08.19 16.41		10
Barium	7440-39-3	241	3.33	mg/kg	11.08.19 16.41		10
Cadmium	7440-43-9	BRL	1.67	mg/kg	11.08.19 16.41	U	10
Chromium	7440-47-3	10.5	3.33	mg/kg	11.08.19 16.41		10
Lead	7439-92-1	3.86	1.67	mg/kg	11.08.19 16.41		10
Selenium	7782-49-2	BRL	1.67	mg/kg	11.08.19 16.41	U	10
Silver	7440-22-4	BRL	1.67	mg/kg	11.08.19 16.41	U	10

Prep Method: SW3550

% Moisture:

APS, Phoenix, AZ

APS MGP Douglas, AZ

 Sample Id:
 D-B32-15.0-15.5
 Matrix:
 Soil
 Date Received: 11.07.19 10.30

 Lab Sample Id:
 642303-013
 Date Collected: 11.06.19 10.45
 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM

Tech: JOZ

Analyst: DNE Date Prep: 11.08.19 10.21 Basis: Wet Weight

Seq Number: 3106889 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.08.19 20.35	U	1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.08.19 20.35	U	1
a		%	.					
Surrogate		Recovery	Units	Limits		ysis Date Fl	ag	
Nitrobenzene-d5		61	%	31-130		.19 20.35		
2-Fluorobiphenyl		97	%	51-133		.19 20.35		
Terphenyl-D14		92	%	46-137	11.08	.19 20.35		

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B32-20.0-20.5

Analytical Method: Mercury by SW 7471B

Matrix: Soil Date Received: 11.07.19 10.30

Lab Sample Id: 642303-014

Date Collected: 11.06.19 10.55

Sample Depth: 20.0 - 20.5 Prep Method: SW7471P

% Moisture: 0

ADS Tech: Analyst: ANJ

Date Prep: 11.08.19 10.09 Basis: Dry Weight

Seq Number: 3106924

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Mercury	7439-97-6	BRL	0.0192	mg/kg	11.08.19 16.18	U	1

Analytical Method: Metals, RCRA List, by SW 6020

PJB Tech:

Seq Number: 3106917

Analyst: DEP Date Prep: 11.08.19 10.30

Prep Method: SW3050B

% Moisture:

Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	9.75	1.72	mg/kg	11.08.19 16.44		10
Barium	7440-39-3	236	3.45	mg/kg	11.08.19 16.44		10
Cadmium	7440-43-9	BRL	1.72	mg/kg	11.08.19 16.44	U	10
Chromium	7440-47-3	14.0	3.45	mg/kg	11.08.19 16.44		10
Lead	7439-92-1	5.19	1.72	mg/kg	11.08.19 16.44		10
Selenium	7782-49-2	BRL	1.72	mg/kg	11.08.19 16.44	U	10
Silver	7440-22-4	BRL	1.72	mg/kg	11.08.19 16.44	U	10

JOZ

Tech:

Certificate of Analytical Results 642303

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B32-20.0-20.5 Matrix: Soil Date Received: 11.07.19 10.30 Lab Sample Id: 642303-014 Sample Depth: 20.0 - 20.5 Date Collected: 11.06.19 10.55

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

DNE Analyst: Basis: Wet Weight Date Prep: 11.08.19 10.24 Seq Number: 3106889

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Acenaphthylene	208-96-8	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Anthracene	120-12-7	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Benzo(a)anthracene	56-55-3	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Benzo(a)pyrene	50-32-8	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Chrysene	218-01-9	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Fluoranthene	206-44-0	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Fluorene	86-73-7	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Naphthalene	91-20-3	BRL	0.0167	mg/kg	11.08.19 20.52	U	1
Phenanthrene	85-01-8	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Pyrene	129-00-0	BRL	0.00167	mg/kg	11.08.19 20.52	U	1
Surrogate		% Recovery	Units	Limits Ana	lysis Date - Fla	_	

	%				
Surrogate	Recovery	Units	Limits	Analysis Date	Flag
Nitrobenzene-d5	59	%	31-130	11.08.19 20.52	
2-Fluorobiphenyl	94	%	51-133	11.08.19 20.52	
Terphenyl-D14	95	%	46-137	11.08.19 20.52	

OC Summary 642303

APS

APS MGP Douglas, AZ

Analytical Method: Mercury by SW 7471B

SW7471P Prep Method: Seq Number: 3106924 Matrix: Solid Date Prep: 11.08.19

LCS Sample Id: LCSD Sample Id: 7689880-1-BSD 7689880-1-BKS MB Sample Id: 7689880-1-BLK

LCS %RPD RPD Limit Units MB Spike LCS Limits Analysis LCSD LCSD Flag **Parameter** Result Amount Result %Rec Date Result %Rec

80-120 20 11.08.19 15:28 Mercury < 0.00377 0.196 0.230 117 0.231 118 0 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Seq Number: 3106924 Matrix: Soil Date Prep: 11.08.19 Parent Sample Id: 642303-001 MS Sample Id: 642303-001 S MSD Sample Id: 642303-001 SD

Spike MS MS Limits %RPD RPD Limit Units Analysis **Parent MSD** MSD Flag **Parameter** Result Amount Result %Rec Date Result %Rec

Mercury < 0.00363 0.189 0.211 112 0.213 115 75-125 20 11.08.19 15:33 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Seq Number: 3106924 Matrix: Soil 11.08.19 Date Prep: Parent Sample Id: 642303-004 MS Sample Id: 642303-004 S MSD Sample Id: 642303-004 SD

Spike MS %RPD RPD Limit Units **Parent** MS **MSD** MSD Limits Analysis Flag **Parameter** Result Date Result Amount %Rec Result %Rec 11.08.19 16:07 0.00500 0.175 0.184 102 0.186 105 75-125 20 Mercury mg/kg

SW3050B Analytical Method: Metals, RCRA List, by SW 6020 Prep Method:

3106917 Seq Number: Matrix: Solid Date Prep: 11.08.19 LCS Sample Id: 7689919-1-BKS 7689919-1-BLK LCSD Sample Id: 7689919-1-BSD MB Sample Id:

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.200	10.0	10.4	104	10.2	102	80-120	2	20	mg/kg	11.08.19 15:21	
Barium	< 0.400	10.0	10.1	101	10.2	102	80-120	1	20	mg/kg	11.08.19 15:21	
Cadmium	< 0.200	10.0	10.4	104	10.4	104	80-120	0	20	mg/kg	11.08.19 15:21	
Chromium	< 0.400	10.0	10.3	103	10.2	102	80-120	1	20	mg/kg	11.08.19 15:21	
Lead	< 0.200	10.0	10.2	102	10.2	102	80-120	0	20	mg/kg	11.08.19 15:21	
Selenium	< 0.200	10.0	10.6	106	10.4	104	80-120	2	20	mg/kg	11.08.19 15:21	
Silver	< 0.200	5.00	5.10	102	5.14	103	80-120	1	20	mg/kg	11.08.19 15:21	

QC Summary 642303

APSAPS MGP Douglas, AZ

Analytical Method:Metals, RCRA List, by SW 6020Prep Method:SW 3050BSeq Number:3106917Matrix:SoilDate Prep:11.08.19Parent Sample Id:642303-004MS Sample Id:642303-004 SMSD Sample Id:642303-004 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	nit Units	Analysis Date	Flag
Arsenic	13.8	9.26	22.5	94	22.1	91	75-125	2	30	mg/kg	11.08.19 15:33	
Barium	170	9.26	172	22	168	0	75-125	2	30	mg/kg	11.08.19 15:33	X
Cadmium	< 1.85	9.26	9.63	104	9.58	105	75-125	1	30	mg/kg	11.08.19 15:33	
Chromium	12.8	9.26	21.7	96	21.7	98	75-125	0	30	mg/kg	11.08.19 15:33	
Lead	13.8	9.26	22.7	96	22.1	91	75-125	3	30	mg/kg	11.08.19 15:33	
Selenium	<1.85	9.26	9.78	106	9.73	107	75-125	1	30	mg/kg	11.08.19 15:33	
Silver	<1.85	4.63	3.22	70	3.18	70	75-125	1	30	mg/kg	11.08.19 15:33	X

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3106889Matrix: SolidDate Prep:11.08.19

MB Sample Id: 7689878-1-BLK LCS Sample Id: 7689878-1-BKS LCSD Sample Id: 7689878-1-BSD

MB Spike LCS LCS LCSD Limits %RPD RPD Limit Units Analysis LCSD **Parameter** Result Result Amount %Rec %Rec Date Result Acenaphthene 0.0289 42-116 11.08.19 12:30 < 0.00167 0.0333 0.0306 92 87 6 25 mg/kg Acenaphthylene < 0.00167 0.0333 0.0291 87 0.0273 82 42-121 6 25 mg/kg 11.08.19 12:30 Anthracene < 0.00167 0.0333 0.0312 94 0.0294 88 44-120 6 25 mg/kg 11.08.19 12:30 Benzo(a)anthracene < 0.00167 0.0333 0.0319 96 0.0312 94 52-121 2 2.5 11.08.19 12:30 mg/kg 99 0.0320 50-128 11.08.19 12:30 Benzo(a)pyrene < 0.00167 0.0333 0.0331 96 3 25 mg/kg Benzo(b)fluoranthene < 0.00167 0.0333 0.0347 104 0.0333 100 49-137 4 25 11.08.19 12:30 mg/kg Benzo(g,h,i)perylene < 0.00167 0.0333 0.0343 103 0.0334 100 47-132 3 25 mg/kg 11.08.19 12:30 Benzo(k)fluoranthene < 0.00167 0.0333 0.0340 102 0.0331 99 48-133 3 25 11.08.19 12:30 mg/kg Chrysene < 0.00167 0.0333 0.0313 94 0.0301 90 54-113 4 25 mg/kg 11.08.19 12:30 Dibenz(a,h)Anthracene < 0.00167 0.0333 0.0353 106 0.0344 103 48-133 3 25 mg/kg 11.08.19 12:30 Fluoranthene < 0.00167 0.0333 0.0331 99 0.0318 95 54-128 4 25 mg/kg 11.08.19 12:30 Fluorene < 0.00167 0.0333 0.0307 92 0.0289 87 44-118 6 25 mg/kg 11.08.19 12:30 Indeno(1,2,3-c,d)Pyrene < 0.00167 0.0333 0.0350105 0.0341 102 49-129 3 25 mg/kg 11.08.19 12:30 Naphthalene < 0.0167 0.0333 0.0301 90 0.0279 84 40-135 8 25 mg/kg 11.08.19 12:30 Phenanthrene 0.0333 0.0320 96 0.0301 90 44-119 25 11.08.19 12:30 < 0.00167 6 mg/kg

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	81		83		78		31-130	%	11.08.19 12:30
2-Fluorobiphenyl	96		98		93		51-133	%	11.08.19 12:30
Terphenyl-D14	97		100		97		46-137	%	11.08.19 12:30

96

0.0305

92

50-126

25

mg/kg

5

Pyrene

< 0.00167

0.0333

0.0321

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

11.08.19 12:30

Flag

QC Summary 642303

APS APS MGP Douglas, AZ

Analytical Method: PAHs by 8270D SIM

Prep Method: SW3550 Seq Number: 3106889 Matrix: Soil Date Prep: 11.08.19 Parent Sample Id MS Sample Id: 642303-004 S MSD Sample Id: 642303-004 SD

Parent Sample Id:	642303-004		MS San	npie id:	642303-00)4 S		MS	D Sample	e Id: 642.	303-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0263	79	0.0304	91	42-116	14	25	mg/kg	11.08.19 13:54	
Acenaphthylene	< 0.00167	0.0333	0.0243	73	0.0280	84	42-121	14	25	mg/kg	11.08.19 13:54	
Anthracene	< 0.00167	0.0333	0.0271	81	0.0314	94	44-120	15	25	mg/kg	11.08.19 13:54	
Benzo(a)anthracene	0.00266	0.0333	0.0288	78	0.0334	92	52-121	15	25	mg/kg	11.08.19 13:54	
Benzo(a)pyrene	0.00431	0.0333	0.0309	80	0.0363	96	50-128	16	25	mg/kg	11.08.19 13:54	
Benzo(b)fluoranthene	0.00604	0.0333	0.0319	78	0.0409	105	49-137	25	25	mg/kg	11.08.19 13:54	
Benzo(g,h,i)perylene	0.00598	0.0333	0.0325	80	0.0397	101	47-132	20	25	mg/kg	11.08.19 13:54	
Benzo(k)fluoranthene	0.00187	0.0333	0.0303	85	0.0330	93	48-133	9	25	mg/kg	11.08.19 13:54	
Chrysene	0.00352	0.0333	0.0288	76	0.0338	91	54-113	16	25	mg/kg	11.08.19 13:54	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0295	89	0.0348	105	48-133	16	25	mg/kg	11.08.19 13:54	
Fluoranthene	0.00772	0.0333	0.0326	75	0.0383	92	54-128	16	25	mg/kg	11.08.19 13:54	
Fluorene	< 0.00167	0.0333	0.0264	79	0.0304	91	44-118	14	25	mg/kg	11.08.19 13:54	
Indeno(1,2,3-c,d)Pyrene	0.00395	0.0333	0.0317	83	0.0380	102	49-129	18	25	mg/kg	11.08.19 13:54	
Naphthalene	< 0.0167	0.0333	0.0260	78	0.0297	89	40-135	13	25	mg/kg	11.08.19 13:54	
Phenanthrene	0.00383	0.0333	0.0291	76	0.0337	90	44-119	15	25	mg/kg	11.08.19 13:54	
Pyrene	0.00917	0.0333	0.0328	71	0.0384	88	50-126	16	25	mg/kg	11.08.19 13:54	
Surrogate				IS Rec	MS Flag	MSE %Re			imits	Units	Analysis Date	
N:41			-	70		90		2	1 120	0/	11 00 10 12.54	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	70		80		31-130	%	11.08.19 13:54
2-Fluorobiphenyl	84		96		51-133	%	11.08.19 13:54
Terphenyl-D14	85		99		46-137	%	11.08.19 13:54

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS ResultE = MSD/LCSD Result $MS = Matrix \; Spike$ B = Spike Added D = MSD/LCSD % Rec

Chain of Custody

Work Order No: (042303

Page

www.xenco.com

Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334

Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)

Project Manager:	Judy Heywood				Send results	ţ	Bernice Kidd Matt Branche	idd						Work	Work Order Comments	ents
Company Name:	APS				Company Name:		Jacobs						Program: UST/PST	PST PRHT	PRH☐ Brownfields	RR□ Superfur□
Address:	PO Box53999, MS 9303	MS 930	9		Phone		480-273-4084	1084					State of Project:		ja ja	
City, State ZIP:	Phoenix, AZ 85072-3999	072-399	96		email	⊞I E	ernice.	Kidd@ja nche@ji	Bernice.Kidd@jacobs.com matt.branche@jacobs.com	티티		œ	eporting:Leve	Reporting:Level II X Level III□ PST/US-□	PST/US₽	TRRP Level IV
Phone:	602-818-0259			Ema	Email: Judith.Heyw	wood@aps.com	os.com						Deliverables: E	EDD []	ADaPT	Other:
Project Name:	APS MGP Douglas, AZ	glas, AZ		L	Turn Around					ANAL	YSIS R	ANALYSIS REQUEST				Work Order Notes
Project Number:	D3118600.A.CS.EV.DG.05-1B	S.EV.DG	3.05-1B	Routi	K S											
P.O. Number:	700735632			(Rush:	きってから		(AЯ	9.1								
Sampler's Name:				Due	Due Date:		8 RC			Υħ						
SAMPLE RECEIPT		Temp Blank:	· Yes No	Wet Ice:	e: (Yes No	s) slet			litabil		əp				
Temperature (°C):	(Thermometer ID	ır ID	iner	əw I	+			. 2	ins y				
Received Intact:	/ Kes	No NA	IR IC	IR ID:HOU-068	3 C/F:+0.2						dene	otal C			ľ	
Sample Custody Seals:	es (es	14	Tem	P. CC	Temp: Corrected: 8	L of o	. 777		CBS			T - 41(TAT s	TAT starts the day recevied by the lab, if received by 4:30pm
Sample Identification	ntification	Matrix	Date Sampled	Time	Depth	gwnN	IS 0728	80928	I - S808	89606 87846	89 1 06	9013/90			0,	Sample Comments
D-B18-100-10.5	5-60.5	S	W-5-19	1245	190-195	-	X									
2-018-1520-1555	5-(5:5	S		1255	15,045,5	7	X									
1-635-10,0-10,5	2-10,0	S	_	1400	_	7	×									
1-035-15,0-15,5	15.5	S		1415	15% - 15.5m	7	x								NB	Drw/
1-B35-2000-20-1	5.02-0	S	7	14 25	20,0-20,5	7	X									
1-834-10,0-10,5	5.07-0	S	61-2-91	0825	2825-10,0405	2	X					1				
D-034-150-1505	555-0	S		0835	JSS+ 051_	7	×							1		
502-0102-450-1	502-0	S		0855	-20,0-20,5-	12	X		4					γ.		
233-10,0-105	20100	Ŋ		2560	10,0103	7	X									
1-833-150-155	5500	4	>	0760	ふいかのい	,2	×									*
Total 200.7 / 6010	5010 200.8 / 6020:	3020:	8R	CRA 13P	8RCRA 13PPM Texas 11	₹	Sb As Ba	a Be B	8	ပိ ၁	Cu F	Pb M	Ca Cr Co Cu Fe Pb Mg Mn Mo Ni	K Se Ag	SiO2 Na Sr TI	Sn U
Circle Method	Circle Method(s) and Metal(s) to be analyzed	to be ar.	nalyzed	TCLP / SI	TCLP / SPLP 6010: 8RCRA		Sb As B	Ba Be	Cd Cr	So Cu	Pb Mn	Mo Ni	Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U	l e	1631 / 24	1631 / 245.1 / 7470 / 7471 : Hg
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions	document and reling	uishment o	of samples cons	titutes a valid	ourchase order fro	ım client co	mpany to	Xenco, its	affiliates	and subco	ntractors.	It assigns	standard terms	and conditions		
of service. Service will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Service will be controlled to the control of services and the control of services are due to circumstances beyond the control	e liable only for the co	st of samp	oles and shall no	assume any	responsibility for a	any losses	or expensi	es incurre	d by the cl	ient if such	losses a	e due to c	rcumstances be	ond the control	7.4	

Revised Date 051418 Rev 2018 1

Received by: (Signature)

Relinquished by: (Signature)

Date/Time 11 セー(タリス o o

Received by: (Signature)

Relinquished by: (Signature)

mash

XMZCOOKATORIES

Chain of Custody

0	0
50	3
017	7
1	9
	No:
	rder
	Ö
	~

ŏ

Page

www.xenco.com

Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296

Project Manager:	Judy Heywood				Send results to	<u>ک</u> ا	Matt Branche	che						Work	Order C	Work Order Comments	
Сотралу Name:	APS				Company Name:	1	Jacobs						Program:	Program: UST/PST□ PRR	PRP☐ Brownfields☐	fields RR□	Superfur
Address	PO Box53999, MS 9303	S 9303			Phone	4	480-273-4084	1084					State	State of Project: Ari	Arizona		[
City, State ZIP:	Phoenix, AZ 85072-3999	72-3995	0		email	<u> </u>	ernice.	Kidd@	Bernice Kidd@jacobs.com matt.branche@jacobs.com	com			Reporting		III PST	/USP TRRP	Level III PST/USP TRRP Level IV
Phone:	602-818-0259			Emai	Email: Judith. Heywo	vood@aps.com	os.com						Deliverables: EDD	es: EDD	ADaPT	☐ Other:	er.
Project Name:	APS MGP Douglas, AZ	as, AZ		_	Turn Around					AN	ANALYSIS REQUEST	REQU	EST			Work	Work Order Notes
Project Number:	D3118600.A.CS.EV.DG.05-1B	EV.DG.	.05-1B	Row	Routinex			(-					
P.O. Number:	700735632			Rus	Rush 48th		(va								مانده		
Sampler's Name:				Due	Due Date:		Ja 8)				ility						
SAMPLE RECEIPT		Temp Blank:	Kes No	Wet Ice:	e. Kes No	Ş.	alete				dstin	əbi					
Temperature (°C):)	Thermomotor In) (iəui	- cu t	-			6 -	; Asu	-				
Received Intact:	(Yes)	No	IR ID:	IR ID:HOU-068	C/F:+0.2	-				ilter:	S1.7	C let					
Cooler Custody Seals:	als: (Yes No	AND AND AND AND AND AND AND AND AND AND	Temp	J.6 Correct	Temp: 1.6 Corrected 8	og go	eHA9 I - Α11	V IstoT	s80	9 Jule 9	eloihi	oT - 41			-	TAT starts the fab, if rec	TAT starts the day recevied by the lab, if received by 4:30pm
dalliple custody of	3	1				-)d -	1 - 8	-	_					
Sample Identification		Matrix	Date Sampled	Time	Depth ,				8082	19606		19406				Sampl	Sample Comments
D-833-200-205	8 20200	70	61911	5460	200205	2	X										
7-5732-10,0-10,5	8 2000-0	10		2201	Jor + 408	7	X										
N-832-15,0-15,5	5 5570			2401	5540151-	12	X										
1-832-20	-832-20,05 S	10	D	1050	20,0-295	7	X					+					
	8									1	+	-			1		
	S	**										+					
	S	**									1	-					30) Care and
	S													,			
											H	H					
Total 200.7 / 6010	6010 200.8 / 6020:	20:	100	BRCRA 13PPM	PM Texas 11	100	As		B Cd C	CaC	DO CO	Cu Fe Pi	3e B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo	Mo Ni K Se Ag	Sio	SiO2 Na Sr TI Sr 1631 / 245.1 / 7	2 Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Ha
Circle Metho	Circle Method(s) and Metal(s) to be analyzed	o be an	alyzed	っしていっ	ICLP / SPLP 6010: SRCRA		24 0		2	3	2 - 7	AILL INIX	200	=			

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions

Circle Method(s) and Metal(s) to be analyzed

Relinquished by: (Signature) Received by: (Signature)		į	(Dogging by: (Cignofire)	Data/Time
	(Signature)	Date/Time	 Keiinquisned by. (Signature) 	Received by. (Signature)	המוכיו וווווים
C. Mark	0	11-6-19:1300	2 Holle	and	1119 1050
			4		
			9		

THU - 07 NOV 10:30A PRIORITY OVERNIGHT

XH SGRA

77477 TX-US IAH

FID 3648448 06NOV19 AVWA 56AC1/F330/05A2

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Date/ Time Received: 11/07/2019 10:30:00 AM

Checklist reviewed by:

AM Air and Met

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: HOU-068

Date: 11/08/2019

Work Order #: 642303

Sample Receipt Check	klist	Comments
#1 *Temperature of cooler(s)?	1.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

Must be completed for after-hours del	livery of samples prior to pla	cing in the refrigerator
Analyst: MDS	PH Device/Lot#:	
Checklist completed by:	Asia Good Monica Shakhshir	Date: 11/07/2019

Ruriko Konuma

Analytical Report 642585

for

APS

Project Manager: Judy Heywood

APS MGP Douglas, AZ 03118600.A.CS.EV.DG.05-1B 11.13.2019

Collected By: Client

4147 Greenbriar Dr. Stafford, TX 77477

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

11.13.2019

Project Manager: Judy Heywood

APS P.O. Box 53999 Mail Station 8376

Phoenix, AZ 85072

Reference: XENCO Report No(s): 642585

APS MGP Douglas, AZ

Project Address:

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 642585. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 642585 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

Project ID: 03118600.A.CS.EV.DG.05 Report Date: 11.13.2019
Work Order Number(s): 642585 Date Received: 11.08.2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3107032 Metals, RCRA List, by SW 6020

Lab Sample ID 642585-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Silver recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Arsenic recovered above QC limits in the Matrix Spike. Barium, Chromium, Lead recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642585-001, -002, -004, -005, -006, -007.

The Laboratory Control Sample for Silver, Arsenic, Chromium, Barium, Lead is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3107033 Volatiles by SW 8260C

Iodomethane (Methyl Iodide), Propene, n-Hexane recovered below QC limits in the Blank Spike Duplicate indicating bias low results. Samples in the analytical batch are: 642585-004, -008.

Lab Sample ID 642585-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). 1,1,1-Trichloroethane recovered below QC limits in the Matrix Spike. 2-Butanone, Bromomethane, Chloroethane, Cyclohexane, Iodomethane (Methyl Iodide), Propene, Trichlorofluoromethane, n-Hexane recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642585-004, -008.

The Laboratory Control Sample for Bromomethane, Iodomethane (Methyl Iodide), Propene, n-Hexane, Trichlorofluoromethane, 1,1,1-Trichloroethane, 2-Butanone, Cyclohexane, Chloroethane is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3107121 Metals, RCRA List, by SW 6020

Lab Sample ID 642585-003 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Barium recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642585-003.

The Laboratory Control Sample for Barium is within laboratory Control Limits, therefore the data was accepted.

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

Project ID: 03118600.A.CS.EV.DG.05 Report Date: 11.13.2019
Work Order Number(s): 642585 Date Received: 11.08.2019

Batch: LBA-3107146 PAHs by 8270D SIM

 $Benzo(b) fluoranthene \ , \ Dibenz(a,h) Anthracene \ Relative \ Percent \ Difference \ (RPD) \ between \ matrix \ spike$

and duplicate were above quality control limits.

Samples in the analytical batch are: 642585-001, -002, -003, -004, -005, -006, -007

Surrogate Nitrobenzene-d5 recovered above QC limits Data confirmed by re-analysis. Samples affected are: 7690085-1-BSD,642585-003 S,642585-003 SD,642585-007,642585-006,642585-005.

Lab Sample ID 642585-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzo(b)fluoranthene, Pyrene recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642585-001, -002, -003, -004, -005, -006, -007.

The Laboratory Control Sample for Pyrene, Benzo(b)fluoranthene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3107194 Total Cyanide by SW 9012

Lab Sample ID 642585-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Cyanide, Total recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642585-004.

The Laboratory Control Sample for Cyanide, Total is within laboratory Control Limits, therefore the data was accepted.

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- **D1** Sample required dilution due to matrix.
- **D2** Sample required dilution due to high concentration of target analyte.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- **R2** RPD/RSD exceeded the laboratory acceptance limit. See case narrative.
- R5 MS/MSD RPD exceeded the laboratory acceptance limit. Recovery met acceptance criteria.
- \$10Surrogate recovery was above laboratory and method acceptance limits. See case narrative.

Sample Cross Reference 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D-B31-10.0-10.5	S	11.06.2019 13:00	10.0 - 10.5	642585-001
D-B31-15.0-15.5	S	11.06.2019 13:10	15.0 - 15.5	642585-002
D-B31-20.0-20.5	S	11.06.2019 13:20	20.0 - 20.5	642585-003
D-B29-5.0-5.5	S	11.07.2019 08:00	5.0 - 5.5	642585-004
D-B29-10.0-10.5	S	11.07.2019 08:30	10.0 - 10.5	642585-005
D-B29-15.0-15.5	S	11.07.2019 08:55	15.0 - 15.5	642585-006
D-B29-20.0-20.5	S	11.07.2019 09:10	20.0 - 20.5	642585-007
D-TB01-110719	S	11.07.2019 08:00		642585-008

ADS

Seq Number: 3107216

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B31-10.0-10.5 Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-001 Date Collected: 11.06.2019 13:00 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

ANJ Analyst: Date Prep: 11.12.2019 11:10 Basis: Wet Weight

SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil Mercury 7439-97-6 BRL 0.0185 mg/kg 11.12.2019 16:58 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

PJB Tech:

Analyst: DEP Basis: Date Prep: 11.10.2019 14:00 Wet Weight Seq Number: 3107032

SUB: T104704215-19-30

% Moisture:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.8	1.82	mg/kg	11.11.2019 12:16	D2	10
Barium	7440-39-3	211	3.64	mg/kg	11.11.2019 12:16	D2	10
Cadmium	7440-43-9	BRL	1.82	mg/kg	11.11.2019 12:16	D1	10
Chromium	7440-47-3	8.25	3.64	mg/kg	11.11.2019 12:16	D2	10
Lead	7439-92-1	6.48	1.82	mg/kg	11.11.2019 12:16	D2	10
Selenium	7782-49-2	BRL	1.82	mg/kg	11.11.2019 12:16	D1	10
Silver	7440-22-4	BRL	1.82	mg/kg	11.11.2019 12:16	D1	10

AHI

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B31-10.0-10.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-001 Date Collected: 11.06.2019 13:00 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.11.2019 14:48 Basis: Wet Weight

Seq Number: 3107146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Benzo(b)fluoranthene	205-99-2	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Fluoranthene	206-44-0	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.12.2019 03:14		1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.12.2019 03:14		1
Pyrene	129-00-0	BRL	0.00167		mg/kg	11.12.2019 03:14		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	ag	
Nitrobenzene-d5		109	%	31-130		2.2019 03:14		
2-Fluorobiphenyl		90	%	51-133		2.2019 03:14		
Terphenyl-D14		111	%	46-137	11.12	2.2019 03:14		

ADS

Seq Number: 3107216

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B31-15.0-15.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-002 Date Collected: 11.06.2019 13:10 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.12.2019 11:10 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0169
 mg/kg
 11.12.2019 17:00
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB
Analyst: DEP Date Prep: 11.10.

Date Prep: 11.10.2019 14:00 Basis: Wet Weight

Seq Number: 3107032 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	18.4	1.85	mg/kg	11.11.2019 12:19	D2	10
Barium	7440-39-3	114	3.70	mg/kg	11.11.2019 12:19	D2	10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.11.2019 12:19	D1	10
Chromium	7440-47-3	13.4	3.70	mg/kg	11.11.2019 12:19	D2	10
Lead	7439-92-1	6.87	1.85	mg/kg	11.11.2019 12:19	D2	10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.11.2019 12:19	D1	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.11.2019 12:19	D1	10

AHI

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B31-15.0-15.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-002 Date Collected: 11.06.2019 13:10 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.11.2019 14:51 Basis: Wet Weight

Seq Number: 3107146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Acenaphthylene	208-96-8	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Benzo(a)anthracene	56-55-3	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Benzo(a)pyrene	50-32-8	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Benzo(b) fluoranthene	205-99-2	0.00241	0.00167		mg/kg	11.12.2019 03:31		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Chrysene	218-01-9	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Fluoranthene	206-44-0	0.00282	0.00167		mg/kg	11.12.2019 03:31		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.12.2019 03:31		1
Phenanthrene	85-01-8	BRL	0.00167		mg/kg	11.12.2019 03:31		1
Pyrene	129-00-0	0.00314	0.00167		mg/kg	11.12.2019 03:31		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date F	lag	
Nitrobenzene-d5		127	%	31-130		2.2019 03:31		
2-Fluorobiphenyl		98	%	51-133	11.12	2.2019 03:31		
Terphenyl-D14		114	%	46-137	11.12	2.2019 03:31		

ADS

Seq Number: 3107216

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B31-20.0-20.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-003 Date Collected: 11.06.2019 13:20 Sample Depth: 20.0 - 20.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

% Moisture:

Analyst: ANJ Date Prep: 11.12.2019 11:10 Basis: Wet Weight

SUB: T104704215-19-30

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0182
 mg/kg
 11.12.2019 16:45
 1

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB

Analyst: DEP Date Prep: 11.11.2019 12:45 Basis: Wet Weight

Seq Number: 3107121 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	12.6	1.75	mg/kg	11.11.2019 23:18		10
Barium	7440-39-3	767	3.51	mg/kg	11.11.2019 23:18		10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.11.2019 23:18	U	10
Chromium	7440-47-3	10.6	3.51	mg/kg	11.11.2019 23:18		10
Lead	7439-92-1	7.26	1.75	mg/kg	11.11.2019 23:18		10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.11.2019 23:18	U	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.11.2019 23:18	U	10

AHI

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B31-20.0-20.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-003 Date Collected: 11.06.2019 13:20 Sample Depth: 20.0 - 20.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.11.2019 14:39 Basis: Wet Weight

Seq Number: 3107146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Benzo(a)anthracene	56-55-3	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Benzo(a)pyrene	50-32-8	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Benzo(b)fluoranthene	205-99-2	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Benzo(g,h,i)perylene	191-24-2	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Benzo(k)fluoranthene	207-08-9	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Chrysene	218-01-9	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Fluoranthene	206-44-0	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.12.2019 02:24		1
Phenanthrene	85-01-8	BRL	0.00166		mg/kg	11.12.2019 02:24		1
Pyrene	129-00-0	BRL	0.00166		mg/kg	11.12.2019 02:24		1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fl	ag	
Nitrobenzene-d5		129	%	31-130	11.12	2.2019 02:24		
2-Fluorobiphenyl		104	%	51-133		2.2019 02:24		
Terphenyl-D14		115	%	46-137	11.12	2.2019 02:24		

DEP

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-B29-5.0-5.5 Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-004 Date Collected: 11.07.2019 08:00 Sample Depth: 5.0 - 5.5

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Moisture: Tech:

KCS Analyst: Date Prep: 11.12.2019 09:24 Basis: Wet Weight

Seq Number: 3107194 SUB: T104704215-19-30

Result RL**Parameter** Cas Number Units **Analysis Date** Dil 0.0545 Cyanide, Total 57-12-5 BRL mg/kg 11.12.2019 15:47 D1M2 1

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

ADS % Moisture: Tech:

ANJ Basis: Analyst: Date Prep: 11.12.2019 11:10 Wet Weight

Seq Number: 3107216 SUB: T104704215-19-30

RL Parameter Cas Number Result Units **Analysis Date** Flag Dil Mercury 0.0494 0.0185 11.12.2019 17:19 7439-97-6

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech:

PJB % Moisture:

Analyst: 11.10.2019 14:00 Basis: Wet Weight Date Prep: Seq Number: 3107032 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.9	1.85	mg/kg	11.11.2019 12:01	D2M1	10
Barium	7440-39-3	178	3.70	mg/kg	11.11.2019 12:01	D2M1	10
Cadmium	7440-43-9	BRL	1.85	mg/kg	11.11.2019 12:01	D1	10
Chromium	7440-47-3	18.1	3.70	mg/kg	11.11.2019 12:01	D2M1	10
Lead	7439-92-1	32.8	1.85	mg/kg	11.11.2019 12:01	D2M1	10
Selenium	7782-49-2	BRL	1.85	mg/kg	11.11.2019 12:01	D1	10
Silver	7440-22-4	BRL	1.85	mg/kg	11.11.2019 12:01	D1M2	10

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-5.0-5.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-004 Date Collected: 11.07.2019 08:00 Sample Depth: 5.0 - 5.5

Analytical Method: Flash Point (CC) SW-846 1010

Tech: JCL % Moisture:

Analyst: JCL Basis: Wet Weight

Seq Number: 3107086

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Flash Point
 >180
 Deg F
 11.11.2019 10:39
 1

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: YAV % Moisture:

Analyst: YAV Basis: Wet Weight

Seq Number: 3107180

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERPass11.12.2019 14:161

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Moisture:

Analyst: KBU Basis: Wet Weight

Seq Number: 3107068

Parameter Result RL Cas Number Dil Units **Analysis Date** Flag SU 11.11.2019 15:05 8.42 pН 12408-02-5 1 Temperature TEMP 23.0 11.11.2019 15:05 1 Deg C

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-5.0-5.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-004 Date Collected: 11.07.2019 08:00 Sample Depth: 5.0 - 5.5

Analytical Method: PCBs by SW-846 8082A Prep Method: SW3550

% Moisture:

Analyst: SHM Date Prep: 11.11.2019 14:09 Basis: Wet Weight

Seq Number: 3107178

AHI

Tech:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	BRL	0.0166	mg/kg	11.11.2019 23:52		1
PCB-1221	11104-28-2	BRL	0.0166	mg/kg	11.11.2019 23:52		1
PCB-1232	11141-16-5	BRL	0.0166	mg/kg	11.11.2019 23:52		1
PCB-1242	53469-21-9	BRL	0.0166	mg/kg	11.11.2019 23:52		1
PCB-1248	12672-29-6	BRL	0.0166	mg/kg	11.11.2019 23:52		1
PCB-1254	11097-69-1	0.0249	0.0166	mg/kg	11.11.2019 23:52		1
PCB-1260	11096-82-5	BRL	0.0166	mg/kg	11.11.2019 23:52		1

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	112	%	39-125	11.11.2019 23:52	
Tetrachloro-m-xylene	65	%	37-124	11.11.2019 23:52	

AHI

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-5.0-5.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-004 Date Collected: 11.07.2019 08:00 Sample Depth: 5.0 - 5.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.11.2019 14:54 Basis: Wet Weight

Seq Number: 3107146 SUB: T104704215-19-30

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.12.2019 12:20		1
Acenaphthylene	208-96-8	0.00226	0.00167		mg/kg	11.12.2019 12:20		1
Anthracene	120-12-7	BRL	0.00167		mg/kg	11.12.2019 12:20		1
Benzo(a)anthracene	56-55-3	0.00661	0.00167		mg/kg	11.12.2019 12:20		1
Benzo(a)pyrene	50-32-8	0.00983	0.00167		mg/kg	11.12.2019 12:20		1
Benzo(b) fluoran thene	205-99-2	0.0122	0.00167		mg/kg	11.12.2019 12:20	M1R2	1
Benzo(g,h,i)perylene	191-24-2	0.0102	0.00167		mg/kg	11.12.2019 12:20		1
Benzo(k)fluoranthene	207-08-9	0.00358	0.00167		mg/kg	11.12.2019 12:20		1
Chrysene	218-01-9	0.00777	0.00167		mg/kg	11.12.2019 12:20		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.12.2019 12:20	R5	1
Fluoranthene	206-44-0	0.0157	0.00167		mg/kg	11.12.2019 12:20		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.12.2019 12:20		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00727	0.00167		mg/kg	11.12.2019 12:20		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.12.2019 12:20		1
Phenanthrene	85-01-8	0.0120	0.00167		mg/kg	11.12.2019 12:20		1
Pyrene	129-00-0	0.0211	0.00167		mg/kg	11.12.2019 12:20	M1	1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fla	ng	
Nitrobenzene-d5		126	%	31-130	11.12	2.2019 12:20		
2-Fluorobiphenyl		104	%	51-133	11.12	2.2019 12:20		
Terphenyl-D14		115	%	46-137	11.12	2.2019 12:20		

SAD

Seq Number: 3107033

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B29-5.0-5.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-004 Date Collected: 11.07.2019 08:00 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.08.2019 16:30 Basis: Wet Weight

SUB: T104704215-19-30

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,1-Dichloroethane	75-34-3	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,1-Dichloroethene	75-35-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,1-Dichloropropene	563-58-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2-Dibromoethane	106-93-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2-Dichloroethane	107-06-2	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,2-Dichloropropane	78-87-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,3-Dichloropropane	142-28-9	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
2,2-Dichloropropane	594-20-7	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
2-Butanone	78-93-3	BRL	0.978	mg/kg	11.09.2019 01:57	U	50
2-Chlorotoluene	95-49-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
2-Hexanone	591-78-6	BRL	2.45	mg/kg	11.09.2019 01:57	U	50
4-Chlorotoluene	106-43-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.45	mg/kg	11.09.2019 01:57	U	50
Acetone	67-64-1	BRL	4.89	mg/kg	11.11.2019 18:04	UD	50
Benzene	71-43-2	BRL	0.0489	mg/kg	11.09.2019 01:57	U	50
Bromobenzene	108-86-1	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Bromochloromethane	74-97-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Bromodichloromethane	75-27-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Bromoform	75-25-2	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Bromomethane	74-83-9	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Carbon Disulfide	75-15-0	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Carbon Tetrachloride	56-23-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Chlorobenzene	108-90-7	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Chloroethane	75-00-3	BRL	0.489	mg/kg	11.09.2019 01:57	U	50
Chloroform	67-66-3	BRL	0.245	mg/kg	11.09.2019 01:57	U	50

SAD

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-B29-5.0-5.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-004 Date Collected: 11.07.2019 08:00 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

% Moisture:

Analyst: SAD Date Prep: 11.08.2019 16:30 Basis: Wet Weight

Seq Number: 3107033 SUB: T104704215-19-30

Chloromethane 74-87-3 BRL 0.245 mg/kg 11.09.2019 01.57 U 50 cis-1,2-Dichloromethane 156-59-2 BRL 0.245 mg/kg 11.09.2019 01.57 U 50 cis-1,3-Dichloromethane 124-48-1 BRL 0.245 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 124-48-1 BRL 0.245 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.245 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.245 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0489 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0489 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0489 mg/kg 11.109.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0489 mg/kg 11.109.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0489 mg/kg 11.109.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0478 mg/kg 11.109.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0478 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0478 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.0489 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibromochloromethane 75-71-8 BRL 0.045 mg/kg 11.09.2019 01.57 U 50 Dibr	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichloropropene 10061-01-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dibromochloromethane 124-48-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dibromomethane 74-95-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dichlorodifloromethane 75-71-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-11-4 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 Edodomethane (Methyl Iodide) 74-88-4 BRL 0.078 mg/kg 11.01.2018 01:57 U 50 Isopropylbenzene 98-82-8 BRL 0.0978 mg/kg 11.02.2019 01:57 U 50 Keltylene Chloride 75-09-2 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Maphylamizene 163-40-4 BRL 0.0245 mg/kg 11.09.2019 01:57 U 50 Polluria 163	Chloromethane	74-87-3	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Dibromochloromethane 124-48-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dibromochloromethane 74-95-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-41-4 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-41-4 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-41-4 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-41-4 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 37-68-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 98-82-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 98-82-8 BRL 0.0478 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 136-40-4 BRL 0.0478 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 136-40-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 105-65-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 105-65-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 105-65-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 105-65-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 105-65-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ethylbenzene 100-42-5 BRL 0.245 mg/kg 11	cis-1,2-Dichloroethene	156-59-2	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Dichromomethane 74-95-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dichrodifiburomethane 75-71-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ehiylbenzne 100-411-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ehiylbenzne 87-68-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ehiylbenzne 98-82-8 BRL 0.245 mg/kg 11.109.2019 01:57 U 50 Eagropylbenzne 75-69-2 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 75-69-2 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 163-40-4 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.045 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eagropylbenzne	cis-1,3-Dichloropropene	10061-01-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Dichlorodifluoromethane 75.71-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Dibromochloromethane	124-48-1	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Ethylbenzene 100-41-4 BRL 0.0489 mg/s 11.09.2019 01:57 0 50 Hexachlorobutadiene 87-08-3 BRL 0.245 mg/s 11.192019 10:57 0 50 Lodomethane (Methyl Iodide) 74-88-4 BRL 0.978 mg/s 11.11.2019 18:04 U5 50 Logorpopylenzene 98-82-8 BRL 0.045 mg/s 11.09.2019 01:57 U 50 Methylene Chloride 75-09-2 BRL 0.978 mg/s 11.09.2019 01:57 U 50 Methylene Chloride 75-09-2 BRL 0.048 mg/s 11.09.2019 01:57 U 50 Methylene Chloride 91-20-3 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Naphthalene 91-20-3 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Naphthalene 104-51-8 BRL 0.245 mg/s 11.09.2019 01:57 U 50 N-Propylbenzene 103-65-1 BRL 0.245 mg/s 11.09.2019 01:57 U 50 N-Propylbenzene 95-47-6 BRL 0.0489 mg/s 11.09.2019 01:57 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.245 mg/s 11.09.2019 01:57 U 50 P-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Styrene 135-98-8 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Total Xylene 1330-207 BRL 0.0489 mg/s 11.09.2019 01:57 U 50 Total Xylene 1330-207 BRL 0.0489 mg/s 11.09.2019 01:57 U 50 Total Xylene 136-60-5 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Total Xylene 130-60-24 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Total Xylene 130-60-24 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Total Xylene 130-60-24 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Total Xylene 130-60-24 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Total Xylene 130-60-24 BRL 0.245 mg/s 11.09.2019 01:57 U 50 Trichlorothene 75-09-4 BRL 0	Dibromomethane	74-95-3	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Hexachlorobutadiene	Dichlorodifluoromethane	75-71-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Dispurp Disp	Ethylbenzene	100-41-4	BRL	0.0489	mg/kg	11.09.2019 01:57	U	50
BRL 0.245	Hexachlorobutadiene	87-68-3	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
mp-Xylenes 179601-23-1 BRL 0.0978 mg/kg 11.09.2019 01:57 U 50 Methylene Chloride 75-09-2 BRL 0.978 mg/kg 11.09.2019 01:57 U 50 MTBE 1634-04-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Naphthalene 91-20-3 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Butylbenzene 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 n-Propylbenzene 103-65-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 e-Propylbenzene 95-47-6 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 Sec-Butylbenzene 95-47-6 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.	Iodomethane (Methyl Iodide)	74-88-4	BRL	0.978	mg/kg	11.11.2019 18:04	UD	50
Methylene Chloride 75-09-2 BRL 0.978 mg/kg 11.09.2019 01:57 U 50 MTBE 1634-04-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Naphthalene 91-20-3 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Butylbenzene 104-51-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 o-Xylene 95-47-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 O-Xylene 99-87-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Eturi-Butylbenzene 98-06-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Teturi-Butylbenzene 127-18-4 BRL 0.245	Isopropylbenzene	98-82-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
MTBE 1634-04-4 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Naphthalene 91-20-3 BRL 0.489 mg/kg 1.09.2019 01:57 U 50 n-Butylbenzene 104-51-8 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 or-Yoppylbenzene 103-65-1 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 or-Yylene 95-47-6 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ettr-Butylbenzene 130-90-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Ettr-Butylbenzene 127-18-4 BRL	m,p-Xylenes	179601-23-1	BRL	0.0978	mg/kg	11.09.2019 01:57	U	50
Naphthalene 91-20-3 BRL 0.489 mg/kg 1.09.2019 01:57 U 50 n-Butylbenzene 104-51-8 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 n-Propylbenzene 103-65-1 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 o-Xylene 95-47-6 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 p-Cymene (p-Isopropylbuluene) 99-87-6 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 tert-Butylbenzene 98-06-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Tertarchloroethylene 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL	Methylene Chloride	75-09-2	BRL	0.978	mg/kg	11.09.2019 01:57	U	50
n-Butylbenzene 104-51-8 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 n-Propylbenzene 103-65-1 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 o-Xylene 95-47-6 BRL 0.0489 mg/kg 1.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 tetr-Butylbenzene 98-06-6 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Tolulene 108-88-3 BRL 0.0489 mg/kg 1.09.2019 01:57 U 50 tatas-1,2-dichloroethene 156-60-5 BRL 0.048	MTBE	1634-04-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
n-Propylbenzene 103-65-1 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 o-Xylene 95-47-6 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 p-Cymene (p-Isopropyloluene) 99-87-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 tert-Butylbenzene 98-06-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 133-02-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 79-01-6 </td <td>Naphthalene</td> <td>91-20-3</td> <td>BRL</td> <td>0.489</td> <td>mg/kg</td> <td>11.09.2019 01:57</td> <td>U</td> <td>50</td>	Naphthalene	91-20-3	BRL	0.489	mg/kg	11.09.2019 01:57	U	50
o-Xylene 95-47-6 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 terr-Butylbenzene 98-06-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Toluene 108-88-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloroethene 156-60-5 BRL 0.048 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 <t< td=""><td>n-Butylbenzene</td><td>104-51-8</td><td>BRL</td><td>0.245</td><td>mg/kg</td><td>11.09.2019 01:57</td><td>U</td><td>50</td></t<>	n-Butylbenzene	104-51-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
p-Cymene (p-Isopropyltoluene) 99-87-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 tert-Butylbenzene 98-06-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Toluene 108-88-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 <td>n-Propylbenzene</td> <td>103-65-1</td> <td>BRL</td> <td>0.245</td> <td>mg/kg</td> <td>11.09.2019 01:57</td> <td>U</td> <td>50</td>	n-Propylbenzene	103-65-1	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Sec-Butylbenzene 135-98-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Styrene 100-42-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 tert-Butylbenzene 98-06-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Toluene 108-88-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 75-69-4	o-Xylene	95-47-6	BRL	0.0489	mg/kg	11.09.2019 01:57	U	50
Styrene 100-42-5 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 tert-Butylbenzene 98-06-6 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Toluene 108-88-3 BRL 0.245 mg/kg 1.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 B	p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
tert-Butylbenzene 98-06-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Toluene 108-88-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4<	Sec-Butylbenzene	135-98-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Tetrachloroethylene 127-18-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Toluene 108-88-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Qyclohexane 110-82-7	Styrene	100-42-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Toluene 108-88-3 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7	tert-Butylbenzene	98-06-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Total Xylenes 1330-20-7 BRL 0.0489 mg/kg 11.09.2019 01:57 U 50 trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 </td <td>Tetrachloroethylene</td> <td>127-18-4</td> <td>BRL</td> <td>0.245</td> <td>mg/kg</td> <td>11.09.2019 01:57</td> <td>U</td> <td>50</td>	Tetrachloroethylene	127-18-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
trans-1,2-dichloroethene 156-60-5 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 10-84-3 </td <td>Toluene</td> <td>108-88-3</td> <td>BRL</td> <td>0.245</td> <td>mg/kg</td> <td>11.09.2019 01:57</td> <td>U</td> <td>50</td>	Toluene	108-88-3	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
trans-1,3-dichloropropene 10061-02-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 <td< td=""><td>Total Xylenes</td><td>1330-20-7</td><td>BRL</td><td>0.0489</td><td>mg/kg</td><td>11.09.2019 01:57</td><td>U</td><td>50</td></td<>	Total Xylenes	1330-20-7	BRL	0.0489	mg/kg	11.09.2019 01:57	U	50
Trichloroethene 79-01-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL	trans-1,2-dichloroethene	156-60-5	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Trichlorofluoromethane 75-69-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	trans-1,3-dichloropropene	10061-02-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Vinyl Acetate 108-05-4 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Trichloroethene	79-01-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Vinyl Chloride 75-01-4 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Trichlorofluoromethane	75-69-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
1,3-Butadiene 106-99-0 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Vinyl Acetate	108-05-4	BRL	0.489	mg/kg	11.09.2019 01:57	U	50
Cyclohexane 110-82-7 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Vinyl Chloride	75-01-4	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Dicyclopentadiene 77-73-6 BRL 0.245 mg/kg 11.09.2019 01:57 U 50 Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	1,3-Butadiene	106-99-0	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
Methylcyclohexane 108-87-2 BRL 0.489 mg/kg 11.09.2019 01:57 U 50 n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Cyclohexane	110-82-7	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
n-Hexane 110-54-3 BRL 0.489 mg/kg 11.11.2019 18:04 UD 50 4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Dicyclopentadiene	77-73-6	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
4-Ethyltoluene 622-96-8 BRL 0.245 mg/kg 11.09.2019 01:57 U 50	Methylcyclohexane	108-87-2	BRL	0.489	mg/kg	11.09.2019 01:57	U	50
•	n-Hexane	110-54-3	BRL	0.489	mg/kg	11.11.2019 18:04	UD	50
Propens 115.07.1 RRI 0.245 mg/kg 11.11.2010.18:04 UD 50	4-Ethyltoluene	622-96-8	BRL	0.245	mg/kg	11.09.2019 01:57	U	50
113-07-1 DKL 0.2+3 mg/kg 11.11.2019 10.04 UD 30	Propene	115-07-1	BRL	0.245	mg/kg	11.11.2019 18:04	UD	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-5.0-5.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-004 Date Collected: 11.07.2019 08:00 Sample Depth: 5.0 - 5.5

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.08.2019 16:30 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	96	%	53-142	11.09.2019 01:57	
1,2-Dichloroethane-D4	101	%	56-150	11.09.2019 01:57	
Toluene-D8	105	%	70-130	11.09.2019 01:57	
4-Bromofluorobenzene	95	%	68-152	11.09.2019 01:57	

ADS

Seq Number: 3107216

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-10.0-10.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-005 Date Collected: 11.07.2019 08:30 Sample Depth: 10.0 - 10.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.12.2019 11:10 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0192
 mg/kg
 11.12.2019 17:02
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.10.2019 14:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	15.1	1.92	mg/kg	11.11.2019 12:22	D2	10
Barium	7440-39-3	607	3.85	mg/kg	11.11.2019 12:22	D2	10
Cadmium	7440-43-9	BRL	1.92	mg/kg	11.11.2019 12:22	D1	10
Chromium	7440-47-3	12.6	3.85	mg/kg	11.11.2019 12:22	D2	10
Lead	7439-92-1	12.6	1.92	mg/kg	11.11.2019 12:22	D2	10
Selenium	7782-49-2	BRL	1.92	mg/kg	11.11.2019 12:22	D1	10
Silver	7440-22-4	BRL	1.92	mg/kg	11.11.2019 12:22	D1	10

AHI

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-10.0-10.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-005 Date Collected: 11.07.2019 08:30 Sample Depth: 10.0 - 10.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.11.2019 15:03 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date		Flag	Dil
Acenaphthene	83-32-9	BRL	0.00166		mg/kg	11.12.2019 03	3:48		1
Acenaphthylene	208-96-8	BRL	0.00166		mg/kg	11.12.2019 03	3:48		1
Anthracene	120-12-7	BRL	0.00166		mg/kg	11.12.2019 03	3:48		1
Benzo(a)anthracene	56-55-3	0.00596	0.00166		mg/kg	11.12.2019 03	3:48		1
Benzo(a)pyrene	50-32-8	0.00735	0.00166		mg/kg	11.12.2019 03	3:48		1
Benzo(b) fluoranthene	205-99-2	0.0102	0.00166		mg/kg	11.12.2019 03	3:48		1
Benzo(g,h,i)perylene	191-24-2	0.00666	0.00166		mg/kg	11.12.2019 03	3:48		1
Benzo(k)fluoranthene	207-08-9	0.00267	0.00166		mg/kg	11.12.2019 03	3:48		1
Chrysene	218-01-9	0.00635	0.00166		mg/kg	11.12.2019 03	3:48		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00166		mg/kg	11.12.2019 03	3:48		1
Fluoranthene	206-44-0	0.00866	0.00166		mg/kg	11.12.2019 03	3:48		1
Fluorene	86-73-7	BRL	0.00166		mg/kg	11.12.2019 03	3:48		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.00507	0.00166		mg/kg	11.12.2019 03	3:48		1
Naphthalene	91-20-3	BRL	0.0166		mg/kg	11.12.2019 03	3:48		1
Phenanthrene	85-01-8	0.00384	0.00166		mg/kg	11.12.2019 03	3:48		1
Pyrene	129-00-0	0.0107	0.00166		mg/kg	11.12.2019 03	3:48		1
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag	;	
Nitrobenzene-d5		139	%	31-130	11.12	2.2019 03:48	S10)	
2-Fluorobiphenyl		112	%	51-133	11.12	2.2019 03:48			
Terphenyl-D14		121	%	46-137	11.12	2.2019 03:48			

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-15.0-15.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-006 Date Collected: 11.07.2019 08:55 Sample Depth: 15.0 - 15.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.12.2019 11:10 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0200
 mg/kg
 11.12.2019 17:04
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

ADS

Seq Number: 3107216

Tech:

Analyst: DEP Date Prep: 11.10.2019 14:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	20.4	1.96	mg/kg	11.11.2019 12:25	D2	10
Barium	7440-39-3	413	3.92	mg/kg	11.11.2019 12:25	D2	10
Cadmium	7440-43-9	BRL	1.96	mg/kg	11.11.2019 12:25	D1	10
Chromium	7440-47-3	15.0	3.92	mg/kg	11.11.2019 12:25	D2	10
Lead	7439-92-1	20.3	1.96	mg/kg	11.11.2019 12:25	D2	10
Selenium	7782-49-2	BRL	1.96	mg/kg	11.11.2019 12:25	D1	10
Silver	7440-22-4	BRL	1.96	mg/kg	11.11.2019 12:25	D1	10

AHI

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-15.0-15.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-006 Date Collected: 11.07.2019 08:55 Sample Depth: 15.0 - 15.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.11.2019 15:06 Basis: Wet Weight

Parameter	Cas Number	Result	RL	1	Units	Analysis Date	1	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167	İ	mg/kg	11.12.2019 04:	04		1
Acenaphthylene	208-96-8	0.00628	0.00167	1	mg/kg	11.12.2019 04:	04		1
Anthracene	120-12-7	0.00384	0.00167	1	mg/kg	11.12.2019 04:	04		1
Benzo(a)anthracene	56-55-3	0.0376	0.00167	1	mg/kg	11.12.2019 04:	04		1
Benzo(a)pyrene	50-32-8	0.0772	0.00167	1	mg/kg	11.12.2019 04:	04		1
Benzo(b) fluoranthene	205-99-2	0.0766	0.00167	1	mg/kg	11.12.2019 04:	04		1
Benzo(g,h,i)perylene	191-24-2	0.0918	0.00167	1	mg/kg	11.12.2019 04:	04		1
Benzo(k) fluoranthene	207-08-9	0.0253	0.00167	1	mg/kg	11.12.2019 04:	04		1
Chrysene	218-01-9	0.0460	0.00167	1	mg/kg	11.12.2019 04:	04		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167	1	mg/kg	11.12.2019 04:	04		1
Fluoranthene	206-44-0	0.0870	0.00167	1	mg/kg	11.12.2019 04:	04		1
Fluorene	86-73-7	BRL	0.00167	1	mg/kg	11.12.2019 04:	04		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0620	0.00167	1	mg/kg	11.12.2019 04:	04		1
Naphthalene	91-20-3	BRL	0.0167	1	mg/kg	11.12.2019 04:	04		1
Phenanthrene	85-01-8	0.0250	0.00167	1	mg/kg	11.12.2019 04:	04		1
Pyrene	129-00-0	0.138	0.00167	1	mg/kg	11.12.2019 04:	04		1
		% Recovery							
Surrogate			Units	Limits	Analy	ysis Date	Flag		
Nitrobenzene-d5		132	%	31-130		2.2019 04:04	S10		
2-Fluorobiphenyl		106	%	51-133		2.2019 04:04			
Terphenyl-D14		119	%	46-137	11.12	2.2019 04:04			

ADS

Seq Number: 3107216

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-20.0-20.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-007 Date Collected: 11.07.2019 09:10 Sample Depth: 20.0 - 20.5

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

% Moisture:

Analyst: ANJ Date Prep: 11.12.2019 11:10 Basis: Wet Weight

SUB: T104704215-19-30

Prep Method: SW3050B

% Moisture:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 BRL
 0.0189
 mg/kg
 11.12.2019 17:06
 1

Analytical Method: Metals, RCRA List, by SW 6020

Tech: PJB

Analyst: DEP Date Prep: 11.10.2019 14:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Arsenic	7440-38-2	22.5	1.75	mg/kg	11.11.2019 12:28	D2	10
Barium	7440-39-3	275	3.51	mg/kg	11.11.2019 12:28	D2	10
Cadmium	7440-43-9	BRL	1.75	mg/kg	11.11.2019 12:28	D1	10
Chromium	7440-47-3	12.4	3.51	mg/kg	11.11.2019 12:28	D2	10
Lead	7439-92-1	14.1	1.75	mg/kg	11.11.2019 12:28	D2	10
Selenium	7782-49-2	BRL	1.75	mg/kg	11.11.2019 12:28	D1	10
Silver	7440-22-4	BRL	1.75	mg/kg	11.11.2019 12:28	D1	10

AHI

Tech:

Certificate of Analytical Results 642585

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-B29-20.0-20.5** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-007 Date Collected: 11.07.2019 09:10 Sample Depth: 20.0 - 20.5

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Moisture:

Analyst: DNE Date Prep: 11.11.2019 15:09 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Dat	te	Flag	Dil
Acenaphthene	83-32-9	BRL	0.00167		mg/kg	11.12.2019 1	3:10		1
Acenaphthylene	208-96-8	0.00219	0.00167		mg/kg	11.12.2019 1	3:10		1
Anthracene	120-12-7	0.00183	0.00167		mg/kg	11.12.2019 1	3:10		1
Benzo(a)anthracene	56-55-3	0.0120	0.00167		mg/kg	11.12.2019 1	3:10		1
Benzo(a)pyrene	50-32-8	0.0220	0.00167		mg/kg	11.12.2019 1	3:10		1
Benzo(b) fluoranthene	205-99-2	0.0257	0.00167		mg/kg	11.12.2019 1	3:10		1
Benzo(g,h,i)perylene	191-24-2	0.0165	0.00167		mg/kg	11.12.2019 1	3:10		1
Benzo(k)fluoranthene	207-08-9	0.00794	0.00167		mg/kg	11.12.2019 1	3:10		1
Chrysene	218-01-9	0.0143	0.00167		mg/kg	11.12.2019 1	3:10		1
Dibenz(a,h)Anthracene	53-70-3	BRL	0.00167		mg/kg	11.12.2019 1	3:10		1
Fluoranthene	206-44-0	0.0280	0.00167		mg/kg	11.12.2019 1	3:10		1
Fluorene	86-73-7	BRL	0.00167		mg/kg	11.12.2019 1	3:10		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0128	0.00167		mg/kg	11.12.2019 1	3:10		1
Naphthalene	91-20-3	BRL	0.0167		mg/kg	11.12.2019 1	3:10		1
Phenanthrene	85-01-8	0.00921	0.00167		mg/kg	11.12.2019 1	3:10		1
Pyrene	129-00-0	0.0409	0.00167		mg/kg	11.12.2019 1	3:10		1
		% Recovery							
Surrogate			Units	Limits	Analy	ysis Date	Flag		
Nitrobenzene-d5		133	%	31-130	11.12	2.2019 13:10	S10	1	
2-Fluorobiphenyl		108	%	51-133	11.12	2.2019 13:10			
Terphenyl-D14		111	%	46-137	11.12	.2019 13:10			

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-TB01-110719** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-008 Date Collected: 11.07.2019 08:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.08.2019 16:30 Basis: Wet Weight

Parameter	Cas Number	Result RL		Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,1,1-Trichloroethane	71-55-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,1,2,2-Tetrachloroethane	79-34-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,1,2-Trichloroethane	79-00-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,1-Dichloroethane	75-34-3	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,1-Dichloroethene	75-35-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,1-Dichloropropene	563-58-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2,3-Trichlorobenzene	87-61-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2,3-Trichloropropane	96-18-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2,4-Trichlorobenzene	120-82-1	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2,4-Trimethylbenzene	95-63-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2-Dibromoethane	106-93-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2-Dichlorobenzene	95-50-1	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2-Dichloroethane	107-06-2	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,2-Dichloropropane	78-87-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,3,5-Trimethylbenzene	108-67-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,3-Dichlorobenzene	541-73-1	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,3-Dichloropropane	142-28-9	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,4-Dichlorobenzene	106-46-7	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
2,2-Dichloropropane	594-20-7	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
2-Butanone	78-93-3	BRL	1.00	mg/kg	11.09.2019 01:36	U	50
2-Chlorotoluene	95-49-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
2-Hexanone	591-78-6	BRL	2.50	mg/kg	11.09.2019 01:36	U	50
4-Chlorotoluene	106-43-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
4-Methyl-2-Pentanone	108-10-1	BRL	2.50	mg/kg	11.09.2019 01:36	U	50
Acetone	67-64-1	BRL	5.00	mg/kg	11.11.2019 17:43	UD	50
Benzene	71-43-2	BRL	0.0500	mg/kg	11.09.2019 01:36	U	50
Bromobenzene	108-86-1	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Bromochloromethane	74-97-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Bromodichloromethane	75-27-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Bromoform	75-25-2	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Bromomethane	74-83-9	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Carbon Disulfide	75-15-0	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Carbon Tetrachloride	56-23-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Chlorobenzene	108-90-7	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Chloroethane	75-00-3	BRL	0.500	mg/kg	11.09.2019 01:36	U	50
Chloroform	67-66-3	BRL	0.250	mg/kg	11.09.2019 01:36	U	50

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-TB01-110719** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-008 Date Collected: 11.07.2019 08:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.08.2019 16:30 Basis: Wet Weight

Parameter	Cas Number	Result RL		Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
cis-1,2-Dichloroethene	156-59-2	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
cis-1,3-Dichloropropene	10061-01-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Dibromochloromethane	124-48-1	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Dibromomethane	74-95-3	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Dichlorodifluoromethane	75-71-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Ethylbenzene	100-41-4	BRL	0.0500	mg/kg	11.09.2019 01:36	U	50
Hexachlorobutadiene	87-68-3	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Iodomethane (Methyl Iodide)	74-88-4	BRL	1.00	mg/kg	11.11.2019 17:43	UD	50
Isopropylbenzene	98-82-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
m,p-Xylenes	179601-23-1	BRL	0.100	mg/kg	11.09.2019 01:36	U	50
Methylene Chloride	75-09-2	BRL	1.00	mg/kg	11.09.2019 01:36	U	50
MTBE	1634-04-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Naphthalene	91-20-3	BRL	0.500	mg/kg	11.09.2019 01:36	U	50
n-Butylbenzene	104-51-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
n-Propylbenzene	103-65-1	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
o-Xylene	95-47-6	BRL	0.0500	mg/kg	11.09.2019 01:36	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Sec-Butylbenzene	135-98-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Styrene	100-42-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
tert-Butylbenzene	98-06-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Tetrachloroethylene	127-18-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Toluene	108-88-3	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Total Xylenes	1330-20-7	BRL	0.0500	mg/kg	11.09.2019 01:36	U	50
trans-1,2-dichloroethene	156-60-5	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
trans-1,3-dichloropropene	10061-02-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Trichloroethene	79-01-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Trichlorofluoromethane	75-69-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Vinyl Acetate	108-05-4	BRL	0.500	mg/kg	11.09.2019 01:36	U	50
Vinyl Chloride	75-01-4	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
1,3-Butadiene	106-99-0	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Cyclohexane	110-82-7	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Dicyclopentadiene	77-73-6	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Methylcyclohexane	108-87-2	BRL	0.500	mg/kg	11.09.2019 01:36	U	50
n-Hexane	110-54-3	BRL	0.500	mg/kg	11.11.2019 17:43	UD	50
4-Ethyltoluene	622-96-8	BRL	0.250	mg/kg	11.09.2019 01:36	U	50
Propene	115-07-1	BRL	0.250	mg/kg	11.11.2019 17:43	UD	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-TB01-110719** Matrix: Soil Date Received:11.08.2019 11:00

Lab Sample Id: 642585-008 Date Collected: 11.07.2019 08:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Moisture:

Analyst: SAD Date Prep: 11.08.2019 16:30 Basis: Wet Weight

	% Recovery				
Surrogate	·	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	95	%	53-142	11.09.2019 01:36	
1,2-Dichloroethane-D4	100	%	56-150	11.09.2019 01:36	
Toluene-D8	103	%	70-130	11.09.2019 01:36	
4-Bromofluorobenzene	99	%	68-152	11.09.2019 01:36	

APS

APS MGP Douglas, AZ

Analytical Method:Total Cyanide by SW 9012Prep Method:E335.4PSeq Number:3107194Matrix: SolidDate Prep:11.12.2019

MB Sample Id: 7690106-1-BLK LCS Sample Id: 7690106-1-BKS

Parameter

MB Spike LCS LCS Limits Units Analysis Flag
Result Amount Result %Rec Date

Cyanide, Total <0.0286 1.15 1.11 97 85-115 mg/kg 11.12.2019 15:33

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

 Seq Number:
 3107194
 Matrix:
 Soil
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642585-004
 MS Sample Id:
 642585-004 S
 MSD Sample Id:
 642585-004 SD

%RPD Parent Spike MS MS MSD MSD Limits RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date 20 11.12.2019 15:48 Cyanide, Total < 0.0297 2.39 1.89 79 1.84 76 85-115 3 mg/kg M2

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3107216
 Matrix:
 Solid
 Date Prep:
 11.12.2019

 MB Sample Id:
 7690147-1-BLK
 LCS Sample Id:
 7690147-1-BKS
 LCSD Sample Id:
 7690147-1-BSD

Spike **RPD** MR LCS LCS %RPD Units Analysis LCSD LCSD Limits Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3107216
 Matrix:
 Soil
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642585-003
 MS Sample Id:
 642585-003 SD
 MSD Sample Id:
 642585-003 SD

RPD Parent Spike MS MS MSD MSD Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 11.12.2019 16:47 < 0.00384 9 20 Mercury 0.200 0.212 106 0.193 106 75-125 mg/kg

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

 Seq Number:
 3107216
 Matrix:
 Soil
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642585-004
 MS Sample Id:
 642585-004 S
 MSD Sample Id:
 642585-004 SD

Parent Spike MS MS Limits %RPD RPD Units Analysis MSD MSD Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec 11.12.2019 17:21 0.0494 20 Mercury 0.196 0.234 94 0.239 95 75-125 2 mg/kg

LCS = Laboratory Control Sample

APS APS MGP Douglas, AZ

SW3050B Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: Matrix: Solid Seq Number: 3107032 Date Prep: 11.10.2019 LCS Sample Id: 7689988-1-BKS MB Sample Id: 7689988-1-BLK LCSD Sample Id: 7689988-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.200	10.0	10.2	102	10.1	101	80-120	1	20	mg/kg	11.11.2019 11:35	
Barium	< 0.400	10.0	9.76	98	9.70	97	80-120	1	20	mg/kg	11.11.2019 11:35	
Cadmium	< 0.200	10.0	10.0	100	10.0	100	80-120	0	20	mg/kg	11.11.2019 11:35	
Chromium	< 0.400	10.0	10.0	100	10.0	100	80-120	0	20	mg/kg	11.11.2019 11:35	
Lead	< 0.200	10.0	10.2	102	10.1	101	80-120	1	20	mg/kg	11.11.2019 11:35	
Selenium	< 0.200	10.0	10.4	104	10.2	102	80-120	2	20	mg/kg	11.11.2019 11:35	
Silver	< 0.200	5.00	5.05	101	5.06	101	80-120	0	20	mg/kg	11.11.2019 11:35	

SW3050B Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: Seq Number: 3107121 Matrix: Solid Date Prep: 11.11.2019

LCS Sample Id: 7690070-1-BKS LCSD Sample Id: 7690070-1-BSD MB Sample Id: 7690070-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.200	10.0	9.71	97	9.73	97	80-120	0	20	mg/kg	11.11.2019 23:12	
Barium	< 0.400	10.0	9.44	94	9.46	95	80-120	0	20	mg/kg	11.11.2019 23:12	
Cadmium	< 0.200	10.0	9.78	98	9.53	95	80-120	3	20	mg/kg	11.11.2019 23:12	
Chromium	< 0.400	10.0	9.78	98	9.64	96	80-120	1	20	mg/kg	11.11.2019 23:12	
Lead	< 0.200	10.0	9.68	97	9.60	96	80-120	1	20	mg/kg	11.11.2019 23:12	
Selenium	< 0.200	10.0	9.81	98	9.85	99	80-120	0	20	mg/kg	11.11.2019 23:12	
Silver	< 0.200	5.00	5.09	102	4.96	99	80-120	3	20	mg/kg	11.11.2019 23:12	

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B Seq Number: 3107032 Matrix: Soil Date Prep: 11.10.2019 MS Sample Id: 642585-004 S MSD Sample Id: 642585-004 SD Parent Sample Id: 642585-004

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	15.9	9.62	28.4	130	27.3	121	75-125	4	30	mg/kg	11.11.2019 12:04	M1
Barium	178	9.62	211	343	201	244	75-125	5	30	mg/kg	11.11.2019 12:04	M1
Cadmium	<1.92	9.62	11.4	119	11.2	119	75-125	2	30	mg/kg	11.11.2019 12:04	
Chromium	18.1	9.62	30.5	129	30.0	126	75-125	2	30	mg/kg	11.11.2019 12:04	M1
Lead	32.8	9.62	46.8	146	45.2	131	75-125	3	30	mg/kg	11.11.2019 12:04	M1
Selenium	< 1.92	9.62	11.4	119	11.2	119	75-125	2	30	mg/kg	11.11.2019 12:04	
Silver	<1.92	4.81	3.45	72	3.41	72	75-125	1	30	mg/kg	11.11.2019 12:04	M2

LCS = Laboratory Control Sample A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APSAPS MGP Douglas, AZ

Analytical Method:	Metals, RCRA List, by SW 6020)		Prep Method:	SW3050B
Seq Number:	3107121	Matrix:	Soil	Date Prep:	11.11.2019
Parent Sample Id:	642585-003	MS Sample Id:	642585-003 S	MSD Sample Id:	642585-003 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	12.6	8.33	19.7	85	20.7	97	75-125	5	30	mg/kg	11.11.2019 23:21	
Barium	767	8.33	700	0	726	0	75-125	4	30	mg/kg	11.11.2019 23:21	X
Cadmium	<1.67	8.33	8.89	107	9.23	111	75-125	4	30	mg/kg	11.11.2019 23:21	
Chromium	10.6	8.33	19.0	101	19.9	112	75-125	5	30	mg/kg	11.11.2019 23:21	
Lead	7.26	8.33	15.6	100	16.3	109	75-125	4	30	mg/kg	11.11.2019 23:21	
Selenium	<1.67	8.33	8.90	107	9.19	110	75-125	3	30	mg/kg	11.11.2019 23:21	
Silver	<1.67	4.17	4.96	119	5.19	124	75-125	5	30	mg/kg	11.11.2019 23:21	

Analytical Method: Flash Point (CC) SW-846 1010

Seq Number: 3107086 Matrix: Soil

Parent Sample Id: 642442-001 MD Sample Id: 642442-001 D

%RPD RPD Parent MD Units Analysis Flag **Parameter** Limit Date Result Result 11.11.2019 10:22 Flash Point >180 >180 0 25 Deg F

Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3107180 Matrix: Soil

Parent Sample Id: 642585-004 MD Sample Id: 642585-004 D

MD Parent %RPD RPD Units Analysis Flag **Parameter** Result Result Limit Date 11.12.2019 14:16 Paint Filter 0 Pass Pass 0

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3107068 Matrix: Soil

Parent Sample Id: 642366-010 MD Sample Id: 642366-010 D

Parent MD %RPD RPD Units Analysis Flag **Parameter** Result Result Limit Date 11.11.2019 15:05 pН 7.41 7.42 0 20 SU22.7 22.8 0 25 Deg C 11.11.2019 15:05 Temperature

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3107068 Matrix: Soil

Parent Sample Id: 642585-004 MD Sample Id: 642585-004 D

Parent MD %RPD RPD Units Analysis Flag **Parameter** Result Limit Date Result 11.11.2019 15:05 pН 8.42 8.43 0 20 SU11.11.2019 15:05 Temperature 23.0 23.2 25 Deg C

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff = Log(Sample Duplicate

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APSAPS MGP Douglas, AZ

Analytical Method:PCBs by SW-846 8082APrep Method:SW3550Seq Number:3107178Matrix:SolidDate Prep:11.11.2019

MB Sample Id: 7690084-1-BLK LCS Sample Id: 7690084-1-BKS LCSD Sample Id: 7690084-1-BSD

RPD MB Spike LCS LCS LCSD LCSD Limits %RPD Units Analysis Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date PCB-1016 < 0.0167 0.167 0.104 62 0.113 8 20 11.11.2019 18:34 54-121 68 mg/kg 11.11.2019 18:34 70 20 mg/kg PCB-1260 < 0.0167 0.167 0.117 0.122 73 41-126 4

MB LCS LCSD Units MB LCS LCSD Limits Analysis **Surrogate** %Rec Flag %Rec Flag Flag Date %Rec 11.11.2019 18:34 Decachlorobiphenyl 90 89 91 39-125 % 37-124 11.11.2019 18:34 Tetrachloro-m-xylene 53 54 61 %

Analytical Method:PCBs by SW-846 8082APrep Method:SW3550Seq Number:3107178Matrix:SoilDate Prep:11.11.2019

Parent Sample Id: 642585-004 MS Sample Id: 642585-004 S MSD Sample Id: 642585-004 SD

Parent Spike MS MS MSD MSD Limits %RPD **RPD** Units Analysis Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date 11.12.2019 00:03 PCB-1016 < 0.0166 75 20 0.166 0.124 0.110 54-121 12 66 mg/kg 11.12.2019 00:03 PCB-1260 < 0.0166 0.166 0.145 87 0.134 81 41-126 8 20 mg/kg

MS MS MSD Limits Units MSD Analysis **Surrogate** %Rec Flag Flag Date %Rec 11.12.2019 00:03 Decachlorobiphenyl 112 102 39-125 % 11.12.2019 00:03 Tetrachloro-m-xylene 65 59 37-124 %

APS APS MGP Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3107146Matrix:SolidDate Prep:11.11.2019MB Sample Id:7690085-1-BLKLCS Sample Id:7690085-1-BKSLCSD Sample Id:7690085-1-BSD

MB Sumple Id.	7070003 I BER					r						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0233	70	0.0282	85	42-116	19	25	mg/kg	11.12.2019 11:47	
Acenaphthylene	< 0.00167	0.0333	0.0229	69	0.0274	82	42-121	18	25	mg/kg	11.12.2019 11:47	
Anthracene	< 0.00167	0.0333	0.0240	72	0.0288	86	44-120	18	25	mg/kg	11.12.2019 11:47	
Benzo(a)anthracene	< 0.00167	0.0333	0.0263	79	0.0301	90	52-121	13	25	mg/kg	11.12.2019 11:47	
Benzo(a)pyrene	< 0.00167	0.0333	0.0264	79	0.0303	91	50-128	14	25	mg/kg	11.12.2019 11:47	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0277	83	0.0319	96	49-137	14	25	mg/kg	11.12.2019 11:47	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0250	75	0.0281	84	47-132	12	25	mg/kg	11.12.2019 11:47	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0282	85	0.0318	95	48-133	12	25	mg/kg	11.12.2019 11:47	
Chrysene	< 0.00167	0.0333	0.0258	77	0.0291	87	54-113	12	25	mg/kg	11.12.2019 11:47	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0269	81	0.0302	91	48-133	12	25	mg/kg	11.12.2019 11:47	
Fluoranthene	< 0.00167	0.0333	0.0250	75	0.0294	88	54-128	16	25	mg/kg	11.12.2019 11:47	
Fluorene	< 0.00167	0.0333	0.0240	72	0.0287	86	44-118	18	25	mg/kg	11.12.2019 11:47	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0265	80	0.0297	89	49-129	11	25	mg/kg	11.12.2019 11:47	
Naphthalene	< 0.0167	0.0333	0.0229	69	0.0274	82	40-135	18	25	mg/kg	11.12.2019 11:47	
Phenanthrene	< 0.00167	0.0333	0.0249	75	0.0297	89	44-119	18	25	mg/kg	11.12.2019 11:47	
Pyrene	< 0.00167	0.0333	0.0273	82	0.0319	96	50-126	16	25	mg/kg	11.12.2019 11:47	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Nitrobenzene-d5	123		1	11		135	S10	31	-130	%	11.12.2019 11:47	
2-Fluorobiphenyl	101		9	01		107		51	-133	%	11.12.2019 11:47	
Terphenyl-D14	116		10	03		116		46	-137	%	11.12.2019 11:47	

APS APS MGP Douglas, AZ

Analytical Method:PAHs by 8270D SIMPrep Method:SW3550Seq Number:3107146Matrix: SoilDate Prep:11.11.20

 Seq Number:
 3107146
 Matrix:
 Soil
 Date Prep:
 11.11.2019

 Parent Sample Id:
 642585-003
 MS Sample Id:
 642585-003 S
 MSD Sample Id:
 642585-003 SD

i arent bumple ia.	042303 003											
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0334	0.0288	86	0.0288	86	42-116	0	25	mg/kg	11.12.2019 02:41	
Acenaphthylene	< 0.00167	0.0334	0.0281	84	0.0281	84	42-121	0	25	mg/kg	11.12.2019 02:41	
Anthracene	< 0.00167	0.0334	0.0290	87	0.0287	86	44-120	1	25	mg/kg	11.12.2019 02:41	
Benzo(a)anthracene	< 0.00167	0.0334	0.0317	95	0.0311	93	52-121	2	25	mg/kg	11.12.2019 02:41	
Benzo(a)pyrene	< 0.00167	0.0334	0.0306	92	0.0304	91	50-128	1	25	mg/kg	11.12.2019 02:41	
Benzo(b)fluoranthene	< 0.00167	0.0334	0.0342	102	0.0335	100	49-137	2	25	mg/kg	11.12.2019 02:41	
Benzo(g,h,i)perylene	< 0.00167	0.0334	0.0318	95	0.0316	95	47-132	1	25	mg/kg	11.12.2019 02:41	
Benzo(k)fluoranthene	< 0.00167	0.0334	0.0320	96	0.0326	98	48-133	2	25	mg/kg	11.12.2019 02:41	
Chrysene	< 0.00167	0.0334	0.0304	91	0.0301	90	54-113	1	25	mg/kg	11.12.2019 02:41	
Dibenz(a,h)Anthracene	< 0.00167	0.0334	0.0328	98	0.0326	98	48-133	1	25	mg/kg	11.12.2019 02:41	
Fluoranthene	< 0.00167	0.0334	0.0300	90	0.0295	88	54-128	2	25	mg/kg	11.12.2019 02:41	
Fluorene	< 0.00167	0.0334	0.0293	88	0.0293	88	44-118	0	25	mg/kg	11.12.2019 02:41	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0334	0.0325	97	0.0323	97	49-129	1	25	mg/kg	11.12.2019 02:41	
Naphthalene	< 0.0167	0.0334	0.0288	86	0.0288	86	40-135	0	25	mg/kg	11.12.2019 02:41	
Phenanthrene	< 0.00167	0.0334	0.0307	92	0.0303	91	44-119	1	25	mg/kg	11.12.2019 02:41	
Pyrene	< 0.00167	0.0334	0.0334	100	0.0325	97	50-126	3	25	mg/kg	11.12.2019 02:41	
Surrogate				IS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
Nitrobenzene-d5			1	41	S10	139			-130	%	11.12.2019 02:41	
2-Fluorobiphenyl			1	10		110		51	-133	%	11.12.2019 02:41	
Terphenyl-D14			1	22		119		46	-137	%	11.12.2019 02:41	

APS APS MGP Douglas, AZ

Analytical Method: PAHs by 8270D SIM

 Seq Number:
 3107146
 Matrix:
 Soil
 Date Prep:
 11.11.2019

 Parent Sample Id:
 642585-004
 MS Sample Id:
 642585-004 S
 MSD Sample Id:
 642585-004 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00166	0.0333	0.0278	83	0.0240	72	42-116	15	25	mg/kg	11.12.2019 12:37	
Acenaphthylene	0.00226	0.0333	0.0298	83	0.0271	75	42-121	9	25	mg/kg	11.12.2019 12:37	
Anthracene	0.00157	0.0333	0.0316	90	0.0287	81	44-120	10	25	mg/kg	11.12.2019 12:37	
Benzo(a)anthracene	0.00661	0.0333	0.0361	89	0.0390	97	52-121	8	25	mg/kg	11.12.2019 12:37	
Benzo(a)pyrene	0.00983	0.0333	0.0414	95	0.0487	117	50-128	16	25	mg/kg	11.12.2019 12:37	
Benzo(b)fluoranthene	0.0122	0.0333	0.0413	87	0.0584	139	49-137	34	25	mg/kg	11.12.2019 12:37	M1R2
Benzo(g,h,i)perylene	0.0102	0.0333	0.0337	71	0.0304	61	47-132	10	25	mg/kg	11.12.2019 12:37	
Benzo(k)fluoranthene	0.00358	0.0333	0.0367	99	0.0355	96	48-133	3	25	mg/kg	11.12.2019 12:37	
Chrysene	0.00777	0.0333	0.0364	86	0.0397	96	54-113	9	25	mg/kg	11.12.2019 12:37	
Dibenz(a,h)Anthracene	< 0.00166	0.0333	0.0289	87	0.0212	64	48-133	31	25	mg/kg	11.12.2019 12:37	R5
Fluoranthene	0.0157	0.0333	0.0453	89	0.0544	116	54-128	18	25	mg/kg	11.12.2019 12:37	
Fluorene	< 0.00166	0.0333	0.0290	87	0.0250	75	44-118	15	25	mg/kg	11.12.2019 12:37	
Indeno(1,2,3-c,d)Pyrene	0.00727	0.0333	0.0337	79	0.0297	67	49-129	13	25	mg/kg	11.12.2019 12:37	
Naphthalene	0.00256	0.0333	0.0293	80	0.0248	67	40-135	17	25	mg/kg	11.12.2019 12:37	
Phenanthrene	0.0120	0.0333	0.0418	89	0.0425	92	44-119	2	25	mg/kg	11.12.2019 12:37	
Pyrene	0.0211	0.0333	0.0511	90	0.0638	128	50-126	22	25	mg/kg	11.12.2019 12:37	M1

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	129		119		31-130	%	11.12.2019 12:37
2-Fluorobiphenyl	105		88		51-133	%	11.12.2019 12:37
Terphenyl-D14	113		91		46-137	%	11.12.2019 12:37

SW3550

Prep Method:

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: 3107033 Seq Number: Matrix: Solid Date Prep: 11.08.2019 LCS Sample Id: 7690047-1-BKS LCSD Sample Id: 7690047-1-BSD MB Sample Id: 7690047-1-BLK

MB Sample Id: 7690	04/-1-DLK		LCS Sai	npic ia.	1070047-	I-DIXD		LCS	D Sample	1 u . 707	0047-1-030	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0489	98	0.0451	90	72-125	8	25	mg/kg	11.08.2019 22:21	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0441	88	0.0412	82	75-125	7	25	mg/kg	11.08.2019 22:21	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0511	102	0.0502	100	74-125	2	25	mg/kg	11.08.2019 22:21	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0488	98	0.0487	97	75-127	0	25	mg/kg	11.08.2019 22:21	
1,1-Dichloroethane	< 0.00500	0.0500	0.0485	97	0.0451	90	72-125	7	25	mg/kg	11.08.2019 22:21	
1,1-Dichloroethene	< 0.00500	0.0500	0.0444	89	0.0407	81	59-172	9	25	mg/kg	11.08.2019 22:21	
1,1-Dichloropropene	< 0.00500	0.0500	0.0452	90	0.0429	86	75-125	5	25	mg/kg	11.08.2019 22:21	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0493	99	0.0471	94	75-137	5	25	mg/kg	11.08.2019 22:21	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0493	99	0.0484	97	75-125	2	25	mg/kg	11.08.2019 22:21	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0464	93	0.0437	87	75-135	6	25	mg/kg	11.08.2019 22:21	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0455	91	0.0430	86	75-125	6	25	mg/kg	11.08.2019 22:21	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0518	104	0.0507	101	59-125	2	25	mg/kg	11.08.2019 22:21	
1,2-Dibromoethane	< 0.00500	0.0500	0.0481	96	0.0477	95	73-125	1	25	mg/kg	11.08.2019 22:21	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0481	96	0.0456	91	75-125	5	25	mg/kg	11.08.2019 22:21	
1,2-Dichloroethane	< 0.00500	0.0500	0.0463	93	0.0448	90	68-127	3	25	mg/kg	11.08.2019 22:21	
1,2-Dichloropropane	< 0.00500	0.0500	0.0469	94	0.0454	91	74-125	3	25	mg/kg	11.08.2019 22:21	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0494	99	0.0461	92	70-130	7	25	mg/kg	11.08.2019 22:21	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0460	92	0.0446	89	75-125	3	25	mg/kg	11.08.2019 22:21	
1,3-Dichloropropane	< 0.00500	0.0500	0.0511	102	0.0501	100	75-125	2	25	mg/kg	11.08.2019 22:21	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0456	91	0.0438	88	75-125	4	25	mg/kg	11.08.2019 22:21	
2,2-Dichloropropane	< 0.00500	0.0500	0.0447	89	0.0424	85	75-125	5	25	mg/kg	11.08.2019 22:21	
2-Butanone	< 0.0200	0.250	0.202	81	0.210	84	75-125	4	25	mg/kg	11.08.2019 22:21	
2-Chlorotoluene	< 0.00500	0.0500	0.0473	95	0.0448	90	73-125	5	25	mg/kg	11.08.2019 22:21	
2-Hexanone	< 0.0500	0.250	0.227	91	0.245	98	75-125	8	25	mg/kg	11.08.2019 22:21	
4-Chlorotoluene	< 0.00500	0.0500	0.0465	93	0.0448	90	74-125	4	25	mg/kg	11.08.2019 22:21	
4-Methyl-2-Pentanone	< 0.0500	0.250	0.244	98	0.252	101	60-140	3	25	mg/kg	11.08.2019 22:21	
Acetone	< 0.100	0.250	0.156	62	0.155	62	50-150	1	25	mg/kg	11.08.2019 22:21	
Benzene	< 0.00100	0.0500	0.0449	90	0.0428	86	66-142	5	25	mg/kg	11.08.2019 22:21	
Bromobenzene	< 0.00500	0.0500	0.0479	96	0.0460	92	75-125	4	25	mg/kg	11.08.2019 22:21	
Bromochloromethane	< 0.00500	0.0500	0.0481	96	0.0448	90	60-140	7	25	mg/kg	11.08.2019 22:21	
Bromodichloromethane	< 0.00500	0.0500	0.0487	97	0.0469	94	75-125	4	25	mg/kg	11.08.2019 22:21	
Bromoform	< 0.00500	0.0500	0.0547	109	0.0545	109	75-125	0	25	mg/kg	11.08.2019 22:21	
Bromomethane	< 0.00500	0.0500	0.0359	72	0.0331	66	60-140	8	25	mg/kg	11.08.2019 22:21	
Carbon Disulfide	< 0.00500	0.0500	0.0452	90	0.0411	82	60-140	10	25	mg/kg	11.08.2019 22:21	
Carbon Tetrachloride	< 0.00500	0.0500	0.0445	89	0.0418	84	62-125	6	25	mg/kg	11.08.2019 22:21	
Chlorobenzene	< 0.00500	0.0500	0.0455	91	0.0439	88	60-133	4	25	mg/kg	11.08.2019 22:21	
Chloroethane	< 0.0100	0.0500	0.0352	70	0.0313	63	60-140	12	25	mg/kg	11.08.2019 22:21	
Chloroform	< 0.00500	0.0500	0.0474	95	0.0445	89	74-125	6	25	mg/kg	11.08.2019 22:21	
Chloromethane	< 0.00500	0.0500	0.0429	86	0.0400	80	60-140	7	25	mg/kg	11.08.2019 22:21	
cis-1,2-Dichloroethene	< 0.00500	0.0500	0.0465	93	0.0434	87	75-125	7	25	mg/kg	11.08.2019 22:21	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0497	99	0.0489	98	74-125	2	25	mg/kg	11.08.2019 22:21	
Dibromochloromethane	< 0.00500	0.0500	0.0508	102	0.0496	99	73-125	2	25	mg/kg	11.08.2019 22:21	
Dibromomethane	< 0.00500	0.0500	0.0479	96	0.0463	93	69-127	3	25	mg/kg	11.08.2019 22:21	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0598	120	0.0537	107	65-135	11	25	mg/kg	11.08.2019 22:21	
Ethylbenzene	< 0.00100	0.0500	0.0453	91	0.0438	88	75-125	3	25	mg/kg	11.08.2019 22:21	
Hexachlorobutadiene	< 0.00500	0.0500	0.0477	95	0.0445	89	75-125	7	25	mg/kg	11.08.2019 22:21	
Iodomethane (Methyl Iodide)	< 0.0200	0.0500	0.0378	76	0.0344	69	75-125	9	25	mg/kg	11.08.2019 22:21	L
Isopropylbenzene	< 0.00500	0.0500	0.0488	98	0.0460	92	75-125	6	25	mg/kg	11.08.2019 22:21	
m,p-Xylenes	< 0.00200	0.100	0.0900	90	0.0877	88	75-125	3	25	mg/kg	11.08.2019 22:21	
Methylene Chloride	< 0.0200	0.0500	0.0516	103	0.0477	95	75-125	8	25	mg/kg	11.08.2019 22:21	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

APS APS MGP Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3107033Matrix:SolidDate Prep:11.08.2019MB Sample Id:7690047-1-BLKLCS Sample Id:7690047-1-BKSLCSD Sample Id:7690047-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.00500	0.0500	0.0489	98	0.0467	93	60-140	5	25	mg/kg	11.08.2019 22:21	
Naphthalene	< 0.0100	0.0500	0.0550	110	0.0532	106	70-130	3	25	mg/kg	11.08.2019 22:21	
n-Butylbenzene	< 0.00500	0.0500	0.0439	88	0.0421	84	75-125	4	25	mg/kg	11.08.2019 22:21	
n-Propylbenzene	< 0.00500	0.0500	0.0459	92	0.0437	87	75-125	5	25	mg/kg	11.08.2019 22:21	
o-Xylene	< 0.00100	0.0500	0.0488	98	0.0465	93	75-125	5	25	mg/kg	11.08.2019 22:21	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0440	88	0.0415	83	75-125	6	25	mg/kg	11.08.2019 22:21	
Sec-Butylbenzene	< 0.00500	0.0500	0.0468	94	0.0439	88	75-125	6	25	mg/kg	11.08.2019 22:21	
Styrene	< 0.00500	0.0500	0.0479	96	0.0468	94	75-125	2	25	mg/kg	11.08.2019 22:21	
tert-Butylbenzene	< 0.00500	0.0500	0.0531	106	0.0492	98	75-125	8	25	mg/kg	11.08.2019 22:21	
Tetrachloroethylene	< 0.00500	0.0500	0.0424	85	0.0414	83	71-125	2	25	mg/kg	11.08.2019 22:21	
Toluene	< 0.00500	0.0500	0.0446	89	0.0428	86	59-139	4	25	mg/kg	11.08.2019 22:21	
trans-1,2-dichloroethene	< 0.00500	0.0500	0.0445	89	0.0411	82	75-125	8	25	mg/kg	11.08.2019 22:21	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0497	99	0.0496	99	66-125	0	25	mg/kg	11.08.2019 22:21	
Trichloroethene	< 0.00500	0.0500	0.0404	81	0.0389	78	62-137	4	25	mg/kg	11.08.2019 22:21	
Trichlorofluoromethane	< 0.00500	0.0500	0.0388	78	0.0357	71	67-125	8	25	mg/kg	11.08.2019 22:21	
Vinyl Acetate	< 0.0100	0.250	0.205	82	0.201	80	60-140	2	25	mg/kg	11.08.2019 22:21	
Vinyl Chloride	< 0.00500	0.0500	0.0409	82	0.0374	75	60-140	9	25	mg/kg	11.08.2019 22:21	
1,3-Butadiene	< 0.00500	0.0500	0.0434	87	0.0389	78	70-130	11	25	mg/kg	11.08.2019 22:21	
Cyclohexane	< 0.00500	0.0500	0.0384	77	0.0356	71	70-130	8	25	mg/kg	11.08.2019 22:21	
Dicyclopentadiene	< 0.00500	0.0500	0.0415	83	0.0382	76	70-120	8	25	mg/kg	11.08.2019 22:21	
Methylcyclohexane	< 0.0100	0.0500	0.0399	80	0.0372	74	65-135	7	25	mg/kg	11.08.2019 22:21	
n-Hexane	< 0.0100	0.0500	0.0361	72	0.0346	69	72-125	4	25	mg/kg	11.08.2019 22:21	L
4-Ethyltoluene	< 0.00500	0.0500	0.0443	89	0.0427	85	70-130	4	25	mg/kg	11.08.2019 22:21	
Propene	< 0.00500	0.0500	0.0354	71	0.0317	63	70-130	11	25	mg/kg	11.08.2019 22:21	L
Surrogate	MB	MB	L	CS I	LCS	LCSI	D LCS	D Li	mits	Units	Analysis	

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	98		100		99		53-142	%	11.08.2019 22:21
1,2-Dichloroethane-D4	97		96		100		56-150	%	11.08.2019 22:21
Toluene-D8	100		101		100		70-130	%	11.08.2019 22:21
4-Bromofluorobenzene	99		99		100		68-152	%	11.08.2019 22:21

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

4-Bromofluorobenzene

97

APSAPS MGP Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3107061Matrix:SolidDate Prep:11.11.2019MB Sample Id:7690080-1-BLKLCS Sample Id:7690080-1-BKSLCSD Sample Id:7690080-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acetone	< 0.100	0.250	0.153	61	0.156	62	50-150	2	25	mg/kg	11.11.2019 10:30	
Iodomethane (Methyl Iodide)	< 0.0200	0.0500	0.0408	82	0.0417	83	75-125	2	25	mg/kg	11.11.2019 10:30	
m,p-Xylenes	< 0.00200	0.100	0.101	101	0.102	102	75-125	1	25	mg/kg	11.11.2019 10:30	
o-Xylene	< 0.00100	0.0500	0.0518	104	0.0537	107	75-125	4	25	mg/kg	11.11.2019 10:30	
n-Hexane	< 0.0100	0.0500	0.0431	86	0.0432	86	72-125	0	25	mg/kg	11.11.2019 10:30	
Propene	< 0.00500	0.0500	0.0423	85	0.0429	86	70-130	1	25	mg/kg	11.11.2019 10:30	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Dibromofluoromethane	105		9	8		100	1	53	-142	%	11.11.2019 10:30	
1,2-Dichloroethane-D4	99		9	96		97		56	-150	%	11.11.2019 10:30	
Toluene-D8	101		1	00		102		70	-130	%	11.11.2019 10:30	

99

100

68-152

%

11.11.2019 10:30

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: Seq Number: 3107033 Matrix: Soil Date Prep: 11.08.2019 MSD Sample Id: 642585-004 SD

MS Sample Id: 642585-004 S Parent Sample Id: 642585-004

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.245	2.45	1.99	81	2.00	82	72-125	1	25	mg/kg	11.08.2019 23:04	
1,1,1-Trichloroethane	< 0.245	2.45	1.82	74	1.86	76	75-125	2	25	mg/kg	11.08.2019 23:04	X
1,1,2,2-Tetrachloroethane	< 0.245	2.45	2.21	90	2.15	88	74-125	3	25	mg/kg	11.08.2019 23:04	
1,1,2-Trichloroethane	< 0.245	2.45	2.28	93	2.22	91	75-127	3	25	mg/kg	11.08.2019 23:04	
1,1-Dichloroethane	< 0.245	2.45	2.02	82	2.09	85	72-125	3	25	mg/kg	11.08.2019 23:04	
1,1-Dichloroethene	< 0.245	2.45	1.79	73	1.88	77	59-172	5	25	mg/kg	11.08.2019 23:04	
1,1-Dichloropropene	< 0.245	2.45	1.94	79	1.97	80	75-125	2	25	mg/kg	11.08.2019 23:04	
1,2,3-Trichlorobenzene	< 0.245	2.45	2.07	84	2.20	90	75-137	6	25	mg/kg	11.08.2019 23:04	
1,2,3-Trichloropropane	< 0.245	2.45	2.16	88	2.05	84	75-125	5	25	mg/kg	11.08.2019 23:04	
1,2,4-Trichlorobenzene	< 0.245	2.45	1.96	80	2.06	84	75-135	5	25	mg/kg	11.08.2019 23:04	
1,2,4-Trimethylbenzene	< 0.245	2.45	1.99	81	2.06	84	75-125	3	25	mg/kg	11.08.2019 23:04	
1,2-Dibromo-3-Chloropropane	< 0.245	2.45	2.03	83	1.94	79	59-125	5	25	mg/kg	11.08.2019 23:04	
1,2-Dibromoethane	< 0.245	2.45	2.22	91	2.15	88	73-125	3	25	mg/kg	11.08.2019 23:04	
1,2-Dichlorobenzene	< 0.245	2.45	2.11	86	2.13	87	75-125	1	25	mg/kg	11.08.2019 23:04	
1,2-Dichloroethane	< 0.245	2.45	2.02	82	2.00	82	68-127	1	25	mg/kg	11.08.2019 23:04	
1,2-Dichloropropane	< 0.245	2.45	2.11	86	2.08	85	74-125	1	25	mg/kg	11.08.2019 23:04	
1,3,5-Trimethylbenzene	< 0.245	2.45	2.14	87	2.20	90	70-130	3	25	mg/kg	11.08.2019 23:04	
1,3-Dichlorobenzene	< 0.245	2.45	2.12	87	2.10	86	75-125	1	25	mg/kg	11.08.2019 23:04	
1,3-Dichloropropane	< 0.245	2.45	2.39	98	2.29	93	75-125	4	25	mg/kg	11.08.2019 23:04	
1,4-Dichlorobenzene	< 0.245	2.45	2.07	84	2.05	84	75-125	1	25	mg/kg	11.08.2019 23:04	
2,2-Dichloropropane	< 0.245	2.45	1.85	76	1.89	77	75-125	2	25	mg/kg	11.08.2019 23:04	
2-Butanone	< 0.978	12.2	9.06	74	8.45	69	75-125	7	25	mg/kg	11.08.2019 23:04	X
2-Chlorotoluene	< 0.245	2.45	2.08	85	2.12	87	73-125	2	25	mg/kg	11.08.2019 23:04	71
2-Hexanone	<2.45	12.2	11.0	90	9.65	79	75-125	13	25	mg/kg	11.08.2019 23:04	
4-Chlorotoluene	< 0.245	2.45	2.12	87	2.11	86	74-125	0	25	mg/kg	11.08.2019 23:04	
4-Methyl-2-Pentanone	<2.45	12.2	10.8	89	9.98	82	60-140	8	25	mg/kg	11.08.2019 23:04	
Acetone	<4.89	12.2	6.26	51	6.17	51	50-150	1	25	mg/kg	11.08.2019 23:04	
Benzene	< 0.0489	2.45	2.00	82	1.99	81	66-142	1	25	mg/kg	11.08.2019 23:04	
Bromobenzene	< 0.245	2.45	2.17	89	2.18	89	75-125	0	25	mg/kg	11.08.2019 23:04	
Bromochloromethane	< 0.245	2.45	2.01	82	2.04	83	60-140	1	25	mg/kg	11.08.2019 23:04	
Bromodichloromethane	< 0.245	2.45	2.03	83	1.96	80	75-125	4	25	mg/kg	11.08.2019 23:04	
Bromoform	< 0.245	2.45	2.12	87	1.92	78	75-125	10	25	mg/kg	11.08.2019 23:04	
Bromomethane	< 0.245	2.45	0.449	18	0.510	21	60-140	13	25	mg/kg	11.08.2019 23:04	X
Carbon Disulfide	< 0.245	2.45	1.56	64	1.65	67	60-140	6	25	mg/kg	11.08.2019 23:04	74
Carbon Tetrachloride	< 0.245	2.45	1.72	70	1.72	70	62-125	0	25	mg/kg	11.08.2019 23:04	
Chlorobenzene	< 0.245	2.45	2.11	86	2.08	85	60-133	1	25	mg/kg	11.08.2019 23:04	
Chloroethane	< 0.489	2.45	0.520	21	0.554	23	60-133	6	25	mg/kg	11.08.2019 23:04	X
Chloroform	<0.469	2.45	2.00	82	2.04	83		2	25		11.08.2019 23:04	Λ
										mg/kg	11.08.2019 23:04	
Chloromethane cis-1,2-Dichloroethene	<0.245 <0.245	2.45 2.45	1.92 1.96	78 80	2.01 2.01	82 82	60-140 75-125	5 3	25 25	mg/kg	11.08.2019 23:04	
						89	73-125			mg/kg	11.08.2019 23:04	
cis-1,3-Dichloropropene Dibromochloromethane	<0.245 <0.245	2.45 2.45	2.29 2.06	93 84	2.19 1.95	80	73-125	4 5	25 25	mg/kg mg/kg	11.08.2019 23:04	
Dibromomethane					2.06		69-127				11.08.2019 23:04	
	< 0.245	2.45	2.07	84		101		0	25 25	mg/kg	11.08.2019 23:04	
Dichlorodifluoromethane	<0.245	2.45	2.35	96	2.47	101	65-135	5	25	mg/kg	11.08.2019 23:04	
Ethylbenzene	< 0.0489	2.45	2.07	84	2.04	83	75-125	1	25	mg/kg		
Hexachlorobutadiene	< 0.245	2.45	2.01	82	2.04	83	75-125	1	25	mg/kg	11.08.2019 23:04	37
Iodomethane (Methyl Iodide)	< 0.978	2.45	1.52	62	1.59		75-125	5	25	mg/kg	11.08.2019 23:04	X
Isopropylbenzene	<0.245	2.45	2.16	88	2.19	89	75-125	1	25	mg/kg	11.08.2019 23:04	
m,p-Xylenes	< 0.0978	4.89	4.20	86	4.17	85	75-125	1	25	mg/kg	11.08.2019 23:04 11.08.2019 23:04	
Methylene Chloride	< 0.978	2.45	2.10	86	2.17	89	75-125	3	25	mg/kg	11.00.2019 25:04	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\label{eq:c-A} \begin{split} [D] &= 100*(C-A) \, / \, B \\ RPD &= 200* \, | \, (C-E) \, / \, (C+E) \, | \\ [D] &= 100*(C) \, / \, [B] \\ Log \ Diff. &= Log(Sample \ Duplicate) \, - \ Log(Original \ Sample) \end{split}$$

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: Seq Number: 3107033 Matrix: Soil Date Prep: 11.08.2019 MSD Sample Id: 642585-004 SD

MS Sample Id: 642585-004 S Parent Sample Id: 642585-004

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.245	2.45	2.08	85	2.08	85	60-140	0	25	mg/kg	11.08.2019 23:04	
Naphthalene	< 0.489	2.45	2.34	96	2.41	98	70-130	3	25	mg/kg	11.08.2019 23:04	
n-Butylbenzene	< 0.245	2.45	1.95	80	1.97	80	75-125	1	25	mg/kg	11.08.2019 23:04	
n-Propylbenzene	< 0.245	2.45	2.06	84	2.09	85	75-125	1	25	mg/kg	11.08.2019 23:04	
o-Xylene	< 0.0489	2.45	2.19	89	2.19	89	75-125	0	25	mg/kg	11.08.2019 23:04	
p-Cymene (p-Isopropyltoluene)	< 0.245	2.45	1.91	78	1.98	81	75-125	4	25	mg/kg	11.08.2019 23:04	
Sec-Butylbenzene	< 0.245	2.45	1.99	81	2.07	84	75-125	4	25	mg/kg	11.08.2019 23:04	
Styrene	< 0.245	2.45	2.24	91	2.18	89	75-125	3	25	mg/kg	11.08.2019 23:04	
tert-Butylbenzene	< 0.245	2.45	2.26	92	2.37	97	75-125	5	25	mg/kg	11.08.2019 23:04	
Tetrachloroethylene	< 0.245	2.45	1.96	80	1.98	81	71-125	1	25	mg/kg	11.08.2019 23:04	
Toluene	< 0.245	2.45	2.03	83	2.05	84	59-139	1	25	mg/kg	11.08.2019 23:04	
trans-1,2-dichloroethene	< 0.245	2.45	1.84	75	1.93	79	75-125	5	25	mg/kg	11.08.2019 23:04	
trans-1,3-dichloropropene	< 0.245	2.45	2.29	93	2.22	91	66-125	3	25	mg/kg	11.08.2019 23:04	
Trichloroethene	< 0.245	2.45	1.80	73	1.78	73	62-137	1	25	mg/kg	11.08.2019 23:04	
Trichlorofluoromethane	< 0.245	2.45	1.43	58	1.51	62	67-125	5	25	mg/kg	11.08.2019 23:04	X
Vinyl Acetate	< 0.489	12.2	8.86	73	8.67	71	60-140	2	25	mg/kg	11.08.2019 23:04	
Vinyl Chloride	< 0.245	2.45	1.74	71	1.84	75	60-140	6	25	mg/kg	11.08.2019 23:04	
1,3-Butadiene	< 0.245	2.45	1.81	74	1.82	74	70-130	1	25	mg/kg	11.08.2019 23:04	
Cyclohexane	< 0.245	2.45	1.58	64	1.63	67	70-130	3	25	mg/kg	11.08.2019 23:04	X
Dicyclopentadiene	< 0.245	2.45	1.73	71	1.85	76	70-120	7	25	mg/kg	11.08.2019 23:04	
Methylcyclohexane	< 0.489	2.45	1.71	70	1.74	71	65-135	2	25	mg/kg	11.08.2019 23:04	
n-Hexane	< 0.489	2.45	1.60	65	1.58	64	72-125	1	25	mg/kg	11.08.2019 23:04	X
4-Ethyltoluene	< 0.245	2.45	2.02	82	2.01	82	70-130	0	25	mg/kg	11.08.2019 23:04	
Propene	< 0.245	2.45	1.34	55	1.41	58	70-130	5	25	mg/kg	11.08.2019 23:04	X

Surrogate	MS MS %Rec Fla	1,102	MSD Limits Flag	Units	Analysis Date
Dibromofluoromethane	92	94	53-142	%	11.08.2019 23:04
1,2-Dichloroethane-D4	97	94	56-150	%	11.08.2019 23:04
Toluene-D8	100	102	70-130	%	11.08.2019 23:04
4-Bromofluorobenzene	99	100	68-152	%	11.08.2019 23:04

APS APS MGP Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3107061Matrix:SoilDate Prep:11.11.2019

Parent Sample Id: 642676-001 MS Sample Id: 642676-001 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
Acetone	0.125	0.227	0.159	15	50-150	mg/kg	11.11.2019 11:37	X
Iodomethane (Methyl Iodide)	< 0.0182	0.0454	0.0338	74	75-125	mg/kg	11.11.2019 11:37	X
m,p-Xylenes	< 0.000396	0.0908	0.0693	76	75-125	mg/kg	11.11.2019 11:37	
o-Xylene	< 0.000908	0.0454	0.0367	81	75-125	mg/kg	11.11.2019 11:37	
n-Hexane	< 0.00908	0.0454	0.0268	59	72-125	mg/kg	11.11.2019 11:37	X
Propene	0.00296	0.0454	0.0376	76	70-130	mg/kg	11.11.2019 11:37	

Surrogate	MS %Rec	MS Flag	Limits	Units	Analysis Date
Dibromofluoromethane	102		53-142	%	11.11.2019 11:37
1,2-Dichloroethane-D4	101		56-150	%	11.11.2019 11:37
Toluene-D8	103		70-130	%	11.11.2019 11:37
4-Bromofluorobenzene	104		68-152	%	11.11.2019 11:37

Judy Heywood

Project Manager: Company Name:

APS

602-818-0259

City, State ZIP:

Phone:

Address:

Chain of Custody

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296

1	2
Lillac	(MA)
	Order No:
	¥

5

www.xenco.com

Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)

Reporting:Level II|X | Level III PST/UST TRRID Level IV Superfur Other: Program: UST/PST☐ PRF☐ Brownfields☐ RR□ Work Order Comments ADaPT Arizona State of Project: Deliverables: EDD matt.branche@jacobs.com Bernice.Kidd@jacobs.com Bernice Kidd Matt Branche 480-273-4084 Email: Judith. Heywood@aps.com Jacobs Company Name: Send results to Phone email Phoenix, AZ 85072-3999 PO Box53999, MS 9303

Project Name: APS MGP Douglas, AZ	77	Turn	Turn Around					ANA	YSIS	ANALYSIS REQUEST	T.S.		Work Order Notes	
Ľ.	G.05-1B	Routine	K			(
P.O. Number: 700735632		Rush	Kush 48th		(AA:	Pevi								
Sampler's Name:	(Due Date:	.e.	-	 2月 8)	prese		74111	(
SAMPLE RECEIPT Temp Blank:	k: Yes No	Wet Ice: (Yes)	res) No	SJ	slate	HO9		detin	č	əpi				
Temperature (°C):)	Thermometer ID	1	əuir	al m	M) e		-	c	Cyan				
Received Intact: No	IR ID:H	IR ID:HOU-068 C/F:+0.2	F:+0.2			20/				tal (****			
Cooler Custody Seals: Yes No N/A		Temp: Corrected:		-		/ lei	s		_				TAT starts the day recevied by the	the
Sample Custody Seals: Yes No (NIA)		.) 0.	3			oT -	ьсв			-	-	-117	lab, if received by 4:30pm	
Sample Identification Matrix	x Date Sampled	Time Sampled	Depth ,	dmuN 2 0728	/B0109	82608	- 2808	9095B	89†06	6/6106	-		Sample Comments	
D-831-10,0-10,5 18	11-6-19	1300 1	Jo-0-105	Ÿ	×									
8 -55-051-180-0		31-051 01E1	5.0-155	17	X									T
D-831-220-20,5-8	-	1320 20,0-205	20.00	1,	X								145/MSD	
0-029-5.055	54-11	5505 0080	250	8	× >	8	X	8	8	8			M5/25	
8 201-10,01-828		0830 lov-105	501-00	77	X				-					
8 253-051-628-8		S\$1-051 -5580	551000	7	X									
N-B29-20-20,5 S	→	20160	20,0-29,5	7	Y									
1-7BU-110719 S	11-7-15	0800	1	_		X			-			8		
									4					
Total 200 7 / 6010 200.8 / 6020:	8R	BRCRA 13PPM Texas 11	Texas 11	Al Sb	As Ba	Be B	Cd Ca	C C	Cu	Cr Co Cu Fe Pb	Ma Mn Mo Ni	K Se Ag SiO2	2 Na Sr TI Sn U V Zn	7

1631 / 245.1 / 7470 / 7471 : Hg lotice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl Circle Method(s) and Metal(s) to be analyzed

Date/Time Received by: (Signature) of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be enforced unless previously negotiated. Relinquished by: (Signature) 0051:6-4-11 Date/Time Received by: (Signature) Relinquished by: (Signature)

Revised Date 051418 Rev 2018

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 11.08.2019 11.00.00 AM

Acceptable Temperature Range: 0 - 6 degC

Air and Metal samples Acceptable Range: Ambient

Work Order #: 642585 Temperature Measuring device used : HOU-068

Sam	ple Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	1	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ co	poler? Yes	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ re	ceived? Yes	
#10 Chain of Custody agrees with sample labels/r	matrix? Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)	? Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: MDS PH Device/Lot#:

Checklist completed by:

Monica Shakhshir

Date: 11.08.2019

Checklist reviewed by:

Date: 11.08.2019

Ruriko Konuma Date: 1

Analytical Report 642698

for

APS

Project Manager: Judy Heywood

APS MGP Douglas, AZ

11.13.2019

Collected By: Client

2525 West Huntington Drive, Suite 102 Tempe, AZ 85282 Ph: (480) 355-0900

Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Houston (EPA Lab code: TX00122): Arizona (AZ0765) Xenco-Dallas (EPA Lab code: TX01468): Arizona (AZ0809)

11.13.2019

Project Manager: Judy Heywood

APS P.O. Box 53999 Mail Station 8376

Mail Station 8376 Phoenix, AZ 85072

Reference: TWA Report No(s): 642698

APS MGP Douglas, AZ

Project Address:

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the TWA Report Number(s) 642698. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the ADHS certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with ADHS standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and ADHS Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by TransWest Analytical. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 642698 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting TransWest Analytical to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

XENCO

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

Project ID: Report Date: 11.13.2019
Work Order Number(s): 642698 Date Received: 11.08.2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3107053 VOCs by SW-846 8260C

Lab Sample ID 642698-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Acetone recovered below QC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 642698-001, -002, -003, -004, -005.

The Laboratory Control Sample for Acetone is within laboratory Control Limits, therefore the data was accepted.

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.

Sample Cross Reference 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id	Matrix	Date Collected Sample	le Depth	Lab Sample Id
D-MW27	W	11.07.2019 13:10		642698-001
D-FD01-110719	W	11.07.2019 13:30		642698-002
D-MW26	W	11.07.2019 14:20		642698-003
D-MW25	W	11.07.2019 15:25		642698-004
D-TB03-110819	\mathbf{W}	11.08.2019 12:00		642698-005

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW27** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-001 Date Collected: 11.07.2019 13:10

Analytical Method: Recoverable Metals, Total, by EPA 200.8

Tech: MLI

DEP Analyst: Date Prep: 11.11.2019 10:20

Seq Number: 3107096 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Antimony	7440-36-0	< 0.00200	0.00200	mg/L	11.11.2019 18:04	U	1
Arsenic	7440-38-2	0.00496	0.00400	mg/L	11.11.2019 18:04		1
Barium	7440-39-3	0.0510	0.00400	mg/L	11.11.2019 18:04		1
Beryllium	7440-41-7	< 0.00200	0.00200	mg/L	11.11.2019 18:04	U	1
Cadmium	7440-43-9	< 0.00200	0.00200	mg/L	11.11.2019 18:04	U	1
Chromium	7440-47-3	< 0.00400	0.00400	mg/L	11.11.2019 18:04	U	1
Cobalt	7440-48-4	< 0.00200	0.00200	mg/L	11.11.2019 18:04	U	1
Copper	7440-50-8	0.00409	0.00400	mg/L	11.11.2019 18:04		1
Lead	7439-92-1	< 0.00200	0.00200	mg/L	11.11.2019 18:04	U	1
Manganese	7439-96-5	0.361	0.00200	mg/L	11.11.2019 18:04		1
Molybdenum	7439-98-7	0.00293	0.00200	mg/L	11.11.2019 18:04		1
Nickel	7440-02-0	0.00317	0.00200	mg/L	11.11.2019 18:04		1
Selenium	7782-49-2	0.0112	0.00200	mg/L	11.11.2019 18:04		1
Silver	7440-22-4	< 0.00200	0.00200	mg/L	11.11.2019 18:04	U	1
Thallium	7440-28-0	< 0.00200	0.00200	mg/L	11.11.2019 18:04	U	1

Analytical Method: Mercury, Total by EPA 245.1

Tech: **ADS**

Analyst: ANJ

Seq Number: 3107186

Prep Method: E245.1P

% Solids:

Prep Method: E200.8P

% Solids:

Date Prep: SUB: AZ0765

11.12.2019 08:35

Result RL **Parameter** Cas Number Units **Analysis Date** Flag Dil 0.000200 Mercury 7439-97-6 < 0.000200 mg/L 11.12.2019 14:08

DNE

Analyst:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

11.10.2019 16:29

Sample Id: **D-MW27** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-001 Date Collected: 11.07.2019 13:10

Analytical Method: PAHs by SW846 8270D SIM Prep Method: SW3511

Date Prep:

% Solids:

Tech: AHI

Seq Number: 3107128 SUB: AZ0765

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
1-Methylnaphthalene	90-12-0	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
2-Methylnaphthalene	91-57-6	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Acenaphthene	83-32-9	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Acenaphthylene	208-96-8	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Anthracene	120-12-7	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Benzo(a)anthracene	56-55-3	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Benzo(a)pyrene	50-32-8	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Benzo(b)fluoranthene	205-99-2	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Benzo(g,h,i)perylene	191-24-2	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Benzo(k)fluoranthene	207-08-9	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Chrysene	218-01-9	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Dibenz(a,h)anthracene	53-70-3	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Fluoranthene	206-44-0	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Fluorene	86-73-7	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Naphthalene	91-20-3	< 0.000391	0.000391		mg/L	11.11.2019 12:38		39.1
Phenanthrene	85-01-8	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
Pyrene	129-00-0	< 0.000196	0.000196		mg/L	11.11.2019 12:38		39.1
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date Fla	g	
2-Fluorobiphenyl		122	%	54-146		1.2019 12:38		
Nitrobenzene-d5		101	%	46-151		1.2019 12:38		
Terphenyl-D14		105	%	51-139	11.11	1.2019 12:38		

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
2-Fluorobiphenyl	122	%	54-146	11.11.2019 12:38	
Nitrobenzene-d5	101	%	46-151	11.11.2019 12:38	
Terphenyl-D14	105	%	51-139	11.11.2019 12:38	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW27** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-001 Date Collected: 11.07.2019 13:10

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Tech: EZA
Analyst: EZA
Date Prep: 11.11.2019 11:10

Seq Number: 3107053 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	< 0.100	0.100	mg/L	11.11.2019 14:00	M2	1
Benzene	71-43-2	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Bromobenzene	108-86-1	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Bromochloromethane	74-97-5	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Bromodichloromethane	75-27-4	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Bromoform	75-25-2	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Methyl bromide	74-83-9	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Methyl ethyl ketone	78-93-3	< 0.0500	0.0500	mg/L	11.11.2019 14:00		1
n-Butylbenzene	104-51-8	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Sec-Butylbenzene	135-98-8	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
tert-Butylbenzene	98-06-6	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Carbon Disulfide	75-15-0	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Carbon Tetrachloride	56-23-5	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Chlorobenzene	108-90-7	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Chloroethane	75-00-3	< 0.0100	0.0100	mg/L	11.11.2019 14:00		1
Chloroform	67-66-3	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1-Chlorohexane	544-10-5	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Methyl Chloride	74-87-3	< 0.0100	0.0100	mg/L	11.11.2019 14:00		1
2-Chlorotoluene	95-49-8	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
4-Chlorotoluene	106-43-4	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Cyclohexane	110-82-7	< 0.00500	0.00500	mg/L	11.11.2019 14:00	*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Dibromochloromethane	124-48-1	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,2-Dibromoethane	106-93-4	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Methylene Bromide	74-95-3	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,2-Dichlorobenzene	95-50-1	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,3-Dichlorobenzene	541-73-1	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,4-Dichlorobenzene	106-46-7	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Dichlorodifluoromethane	75-71-8	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,1-Dichloroethane	75-34-3	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,2-Dichloroethane	107-06-2	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,1-Dichloroethene	75-35-4	0.00401	0.00100	mg/L	11.11.2019 14:00		1
cis-1,2-Dichloroethylene	156-59-2	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
trans-1,2-dichloroethylene	156-60-5	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,2-Dichloropropane	78-87-5	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
1,3-Dichloropropane	142-28-9	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
2,2-Dichloropropane	594-20-7	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW27** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-001 Date Collected: 11.07.2019 13:10

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Tech: EZA
Analyst: EZA
Date Prep: 11.11.2019 11:10

Seq Number: 3107053 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
cis-1,3-Dichloropropene	10061-01-5	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
trans-1,3-dichloropropene	10061-02-6	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Ethylbenzene	100-41-4	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Hexachlorobutadiene	87-68-3	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
2-Hexanone	591-78-6	< 0.0500	0.0500	mg/L	11.11.2019 14:00		1
Isopropylbenzene	98-82-8	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Methylcyclohexane	108-87-2	< 0.0100	0.0100	mg/L	11.11.2019 14:00		1
Methylene Chloride	75-09-2	< 0.0100	0.0100	mg/L	11.11.2019 14:00		1
Methyl iodide	74-88-4	< 0.0200	0.0200	mg/L	11.11.2019 14:00		1
4-Methyl-2-Pentanone	108-10-1	< 0.0500	0.0500	mg/L	11.11.2019 14:00		1
MTBE	1634-04-4	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Naphthalene	91-20-3	< 0.0100	0.0100	mg/L	11.11.2019 14:00		1
n-Propylbenzene	103-65-1	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Styrene	100-42-5	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,1,1,2-Tetrachloroethane	630-20-6	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,1,2,2-Tetrachloroethane	79-34-5	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Tetrachloroethene	127-18-4	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Toluene	108-88-3	0.00770	0.00100	mg/L	11.11.2019 14:00		1
1,2,3-Trichlorobenzene	87-61-6	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
1,2,4-Trichlorobenzene	120-82-1	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
1,1,1-Trichloroethane	71-55-6	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
1,1,2-Trichloroethane	79-00-5	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Trichloroethylene	79-01-6	0.0688	0.00500	mg/L	11.11.2019 14:00		1
Trichlorofluoromethane	75-69-4	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,2,3-Trichloropropane	96-18-4	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,2,4-Trimethylbenzene	95-63-6	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
1,3,5-Trimethylbenzene	108-67-8	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
o-Xylene	95-47-6	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
m,p-Xylenes	179601-23-1	< 0.0100	0.0100	mg/L	11.11.2019 14:00		1
Vinyl Acetate	108-05-4	< 0.0500	0.0500	mg/L	11.11.2019 14:00		1
Vinyl Chloride	75-01-4	< 0.00200	0.00200	mg/L	11.11.2019 14:00		1
1,3-Butadiene	106-99-0	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Dicyclopentadiene	77-73-6	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
n-Hexane	110-54-3	< 0.00500	0.00500	mg/L	11.11.2019 14:00		1
Total Xylenes	1330-20-7	< 0.00100	0.00100	mg/L	11.11.2019 14:00		1
Total Trihalomethanes		< 0.00100	0.00100	mg/L	11.11.2019 14:00		1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW27** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-001 Date Collected: 11.07.2019 13:10

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Solids:

Analyst: EZA Date Prep: 11.11.2019 11:10

Seq Number: 3107053 SUB: AZ0765

% Recovery									
Surrogate		Units	Limits	Analysis Date	Flag				
Dibromofluoromethane	99	%	75-131	11.11.2019 14:00					
1,2-Dichloroethane-D4	101	%	63-144	11.11.2019 14:00					
Toluene-D8	99	%	80-117	11.11.2019 14:00					
4-Bromofluorobenzene	104	%	74-124	11.11.2019 14:00					

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110719** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-002 Date Collected: 11.07.2019 13:30

Analytical Method: Recoverable Metals, Total, by EPA 200.8

Tech: MLI

Analyst: DEP Date Prep: 11.11.2019 10:20

Seq Number: 3107096 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Antimony	7440-36-0	< 0.00200	0.00200	mg/L	11.11.2019 18:07	U	1
Arsenic	7440-38-2	0.00574	0.00400	mg/L	11.11.2019 18:07		1
Barium	7440-39-3	0.0557	0.00400	mg/L	11.11.2019 18:07		1
Beryllium	7440-41-7	< 0.00200	0.00200	mg/L	11.11.2019 18:07	U	1
Cadmium	7440-43-9	< 0.00200	0.00200	mg/L	11.11.2019 18:07	U	1
Chromium	7440-47-3	< 0.00400	0.00400	mg/L	11.11.2019 18:07	U	1
Cobalt	7440-48-4	< 0.00200	0.00200	mg/L	11.11.2019 18:07	U	1
Copper	7440-50-8	0.00488	0.00400	mg/L	11.11.2019 18:07		1
Lead	7439-92-1	< 0.00200	0.00200	mg/L	11.11.2019 18:07	U	1
Manganese	7439-96-5	0.367	0.00200	mg/L	11.11.2019 18:07		1
Molybdenum	7439-98-7	0.00311	0.00200	mg/L	11.11.2019 18:07		1
Nickel	7440-02-0	0.00367	0.00200	mg/L	11.11.2019 18:07		1
Selenium	7782-49-2	0.0115	0.00200	mg/L	11.11.2019 18:07		1
Silver	7440-22-4	< 0.00200	0.00200	mg/L	11.11.2019 18:07	U	1
Thallium	7440-28-0	< 0.00200	0.00200	mg/L	11.11.2019 18:07	U	1

Analytical Method: Mercury, Total by EPA 245.1

Tech: ADS

Analyst: ANJ

Seq Number: 3107186

Prep Method: E245.1P

% Solids:

Prep Method: E200.8P

% Solids:

SUB: AZ0765

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 <0.000200</td>
 0.000200
 mg/L
 11.12.2019 14:10
 1

Date Prep:

11.12.2019 08:35

AHI

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110719** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-002 Date Collected: 11.07.2019 13:30

Analytical Method: PAHs by SW846 8270D SIM Prep Method: SW3511

% Solids:

Analyst: DNE Date Prep: 11.10.2019 16:38

Seq Number: 3107128 SUB: AZ0765

Parameter	Cas Number	Result	RL		Units	Analysis Date	e Fla	g Dil
1-Methylnaphthalene	90-12-0	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
2-Methylnaphthalene	91-57-6	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Acenaphthene	83-32-9	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Acenaphthylene	208-96-8	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Anthracene	120-12-7	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Benzo(a)anthracene	56-55-3	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Benzo(a)pyrene	50-32-8	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Benzo(b)fluoranthene	205-99-2	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Benzo(g,h,i)perylene	191-24-2	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Benzo(k)fluoranthene	207-08-9	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Chrysene	218-01-9	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Dibenz(a,h)anthracene	53-70-3	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Fluoranthene	206-44-0	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Fluorene	86-73-7	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Naphthalene	91-20-3	< 0.000388	0.000388		mg/L	11.11.2019 1	9:43	38.75
Phenanthrene	85-01-8	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
Pyrene	129-00-0	< 0.000194	0.000194		mg/L	11.11.2019 1	9:43	38.75
		% Recovery						
Surrogate			Units	Limits	Anal	ysis Date	Flag	
2-Fluorobiphenyl		110	%	54-146		.2019 19:43		
Nitrobenzene-d5		144	%	46-151		.2019 19:43		
Terphenyl-D14		104	%	51-139	11.11	.2019 19:43		

EZA

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110719** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-002 Date Collected: 11.07.2019 13:30

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	< 0.100	0.100	mg/L	11.11.2019 15:57		1
Benzene	71-43-2	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Bromobenzene	108-86-1	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Bromochloromethane	74-97-5	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Bromodichloromethane	75-27-4	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Bromoform	75-25-2	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Methyl bromide	74-83-9	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Methyl ethyl ketone	78-93-3	< 0.0500	0.0500	mg/L	11.11.2019 15:57		1
n-Butylbenzene	104-51-8	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Sec-Butylbenzene	135-98-8	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
tert-Butylbenzene	98-06-6	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Carbon Disulfide	75-15-0	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Carbon Tetrachloride	56-23-5	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Chlorobenzene	108-90-7	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Chloroethane	75-00-3	< 0.0100	0.0100	mg/L	11.11.2019 15:57		1
Chloroform	67-66-3	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1-Chlorohexane	544-10-5	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Methyl Chloride	74-87-3	< 0.0100	0.0100	mg/L	11.11.2019 15:57		1
2-Chlorotoluene	95-49-8	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
4-Chlorotoluene	106-43-4	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Cyclohexane	110-82-7	< 0.00500	0.00500	mg/L	11.11.2019 15:57	*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Dibromochloromethane	124-48-1	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,2-Dibromoethane	106-93-4	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Methylene Bromide	74-95-3	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,2-Dichlorobenzene	95-50-1	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,3-Dichlorobenzene	541-73-1	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,4-Dichlorobenzene	106-46-7	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Dichlorodifluoromethane	75-71-8	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,1-Dichloroethane	75-34-3	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,2-Dichloroethane	107-06-2	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,1-Dichloroethene	75-35-4	0.00437	0.00100	mg/L	11.11.2019 15:57		1
cis-1,2-Dichloroethylene	156-59-2	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
trans-1,2-dichloroethylene	156-60-5	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,2-Dichloropropane	78-87-5	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
1,3-Dichloropropane	142-28-9	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
2,2-Dichloropropane	594-20-7	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1

EZA

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110719** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-002 Date Collected: 11.07.2019 13:30

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
cis-1,3-Dichloropropene	10061-01-5	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
trans-1,3-dichloropropene	10061-02-6	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Ethylbenzene	100-41-4	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Hexachlorobutadiene	87-68-3	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
2-Hexanone	591-78-6	< 0.0500	0.0500	mg/L	11.11.2019 15:57		1
Isopropylbenzene	98-82-8	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Methylcyclohexane	108-87-2	< 0.0100	0.0100	mg/L	11.11.2019 15:57		1
Methylene Chloride	75-09-2	< 0.0100	0.0100	mg/L	11.11.2019 15:57		1
Methyl iodide	74-88-4	< 0.0200	0.0200	mg/L	11.11.2019 15:57		1
4-Methyl-2-Pentanone	108-10-1	< 0.0500	0.0500	mg/L	11.11.2019 15:57		1
MTBE	1634-04-4	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Naphthalene	91-20-3	< 0.0100	0.0100	mg/L	11.11.2019 15:57		1
n-Propylbenzene	103-65-1	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Styrene	100-42-5	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,1,1,2-Tetrachloroethane	630-20-6	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,1,2,2-Tetrachloroethane	79-34-5	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Tetrachloroethene	127-18-4	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Toluene	108-88-3	0.00792	0.00100	mg/L	11.11.2019 15:57		1
1,2,3-Trichlorobenzene	87-61-6	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
1,2,4-Trichlorobenzene	120-82-1	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
1,1,1-Trichloroethane	71-55-6	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
1,1,2-Trichloroethane	79-00-5	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Trichloroethylene	79-01-6	0.0712	0.00500	mg/L	11.11.2019 15:57		1
Trichlorofluoromethane	75-69-4	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,2,3-Trichloropropane	96-18-4	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,2,4-Trimethylbenzene	95-63-6	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
1,3,5-Trimethylbenzene	108-67-8	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
o-Xylene	95-47-6	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
m,p-Xylenes	179601-23-1	< 0.0100	0.0100	mg/L	11.11.2019 15:57		1
Vinyl Acetate	108-05-4	< 0.0500	0.0500	mg/L	11.11.2019 15:57		1
Vinyl Chloride	75-01-4	< 0.00200	0.00200	mg/L	11.11.2019 15:57		1
1,3-Butadiene	106-99-0	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Dicyclopentadiene	77-73-6	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
n-Hexane	110-54-3	< 0.00500	0.00500	mg/L	11.11.2019 15:57		1
Total Xylenes	1330-20-7	< 0.00100	0.00100	mg/L	11.11.2019 15:57		1
Total Trihalomethanes		< 0.00100	0.00100	mg/L	11.11.2019 15:57		1

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-FD01-110719** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-002 Date Collected: 11.07.2019 13:30

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

EZA % Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

% Recovery				
	Units	Limits	Analysis Date	Flag
99	%	75-131	11.11.2019 15:57	
103	%	63-144	11.11.2019 15:57	
100	%	80-117	11.11.2019 15:57	
101	%	74-124	11.11.2019 15:57	
	99 103 100	Units 99 % 103 % 100 %	Units Limits 99 % 75-131 103 % 63-144 100 % 80-117	Units Limits Analysis Date 99 % 75-131 11.11.2019 15:57 103 % 63-144 11.11.2019 15:57 100 % 80-117 11.11.2019 15:57

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW26** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-003 Date Collected: 11.07.2019 14:20

Analytical Method: Recoverable Metals, Total, by EPA 200.8

Prep Method: E200.8P Tech: MLI

% Solids:

DEP Analyst: Date Prep: 11.11.2019 10:20

Seq Number: 3107096 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Antimony	7440-36-0	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Arsenic	7440-38-2	0.00680	0.00400	mg/L	11.11.2019 18:10		1
Barium	7440-39-3	0.0431	0.00400	mg/L	11.11.2019 18:10		1
Beryllium	7440-41-7	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Cadmium	7440-43-9	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Chromium	7440-47-3	< 0.00400	0.00400	mg/L	11.11.2019 18:10	U	1
Cobalt	7440-48-4	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Copper	7440-50-8	< 0.00400	0.00400	mg/L	11.11.2019 18:10	U	1
Lead	7439-92-1	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Manganese	7439-96-5	0.0569	0.00200	mg/L	11.11.2019 18:10		1
Molybdenum	7439-98-7	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Nickel	7440-02-0	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Selenium	7782-49-2	0.00867	0.00200	mg/L	11.11.2019 18:10		1
Silver	7440-22-4	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1
Thallium	7440-28-0	< 0.00200	0.00200	mg/L	11.11.2019 18:10	U	1

Analytical Method: Mercury, Total by EPA 245.1

Prep Method: E245.1P

ADS

% Solids:

Analyst: ANJ

11.12.2019 08:35 Date Prep:

Seq Number: 3107186

SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Mercury	7439-97-6	<0.000200	0.000200	mø/L	11 12 2019 14:12		1

AHI

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW26** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-003 Date Collected: 11.07.2019 14:20

Analytical Method: PAHs by SW846 8270D SIM Prep Method: SW3511

% Solids:

Analyst: DNE Date Prep: 11.10.2019 16:41

Seq Number: 3107128 SUB: AZ0765

Parameter	Cas Number	Result	RL		Units	Analysis Date	e F	lag	Dil
1-Methylnaphthalene	90-12-0	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
2-Methylnaphthalene	91-57-6	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Acenaphthene	83-32-9	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Acenaphthylene	208-96-8	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Anthracene	120-12-7	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Benzo(a)anthracene	56-55-3	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Benzo(a)pyrene	50-32-8	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Benzo(b)fluoranthene	205-99-2	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Benzo(g,h,i)perylene	191-24-2	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Benzo(k)fluoranthene	207-08-9	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Chrysene	218-01-9	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Dibenz(a,h)anthracene	53-70-3	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Fluoranthene	206-44-0	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Fluorene	86-73-7	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Naphthalene	91-20-3	< 0.000373	0.000373		mg/L	11.11.2019 20	0:49		37.34
Phenanthrene	85-01-8	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
Pyrene	129-00-0	< 0.000187	0.000187		mg/L	11.11.2019 20	0:49		37.34
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
2-Fluorobiphenyl		106	%	54-146		1.2019 20:49			
Nitrobenzene-d5		142	%	46-151		1.2019 20:49			
Terphenyl-D14		86	%	51-139	11.1	1.2019 20:49			

EZA

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW26** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-003 Date Collected: 11.07.2019 14:20

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	< 0.100	0.100	mg/L	11.11.2019 16:20		1
Benzene	71-43-2	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Bromobenzene	108-86-1	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Bromochloromethane	74-97-5	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Bromodichloromethane	75-27-4	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Bromoform	75-25-2	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Methyl bromide	74-83-9	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Methyl ethyl ketone	78-93-3	< 0.0500	0.0500	mg/L	11.11.2019 16:20		1
n-Butylbenzene	104-51-8	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Sec-Butylbenzene	135-98-8	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
tert-Butylbenzene	98-06-6	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Carbon Disulfide	75-15-0	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Carbon Tetrachloride	56-23-5	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Chlorobenzene	108-90-7	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Chloroethane	75-00-3	< 0.0100	0.0100	mg/L	11.11.2019 16:20		1
Chloroform	67-66-3	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1-Chlorohexane	544-10-5	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Methyl Chloride	74-87-3	< 0.0100	0.0100	mg/L	11.11.2019 16:20		1
2-Chlorotoluene	95-49-8	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
4-Chlorotoluene	106-43-4	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Cyclohexane	110-82-7	< 0.00500	0.00500	mg/L	11.11.2019 16:20	*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Dibromochloromethane	124-48-1	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,2-Dibromoethane	106-93-4	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Methylene Bromide	74-95-3	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,2-Dichlorobenzene	95-50-1	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,3-Dichlorobenzene	541-73-1	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,4-Dichlorobenzene	106-46-7	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Dichlorodifluoromethane	75-71-8	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,1-Dichloroethane	75-34-3	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,2-Dichloroethane	107-06-2	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,1-Dichloroethene	75-35-4	0.00402	0.00100	mg/L	11.11.2019 16:20		1
cis-1,2-Dichloroethylene	156-59-2	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
trans-1,2-dichloroethylene	156-60-5	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,2-Dichloropropane	78-87-5	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
1,3-Dichloropropane	142-28-9	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
2,2-Dichloropropane	594-20-7	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1

EZA

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW26** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-003 Date Collected: 11.07.2019 14:20

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Tech: EZA Analyst: Date Prep: 11.11.2019 14:33

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
cis-1,3-Dichloropropene	10061-01-5	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
trans-1,3-dichloropropene	10061-02-6	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Ethylbenzene	100-41-4	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Hexachlorobutadiene	87-68-3	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
2-Hexanone	591-78-6	< 0.0500	0.0500	mg/L	11.11.2019 16:20		1
Isopropylbenzene	98-82-8	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Methylcyclohexane	108-87-2	< 0.0100	0.0100	mg/L	11.11.2019 16:20		1
Methylene Chloride	75-09-2	< 0.0100	0.0100	mg/L	11.11.2019 16:20		1
Methyl iodide	74-88-4	< 0.0200	0.0200	mg/L	11.11.2019 16:20		1
4-Methyl-2-Pentanone	108-10-1	< 0.0500	0.0500	mg/L	11.11.2019 16:20		1
MTBE	1634-04-4	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Naphthalene	91-20-3	< 0.0100	0.0100	mg/L	11.11.2019 16:20		1
n-Propylbenzene	103-65-1	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Styrene	100-42-5	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,1,1,2-Tetrachloroethane	630-20-6	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,1,2,2-Tetrachloroethane	79-34-5	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Tetrachloroethene	127-18-4	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Toluene	108-88-3	0.00224	0.00100	mg/L	11.11.2019 16:20		1
1,2,3-Trichlorobenzene	87-61-6	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
1,2,4-Trichlorobenzene	120-82-1	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
1,1,1-Trichloroethane	71-55-6	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
1,1,2-Trichloroethane	79-00-5	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Trichloroethylene	79-01-6	0.0780	0.00500	mg/L	11.11.2019 16:20		1
Trichlorofluoromethane	75-69-4	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,2,3-Trichloropropane	96-18-4	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,2,4-Trimethylbenzene	95-63-6	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
1,3,5-Trimethylbenzene	108-67-8	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
o-Xylene	95-47-6	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
m,p-Xylenes	179601-23-1	< 0.0100	0.0100	mg/L	11.11.2019 16:20		1
Vinyl Acetate	108-05-4	< 0.0500	0.0500	mg/L	11.11.2019 16:20		1
Vinyl Chloride	75-01-4	< 0.00200	0.00200	mg/L	11.11.2019 16:20		1
1,3-Butadiene	106-99-0	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Dicyclopentadiene	77-73-6	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
n-Hexane	110-54-3	< 0.00500	0.00500	mg/L	11.11.2019 16:20		1
Total Xylenes	1330-20-7	< 0.00100	0.00100	mg/L	11.11.2019 16:20		1
Total Trihalomethanes		< 0.00100	0.00100	mg/L	11.11.2019 16:20		1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW26** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-003 Date Collected: 11.07.2019 14:20

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Dibromofluoromethane	98	%	75-131	11.11.2019 16:20	
1,2-Dichloroethane-D4	101	%	63-144	11.11.2019 16:20	
Toluene-D8	99	%	80-117	11.11.2019 16:20	
4-Bromofluorobenzene	102	%	74-124	11.11.2019 16:20	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-MW25** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-004 Date Collected: 11.07.2019 15:25

Analytical Method: Recoverable Metals, Total, by EPA 200.8

Prep Method: E200.8P Tech: MLI % Solids:

DEP Analyst: Date Prep: 11.11.2019 10:20

Seq Number: 3107096 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Antimony	7440-36-0	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1
Arsenic	7440-38-2	0.00466	0.00400	mg/L	11.11.2019 18:12		1
Barium	7440-39-3	0.0435	0.00400	mg/L	11.11.2019 18:12		1
Beryllium	7440-41-7	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1
Cadmium	7440-43-9	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1
Chromium	7440-47-3	< 0.00400	0.00400	mg/L	11.11.2019 18:12	U	1
Cobalt	7440-48-4	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1
Copper	7440-50-8	< 0.00400	0.00400	mg/L	11.11.2019 18:12	U	1
Lead	7439-92-1	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1
Manganese	7439-96-5	0.0536	0.00200	mg/L	11.11.2019 18:12		1
Molybdenum	7439-98-7	0.00275	0.00200	mg/L	11.11.2019 18:12		1
Nickel	7440-02-0	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1
Selenium	7782-49-2	0.00498	0.00200	mg/L	11.11.2019 18:12		1
Silver	7440-22-4	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1
Thallium	7440-28-0	< 0.00200	0.00200	mg/L	11.11.2019 18:12	U	1

Analytical Method: Mercury, Total by EPA 245.1

Tech: **ADS**

Analyst: ANJ

Seq Number: 3107186

Prep Method: E245.1P

% Solids:

SUB: AZ0765

Result RL **Parameter** Cas Number Units **Analysis Date** Flag Dil 0.000200 Mercury 7439-97-6 < 0.000200 mg/L 11.12.2019 14:14

Date Prep:

11.12.2019 08:35

AHI

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-MW25 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-004 Date Collected: 11.07.2019 15:25

Analytical Method: PAHs by SW846 8270D SIM Prep Method: SW3511

% Solids:

Analyst: DNE Date Prep: 11.10.2019 16:44

Seq Number: 3107128 SUB: AZ0765

Parameter	Cas Number	Result	RL		Units	Analysis Date	e F	lag	Dil
1-Methylnaphthalene	90-12-0	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
2-Methylnaphthalene	91-57-6	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Acenaphthene	83-32-9	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Acenaphthylene	208-96-8	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Anthracene	120-12-7	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Benzo(a)anthracene	56-55-3	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Benzo(a)pyrene	50-32-8	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Benzo(b)fluoranthene	205-99-2	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Benzo(g,h,i)perylene	191-24-2	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Benzo(k)fluoranthene	207-08-9	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Chrysene	218-01-9	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Dibenz(a,h)anthracene	53-70-3	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Fluoranthene	206-44-0	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Fluorene	86-73-7	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Naphthalene	91-20-3	< 0.000388	0.000388		mg/L	11.11.2019 2	1:06		38.84
Phenanthrene	85-01-8	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
Pyrene	129-00-0	< 0.000194	0.000194		mg/L	11.11.2019 2	1:06		38.84
		% Recovery							
Surrogate			Units	Limits		ysis Date	Flag		
2-Fluorobiphenyl		113	%	54-146		.2019 21:06			
Nitrobenzene-d5		148	%	46-151		1.2019 21:06			
Terphenyl-D14		98	%	51-139	11.11	.2019 21:06			

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-MW25 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-004 Date Collected: 11.07.2019 15:25

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	< 0.100	0.100	mg/L	11.11.2019 16:43		1
Benzene	71-43-2	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Bromobenzene	108-86-1	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Bromochloromethane	74-97-5	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Bromodichloromethane	75-27-4	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Bromoform	75-25-2	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Methyl bromide	74-83-9	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Methyl ethyl ketone	78-93-3	< 0.0500	0.0500	mg/L	11.11.2019 16:43		1
n-Butylbenzene	104-51-8	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Sec-Butylbenzene	135-98-8	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
tert-Butylbenzene	98-06-6	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Carbon Disulfide	75-15-0	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Carbon Tetrachloride	56-23-5	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Chlorobenzene	108-90-7	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Chloroethane	75-00-3	< 0.0100	0.0100	mg/L	11.11.2019 16:43		1
Chloroform	67-66-3	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1-Chlorohexane	544-10-5	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Methyl Chloride	74-87-3	< 0.0100	0.0100	mg/L	11.11.2019 16:43		1
2-Chlorotoluene	95-49-8	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
4-Chlorotoluene	106-43-4	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Cyclohexane	110-82-7	< 0.00500	0.00500	mg/L	11.11.2019 16:43	*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Dibromochloromethane	124-48-1	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,2-Dibromoethane	106-93-4	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Methylene Bromide	74-95-3	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,2-Dichlorobenzene	95-50-1	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,3-Dichlorobenzene	541-73-1	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,4-Dichlorobenzene	106-46-7	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Dichlorodifluoromethane	75-71-8	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,1-Dichloroethane	75-34-3	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,2-Dichloroethane	107-06-2	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,1-Dichloroethene	75-35-4	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
cis-1,2-Dichloroethylene	156-59-2	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
trans-1,2-dichloroethylene	156-60-5	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,2-Dichloropropane	78-87-5	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
1,3-Dichloropropane	142-28-9	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
2,2-Dichloropropane	594-20-7	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1

EZA

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-MW25 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-004 Date Collected: 11.07.2019 15:25

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
cis-1,3-Dichloropropene	10061-01-5	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
trans-1,3-dichloropropene	10061-02-6	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Ethylbenzene	100-41-4	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Hexachlorobutadiene	87-68-3	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
2-Hexanone	591-78-6	< 0.0500	0.0500	mg/L	11.11.2019 16:43		1
Isopropylbenzene	98-82-8	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Methylcyclohexane	108-87-2	< 0.0100	0.0100	mg/L	11.11.2019 16:43		1
Methylene Chloride	75-09-2	< 0.0100	0.0100	mg/L	11.11.2019 16:43		1
Methyl iodide	74-88-4	< 0.0200	0.0200	mg/L	11.11.2019 16:43		1
4-Methyl-2-Pentanone	108-10-1	< 0.0500	0.0500	mg/L	11.11.2019 16:43		1
MTBE	1634-04-4	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Naphthalene	91-20-3	< 0.0100	0.0100	mg/L	11.11.2019 16:43		1
n-Propylbenzene	103-65-1	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Styrene	100-42-5	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,1,1,2-Tetrachloroethane	630-20-6	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,1,2,2-Tetrachloroethane	79-34-5	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Tetrachloroethene	127-18-4	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Toluene	108-88-3	0.00591	0.00100	mg/L	11.11.2019 16:43		1
1,2,3-Trichlorobenzene	87-61-6	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
1,2,4-Trichlorobenzene	120-82-1	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
1,1,1-Trichloroethane	71-55-6	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
1,1,2-Trichloroethane	79-00-5	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Trichloroethylene	79-01-6	0.0129	0.00500	mg/L	11.11.2019 16:43		1
Trichlorofluoromethane	75-69-4	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,2,3-Trichloropropane	96-18-4	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,2,4-Trimethylbenzene	95-63-6	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
1,3,5-Trimethylbenzene	108-67-8	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
o-Xylene	95-47-6	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
m,p-Xylenes	179601-23-1	< 0.0100	0.0100	mg/L	11.11.2019 16:43		1
Vinyl Acetate	108-05-4	< 0.0500	0.0500	mg/L	11.11.2019 16:43		1
Vinyl Chloride	75-01-4	< 0.00200	0.00200	mg/L	11.11.2019 16:43		1
1,3-Butadiene	106-99-0	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Dicyclopentadiene	77-73-6	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
n-Hexane	110-54-3	< 0.00500	0.00500	mg/L	11.11.2019 16:43		1
Total Xylenes	1330-20-7	< 0.00100	0.00100	mg/L	11.11.2019 16:43		1
Total Trihalomethanes		< 0.00100	0.00100	mg/L	11.11.2019 16:43		1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-MW25 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-004 Date Collected: 11.07.2019 15:25

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Solids:

Analyst: EZA Date Prep: 11.11.2019 14:33

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Dibromofluoromethane	99	%	75-131	11.11.2019 16:43	
1,2-Dichloroethane-D4	100	%	63-144	11.11.2019 16:43	
Toluene-D8	100	%	80-117	11.11.2019 16:43	
4-Bromofluorobenzene	101	%	74-124	11.11.2019 16:43	

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-TB03-110819** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-005 Date Collected: 11.08.2019 12:00

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Solids:

Analyst: EZA Date Prep: 11.11.2019 11:10

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	< 0.100	0.100	mg/L	11.11.2019 13:37		1
Benzene	71-43-2	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Bromobenzene	108-86-1	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Bromochloromethane	74-97-5	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Bromodichloromethane	75-27-4	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Bromoform	75-25-2	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Methyl bromide	74-83-9	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Methyl ethyl ketone	78-93-3	< 0.0500	0.0500	mg/L	11.11.2019 13:37		1
n-Butylbenzene	104-51-8	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Sec-Butylbenzene	135-98-8	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
tert-Butylbenzene	98-06-6	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Carbon Disulfide	75-15-0	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Carbon Tetrachloride	56-23-5	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Chlorobenzene	108-90-7	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Chloroethane	75-00-3	< 0.0100	0.0100	mg/L	11.11.2019 13:37		1
Chloroform	67-66-3	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1-Chlorohexane	544-10-5	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Methyl Chloride	74-87-3	< 0.0100	0.0100	mg/L	11.11.2019 13:37		1
2-Chlorotoluene	95-49-8	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
4-Chlorotoluene	106-43-4	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Cyclohexane	110-82-7	< 0.00500	0.00500	mg/L	11.11.2019 13:37	*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Dibromochloromethane	124-48-1	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,2-Dibromoethane	106-93-4	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Methylene Bromide	74-95-3	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,2-Dichlorobenzene	95-50-1	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,3-Dichlorobenzene	541-73-1	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,4-Dichlorobenzene	106-46-7	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Dichlorodifluoromethane	75-71-8	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,1-Dichloroethane	75-34-3	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,2-Dichloroethane	107-06-2	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,1-Dichloroethene	75-35-4	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
cis-1,2-Dichloroethylene	156-59-2	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
trans-1,2-dichloroethylene	156-60-5	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,2-Dichloropropane	78-87-5	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
1,3-Dichloropropane	142-28-9	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
2,2-Dichloropropane	594-20-7	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1

EZA

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TB03-110819 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-005 Date Collected: 11.08.2019 12:00

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

Tech: EZA % Solids:

Analyst: Date Prep: 11.11.2019 11:10 Seq Number: 3107053 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
cis-1,3-Dichloropropene	10061-01-5	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
trans-1,3-dichloropropene	10061-02-6	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Ethylbenzene	100-41-4	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Hexachlorobutadiene	87-68-3	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
2-Hexanone	591-78-6	< 0.0500	0.0500	mg/L	11.11.2019 13:37		1
Isopropylbenzene	98-82-8	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Methylcyclohexane	108-87-2	< 0.0100	0.0100	mg/L	11.11.2019 13:37		1
Methylene Chloride	75-09-2	< 0.0100	0.0100	mg/L	11.11.2019 13:37		1
Methyl iodide	74-88-4	< 0.0200	0.0200	mg/L	11.11.2019 13:37		1
4-Methyl-2-Pentanone	108-10-1	< 0.0500	0.0500	mg/L	11.11.2019 13:37		1
MTBE	1634-04-4	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Naphthalene	91-20-3	< 0.0100	0.0100	mg/L	11.11.2019 13:37		1
n-Propylbenzene	103-65-1	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Styrene	100-42-5	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,1,1,2-Tetrachloroethane	630-20-6	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,1,2,2-Tetrachloroethane	79-34-5	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Tetrachloroethene	127-18-4	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Toluene	108-88-3	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,2,3-Trichlorobenzene	87-61-6	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
1,2,4-Trichlorobenzene	120-82-1	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
1,1,1-Trichloroethane	71-55-6	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
1,1,2-Trichloroethane	79-00-5	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Trichloroethylene	79-01-6	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Trichlorofluoromethane	75-69-4	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,2,3-Trichloropropane	96-18-4	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,2,4-Trimethylbenzene	95-63-6	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
1,3,5-Trimethylbenzene	108-67-8	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
o-Xylene	95-47-6	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
m,p-Xylenes	179601-23-1	< 0.0100	0.0100	mg/L	11.11.2019 13:37		1
Vinyl Acetate	108-05-4	< 0.0500	0.0500	mg/L	11.11.2019 13:37		1
Vinyl Chloride	75-01-4	< 0.00200	0.00200	mg/L	11.11.2019 13:37		1
1,3-Butadiene	106-99-0	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Dicyclopentadiene	77-73-6	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
n-Hexane	110-54-3	< 0.00500	0.00500	mg/L	11.11.2019 13:37		1
Total Xylenes	1330-20-7	< 0.00100	0.00100	mg/L	11.11.2019 13:37		1
Total Trihalomethanes		< 0.00100	0.00100	mg/L	11.11.2019 13:37		1

Tech:

Certificate of Analytical Results 642698

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-TB03-110819** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642698-005 Date Collected: 11.08.2019 12:00

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

EZA % Solids:

Analyst: EZA Date Prep: 11.11.2019 11:10

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Dibromofluoromethane	97	%	75-131	11.11.2019 13:37	
1,2-Dichloroethane-D4	100	%	63-144	11.11.2019 13:37	
Toluene-D8	97	%	80-117	11.11.2019 13:37	
4-Bromofluorobenzene	100	%	74-124	11.11.2019 13:37	

APS APS MGP Douglas, AZ

Analytical Method:Recoverable Metals,Total, by EPA 200.8Prep Method:E200.8PSeq Number:3107096Matrix:WaterDate Prep:11.11.2019MB Sample Id:7690038-1-BLKLCS Sample Id:7690038-1-BKSLCSD Sample Id:7690038-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Antimony	< 0.00200	0.100	0.0934	93	0.0961	96	85-115	3	20	mg/L	11.11.2019 17:39	
Arsenic	< 0.00400	0.100	0.0940	94	0.0952	95	85-115	1	20	mg/L	11.11.2019 17:39	
Barium	< 0.00400	0.100	0.0961	96	0.0971	97	85-115	1	20	mg/L	11.11.2019 17:39	
Beryllium	< 0.00200	0.100	0.0952	95	0.0959	96	85-115	1	20	mg/L	11.11.2019 17:39	
Cadmium	< 0.00200	0.100	0.0966	97	0.0972	97	85-115	1	20	mg/L	11.11.2019 17:39	
Chromium	< 0.00400	0.100	0.0976	98	0.0969	97	85-115	1	20	mg/L	11.11.2019 17:39	
Cobalt	< 0.00200	0.100	0.0961	96	0.0967	97	85-115	1	20	mg/L	11.11.2019 17:39	
Copper	< 0.00400	0.100	0.0979	98	0.0978	98	85-115	0	20	mg/L	11.11.2019 17:39	
Lead	< 0.00200	0.100	0.0983	98	0.0987	99	85-115	0	20	mg/L	11.11.2019 17:39	
Manganese	< 0.00200	0.100	0.0972	97	0.0969	97	85-115	0	20	mg/L	11.11.2019 17:39	
Molybdenum	< 0.00200	0.100	0.0966	97	0.0966	97	85-115	0	20	mg/L	11.11.2019 17:39	
Nickel	< 0.00200	0.100	0.0958	96	0.0954	95	85-115	0	20	mg/L	11.11.2019 17:39	
Selenium	< 0.00200	0.100	0.0956	96	0.0965	97	85-115	1	20	mg/L	11.11.2019 17:39	
Silver	< 0.00200	0.0500	0.0483	97	0.0476	95	85-115	1	20	mg/L	11.11.2019 17:39	
Thallium	< 0.00200	0.100	0.0991	99	0.0988	99	85-115	0	20	mg/L	11.11.2019 17:39	

Analytical Method:Recoverable Metals, Total, by EPA 200.8Prep Method:E200.8PSeq Number:3107096Matrix:Drinking WaterDate Prep:11.11.2019Parent Sample Id:642607-001MS Sample Id:642607-001 SMSD Sample Id:642607-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Antimony	< 0.00200	0.100	0.101	101	0.102	102	70-130	1	20	mg/L	11.11.2019 17:47	
Arsenic	< 0.00400	0.100	0.0993	99	0.100	100	70-130	1	20	mg/L	11.11.2019 17:47	
Barium	0.239	0.100	0.345	106	0.349	110	70-130	1	20	mg/L	11.11.2019 17:47	
Beryllium	< 0.00200	0.100	0.0986	99	0.0971	97	70-130	2	20	mg/L	11.11.2019 17:47	
Cadmium	< 0.00200	0.100	0.0947	95	0.0963	96	70-130	2	20	mg/L	11.11.2019 17:47	
Chromium	< 0.00400	0.100	0.0989	99	0.101	101	70-130	2	20	mg/L	11.11.2019 17:47	
Cobalt	< 0.00200	0.100	0.0974	97	0.0972	97	70-130	0	20	mg/L	11.11.2019 17:47	
Copper	< 0.00400	0.100	0.100	100	0.100	100	70-130	0	20	mg/L	11.11.2019 17:47	
Lead	< 0.00200	0.100	0.100	100	0.100	100	70-130	0	20	mg/L	11.11.2019 17:47	
Manganese	0.137	0.100	0.235	98	0.236	99	70-130	0	20	mg/L	11.11.2019 17:47	
Molybdenum	0.00479	0.100	0.104	99	0.106	101	70-130	2	20	mg/L	11.11.2019 17:47	
Nickel	< 0.00200	0.100	0.0967	97	0.0978	98	70-130	1	20	mg/L	11.11.2019 17:47	
Selenium	< 0.00200	0.100	0.0988	99	0.0998	100	70-130	1	20	mg/L	11.11.2019 17:47	
Silver	< 0.00200	0.0500	0.0461	92	0.0468	94	70-130	2	20	mg/L	11.11.2019 17:47	
Thallium	< 0.00200	0.100	0.101	101	0.100	100	70-130	1	20	mg/L	11.11.2019 17:47	

$$\begin{split} LCS &= Laboratory \ Control \ Sample \\ A &= Parent \ Result \\ C &= MS/LCS \ Result \\ E &= MSD/LCSD \ Result \end{split}$$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

QC Summary 642698

APS MGP Douglas, AZ

Analytical Method:	Recoverable Metals, Total, by EPA 200	0.8	Prep Method:	E200.8P
Sea Number:	3107096	Matrix: Water	Date Prep:	11.11.2019

Parent Sample Id: 642666-026 MS Sample Id: 642666-026 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
Antimony	< 0.00200	0.100	0.0978	98	70-130	mg/L	11.11.2019 18:38	
Arsenic	0.00532	0.100	0.101	96	70-130	mg/L	11.11.2019 18:38	
Barium	0.0132	0.100	0.109	96	70-130	mg/L	11.11.2019 18:38	
Beryllium	< 0.00200	0.100	0.0947	95	70-130	mg/L	11.11.2019 18:38	
Cadmium	< 0.00200	0.100	0.0969	97	70-130	mg/L	11.11.2019 18:38	
Chromium	0.00112	0.100	0.0970	96	70-130	mg/L	11.11.2019 18:38	
Cobalt	< 0.00200	0.100	0.0964	96	70-130	mg/L	11.11.2019 18:38	
Copper	0.00551	0.100	0.102	96	70-130	mg/L	11.11.2019 18:38	
Lead	0.00197	0.100	0.100	98	70-130	mg/L	11.11.2019 18:38	
Manganese	0.00295	0.100	0.0997	97	70-130	mg/L	11.11.2019 18:38	
Molybdenum	0.00126	0.100	0.0995	98	70-130	mg/L	11.11.2019 18:38	
Nickel	0.000604	0.100	0.0958	95	70-130	mg/L	11.11.2019 18:38	
Selenium	< 0.00200	0.100	0.0970	97	70-130	mg/L	11.11.2019 18:38	
Silver	< 0.00200	0.0500	0.0479	96	70-130	mg/L	11.11.2019 18:38	
Thallium	< 0.00200	0.100	0.0985	99	70-130	mg/L	11.11.2019 18:38	

Analytical Method: Mercury, Total by EPA 245.1 Prep Method: E245.1P

Seq Number: 3107186 Matrix: Water Date Prep: 11.12.2019

MB Sample Id: 7690127-1-BLK LCS Sample Id: 7690127-1-BKS LCSD Sample Id: 7690127-1-BSD

LCS RPD MBSpike LCS LCSD LCSD Limits %RPD Units Analysis Flag **Parameter** Limit Date Result %Rec Result Amount Result %Rec 11.12.2019 13:50 < 0.0000263 0.00200 0.00201 101 0.00201 101 85-115 0 20 mg/L Mercury

Analytical Method: Mercury, Total by EPA 245.1 Prep Method: E245.1P

 Seq Number:
 3107186
 Matrix:
 Waste Water
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642284-001
 MS Sample Id:
 642284-001 S
 MSD Sample Id:
 642284-001 SD

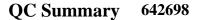
RPD **Parent** Spike MS MS Limits %RPD Analysis MSD MSD Flag **Parameter** Limit Result Amount Result %Rec Result %Rec Date 0.0000770 11.12.2019 14:29 0.00200 0.00178 0.00180 20 85 86 70-130 Mercury mg/L 1

Analytical Method: Mercury, Total by EPA 245.1 Prep Method: E245.1P

 Seq Number:
 3107186
 Matrix:
 Waste Water
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642463-001
 MS Sample Id:
 642463-001 S
 MSD Sample Id:
 642463-001 SD

Parent Spike MS MS %RPD RPD Units Analysis **MSD** Limits MSD Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec < 0.0000263 11.12.2019 13:55 20 Mercury 0.00200 0.0017990 0.0018291 70-130 2 mg/L


QC Summary 642698

APS APS MGP Douglas, AZ

Analytical Method:PAHs by SW846 8270D SIMPrep Method:SW3511Seq Number:3107128Matrix:WaterDate Prep:11.10.2019MB Sample Id:7689986-1-BLKLCS Sample Id:7689986-1-BKSLCSD Sample Id:7689986-1-BSD

MB Sample Id.	7009980-1-DLK		Less sample la. 7007700 1 Bits					7700 I BBB				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1-Methylnaphthalene	< 0.000182	0.0182	0.0170	93	0.0178	98	70-126	5	30	mg/L	11.11.2019 11:15	
2-Methylnaphthalene	< 0.000182	0.0182	0.0166	91	0.0173	95	74-121	4	30	mg/L	11.11.2019 11:15	
Acenaphthene	< 0.000182	0.0182	0.0168	92	0.0182	100	75-127	8	30	mg/L	11.11.2019 11:15	
Acenaphthylene	< 0.000182	0.0182	0.0177	97	0.0191	105	78-133	8	30	mg/L	11.11.2019 11:15	
Anthracene	< 0.000182	0.0182	0.0180	99	0.0192	105	73-145	6	30	mg/L	11.11.2019 11:15	
Benzo(a)anthracene	< 0.000182	0.0182	0.0180	99	0.0189	104	77-131	5	30	mg/L	11.11.2019 11:15	
Benzo(a)pyrene	< 0.000182	0.0182	0.0168	92	0.0176	97	56-163	5	30	mg/L	11.11.2019 11:15	
Benzo(b)fluoranthene	< 0.000182	0.0182	0.0178	98	0.0186	102	74-138	4	30	mg/L	11.11.2019 11:15	
Benzo(g,h,i)perylene	< 0.000182	0.0182	0.0167	92	0.0175	96	77-127	5	30	mg/L	11.11.2019 11:15	
Benzo(k)fluoranthene	< 0.000182	0.0182	0.0153	84	0.0158	87	67-142	3	30	mg/L	11.11.2019 11:15	
Chrysene	< 0.000182	0.0182	0.0162	89	0.0169	93	66-126	4	30	mg/L	11.11.2019 11:15	
Dibenz(a,h)anthracene	< 0.000182	0.0182	0.0173	95	0.0179	98	71-142	3	30	mg/L	11.11.2019 11:15	
Fluoranthene	< 0.000182	0.0182	0.0183	101	0.0196	108	78-138	7	30	mg/L	11.11.2019 11:15	
Fluorene	< 0.000182	0.0182	0.0175	96	0.0188	103	79-128	7	30	mg/L	11.11.2019 11:15	
Indeno(1,2,3-c,d)Pyrene	< 0.000182	0.0182	0.0172	95	0.0180	99	76-140	5	30	mg/L	11.11.2019 11:15	
Naphthalene	< 0.000364	0.0182	0.0161	88	0.0169	93	72-122	5	30	mg/L	11.11.2019 11:15	
Phenanthrene	< 0.000182	0.0182	0.0172	95	0.0185	102	76-129	7	30	mg/L	11.11.2019 11:15	
Pyrene	< 0.000182	0.0182	0.0173	95	0.0184	101	74-138	6	30	mg/L	11.11.2019 11:15	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
2-Fluorobiphenyl	109		ç	96		115		54	-146	%	11.11.2019 11:15	
Nitrobenzene-d5	94		8	31		98		46	-151	%	11.11.2019 11:15	
Terphenyl-D14	111		9	96		112		51	-139	%	11.11.2019 11:15	

APS APS MGP Douglas, AZ

Prep Method: SW3511

Analytical Method: PAHs by SW846 8270D SIM

3107128 Seq Number: Matrix: Water Date Prep: 11.10.2019 MS Sample Id: 642698-001 S Parent Sample Id: 642698-001 MSD Sample Id: 642698-001 SD

				-					-			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1-Methylnaphthalene	< 0.000197	0.0197	0.0185	94	0.0182	93	70-126	2	30	mg/L	11.11.2019 17:13	
2-Methylnaphthalene	< 0.000197	0.0197	0.0178	90	0.0175	90	74-121	2	30	mg/L	11.11.2019 17:13	
Acenaphthene	< 0.000197	0.0197	0.0182	92	0.0183	94	75-127	1	30	mg/L	11.11.2019 17:13	
Acenaphthylene	< 0.000197	0.0197	0.0183	93	0.0183	94	78-133	0	30	mg/L	11.11.2019 17:13	
Anthracene	< 0.000197	0.0197	0.0185	94	0.0181	93	73-145	2	30	mg/L	11.11.2019 17:13	
Benzo(a)anthracene	< 0.000197	0.0197	0.0180	91	0.0178	91	77-131	1	30	mg/L	11.11.2019 17:13	
Benzo(a)pyrene	< 0.000197	0.0197	0.0175	89	0.0175	90	56-163	0	30	mg/L	11.11.2019 17:13	
Benzo(b)fluoranthene	< 0.000197	0.0197	0.0184	93	0.0184	94	74-138	0	30	mg/L	11.11.2019 17:13	
Benzo(g,h,i)perylene	< 0.000197	0.0197	0.0161	82	0.0162	83	77-127	1	30	mg/L	11.11.2019 17:13	
Benzo(k)fluoranthene	< 0.000197	0.0197	0.0173	88	0.0176	90	67-142	2	30	mg/L	11.11.2019 17:13	
Chrysene	< 0.000197	0.0197	0.0164	83	0.0166	85	66-126	1	30	mg/L	11.11.2019 17:13	
Dibenz(a,h)anthracene	< 0.000197	0.0197	0.0169	86	0.0171	88	71-142	1	30	mg/L	11.11.2019 17:13	
Fluoranthene	< 0.000197	0.0197	0.0189	96	0.0182	93	78-138	4	30	mg/L	11.11.2019 17:13	
Fluorene	< 0.000197	0.0197	0.0188	95	0.0186	95	79-128	1	30	mg/L	11.11.2019 17:13	
Indeno(1,2,3-c,d)Pyrene	< 0.000197	0.0197	0.0168	85	0.0170	87	76-140	1	30	mg/L	11.11.2019 17:13	
Naphthalene	< 0.000393	0.0197	0.0170	86	0.0170	87	72-122	0	30	mg/L	11.11.2019 17:13	
Phenanthrene	< 0.000197	0.0197	0.0188	95	0.0184	94	76-129	2	30	mg/L	11.11.2019 17:13	
Pyrene	< 0.000197	0.0197	0.0188	95	0.0186	95	74-138	1	30	mg/L	11.11.2019 17:13	
Surrogate			M %l		MS Flag	MSI %Re			imits	Units	Analysis Date	
2-Fluorobiphenyl			10	04		107		54	-146	%	11.11.2019 17:13	
Nitrobenzene-d5			12	26		136		46	-151	%	11.11.2019 17:13	
m 1 1544				2.4		440			4.00		11 11 2010 17:12	

QC Summary 642698

APS APS MGP Douglas, AZ

Analytical Method: VOCs by SW-846 8260C SW5030B Prep Method: 3107053 Matrix: Water Seq Number: Date Prep: 11.11.2019 LCS Sample Id: 7690074-1-BKS MB Sample Id: 7690074-1-BLK LCSD Sample Id: 7690074-1-BSD

MB Sample Id: 7090	00/4-1-DLK		LCS Sai	npic ia.	7070074-1	I-DIXD		LCS	D Sample	iu. 707	0074-1-030	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acetone	< 0.0123	0.250	0.217	87	0.191	76	60-140	13	25	mg/L	11.11.2019 09:56	
Benzene	< 0.00100	0.0500	0.0525	105	0.0523	105	66-142	0	25	mg/L	11.11.2019 09:56	
Bromobenzene	< 0.00100	0.0500	0.0547	109	0.0564	113	75-125	3	25	mg/L	11.11.2019 09:56	
Bromochloromethane	< 0.00100	0.0500	0.0506	101	0.0503	101	60-140	1	25	mg/L	11.11.2019 09:56	
Bromodichloromethane	< 0.00100	0.0500	0.0547	109	0.0555	111	75-125	1	25	mg/L	11.11.2019 09:56	
Bromoform	< 0.00500	0.0500	0.0576	115	0.0587	117	75-125	2	25	mg/L	11.11.2019 09:56	
Methyl bromide	< 0.00500	0.0500	0.0444	89	0.0431	86	60-140	3	25	mg/L	11.11.2019 09:56	
Methyl ethyl ketone	< 0.0500	0.250	0.241	96	0.224	90	60-140	7	25	mg/L	11.11.2019 09:56	
n-Butylbenzene	< 0.000286	0.0500	0.0572	114	0.0585	117	75-125	2	25	mg/L	11.11.2019 09:56	
Sec-Butylbenzene	< 0.00100	0.0500	0.0570	114	0.0573	115	75-125	1	25	mg/L	11.11.2019 09:56	
tert-Butylbenzene	< 0.00100	0.0500	0.0571	114	0.0572	114	75-125	0	25	mg/L	11.11.2019 09:56	
Carbon Disulfide	< 0.00500	0.0500	0.0456	91	0.0450	90	60-140	1	25	mg/L	11.11.2019 09:56	
Carbon Tetrachloride	< 0.00500	0.0500	0.0531	106	0.0528	106	62-125	1	25	mg/L	11.11.2019 09:56	
Chlorobenzene	< 0.00100	0.0500	0.0546	109	0.0546	109	60-133	0	25	mg/L	11.11.2019 09:56	
Chloroethane	< 0.0100	0.0500	0.0449	90	0.0443	89	60-140	1	25	mg/L	11.11.2019 09:56	
Chloroform	< 0.00100	0.0500	0.0503	101	0.0502	100	70-130	0	25	mg/L	11.11.2019 09:56	
1-Chlorohexane	< 0.00500	0.0500	0.0549	110	0.0543	109	60-140	1	25	mg/L	11.11.2019 09:56	
Methyl Chloride	< 0.0100	0.0500	0.0435	87	0.0422	84	60-140	3	25	mg/L	11.11.2019 09:56	
2-Chlorotoluene	< 0.00100	0.0500	0.0550	110	0.0560	112	73-125	2	25	mg/L	11.11.2019 09:56	
4-Chlorotoluene	< 0.00100	0.0500	0.0556	111	0.0567	113	74-125	2	25	mg/L	11.11.2019 09:56	
Cyclohexane	< 0.00500	0.0500	0.0498	100	0.0493	99	70-130	1	25	mg/L	11.11.2019 09:56	
p-Cymene (p-Isopropyltoluene	< 0.00100	0.0500	0.0565	113	0.0570	114	75-125	1	25	mg/L	11.11.2019 09:56	
Dibromochloromethane	< 0.00500	0.0500	0.0569	114	0.0576	115	73-125	1	25	mg/L	11.11.2019 09:56	
1,2-Dibromo-3-Chloropropane	< 0.00100	0.0500	0.0556	111	0.0580	116	59-125	4	25	mg/L	11.11.2019 09:56	
1,2-Dibromoethane	< 0.00500	0.0500	0.0559	112	0.0546	109	73-125	2	25	mg/L	11.11.2019 09:56	
Methylene Bromide	< 0.00100	0.0500	0.0533	107	0.0538	108	69-127	1	25	mg/L	11.11.2019 09:56	
1,2-Dichlorobenzene	< 0.00100	0.0500	0.0558	112	0.0570	114	75-125	2	25	mg/L	11.11.2019 09:56	
1,3-Dichlorobenzene	< 0.00100	0.0500	0.0553	111	0.0569	114	75-125	3	25	mg/L	11.11.2019 09:56	
1,4-Dichlorobenzene	< 0.00100	0.0500	0.0556	111	0.0570	114	75-125	2	25	mg/L	11.11.2019 09:56	
Dichlorodifluoromethane	< 0.00100	0.0500	0.0503	101	0.0473	95	60-140	6	25	mg/L	11.11.2019 09:56	
1,1-Dichloroethane	< 0.00100	0.0500	0.0490	98	0.0488	98	72-125	0	25	mg/L	11.11.2019 09:56	
1,2-Dichloroethane	< 0.00100	0.0500	0.0532	106	0.0533	107	68-127	0	25	mg/L	11.11.2019 09:56	
1,1-Dichloroethene	< 0.00100	0.0500	0.0510	102	0.0499	100	59-172	2	25	mg/L	11.11.2019 09:56	
cis-1,2-Dichloroethylene	< 0.00100	0.0500	0.0488	98	0.0492	98	75-125	1	25	mg/L	11.11.2019 09:56	
trans-1,2-dichloroethylene	< 0.00100	0.0500	0.0487	97	0.0495	99	75-125	2	25	mg/L	11.11.2019 09:56	
1,2-Dichloropropane	< 0.00500	0.0500	0.0540	108	0.0546	109	74-125	1	25	mg/L	11.11.2019 09:56	
1,3-Dichloropropane	< 0.00500	0.0500	0.0553	111	0.0550	110	75-125	1	25	mg/L	11.11.2019 09:56	
2,2-Dichloropropane	< 0.00500	0.0500	0.0526	105	0.0517	103	75-125	2	25	mg/L	11.11.2019 09:56	
1,1-Dichloropropene	< 0.00500	0.0500	0.0500	100	0.0498	100	75-125	0	25	mg/L	11.11.2019 09:56	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0543	109	0.0552	110	74-125	2	25	mg/L	11.11.2019 09:56	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0588	118	0.0577	115	66-125	2	25	mg/L	11.11.2019 09:56	
Ethylbenzene	< 0.00100	0.0500	0.0542	108	0.0541	108	75-125	0	25	mg/L	11.11.2019 09:56	
Hexachlorobutadiene	< 0.00500	0.0500	0.0550	110	0.0596	119	75-125	8	25	mg/L	11.11.2019 09:56	
2-Hexanone	< 0.0500	0.250	0.259	104	0.244	98	60-140	6	25	mg/L	11.11.2019 09:56	
Isopropylbenzene	< 0.00100	0.0500	0.0549	110	0.0543	109	75-125	1	25	mg/L	11.11.2019 09:56	
Methylcyclohexane	< 0.0100	0.0500	0.0559	112	0.0555	111	75-125	1	25	mg/L	11.11.2019 09:56	
Methylene Chloride	< 0.00191	0.0500	0.0469	94	0.0481	96	75-125	3	25	mg/L	11.11.2019 09:56	
Methyl iodide	< 0.0200	0.0500	0.0501	100	0.0509	102	75-125	2	25	mg/L	11.11.2019 09:56	
4-Methyl-2-Pentanone	< 0.0500	0.250	0.272	109	0.272	109	60-140	0	25	mg/L	11.11.2019 09:56	
MTBE	< 0.00500	0.0500	0.0499	100	0.0505	101	65-135	1	25	mg/L	11.11.2019 09:56	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

APSAPS MGP Douglas, AZ

Analytical Method:VOCs by SW-846 8260CPrep Method:SW5030BSeq Number:3107053Matrix:WaterDate Prep:11.11.2019MB Sample Id:7690074-1-BLKLCS Sample Id:7690074-1-BKSLCSD Sample Id:7690074-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Naphthalene	< 0.0100	0.0500	0.0544	109	0.0603	121	70-130	10	25	mg/L	11.11.2019 09:56	
n-Propylbenzene	< 0.00100	0.0500	0.0557	111	0.0563	113	75-125	1	25	mg/L	11.11.2019 09:56	
Styrene	< 0.00100	0.0500	0.0554	111	0.0555	111	75-125	0	25	mg/L	11.11.2019 09:56	
1,1,2-Tetrachloroethane	< 0.00100	0.0500	0.0568	114	0.0563	113	72-125	1	25	mg/L	11.11.2019 09:56	
1,1,2,2-Tetrachloroethane	< 0.00100	0.0500	0.0565	113	0.0583	117	74-125	3	25	mg/L	11.11.2019 09:56	
Tetrachloroethene	< 0.00100	0.0500	0.0549	110	0.0548	110	71-125	0	25	mg/L	11.11.2019 09:56	
Toluene	< 0.00100	0.0500	0.0538	108	0.0533	107	59-139	1	25	mg/L	11.11.2019 09:56	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0507	101	0.0567	113	75-137	11	25	mg/L	11.11.2019 09:56	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0552	110	0.0596	119	75-135	8	25	mg/L	11.11.2019 09:56	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0514	103	0.0508	102	75-125	1	25	mg/L	11.11.2019 09:56	
1,1,2-Trichloroethane	< 0.00100	0.0500	0.0569	114	0.0572	114	75-127	1	25	mg/L	11.11.2019 09:56	
Trichloroethylene	< 0.00500	0.0500	0.0527	105	0.0528	106	62-137	0	25	mg/L	11.11.2019 09:56	
Trichlorofluoromethane	< 0.00100	0.0500	0.0536	107	0.0519	104	60-140	3	25	mg/L	11.11.2019 09:56	
1,2,3-Trichloropropane	< 0.00100	0.0500	0.0583	117	0.0601	120	75-125	3	25	mg/L	11.11.2019 09:56	
1,2,4-Trimethylbenzene	< 0.00100	0.0500	0.0550	110	0.0567	113	75-125	3	25	mg/L	11.11.2019 09:56	
1,3,5-Trimethylbenzene	< 0.00100	0.0500	0.0561	112	0.0562	112	70-125	0	25	mg/L	11.11.2019 09:56	
o-Xylene	< 0.00100	0.0500	0.0540	108	0.0544	109	75-125	1	25	mg/L	11.11.2019 09:56	
m,p-Xylenes	< 0.0100	0.100	0.109	109	0.109	109	75-125	0	25	mg/L	11.11.2019 09:56	
Vinyl Acetate	< 0.0500	0.250	0.263	105	0.265	106	60-140	1	25	mg/L	11.11.2019 09:56	
Vinyl Chloride	< 0.00200	0.0500	0.0482	96	0.0468	94	60-140	3	25	mg/L	11.11.2019 09:56	
1,3-Butadiene	< 0.00100	0.0500	0.0484	97	0.0469	94	70-150	3	25	mg/L	11.11.2019 09:56	
Dicyclopentadiene	< 0.00500	0.0500	0.0546	109	0.0554	111	70-120	1	25	mg/L	11.11.2019 09:56	
n-Hexane	< 0.00500	0.0500	0.0501	100	0.0488	98	72-125	3	25	mg/L	11.11.2019 09:56	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Dibromofluoromethane	98		ç	92		93		75	-131	%	11.11.2019 09:56	
1,2-Dichloroethane-D4	101		9	96		97		63	-144	%	11.11.2019 09:56	
Toluene-D8	99		1	01		101		80	-117	%	11.11.2019 09:56	

102

101

4-Bromofluorobenzene

100

11.11.2019 09:56

74-124

%

APS APS MGP Douglas, AZ

Analytical Method: VOCs by SW-846 8260C SW5030B Prep Method: 3107053 Matrix: Water Seq Number: Date Prep: 11.11.2019

MS Sample Id: 642698-001 S Parent Sample Id: 642698-001

Parent Sample Id: 642698-	001		MS Sar	nple Id:	642698-001 S			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
Acetone	< 0.0123	0.250	0.130	52	60-140	mg/L	11.11.2019 11:43	M2
Benzene	< 0.00100	0.0500	0.0511	102	66-142	mg/L	11.11.2019 11:43	
Bromobenzene	< 0.00100	0.0500	0.0511	102	75-125	mg/L	11.11.2019 11:43	
Bromochloromethane	< 0.00100	0.0500	0.0498	100	60-140	mg/L	11.11.2019 11:43	
Bromodichloromethane	< 0.00100	0.0500	0.0545	109	75-125	mg/L	11.11.2019 11:43	
Bromoform	< 0.00500	0.0500	0.0514	103	75-125	mg/L	11.11.2019 11:43	
Methyl bromide	< 0.00500	0.0500	0.0447	89	60-140	mg/L	11.11.2019 11:43	
Methyl ethyl ketone	< 0.0500	0.250	0.196	78	60-140	mg/L	11.11.2019 11:43	
n-Butylbenzene	< 0.00100	0.0500	0.0548	110	75-125	mg/L	11.11.2019 11:43	
Sec-Butylbenzene	< 0.00100	0.0500	0.0549	110	75-125	mg/L	11.11.2019 11:43	
tert-Butylbenzene	< 0.00100	0.0500	0.0543	109	75-125	mg/L	11.11.2019 11:43	
Carbon Disulfide	< 0.00500	0.0500	0.0480	96	60-140	mg/L	11.11.2019 11:43	
Carbon Tetrachloride	< 0.00500	0.0500	0.0552	110	62-125	mg/L	11.11.2019 11:43	
Chlorobenzene	< 0.00100	0.0500	0.0504	101	60-133	mg/L	11.11.2019 11:43	
Chloroethane	< 0.0100	0.0500	0.0495	99	60-140	mg/L	11.11.2019 11:43	
Chloroform	0.000390	0.0500	0.0526	104	70-130	mg/L	11.11.2019 11:43	
1-Chlorohexane	< 0.00500	0.0500	0.0532	106	60-140	mg/L	11.11.2019 11:43	
Methyl Chloride	0.00125	0.0500	0.0473	92	60-140	mg/L	11.11.2019 11:43	
2-Chlorotoluene	< 0.00100	0.0500	0.0531	106	73-125	mg/L	11.11.2019 11:43	
4-Chlorotoluene	< 0.00100	0.0500	0.0547	109	74-125	mg/L	11.11.2019 11:43	
Cyclohexane	< 0.00500	0.0500	0.0524	105	70-130	mg/L	11.11.2019 11:43	
p-Cymene (p-Isopropyltoluene)	< 0.00100	0.0500	0.0544	109	75-125	mg/L	11.11.2019 11:43	
Dibromochloromethane	< 0.00500	0.0500	0.0527	105	73-125	mg/L	11.11.2019 11:43	
1,2-Dibromo-3-Chloropropane	< 0.00100	0.0500	0.0500	100	59-125	mg/L	11.11.2019 11:43	
1,2-Dibromoethane	< 0.00500	0.0500	0.0469	94	73-125	mg/L	11.11.2019 11:43	
Methylene Bromide	< 0.00100	0.0500	0.0497	99	69-127	mg/L	11.11.2019 11:43	
1,2-Dichlorobenzene	< 0.00100	0.0500	0.0524	105	75-125	mg/L	11.11.2019 11:43	
1,3-Dichlorobenzene	< 0.00100	0.0500	0.0517	103	75-125	mg/L	11.11.2019 11:43	
1,4-Dichlorobenzene	< 0.00100	0.0500	0.0519	104	75-125	mg/L	11.11.2019 11:43	
Dichlorodifluoromethane	< 0.00100	0.0500	0.0462	92	60-140	mg/L	11.11.2019 11:43	
1,1-Dichloroethane	< 0.00100	0.0500	0.0517	103	72-125	mg/L	11.11.2019 11:43	
1,2-Dichloroethane	< 0.00100	0.0500	0.0511	102	68-127	mg/L	11.11.2019 11:43	
1,1-Dichloroethene	0.00401	0.0500	0.0560	104	59-172	mg/L	11.11.2019 11:43	
cis-1,2-Dichloroethylene	0.000230	0.0500	0.0507	101	75-125	mg/L	11.11.2019 11:43	
trans-1,2-dichloroethylene	< 0.00100	0.0500	0.0516	103	75-125	mg/L	11.11.2019 11:43	
1,2-Dichloropropane	< 0.00500	0.0500	0.0519	104	74-125	mg/L	11.11.2019 11:43	
1,3-Dichloropropane	< 0.00500	0.0500	0.0515	103	75-125	mg/L	11.11.2019 11:43	
2,2-Dichloropropane	< 0.00500	0.0500	0.0559	112	75-125	mg/L	11.11.2019 11:43	
1,1-Dichloropropene	< 0.00500	0.0500	0.0531	106	75-125	mg/L	11.11.2019 11:43	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0532	106	74-125	mg/L	11.11.2019 11:43	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0544	109	66-125	mg/L	11.11.2019 11:43	
Ethylbenzene	< 0.00100	0.0500	0.0508	102	75-125	mg/L	11.11.2019 11:43	
Hexachlorobutadiene	< 0.00500	0.0500	0.0454	91	75-125	mg/L	11.11.2019 11:43	
2-Hexanone	< 0.0500	0.250	0.209	84	60-140	mg/L	11.11.2019 11:43	
Isopropylbenzene	< 0.00100	0.0500	0.0514	103	75-125	mg/L	11.11.2019 11:43	
Methylcyclohexane	< 0.0100	0.0500	0.0548	110	75-125	mg/L	11.11.2019 11:43	
Methylene Chloride	< 0.0100	0.0500	0.0487	97	75-125	mg/L	11.11.2019 11:43	
Methyl iodide	< 0.0200	0.0500	0.0448	90	75-125	mg/L	11.11.2019 11:43	
4-Methyl-2-Pentanone	< 0.0500	0.250	0.258	103	60-140	mg/L	11.11.2019 11:43	
MTBE	< 0.00500	0.0500	0.0524	105	65-135	mg/L	11.11.2019 11:43	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\label{eq:c-A} \begin{split} [D] &= 100*(C-A) \, / \, B \\ RPD &= 200* \, | \, (C-E) \, / \, (C+E) \, | \\ [D] &= 100*(C) \, / \, [B] \\ Log \ Diff. &= Log(Sample \ Duplicate) \, - \ Log(Original \ Sample) \end{split}$$

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

APS APS MGP Douglas, AZ

Analytical Method:VOCs by SW-846 8260CPrep Method:SW5030BSeq Number:3107053Matrix: WaterDate Prep:11.11.2019

Parent Sample Id: 642698-001 MS Sample Id: 642698-001 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
Naphthalene	< 0.0100	0.0500	0.0477	95	70-130	mg/L	11.11.2019 11:43	
n-Propylbenzene	< 0.00100	0.0500	0.0530	106	75-125	mg/L	11.11.2019 11:43	
Styrene	< 0.00100	0.0500	0.0514	103	75-125	mg/L	11.11.2019 11:43	
1,1,1,2-Tetrachloroethane	< 0.00100	0.0500	0.0523	105	72-125	mg/L	11.11.2019 11:43	
1,1,2,2-Tetrachloroethane	< 0.00100	0.0500	0.0534	107	74-125	mg/L	11.11.2019 11:43	
Tetrachloroethene	0.000510	0.0500	0.0507	100	71-125	mg/L	11.11.2019 11:43	
Toluene	0.00770	0.0500	0.0585	102	59-139	mg/L	11.11.2019 11:43	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0429	86	75-137	mg/L	11.11.2019 11:43	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0484	97	75-135	mg/L	11.11.2019 11:43	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0530	106	75-125	mg/L	11.11.2019 11:43	
1,1,2-Trichloroethane	< 0.00100	0.0500	0.0519	104	75-127	mg/L	11.11.2019 11:43	
Trichloroethylene	0.0688	0.0500	0.118	98	62-137	mg/L	11.11.2019 11:43	
Trichlorofluoromethane	< 0.00100	0.0500	0.0544	109	60-140	mg/L	11.11.2019 11:43	
1,2,3-Trichloropropane	< 0.00100	0.0500	0.0542	108	75-125	mg/L	11.11.2019 11:43	
1,2,4-Trimethylbenzene	< 0.00100	0.0500	0.0526	105	75-125	mg/L	11.11.2019 11:43	
1,3,5-Trimethylbenzene	< 0.00100	0.0500	0.0537	107	70-125	mg/L	11.11.2019 11:43	
o-Xylene	< 0.00100	0.0500	0.0505	101	75-125	mg/L	11.11.2019 11:43	
m,p-Xylenes	< 0.0100	0.100	0.102	102	75-125	mg/L	11.11.2019 11:43	
Vinyl Acetate	< 0.0500	0.250	0.279	112	60-140	mg/L	11.11.2019 11:43	
Vinyl Chloride	< 0.00200	0.0500	0.0505	101	60-140	mg/L	11.11.2019 11:43	
1,3-Butadiene	< 0.00100	0.0500	0.0514	103	70-150	mg/L	11.11.2019 11:43	
Dicyclopentadiene	< 0.00500	0.0500	0.0536	107	70-120	mg/L	11.11.2019 11:43	
n-Hexane	< 0.00500	0.0500	0.0519	104	72-125	mg/L	11.11.2019 11:43	
				AC .	MS	Limita Unita	Analysis	

Surrogate	MS %Rec	MS Flag	Limits	Units	Analysis Date
Dibromofluoromethane	99		75-131	%	11.11.2019 11:43
1,2-Dichloroethane-D4	105		63-144	%	11.11.2019 11:43
Toluene-D8	98		80-117	%	11.11.2019 11:43
4-Bromofluorobenzene	102		74-124	%	11.11.2019 11:43

Chain of Custody

Work Order No:

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334

Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296

		Hobbs NM (575-39	2_7550) Phoenix AZ (4	ุ 80-355-0900) Atlanta.G	Hobbs NM (575-392-7550) Phoenix AZ (480-355-0900) Atlanta GA (770-449-8800) Tampa FL (813-620-2000)	www.xenco.com	Page of
		(0.000)		Bernice Kidd		Work Order Comm	
Company Name:	APS		Company Name:	Jacobs		Program: UST/PST☐ PRP☐ Brownfieldብ RR□	RR□ Superfur□
	PO Box53999, MS 9303		Phone	480-273-4084		State of Project:	
te ZIP:	Phoenix, AZ 85072-3999		email	Bernice Kidd@jacobs.com matt.branche@jacobs.com			TRRP Level IV
	602-818-0259	Em	Email: Judith.Heywood@aps.com	@aps.com		Deliverables: EDD L ADaPT C	Other:
Name:	APS MGP Douglas, AZ		Turn Around		ANALYSIS REQUEST		Work Order Notes
8	D3118600.A.CS.EV.DG.05-1B		Routine X				
	700735632		Rush: 48hr.	ed)			
me:	Sman / L.	Anskold Du	Due Date:	serve			
SAMPLE RECEIPT	Temp Blank:	(yes) No Wet Ice:	(S) No				
Temperature (°C):	2,8	Then		RA)			
Received Intact:	(Yes) No		D. 14	RC			
Cooler Custody Seals:	Yes No	Correction Factor:		s als (1	ΓEX	TAT st	TAT starts the day recevied by the
Salliple Cusiony Seals.	ies No	i Otal Comanicio		PAH	3 - 8		
Sample Identification	Matrix	Date Time Sampled Sampled	Depth	8310 200.7 8260E	80216	S	Sample Comments
D-MW27	W	<u>11) 13:10</u>		R X X	X		
D-FD01-110719	W	11/11/19 13:30		S X X	×		
D-HW26	W	11/2/19 14:20			X		
D- MWAY	ls,	17/19 15:25		XXX	×		
I	0875 M	12021 150	0	又`			
	V						
	٧						
	W						
Total 200.7 / 6010 Circle Method(s) :	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	8RC	CRA 13PPM Texas 11 AITCLP / SPLP 6010: 8RCRA	AISb As Ba Be B Cd Ca Cr C RA Sb As Ba Be Cd Cr Co Cu		Mn Mo Ni K Se Ag SiO: e Ag Ti U	2 Na Sr Ti Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg
Notice: Signature of this dof service. Xenco will be lof Xenco. A minimum cha	ocument and relinquishment of lable only for the cost of sample rge of \$75.00 will be applied to e	samples constitutes a vali ss and shall not assume an each project and a charge	d purchase order from cl y responsibility for any lo of \$5 for each sample sub	ent company to Xenco, its sses or expenses incurre mitted to Xenco, but not :	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$6 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ns standard terms and conditions circumstances beyond the control unless previously negotiated.	
Relinquished by: (Signature)	(Signature)	Received by: (Signature)		□=8コテ) YY o	Relinquished by: (Signature)	re) Received by: (Signature)	Date/Time
5					0 4		
•			-				

Revised Date 051418 Rev. 2018.1

Inter-Office Shipment

IOS Number : **51908**

Date/Time: 11.08.2019 Created by: Emily Petrunia Please send report to: Ruriko Konuma

Lab# From: **Phoenix** Delivery Priority: Address: 2525 West Huntington Drive, Suite 102

Lab# To: **Houston** Air Bill No.: 776943469016 E-Mail: ruriko.konuma@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
642698-001	W	D-MW27	11.07.2019 13:10	E245.1	Mercury, Total by EPA 245.1	11.12.2019	12.05.2019	RKO	HG	
642698-001	W	D-MW27	11.07.2019 13:10	SW8270D_SIM_PAH	PAHs by SW846 8270D SIM	11.12.2019	11.14.2019 13:10	RKO	ACNP ACNPY ANTH BZ	
642698-001	W	D-MW27	11.07.2019 13:10	SW8260C_AZ	VOCs by SW-846 8260C	11.12.2019	11.21.2019	RKO	ACE BDCME BRBZ BRO	
642698-001	W	D-MW27	11.07.2019 13:10	E200.8	Recoverable Metals, Total, by EPA 200.8	11.12.2019	05.05.2020	RKO	AG AS BA BE CD CO CI	
642698-002	W	D-FD01-110719	11.07.2019 13:30	E245.1	Mercury, Total by EPA 245.1	11.12.2019	12.05.2019	RKO	HG	
642698-002	W	D-FD01-110719	11.07.2019 13:30	E200.8	Recoverable Metals, Total, by EPA 200.8	11.12.2019	05.05.2020	RKO	AG AS BA BE CD CO CI	
642698-002	W	D-FD01-110719	11.07.2019 13:30	SW8260C_AZ	VOCs by SW-846 8260C	11.12.2019	11.21.2019	RKO	ACE BDCME BRBZ BRO	
642698-002	W	D-FD01-110719	11.07.2019 13:30	SW8270D_SIM_PAH	PAHs by SW846 8270D SIM	11.12.2019	11.14.2019 13:30	RKO	ACNP ACNPY ANTH BZ	
642698-003	W	D-MW26	11.07.2019 14:20	SW8260C_AZ	VOCs by SW-846 8260C	11.12.2019	11.21.2019	RKO	ACE BDCME BRBZ BRO	
642698-003	W	D-MW26	11.07.2019 14:20	E245.1	Mercury, Total by EPA 245.1	11.12.2019	12.05.2019	RKO	HG	
642698-003	W	D-MW26	11.07.2019 14:20	E200.8	Recoverable Metals, Total, by EPA 200.8	11.12.2019	05.05.2020	RKO	AG AS BA BE CD CO CI	
642698-003	W	D-MW26	11.07.2019 14:20	SW8270D_SIM_PAH	PAHs by SW846 8270D SIM	11.12.2019	11.14.2019 14:20	RKO	ACNP ACNPY ANTH BZ	
642698-004	W	D-MW25	11.07.2019 15:25	E245.1	Mercury, Total by EPA 245.1	11.12.2019	12.05.2019	RKO	HG	
642698-004	W	D-MW25	11.07.2019 15:25	E200.8	Recoverable Metals, Total, by EPA 200.8	11.12.2019	05.05.2020	RKO	AG AS BA BE CD CO CI	
642698-004	W	D-MW25	11.07.2019 15:25	SW8270D_SIM_PAH	PAHs by SW846 8270D SIM	11.12.2019	11.14.2019 15:25	RKO	ACNP ACNPY ANTH BZ	
642698-004	W	D-MW25	11.07.2019 15:25	SW8260C_AZ	VOCs by SW-846 8260C	11.12.2019	11.21.2019	RKO	ACE BDCME BRBZ BRO	
642698-005	W	D-TB03-110819	11.08.2019 12:00	SW8260C_AZ	VOCs by SW-846 8260C	11.12.2019	11.22.2019	RKO	ACE BDCME BRBZ BRO	

Inter Office Shipment or Sample Comments:

Relinquished By:

Emily Petrunia

Date Relinquished: 11.08.2019

Received By:

Monica Shakhshir

Date Received: 11.09.2019

Cooler Temperature: 1.8

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Acceptable Temperature Range: 0 - 6 degC Sent To: Houston Air and Metal samples Acceptable Range: Ambient IOS #: 51908 Temperature Measuring device used: HOU-068

11 08 2019 05 49 PM

Sent By:	Emily Petrunia	Date Sent:	11.08.2019 05.49 PM		
Received By:	: Monica Shakhshir	Date Received	: 11.09.2019 10.00 AM		
		Sample Re	ceipt Checklist		Comments
#1 *Temper	rature of cooler(s)?			1.8	
#2 *Shipping	g container in good condi	tion?		Yes	
#3 *Sample:	s received with appropria	te temperature?		Yes	
#4 *Custody	/ Seals intact on shipping	container/ cooler?		Yes	
#5 *Custody	/ Seals Signed and dated	for Containers/coo	lers	Yes	
#6 *IOS pre	sent?			Yes	
#7 Any miss	sing/extra samples?			No	
#8 IOS agre	es with sample label(s)/n	natrix?		Yes	
#9 Sample r	matrix/ properties agree v	vith IOS?		Yes	
#10 Sample	es in proper container/ bot	tle?		Yes	
#11 Sample	es properly preserved?			Yes	
#12 Sample	container(s) intact?			Yes	
#13 Sufficie	nt sample amount for ind	cated test(s)?		Yes	
#14 All sam	ples received within hold	time?		Yes	
* Must be co	mpleted for after-hours	delivery of sample	es prior to placing in th	e refrigerator	
NonConforma	ince:				
Corrective Ac	tion Taken:				
		Nonconfo	rmance Documentation		
Contact:		Contacted by :		Date	:
	Observation of the state of the	0 00			
	Checklist reviewed by:	Shalling	Da Da	ate: 11.09.2019	

Monica Shakhshir

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 11/08/2019 02:40:00 PM

Acceptable Temperature Range: 0 - 6 degC

Air and Metal samples Acceptable Range: Ambient

Work Order #: 642698 Temperature Measuring device used : IR#1

Sai	mple Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	2.8	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/	cooler? N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/	received? Yes	
#10 Chain of Custody agrees with sample labels	s/matrix? Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)? Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	Yes	Xenco Stafford
#18 Water VOC samples have zero headspace	? Yes	

^{*} Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: EP PH Device/Lot#: LRS-480

Checklist completed by:	Eg/hA: Emily Petrunia	Date: 11/08/2019	
Checklist reviewed by:		Date: 11/08/2019	

Analytical Report 642702

for

APS

Project Manager: Judy Heywood

APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 11.18.2019

Collected By: Client

2525 West Huntington Drive, Suite 102 Tempe, AZ 85282 Ph: (480) 355-0900

Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Houston (EPA Lab code: TX00122): Arizona (AZ0765) Xenco-Dallas (EPA Lab code: TX01468): Arizona (AZ0809)

11.18.2019

Project Manager: Judy Heywood

APS P.O. Box 53999 Mail Station 8376

Mail Station 8376 Phoenix, AZ 85072

Reference: TWA Report No(s): 642702

APS MGP Douglas, AZ

Project Address:

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the TWA Report Number(s) 642702. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the ADHS certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with ADHS standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and ADHS Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by TransWest Analytical. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 642702 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting TransWest Analytical to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

 Project ID:
 D3118600.A. CS. EV. DG. 0.
 Report Date:
 11.18.2019

 Work Order Number(s):
 642702
 Date Received:
 11.08.2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- **H5** This test is specified to be performed in the field within 15 minutes of sampling; Sample was received and analyzed past the regulatory holding time.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.

Sample Cross Reference 642702

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample IdMatrixDate CollectedSample DepthLab Sample IdD-TOTE-110719W11.07.2019 11:30642702-001

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TOTE-110719 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642702-001 Date Collected: 11.07.2019 11:30

Analytical Method: Total Cyanide by EPA 335.4 Prep Method: E335.4P

% Solids:

Analyst: KCS Date Prep: 11.15.2019 14:00

Seq Number: 3107691 SUB: AZ0765

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Cyanide, Total
 57-12-5
 <0.00500</td>
 0.00500
 mg/L
 11.15.2019 16:48
 1

Analytical Method: pH by SM4500-H

KCS

Tech:

Tech: TNL % Solids:

Analyst: MON
Seq Number: 3107271

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil pН 7.94 SU 11.12.2019 11:30 H5 1 12408-02-5 23.6 11.12.2019 11:30 H5 1 **Temperature** TEMP Deg C

Analytical Method: Recoverable Metals, Total, by EPA 200.8 Prep Method: E200.8P

Tech: MLI % Solids:

Analyst: DEP Date Prep: 11.13.2019 10:52

Seq Number: 3107462 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Antimony	7440-36-0	< 0.00200	0.00200	mg/L	11.13.2019 18:37		1
Arsenic	7440-38-2	0.00547	0.00400	mg/L	11.13.2019 18:37		1
Barium	7440-39-3	0.0434	0.00400	mg/L	11.13.2019 18:37		1
Beryllium	7440-41-7	< 0.00200	0.00200	mg/L	11.13.2019 18:37		1
Cadmium	7440-43-9	< 0.00200	0.00200	mg/L	11.13.2019 18:37		1
Chromium	7440-47-3	< 0.00400	0.00400	mg/L	11.13.2019 18:37		1
Cobalt	7440-48-4	< 0.00200	0.00200	mg/L	11.13.2019 18:37		1
Copper	7440-50-8	< 0.00400	0.00400	mg/L	11.13.2019 18:37		1
Lead	7439-92-1	< 0.00200	0.00200	mg/L	11.13.2019 18:37		1
Manganese	7439-96-5	0.0655	0.00200	mg/L	11.13.2019 18:37		1
Molybdenum	7439-98-7	0.00428	0.00200	mg/L	11.13.2019 18:37		1
Nickel	7440-02-0	0.00255	0.00200	mg/L	11.13.2019 18:37		1
Selenium	7782-49-2	0.0105	0.00200	mg/L	11.13.2019 18:37		1
Silver	7440-22-4	< 0.00200	0.00200	mg/L	11.13.2019 18:37		1
Thallium	7440-28-0	< 0.00200	0.00200	mg/L	11.13.2019 18:37		1

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-TOTE-110719** Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642702-001 Date Collected: 11.07.2019 11:30

Analytical Method: Flash Point (200F) by SW 1010

JCL % Solids: Tech:

JCL Analyst:

Seq Number: 3107623 SUB: AZ0765

RL**Parameter** Cas Number Result Units **Analysis Date** Dil Flash Point >200 Deg F 11.15.2019 10:50 1

Analytical Method: Mercury, Total by EPA 245.1

Prep Method: E245.1P ADS Tech:

% Solids:

Analyst: ANJ Date Prep: 11.15.2019 07:55

Seq Number: 3107690 SUB: AZ0765

RL **Parameter** Cas Number Result Units **Analysis Date** Flag Dil 0.000200 Mercury < 0.000200 mg/L 11.15.2019 13:02 7439-97-6

Analytical Method: PCBs by EPA 608 Prep Method: E608P

% Solids: AHI Tech:

SHM Analyst: 11.12.2019 08:30 Date Prep:

Parameter	Cas Number	Result	RL	Uni	ts	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	< 0.000500	0.000500	mg/	L	11.12.2019 14:27		1
PCB-1221	11104-28-2	< 0.000500	0.000500	mg/	L.	11.12.2019 14:27		1
PCB-1232	11141-16-5	< 0.000500	0.000500	mg/	L	11.12.2019 14:27		1
PCB-1242	53469-21-9	< 0.000500	0.000500	mg/	L.	11.12.2019 14:27		1
PCB-1248	12672-29-6	< 0.000500	0.000500	mg/	L	11.12.2019 14:27		1
PCB-1254	11097-69-1	< 0.000500	0.000500	mg/	L	11.12.2019 14:27		1
PCB-1260	11096-82-5	< 0.000500	0.000500	mg/	L	11.12.2019 14:27		1
		% Recovery						
Surrogate			Units	Limits A	naly	ysis Date Fla	ıg	

Surrogate		Units	Limits	Analysis Date	Flag
Tetrachloro-m-xylene	40	%	18-126	11.12.2019 14:27	
Decachlorobiphenyl	89	%	15-136	11.12.2019 14:27	

AHI

Tech:

Certificate of Analytical Results 642702

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TOTE-110719 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642702-001 Date Collected: 11.07.2019 11:30

Analytical Method: PAHs by SW846 8270D SIM Prep Method: SW3511

% Solids:

Analyst: DNE Date Prep: 11.13.2019 17:39

Parameter	Cas Number	Result	RL		Units	Analysis Da	ite	Flag	Dil
1-Methylnaphthalene	90-12-0	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
2-Methylnaphthalene	91-57-6	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Acenaphthene	83-32-9	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Acenaphthylene	208-96-8	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Anthracene	120-12-7	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Benzo(a)anthracene	56-55-3	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Benzo(a)pyrene	50-32-8	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Benzo(b)fluoranthene	205-99-2	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Benzo(g,h,i)perylene	191-24-2	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Benzo(k)fluoranthene	207-08-9	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Chrysene	218-01-9	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Dibenz(a,h)anthracene	53-70-3	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Fluoranthene	206-44-0	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Fluorene	86-73-7	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Naphthalene	91-20-3	< 0.000379	0.000379		mg/L	11.13.2019	19:10		37.89
Phenanthrene	85-01-8	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
Pyrene	129-00-0	< 0.000189	0.000189		mg/L	11.13.2019	19:10		37.89
		% Recovery							
Surrogate			Units	Limits	Anal	ysis Date	Flag		
2-Fluorobiphenyl		118	%	54-146		3.2019 19:10			
Nitrobenzene-d5		114	%	46-151		3.2019 19:10			
Terphenyl-D14		114	%	51-139	11.13	3.2019 19:10			

EZA

Tech:

Certificate of Analytical Results 642702

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TOTE-110719 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642702-001 Date Collected: 11.07.2019 11:30

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Analyst: EZA Date Prep: 11.12.2019 16:00

Seq Number: 3107278 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	< 0.100	0.100	mg/L	11.12.2019 19:56		1
Benzene	71-43-2	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Bromobenzene	108-86-1	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Bromochloromethane	74-97-5	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Bromodichloromethane	75-27-4	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Bromoform	75-25-2	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Methyl bromide	74-83-9	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Methyl ethyl ketone	78-93-3	< 0.0500	0.0500	mg/L	11.12.2019 19:56		1
n-Butylbenzene	104-51-8	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Sec-Butylbenzene	135-98-8	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
tert-Butylbenzene	98-06-6	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Carbon Disulfide	75-15-0	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Carbon Tetrachloride	56-23-5	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Chlorobenzene	108-90-7	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Chloroethane	75-00-3	< 0.0100	0.0100	mg/L	11.12.2019 19:56		1
Chloroform	67-66-3	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1-Chlorohexane	544-10-5	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Methyl Chloride	74-87-3	< 0.0100	0.0100	mg/L	11.12.2019 19:56		1
2-Chlorotoluene	95-49-8	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
4-Chlorotoluene	106-43-4	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Cyclohexane	110-82-7	< 0.00500	0.00500	mg/L	11.12.2019 19:56	*	1
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Dibromochloromethane	124-48-1	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,2-Dibromoethane	106-93-4	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Methylene Bromide	74-95-3	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,2-Dichlorobenzene	95-50-1	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,3-Dichlorobenzene	541-73-1	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,4-Dichlorobenzene	106-46-7	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Dichlorodifluoromethane	75-71-8	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,1-Dichloroethane	75-34-3	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,2-Dichloroethane	107-06-2	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,1-Dichloroethene	75-35-4	0.00173	0.00100	mg/L	11.12.2019 19:56		1
cis-1,2-Dichloroethylene	156-59-2	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
trans-1,2-dichloroethylene	156-60-5	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,2-Dichloropropane	78-87-5	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
1,3-Dichloropropane	142-28-9	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
2,2-Dichloropropane	594-20-7	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1

EZA

Tech:

Certificate of Analytical Results 642702

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TOTE-110719 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642702-001 Date Collected: 11.07.2019 11:30

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Analyst: EZA Date Prep: 11.12.2019 16:00

Seq Number: 3107278 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1-Dichloropropene	563-58-6	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
cis-1,3-Dichloropropene	10061-01-5	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
trans-1,3-dichloropropene	10061-02-6	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Ethylbenzene	100-41-4	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Hexachlorobutadiene	87-68-3	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
2-Hexanone	591-78-6	< 0.0500	0.0500	mg/L	11.12.2019 19:56		1
Isopropylbenzene	98-82-8	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Methylcyclohexane	108-87-2	< 0.0100	0.0100	mg/L	11.12.2019 19:56		1
Methylene Chloride	75-09-2	< 0.0100	0.0100	mg/L	11.12.2019 19:56		1
Methyl iodide	74-88-4	< 0.0200	0.0200	mg/L	11.12.2019 19:56		1
4-Methyl-2-Pentanone	108-10-1	< 0.0500	0.0500	mg/L	11.12.2019 19:56		1
MTBE	1634-04-4	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Naphthalene	91-20-3	< 0.0100	0.0100	mg/L	11.12.2019 19:56		1
n-Propylbenzene	103-65-1	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Styrene	100-42-5	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,1,1,2-Tetrachloroethane	630-20-6	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,1,2,2-Tetrachloroethane	79-34-5	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Tetrachloroethene	127-18-4	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Toluene	108-88-3	0.00262	0.00100	mg/L	11.12.2019 19:56		1
1,2,3-Trichlorobenzene	87-61-6	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
1,2,4-Trichlorobenzene	120-82-1	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
1,1,1-Trichloroethane	71-55-6	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
1,1,2-Trichloroethane	79-00-5	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Trichloroethylene	79-01-6	0.0302	0.00500	mg/L	11.12.2019 19:56		1
Trichlorofluoromethane	75-69-4	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,2,3-Trichloropropane	96-18-4	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,2,4-Trimethylbenzene	95-63-6	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
1,3,5-Trimethylbenzene	108-67-8	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
o-Xylene	95-47-6	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
m,p-Xylenes	179601-23-1	< 0.0100	0.0100	mg/L	11.12.2019 19:56		1
Vinyl Acetate	108-05-4	< 0.0500	0.0500	mg/L	11.12.2019 19:56		1
Vinyl Chloride	75-01-4	< 0.00200	0.00200	mg/L	11.12.2019 19:56		1
1,3-Butadiene	106-99-0	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Dicyclopentadiene	77-73-6	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
n-Hexane	110-54-3	< 0.00500	0.00500	mg/L	11.12.2019 19:56		1
Total Xylenes	1330-20-7	< 0.00100	0.00100	mg/L	11.12.2019 19:56		1
Total Trihalomethanes		< 0.00100	0.00100	mg/L	11.12.2019 19:56		1

EZA

Tech:

Certificate of Analytical Results 642702

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: D-TOTE-110719 Matrix: Water Date Received:11.08.2019 14:40

Lab Sample Id: 642702-001 Date Collected: 11.07.2019 11:30

Analytical Method: VOCs by SW-846 8260C Prep Method: SW5030B

% Solids:

Analyst: EZA Date Prep: 11.12.2019 16:00

Seq Number: 3107278 SUB: AZ0765

% Recovery									
Surrogate		Units	Limits	Analysis Date	Flag				
Dibromofluoromethane	101	%	75-131	11.12.2019 19:56					
1,2-Dichloroethane-D4	113	%	63-144	11.12.2019 19:56					
Toluene-D8	100	%	80-117	11.12.2019 19:56					
4-Bromofluorobenzene	102	%	74-124	11.12.2019 19:56					

APS

APS MGP Douglas, AZ

Analytical Method: Total Cyanide by EPA 335.4

Seq Number: 3107691

Matrix: Water

Result

Prep Method: E335.4P Date Prep: 11.15.2019

MB Sample Id: 7690479-1-BLK LCS Sample Id: 7690479-1-BKS

Result

Spike

Amount

MB

Parameter

LCS LCS

Units Analysis Flag

Cyanide, Total <0.00198 0.100 0.103 103 90-110 mg/L 11.15.2019 16:39

%Rec

Analytical Method: Total Cyanide by EPA 335.4

Seq Number: 3107691 Parent Sample Id: 642325-012 Matrix: Waste Water S Sample Id: 642325-012 S

Prep Method: E335.4P Date Prep: 11.15.2019

MS Sample Id: 642325-012 S MSD Sample Id: 642325-012 SD

Limits

Parent Spike MS MS MSD **MSD** Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date

Cyanide, Total 0.00565 0.200 0.200 97 0.196 95 85-115 2 20 mg/L 11.15.2019 16:44

Analytical Method: Total Cyanide by EPA 335.4

Seq Number: 3107691

Parent Sample Id: 642481 001

Matrix: Waste Water

Prep Method: E335.4P

Date Prep: 11.15.2019

Parent Sample Id: 642481-001 MS Sample Id: 642481-001 S MSD Sample Id: 642481-001 SD

%RPD **RPD** Parent Spike MS MS Units Analysis MSD **MSD** Limits Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec 11.15.2019 17:03 Cyanide, Total < 0.00198 0.200 0.199 100 0.198 85-115 20 1 mg/L

Analytical Method: pH by SM4500-H

Seq Number: 3107271

Parent Sample Id: 642702-001 MD Sample Id: 642702-001 D

Parent MD %RPD **RPD** Units Analysis Flag **Parameter** Result Limit Date Result 11.12.2019 11:30 pН 7.94 7.91 0 20 SU11.12.2019 11:30 20 Deg C Temperature 23.6 23.4 1

Matrix: Water

APSAPS MGP Douglas, AZ

Analytical Method:Recoverable Metals,Total, by EPA 200.8Prep Method:E200.8PSeq Number:3107462Matrix:WaterDate Prep:11.13.2019MB Sample Id:7690220-1-BLKLCS Sample Id:7690220-1-BKSLCSD Sample Id:7690220-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Antimony	< 0.000380	0.100	0.105	105	0.107	107	85-115	2	20	mg/L	11.13.2019 18:31	
Arsenic	< 0.000396	0.100	0.0997	100	0.100	100	85-115	0	20	mg/L	11.13.2019 18:31	
Barium	< 0.000472	0.100	0.0979	98	0.0991	99	85-115	1	20	mg/L	11.13.2019 18:31	
Beryllium	< 0.000166	0.100	0.0988	99	0.0989	99	85-115	0	20	mg/L	11.13.2019 18:31	
Cadmium	< 0.00200	0.100	0.0992	99	0.0993	99	85-115	0	20	mg/L	11.13.2019 18:31	
Chromium	< 0.000283	0.100	0.0993	99	0.100	100	85-115	1	20	mg/L	11.13.2019 18:31	
Cobalt	< 0.00200	0.100	0.100	100	0.100	100	85-115	0	20	mg/L	11.13.2019 18:31	
Copper	< 0.000747	0.100	0.0994	99	0.0993	99	85-115	0	20	mg/L	11.13.2019 18:31	
Lead	< 0.000152	0.100	0.0980	98	0.0993	99	85-115	1	20	mg/L	11.13.2019 18:31	
Manganese	< 0.000208	0.100	0.0988	99	0.0998	100	85-115	1	20	mg/L	11.13.2019 18:31	
Molybdenum	< 0.000318	0.100	0.107	107	0.107	107	85-115	0	20	mg/L	11.13.2019 18:31	
Nickel	< 0.000139	0.100	0.0996	100	0.0993	99	85-115	0	20	mg/L	11.13.2019 18:31	
Selenium	< 0.000368	0.100	0.100	100	0.100	100	85-115	0	20	mg/L	11.13.2019 18:31	
Silver	< 0.000159	0.0500	0.0532	106	0.0531	106	85-115	0	20	mg/L	11.13.2019 18:31	
Thallium	< 0.000187	0.100	0.0976	98	0.0985	99	85-115	1	20	mg/L	11.13.2019 18:31	

Analytical Method:Recoverable Metals, Total, by EPA 200.8Prep Method:E200.8PSeq Number:3107462Matrix:WaterDate Prep:11.13.2019Parent Sample Id:642702-001MS Sample Id:642702-001 SMSD Sample Id:642702-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Antimony	0.00163	0.100	0.113	111	0.112	110	70-130	1	20	mg/L	11.13.2019 18:40	
Arsenic	0.00547	0.100	0.106	101	0.106	101	70-130	0	20	mg/L	11.13.2019 18:40	
Barium	0.0434	0.100	0.143	100	0.144	101	70-130	1	20	mg/L	11.13.2019 18:40	
Beryllium	0.000219	0.100	0.0973	97	0.0962	96	70-130	1	20	mg/L	11.13.2019 18:40	
Cadmium	< 0.000115	0.100	0.0938	94	0.0950	95	70-130	1	20	mg/L	11.13.2019 18:40	
Chromium	0.00333	0.100	0.100	97	0.101	98	70-130	1	20	mg/L	11.13.2019 18:40	
Cobalt	0.000512	0.100	0.0981	98	0.0987	98	70-130	1	20	mg/L	11.13.2019 18:40	
Copper	0.00226	0.100	0.0985	96	0.0976	95	70-130	1	20	mg/L	11.13.2019 18:40	
Lead	< 0.000152	0.100	0.0982	98	0.0988	99	70-130	1	20	mg/L	11.13.2019 18:40	
Manganese	0.0655	0.100	0.158	93	0.158	93	70-130	0	20	mg/L	11.13.2019 18:40	
Molybdenum	0.00428	0.100	0.112	108	0.113	109	70-130	1	20	mg/L	11.13.2019 18:40	
Nickel	0.00255	0.100	0.0979	95	0.0976	95	70-130	0	20	mg/L	11.13.2019 18:40	
Selenium	0.0105	0.100	0.108	98	0.109	99	70-130	1	20	mg/L	11.13.2019 18:40	
Silver	< 0.000159	0.0500	0.0497	99	0.0501	100	70-130	1	20	mg/L	11.13.2019 18:40	
Thallium	< 0.000187	0.100	0.0973	97	0.0971	97	70-130	0	20	mg/L	11.13.2019 18:40	

APS APS MGP Douglas, AZ

Analytical Method:	Recoverable Metals, Total, by EPA 200	1.8	Prep Method:	E200.8P	
Sea Number:	3107462	Matrix: Drinking Water	Date Pren:	11 13 2019	

642301-001 MS Sample Id: 642301-001 S Parent Sample Id:

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
Antimony	< 0.000380	0.100	0.110	110	70-130	mg/L	11.13.2019 19:32	
Arsenic	0.000419	0.100	0.0991	99	70-130	mg/L	11.13.2019 19:32	
Barium	0.000747	0.100	0.0993	99	70-130	mg/L	11.13.2019 19:32	
Beryllium	< 0.000166	0.100	0.0958	96	70-130	mg/L	11.13.2019 19:32	
Cadmium	< 0.000115	0.100	0.0943	94	70-130	mg/L	11.13.2019 19:32	
Chromium	0.000326	0.100	0.0951	95	70-130	mg/L	11.13.2019 19:32	
Cobalt	< 0.000146	0.100	0.0954	95	70-130	mg/L	11.13.2019 19:32	
Copper	0.00266	0.100	0.0976	95	70-130	mg/L	11.13.2019 19:32	
Lead	< 0.000152	0.100	0.0965	97	70-130	mg/L	11.13.2019 19:32	
Manganese	< 0.000208	0.100	0.0946	95	70-130	mg/L	11.13.2019 19:32	
Molybdenum	0.00111	0.100	0.107	106	70-130	mg/L	11.13.2019 19:32	
Nickel	0.000568	0.100	0.0948	94	70-130	mg/L	11.13.2019 19:32	
Selenium	0.000789	0.100	0.0972	96	70-130	mg/L	11.13.2019 19:32	
Silver	< 0.000159	0.0500	0.0499	100	70-130	mg/L	11.13.2019 19:32	
Thallium	< 0.000187	0.100	0.0955	96	70-130	mg/L	11.13.2019 19:32	

Analytical Method: Flash Point (200F) by SW 1010

Seq Number: 3107623 Matrix: Water

MD Sample Id: 642692-001 D Parent Sample Id: 642692-001

%RPD MD RPD **Parent** Units Analysis Flag **Parameter** Date Result Result Limit 11.15.2019 10:14 Flash Point >180 >180 0 25 Deg F

Analytical Method: Mercury, Total by EPA 245.1

Prep Method: 3107690 Matrix: Water Seq Number: Date Prep: 11.15.2019 7690396-1-BLK LCS Sample Id: 7690396-1-BKS LCSD Sample Id: 7690396-1-BSD MB Sample Id:

RPD MBSpike LCS LCS Limits %RPD Analysis LCSD LCSD Flag **Parameter** Limit Result Amount Result %Rec Result %Rec Date < 0.0000263 11.15.2019 12:28 0.00200 0.00203 102 0.00198 99 20 85-115 mg/L Mercury 2

Analytical Method: Mercury, Total by EPA 245.1 Prep Method: E245.1P

Seq Number: 3107690 Date Prep: 11.15.2019 Matrix: Water Parent Sample Id: 642654-001 MS Sample Id: 642654-001 S MSD Sample Id: 642654-001 SD

Parent Spike MS MS Limits %RPD RPD Units Analysis **MSD** MSD Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec < 0.0000263 11.15.2019 14:40 20 Mercury 0.00200 0.00203102 0.00203 102 70-130 0 mg/L

E245.1P

APS

APS MGP Douglas, AZ

Analytical Method:Mercury, Total by EPA 245.1Prep Method:E245.1PSeq Number:3107690Matrix: WaterDate Prep:11.15.20

 Seq Number:
 3107690
 Matrix:
 Water
 Date Prep:
 11.15.2019

 Parent Sample Id:
 643132-001
 MS Sample Id:
 643132-001 S
 MSD Sample Id:
 643132-001 SD

MS RPD **Parent** Spike MS MSD MSD Limits %RPD Units Analysis Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date < 0.0000263 0.00200 0.000771 39 0.000805 40 70-130 20 mg/L 11.15.2019 12:37 Mercury 4 M2

Analytical Method: PCBs by EPA 608 Prep Method: E608P

Seq Number: 3107206 Matrix: Water Date Prep: 11.11.2019

MB Sample Id: 7690044-1-BLK LCS Sample Id: 7690044-1-BKS LCSD Sample Id: 7690044-1-BSD

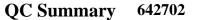
MB Spike LCS LCS LCSD LCSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec %Rec Limit Date Result < 0.000500 30 11.11.2019 18:00 PCB-1016 0.00500 0.00337 67 0.00314 63 61-103 7 mg/L< 0.000500 11.11.2019 18:00 PCB-1260 0.00500 0.00299 60 0.00273 55 37-130 9 30 mg/L

LCS MB LCSD MB LCS LCSD Limits Units Analysis Surrogate %Rec Flag %Rec Flag Flag Date %Rec 50 56 52 18-126 % 11.11.2019 18:00 Tetrachloro-m-xylene 11.11.2019 18:00 69 59 57 15-136 % Decachlorobiphenyl

Analytical Method:PAHs by SW846 8270D SIMPrep Method:SW3511Seq Number:3107507Matrix: WaterDate Prep:11.13.2019

MB Sample Id: 7690280-1-BLK LCS Sample Id: 7690280-1-BKS LCSD Sample Id: 7690280-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
1-Methylnaphthalene	< 0.000182	0.0182	0.0164	90	0.0183	101	70-126	11	30	mg/L	11.13.2019 18:37
2-Methylnaphthalene	< 0.000182	0.0182	0.0164	90	0.0181	99	74-121	10	30	mg/L	11.13.2019 18:37
Acenaphthene	< 0.000182	0.0182	0.0164	90	0.0185	102	75-127	12	30	mg/L	11.13.2019 18:37
Acenaphthylene	< 0.000182	0.0182	0.0166	91	0.0188	103	78-133	12	30	mg/L	11.13.2019 18:37
Anthracene	< 0.000182	0.0182	0.0168	92	0.0187	103	73-145	11	30	mg/L	11.13.2019 18:37
Benzo(a)anthracene	< 0.000182	0.0182	0.0161	88	0.0178	98	77-131	10	30	mg/L	11.13.2019 18:37
Benzo(a)pyrene	< 0.000182	0.0182	0.0161	88	0.0180	99	56-163	11	30	mg/L	11.13.2019 18:37
Benzo(b)fluoranthene	< 0.000182	0.0182	0.0169	93	0.0181	99	74-138	7	30	mg/L	11.13.2019 18:37
Benzo(g,h,i)perylene	< 0.000182	0.0182	0.0162	89	0.0181	99	77-127	11	30	mg/L	11.13.2019 18:37
Benzo(k)fluoranthene	< 0.000182	0.0182	0.0168	92	0.0193	106	67-142	14	30	mg/L	11.13.2019 18:37
Chrysene	< 0.000182	0.0182	0.0163	90	0.0182	100	66-126	11	30	mg/L	11.13.2019 18:37
Dibenz(a,h)anthracene	< 0.000182	0.0182	0.0161	88	0.0179	98	71-142	11	30	mg/L	11.13.2019 18:37
Fluoranthene	< 0.000182	0.0182	0.0165	91	0.0183	101	78-138	10	30	mg/L	11.13.2019 18:37
Fluorene	< 0.000182	0.0182	0.0168	92	0.0190	104	79-128	12	30	mg/L	11.13.2019 18:37
Indeno(1,2,3-c,d)Pyrene	< 0.000182	0.0182	0.0163	90	0.0180	99	76-140	10	30	mg/L	11.13.2019 18:37
Naphthalene	< 0.000364	0.0182	0.0161	88	0.0177	97	72-122	9	30	mg/L	11.13.2019 18:37
Phenanthrene	< 0.000182	0.0182	0.0163	90	0.0183	101	76-129	12	30	mg/L	11.13.2019 18:37
Pyrene	< 0.000182	0.0182	0.0171	94	0.0195	107	74-138	13	30	mg/L	11.13.2019 18:37


Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
2-Fluorobiphenyl	107		112		122		54-146	%	11.13.2019 18:37
Nitrobenzene-d5	107		111		120		46-151	%	11.13.2019 18:37
Terphenyl-D14	107		111		120		51-139	%	11.13.2019 18:37

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(C\text{-A}) \, / \, B \\ RPD &= 200* \mid (C\text{-E}) \, / \, (C\text{+E}) \mid \\ [D] &= 100*(C) \, / \, [B] \end{split}$$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec Flag

APS APS MGP Douglas, AZ

Analytical Method: PAHs by SW846 8270D SIM

Prep Method: SW3511 3107507 Matrix: Water Seq Number: Date Prep: 11.13.2019 MS Sample Id: 642702-001 S Parent Sample Id: 642702-001 MSD Sample Id: 642702-001 SD

rarent bampie ia. 012702 0	01			1								
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1-Methylnaphthalene	< 0.000188	0.0188	0.0174	93	0.0174	93	70-126	0	30	mg/L	11.13.2019 19:27	
2-Methylnaphthalene	< 0.000188	0.0188	0.0174	93	0.0173	93	74-121	1	30	mg/L	11.13.2019 19:27	
Acenaphthene	< 0.000188	0.0188	0.0175	93	0.0174	93	75-127	1	30	mg/L	11.13.2019 19:27	
Acenaphthylene	< 0.000188	0.0188	0.0177	94	0.0176	94	78-133	1	30	mg/L	11.13.2019 19:27	
Anthracene	< 0.000188	0.0188	0.0178	95	0.0177	95	73-145	1	30	mg/L	11.13.2019 19:27	
Benzo(a)anthracene	< 0.000188	0.0188	0.0158	84	0.0159	85	77-131	1	30	mg/L	11.13.2019 19:27	
Benzo(a)pyrene	< 0.000188	0.0188	0.0154	82	0.0154	82	56-163	0	30	mg/L	11.13.2019 19:27	
Benzo(b)fluoranthene	< 0.000188	0.0188	0.0155	82	0.0155	83	74-138	0	30	mg/L	11.13.2019 19:27	
Benzo(g,h,i)perylene	< 0.000188	0.0188	0.0150	80	0.0150	80	77-127	0	30	mg/L	11.13.2019 19:27	
Benzo(k)fluoranthene	< 0.000188	0.0188	0.0168	89	0.0169	90	67-142	1	30	mg/L	11.13.2019 19:27	
Chrysene	< 0.000188	0.0188	0.0164	87	0.0162	87	66-126	1	30	mg/L	11.13.2019 19:27	
Dibenz(a,h)anthracene	< 0.000188	0.0188	0.0149	79	0.0149	80	71-142	0	30	mg/L	11.13.2019 19:27	
Fluoranthene	< 0.000188	0.0188	0.0174	93	0.0173	93	78-138	1	30	mg/L	11.13.2019 19:27	
Fluorene	< 0.000188	0.0188	0.0180	96	0.0177	95	79-128	2	30	mg/L	11.13.2019 19:27	
Indeno(1,2,3-c,d)Pyrene	< 0.000188	0.0188	0.0149	79	0.0149	80	76-140	0	30	mg/L	11.13.2019 19:27	
Naphthalene	< 0.000376	0.0188	0.0170	90	0.0170	91	72-122	0	30	mg/L	11.13.2019 19:27	
Phenanthrene	< 0.000188	0.0188	0.0175	93	0.0174	93	76-129	1	30	mg/L	11.13.2019 19:27	
Pyrene	<0.000188	0.0188	0.0184	98	0.0184	98	74-138	0	30	mg/L	11.13.2019 19:27	
Surrogate			Mi %R	~	MS Flag	MSD %Re			mits	Units	Analysis Date	
2-Fluorobiphenyl			11	2		111		54	-146	%	11.13.2019 19:27	
Nitrobenzene-d5			11	2		113		46	-151	%	11.13.2019 19:27	
Terphenyl-D14			10	2		104		51	-139	%	11.13.2019 19:27	
- •												

APSAPS MGP Douglas, AZ

Analytical Method:VOCs by SW-846 8260CPrep Method:SW5030BSeq Number:3107278Matrix:WaterDate Prep:11.12.2019MB Sample Id:7690216-1-BLKLCS Sample Id:7690216-1-BKSLCSD Sample Id:7690216-1-BSD

RPD MB Spike LCS LCS Limits %RPD Units Analysis LCSD LCSD Flag **Parameter** Result Amount Result %Rec %Rec Limit Date Result 25 mg/L 11.12.2019 13:38 < 0.100 0.250 0.193 77 0.180 72. 60-140 7 Acetone 11.12.2019 13:38 102 0.0506 66-142 25 mg/L Benzene < 0.00100 0.0500 0.0511 101 1 11.12.2019 13:38 0.0500 0.0488 98 0.0485 97 75-125 1 25 Bromobenzene < 0.00100 mg/L 11.12.2019 13:38 Bromochloromethane < 0.00100 0.0500 0.0495 99 0.0466 93 60-140 6 25 mg/L 0.0482 11.12.2019 13:38 Bromodichloromethane 96 0.0470 94 75-125 3 25 < 0.00100 0.0500 mg/L 11.12.2019 13:38 Bromoform < 0.00500 0.0500 0.0514 103 0.0507 101 75-125 1 25 mg/L 11.12.2019 13:38 Methyl bromide 0.0500 0.047595 0.0447 89 60-140 6 25 mg/L < 0.00500 25 11.12.2019 13:38 Methyl ethyl ketone < 0.0500 0.250 0.220 88 0.208 83 60-140 6 mg/L 0.0500 99 0.0510 75-125 3 25 mg/L 11.12.2019 13:38 n-Butylbenzene < 0.00100 0.0497 102 99 11.12.2019 13:38 0.0500 0.0493 75-125 25 Sec-Butylbenzene < 0.00100 0.0496 99 1 mg/L mg/L 11.12.2019 13:38 tert-Butylbenzene 0.0500 0.0519 104 0.0518 104 75-125 0 25 < 0.00100 mg/L 11.12.2019 13:38 Carbon Disulfide < 0.00500 0.0500 0.0541 108 0.0526 105 60-140 3 25 103 62-125 11.12.2019 13:38 Carbon Tetrachloride 0.0500 0.0513 0.0505 101 2 25 < 0.00500 mg/L 11.12.2019 13:38 25 Chlorobenzene < 0.00100 0.0500 0.0491 98 0.0487 97 60-133 1 mg/L 11.12.2019 13:38 Chloroethane < 0.0100 0.0500 0.0448 90 0.0423 85 60-140 6 25 mg/L 25 11.12.2019 13:38 Chloroform 0.000420 0.0500 0.0495 99 0.0475 95 70-130 4 mg/L 1-Chlorohexane 0.0479 0.0483 97 25 11.12.2019 13:38 < 0.00500 0.0500 96 60-140 1 mg/L 105 0.0497 99 25 mg/L 11.12.2019 13:38 Methyl Chloride < 0.0100 0.0500 0.0526 60-140 6 2-Chlorotoluene < 0.00100 0.0500 0.0498 100 0.0494 99 73-125 1 25 mg/L 11.12.2019 13:38 4-Chlorotoluene < 0.00100 0.0500 0.0497 99 0.0489 98 74-125 2 25 mg/L 11.12.2019 13:38 < 0.00500 0.0500 0.0504 101 0.0485 97 70-130 4 25 mg/L 11.12.2019 13:38 Cyclohexane 95 0.0485 97 75-125 2 25 11.12.2019 13:38 p-Cymene (p-Isopropyltoluene) < 0.00100 0.0500 0.0475 mg/L Dibromochloromethane 0.0500 0.0517 103 0.0513 103 73-125 1 25 mg/L 11 12 2019 13:38 < 0.00500 1,2-Dibromo-3-Chloropropane < 0.00100 0.0500 0.0432 86 0.0445 89 59-125 3 25 mg/L 11.12.2019 13:38 mg/L 11.12.2019 13:38 1,2-Dibromoethane < 0.00500 0.0500 0.0521 104 0.0512 102 73-125 2 25 11.12.2019 13:38 < 0.00100 0.0500 0.0471 94 0.0456 91 69-127 3 25 mg/L Methylene Bromide 11.12.2019 13:38 1,2-Dichlorobenzene < 0.00100 0.0500 0.0499 100 0.0497 99 75-125 0 25 mg/L 1,3-Dichlorobenzene < 0.00100 0.0500 0.0506 101 0.0501 100 75-125 1 25 mg/L 11.12.2019 13:38 11.12.2019 13:38 1.4-Dichlorobenzene < 0.00100 0.0500 0.0496 99 0.0499 100 75-125 1 25 mg/L 11.12.2019 13:38 0.0607 121 0.0584 117 60-140 4 25 Dichlorodifluoromethane < 0.00100 0.0500 mg/L 1,1-Dichloroethane 0.0500 0.0505 101 0.0486 97 72-125 4 25 11.12.2019 13:38 < 0.00100 mg/L 1,2-Dichloroethane < 0.00100 0.0500 0.0447 89 0.0434 87 68-127 3 25 mg/L 11.12.2019 13:38 mg/L 11.12.2019 13:38 1,1-Dichloroethene < 0.00100 0.0500 0.0503 101 0.0491 98 59-172 2 25 25 11.12.2019 13:38 cis-1,2-Dichloroethylene 0.0500 0.0495 99 0.0476 95 75-125 4 mg/L < 0.00100 11.12.2019 13:38 trans-1,2-dichloroethylene < 0.00100 0.0500 0.0510 102 0.0492 98 75-125 4 25 mg/L 1,2-Dichloropropane < 0.00500 0.0500 0.0506 101 0.0504 101 74-125 0 25 mg/L 11.12.2019 13:38 11.12.2019 13:38 1,3-Dichloropropane < 0.00500 0.0500 0.0531 106 0.0521 104 75-125 2 25 mg/L 11.12.2019 13:38 0.0500 0.0523 105 0.0494 99 75-125 6 25 mg/L 2,2-Dichloropropane < 0.00500 11.12.2019 13:38 1,1-Dichloropropene < 0.00500 0.0500 0.0551 110 0.0534 107 75-125 3 25 mg/L cis-1,3-Dichloropropene < 0.00500 0.0500 0.0537 107 0.0524 74-125 2 25 mg/L 11.12.2019 13:38 mg/L 11.12.2019 13:38 trans-1,3-dichloropropene < 0.00500 0.0500 0.0541 108 0.0524 105 66-125 3 25 < 0.000146 mg/L 11.12.2019 13:38 Ethylbenzene 0.0500 0.0491 98 0.0487 97 75-125 1 25 11.12.2019 13:38 Hexachlorobutadiene < 0.00500 0.0500 0.0560112 0.0578 116 75-125 3 25 mg/L 11.12.2019 13:38 2-Hexanone < 0.0500 0.250 0.226 90 0.216 60-140 5 25 mg/L mg/L 11.12.2019 13:38 Isopropylbenzene < 0.00100 0.0500 0.0499 100 0.0502 100 75-125 1 25 0.0470 0.0477 75-125 25 11.12.2019 13:38 Methylcyclohexane < 0.0100 0.0500 94 95 1 mg/L 11.12.2019 13:38 Methylene Chloride < 0.00191 0.0500 0.0478 96 0.0460 92 75-125 4 25 mg/L 0.0471 94 92 2 25 11.12.2019 13:38 Methyl iodide < 0.0200 0.0500 0.0460 75-125 mg/L 11.12.2019 13:38 4-Methyl-2-Pentanone < 0.0500 87 0.211 84 60-140 3 25 0.250 0.218 mg/L 3 25 mg/L 11.12.2019 13:38 MTRE < 0.00500 0.0500 0.0486 97 0.0474 95 65-135

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} [D] &= 100*(C\text{-A}) \, / \, B \\ RPD &= 200* \mid (C\text{-E}) \, / \, (C\text{+E}) \mid \\ [D] &= 100*(C) \, / \, [B] \end{split}$$

 $Log\ Diff. = Log(Sample\ Duplicate) - Log(Original\ Sample)$

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

APSAPS MGP Douglas, AZ

Analytical Method:VOCs by SW-846 8260CPrep Method:SW5030BSeq Number:3107278Matrix:WaterDate Prep:11.12.2019MB Sample Id:7690216-1-BLKLCS Sample Id:7690216-1-BKSLCSD Sample Id:7690216-1-BSD

VID Sample Id. 7070210-1-BEK		200 54111910 141 7050210 1 2112				2002 Sample 101 7070210 1 202						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Naphthalene	< 0.0100	0.0500	0.0581	116	0.0566	113	70-130	3	25	mg/L	11.12.2019 13:38	
n-Propylbenzene	< 0.00100	0.0500	0.0509	102	0.0502	100	75-125	1	25	mg/L	11.12.2019 13:38	
Styrene	< 0.00100	0.0500	0.0526	105	0.0513	103	75-125	3	25	mg/L	11.12.2019 13:38	
1,1,1,2-Tetrachloroethan	e <0.00100	0.0500	0.0484	97	0.0486	97	72-125	0	25	mg/L	11.12.2019 13:38	
1,1,2,2-Tetrachloroethan	e <0.00100	0.0500	0.0482	96	0.0482	96	74-125	0	25	mg/L	11.12.2019 13:38	
Tetrachloroethene	< 0.00100	0.0500	0.0494	99	0.0495	99	71-125	0	25	mg/L	11.12.2019 13:38	
Toluene	< 0.000500	0.0500	0.0498	100	0.0497	99	59-139	0	25	mg/L	11.12.2019 13:38	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0567	113	0.0548	110	75-137	3	25	mg/L	11.12.2019 13:38	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0532	106	0.0526	105	75-135	1	25	mg/L	11.12.2019 13:38	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0498	100	0.0486	97	75-125	2	25	mg/L	11.12.2019 13:38	
1,1,2-Trichloroethane	< 0.00100	0.0500	0.0522	104	0.0522	104	75-127	0	25	mg/L	11.12.2019 13:38	
Trichloroethylene	< 0.00500	0.0500	0.0468	94	0.0462	92	62-137	1	25	mg/L	11.12.2019 13:38	
Trichlorofluoromethane	< 0.00100	0.0500	0.0449	90	0.0437	87	60-140	3	25	mg/L	11.12.2019 13:38	
1,2,3-Trichloropropane	< 0.00100	0.0500	0.0463	93	0.0454	91	75-125	2	25	mg/L	11.12.2019 13:38	
1,2,4-Trimethylbenzene	< 0.00100	0.0500	0.0471	94	0.0476	95	75-125	1	25	mg/L	11.12.2019 13:38	
1,3,5-Trimethylbenzene	< 0.00100	0.0500	0.0511	102	0.0518	104	70-125	1	25	mg/L	11.12.2019 13:38	
o-Xylene	< 0.00100	0.0500	0.0521	104	0.0510	102	75-125	2	25	mg/L	11.12.2019 13:38	
m,p-Xylenes	< 0.000330	0.100	0.101	101	0.0991	99	75-125	2	25	mg/L	11.12.2019 13:38	
Vinyl Acetate	< 0.0500	0.250	0.206	82	0.197	79	60-140	4	25	mg/L	11.12.2019 13:38	
Vinyl Chloride	< 0.00200	0.0500	0.0533	107	0.0510	102	60-140	4	25	mg/L	11.12.2019 13:38	
1,3-Butadiene	< 0.00100	0.0500	0.0529	106	0.0508	102	70-150	4	25	mg/L	11.12.2019 13:38	
Dicyclopentadiene	< 0.00500	0.0500	0.0417	83	0.0419	84	70-120	0	25	mg/L	11.12.2019 13:38	
n-Hexane	< 0.00500	0.0500	0.0457	91	0.0452	90	72-125	1	25	mg/L	11.12.2019 13:38	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Dibromofluoromethane	96		1	01		97		75	-131	%	11.12.2019 13:38	
1,2-Dichloroethane-D4	111		1	03		100	ı	63	-144	%	11.12.2019 13:38	
Toluene-D8	99		1	02		102		80	-117	%	11.12.2019 13:38	

98

97

4-Bromofluorobenzene

102

11.12.2019 13:38

74-124

%

APSAPS MGP Douglas, AZ

 Analytical Method:
 VOCs by SW-846 8260C
 Prep Method:
 SW5030B

 Seq Number:
 3107278
 Matrix:
 Water
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642697-001
 MS Sample Id:
 642697-001 S
 MSD Sample Id:
 642697-001 SD

RPD Parent Spike MS MS Limits %RPD Units Analysis MSD MSD **Parameter** Result Amount Result %Rec %Rec Limit Date Result 11.12.2019 12:51 13.7 110 15.4 60-140 12 25 Acetone < 5.00 12.5 123 mg/L 11.12.2019 12:51 2.22 25 Benzene < 0.0500 2.50 2.25 90 89 66-142 1 mg/L 11.12.2019 12:51 2.50 2.24 90 2.27 91 75-125 1 25 Bromobenzene < 0.0500 mg/L 11.12.2019 12:51 Bromochloromethane < 0.0500 2.50 2.08 83 2.21 88 60-140 6 25 mg/L 11.12.2019 12:51 Bromodichloromethane 2.50 2.27 91 2.28 91 75-125 0 25 < 0.0500 mg/L 11.12.2019 12:51 2.41 Bromoform < 0.250 2.50 2.36 94 96 75-125 2 25 mg/L 11.12.2019 12:51 Methyl bromide < 0.250 2.50 1.83 73 1.95 78 60-140 6 25 mg/L 11.12.2019 12:51 Methyl ethyl ketone < 2.50 12.5 11.4 91 12.8 102 60-140 12 25 mg/L 92 2.35 75-125 2 25 mg/L 11.12.2019 12:51 n-Butylbenzene < 0.0500 2.50 2.31 94 11.12.2019 12:51 2.47 99 75-125 3 25 Sec-Butylbenzene < 0.0500 2.50 2.40 96 mg/L mg/L 11.12.2019 12:51 tert-Butylbenzene < 0.0500 2.36 94 2.43 97 75-125 3 25 2.50 mg/L 11.12.2019 12:51 Carbon Disulfide < 0.250 2.50 1.60 64 1.66 66 60-140 4 25 2.32 4 11.12.2019 12:51 Carbon Tetrachloride 2.50 2.23 89 93 62-125 25 < 0.250 mg/L 11.12.2019 12:51 2.28 91 Chlorobenzene < 0.0500 2.50 2.24 90 60-133 2 25 mg/L 11.12.2019 12:51 Chloroethane < 0.500 2.50 1.94 78 2.11 84 60-140 8 25 mg/L 25 11.12.2019 12:51 Chloroform < 0.0500 2.50 2.14 86 2.26 90 70-130 5 mg/L 87 2.18 0 25 mg/L 11.12.2019 12:51 1-Chlorohexane < 0.250 2.50 2.17 87 60-140 69 1.82 73 5 25 mg/L 11.12.2019 12:51 Methyl Chloride < 0.500 2.50 1.73 60-140 2-Chlorotoluene < 0.0500 2.50 2.25 90 2.29 92 73-125 2 25 mg/L 11.12.2019 12:51 4-Chlorotoluene < 0.0500 2.50 2.21 88 2.28 91 74-125 3 25 mg/L 11.12.2019 12:51 < 0.250 2.50 2.09 84 2.09 84 70-130 0 25 mg/L 11.12.2019 12:51 Cvclohexane 2.50 2.35 2.43 97 75-125 3 25 11.12.2019 12:51 p-Cymene (p-Isopropyltoluene) < 0.0500 94 mg/L 11 12 2019 12:51 Dibromochloromethane 2.50 2.52 101 2.47 99 73-125 2 25 mg/L < 0.250 1,2-Dibromo-3-Chloropropane < 0.0500 2.50 1.88 75 2.21 88 59-125 16 25 mg/L 11.12.2019 12:51 mg/L 11.12.2019 12:51 1,2-Dibromoethane < 0.250 2.50 2.36 94 2.39 96 73-125 1 25 11.12.2019 12:51 84 2.13 85 69-127 2 25 mg/L Methylene Bromide < 0.0500 2.50 2.09 11.12.2019 12:51 1,2-Dichlorobenzene < 0.0500 2.50 2.28 91 2.35 94 75-125 3 25 mg/L 1,3-Dichlorobenzene < 0.0500 2.50 2.30 92 2.37 95 75-125 3 25 mg/L 11.12.2019 12:51 11.12.2019 12:51 1.4-Dichlorobenzene < 0.0500 2.50 2.26 90 2.33 93 75-125 3 25 mg/L 11.12.2019 12:51 2.50 67 1.68 67 60-140 0 25 Dichlorodifluoromethane < 0.0500 1.68 mg/L 11.12.2019 12:51 1,1-Dichloroethane 2.50 2.10 84 2.17 87 72-125 3 25 < 0.0500 mg/L 1,2-Dichloroethane < 0.0500 2.50 2.01 80 2.08 83 68-127 3 25 mg/L 11.12.2019 12:51 mg/L 11.12.2019 12:51 1.1-Dichloroethene < 0.0500 2.50 2.00 80 2.07 83 59-172 3 25 11.12.2019 12:51 cis-1,2-Dichloroethylene 2.50 2.15 86 2.22 89 75-125 3 25 mg/L < 0.0500 11.12.2019 12:51 trans-1,2-dichloroethylene < 0.0500 2.50 2.00 80 2.11 84 75-125 5 25 mg/L 11.12.2019 12:51 1,2-Dichloropropane < 0.250 2.50 2.36 94 2.36 94 74-125 0 25 mg/L 11.12.2019 12:51 1,3-Dichloropropane < 0.250 2.50 2.36 94 2.42 97 75-125 3 25 mg/L 11.12.2019 12:51 2.50 2.26 90 2.37 95 75-125 5 25 mg/L 2,2-Dichloropropane < 0.250 11.12.2019 12:51 1,1-Dichloropropene < 0.250 2.50 2.17 87 2.21 88 75-125 2 25 mg/L cis-1,3-Dichloropropene < 0.250 2.50 2.40 96 2.47 99 74-125 3 25 mg/L 11.12.2019 12:51 mg/L 11.12.2019 12:51 trans-1,3-dichloropropene < 0.250 2.50 2.42 97 2.45 98 66-125 1 25 mg/L 11.12.2019 12:51 Ethylbenzene < 0.0500 2.50 2.23 89 2.26 90 75-125 1 25 11.12.2019 12:51 Hexachlorobutadiene < 0.250 2.50 2.51 100 2.59 104 75-125 3 25 mg/L 11.12.2019 12:51 2-Hexanone < 2.50 12.5 11.3 90 12.1 97 60-140 7 25 mg/L 11.12.2019 12:51 Isopropylbenzene < 0.0500 2.50 2.32 93 2.33 93 75-125 0 25 mg/L 2.08 83 2.01 75-125 3 25 11.12.2019 12:51 Methylcyclohexane < 0.500 2.50 80 mg/L 11.12.2019 12:51 Methylene Chloride < 0.0956 2.50 1.97 79 2.10 84 75-125 6 25 mg/L 93 8 25 11.12.2019 12:51 Methyl iodide < 1.00 2.50 2.14 86 2.32 75-125 mg/L 11.12.2019 12:51 4-Methyl-2-Pentanone 12.5 10.4 83 10.9 87 60-140 5 25 < 2.50 mg/L < 0.250 25 11.12.2019 12:51 MTRE 2.50 2.23 89 2.37 95 65-135 6 mg/L

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\begin{aligned} [D] &= 100*(C-A) \, / \, B \\ RPD &= 200* \mid (C-E) \, / \, (C+E) \mid \\ [D] &= 100*(C) \, / \, [B] \end{aligned}$

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec Flag

APSAPS MGP Douglas, AZ

 Analytical Method:
 VOCs by SW-846 8260C
 Prep Method:
 SW5030B

 Seq Number:
 3107278
 Matrix:
 Water
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642697-001
 MS Sample Id:
 642697-001 S
 MSD Sample Id:
 642697-001 SD

RPD **Parent** Spike MS MS Limits %RPD Units Analysis MSD MSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date 92 11.12.2019 12:51 Naphthalene < 0.500 2.50 2.29 2.63 70-130 14 25 mg/L 105 11.12.2019 12:51 92 75-125 2 25 mg/L n-Propylbenzene < 0.0500 2.50 2.29 2.33 93 11.12.2019 12:51 < 0.0500 2.50 2.35 94 2.40 96 75-125 2 25 Styrene mg/L mg/L 11.12.2019 12:51 1,1,1,2-Tetrachloroethane < 0.0500 2.50 2.40 96 2.36 94 72-125 2 25 74-125 11.12.2019 12:51 1,1,2,2-Tetrachloroethane 2.50 2.26 90 2.38 95 5 25 < 0.0500 mg/L 11.12.2019 12:51 2.07 71-125 Tetrachloroethene < 0.0500 2.50 2.16 86 83 4 25 mg/L 11.12.2019 12:51 Toluene < 0.0500 2.50 2.28 91 2.25 90 59-139 1 25 mg/L 1,2,3-Trichlorobenzene 2.30 92 2.57 75-137 25 11.12.2019 12:51 < 0.250 2.50 103 11 mg/L 2.28 91 2.42 97 75-135 25 11.12.2019 12:51 1,2,4-Trichlorobenzene < 0.250 2.50 6 mg/L 2.28 11.12.2019 12:51 87 91 75-125 5 25 mg/L 1,1,1-Trichloroethane < 0.250 2.50 2.17 11.12.2019 12:51 1,1,2-Trichloroethane < 0.0500 2.50 2.47 99 2.52 101 75-127 2 25 mg/L 90 11.12.2019 12:51 Trichloroethylene < 0.250 2.50 2.25 2.27 62-137 1 25 mg/L 1.92 77 1.99 11.12.2019 12:51 Trichlorofluoromethane 2.50 80 60-140 4 25 < 0.0500 mg/L 11.12.2019 12:51 87 2.28 91 75-125 25 1,2,3-Trichloropropane < 0.0500 2.50 2.18 4 mg/L 11.12.2019 12:51 1,2,4-Trimethylbenzene < 0.0500 2.50 2.22 89 2.26 90 75-125 2 25 mg/L 2.28 91 2.32 93 2 25 11.12.2019 12:51 1,3,5-Trimethylbenzene < 0.0500 2.50 70-125 mg/L 2.50 2.33 93 2.35 94 75-125 25 mg/L 11.12.2019 12:51 o-Xylene < 0.0500 1 4.51 90 4.60 92 75-125 2. 25 mg/L 11.12.2019 12:51 m,p-Xylenes < 0.500 5.00 11.12.2019 12:51 Vinyl Acetate < 2.50 12.5 11.1 89 11.8 94 60-140 6 25 mg/L Vinyl Chloride < 0.100 2.50 1.94 78 2.02 81 60-140 4 25 mg/L 11.12.2019 12:51 1,3-Butadiene < 0.0500 2.50 1.79 72 1.87 75 70-150 4 25 mg/L 11.12.2019 12:51 11.12.2019 12:51 2.50 2.25 90 2.29 92 70-120 2 25 Dicyclopentadiene < 0.250 mg/L 11.12.2019 12:51 n-Hexane < 0.250 2.50 1.89 76 1.87 75 72-125 1 25 mg/L

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	95		99		75-131	%	11.12.2019 12:51
1,2-Dichloroethane-D4	99		100		63-144	%	11.12.2019 12:51
Toluene-D8	104		102		80-117	%	11.12.2019 12:51
4-Bromofluorobenzene	98		98		74-124	%	11.12.2019 12:51

Project Manager:

Judy Heywood

APS

Phone:

602-818-0259

Email: Judith.Heywood@aps.com

Bernice.Kidd@jacobs.com matt.branche@jacobs.com

Phoenix, AZ 85072-3999

PO Box53999, MS 9303

Phone

Send results to Company Name:

Bernice Kidd Matt Branche

Jacobs 480-273-4084

City, State ZIP:

Company Name: Address:

Chain of Custody

Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)

		July 1	Relinquished by: (Signature)	of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are fundamentally for any losses or expenses incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco, but not analyzed. These terms will be expense incurred by the client if such losses are submitted to Xenco.	Notice: Signature of this d	Circle Method(s)									1-7016-110719	Sample Identification	Sample Custody Seals	Cooler Custody Seals	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name:	P.O. Number:	Project Number:	Project Name:
			(Signature)	iable only for the cost rge of \$75.00 will be a	ocument and relinquis	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed		S	S	S	(0)	(0)				tification	iks: Yes No	s: Yes No	(es) No	2.8			700735632	D3118600.A.CS.EV.DG.05-1B	APS MGP Douglas, AZ
	1	M	7	of samples a	hment of sa	20:		0,	0,	0,	S	S	S	S	8 W V	Matrix	RIE	S.	8		Temp Blank:			EV.DG.0	las, AZ
			Received t	and shall not th project and	moles consti										12-2-K	Date Sampled	Tote	Com		(es) No)5-1B	
			Received by: (Signature)	assume any resp t a charge of \$5 fe	TOER / OFER BOILD ONCRA	8RCRA 13PPM									1130	Time Sampled	Total Containers:	Correction Factor:		Thermometer ID	Wet ice:	Due Date	Rush:	Routine	Tu
)	onsibility for a	ON ON	Texas 11									1	Depth				D (Yes No)ate:		ne X	Turn Around
		11-8-1100	Dai	ny losses or submitted to	CRA VB						_				121	Numb				iner		·			
		940	Date/Time	expenses Xenco, b	SO AS BA BE	As Ba										8270 S 2000 6010B/	7474,			l me		8 RC	RA)		
6	4	Ne	-	incurred ut not an	Be C										×	8260B		ıl V)Cs			reser	ved)		
			Relir	thilates a by the cli alyzed. T	ca cr co	Cd Ca	_		_				_	-		8082 - 1 1200	PCBs	-	e e	-8					
			Relinquished	ent if suc	Cn So			_	-	_		_		_	\Box	9095B									ANAL
				ontractors h losses hs will be	Cu Pb Mn Mo Ni Se Ag	o Cu Fe		+		-	\dashv	\dashv		-	┪	SW846 9045B 2710(770	<u> </u>		· Ign	 -	ity	0	0	SISAT
			by: (Signature)	s. It assig are due to enforced	Mo	Fe Pb					+	+	1	 		- <i>7110</i> 0 9013/90 -711 (333	5 , 3	3	YSIS REQUEST
			<u>ē</u>	ns stand circums unless p	Vi Se	Mg Mn Mo																			EST
			38	tractors. It assigns standard terms and conditions losses are due to circumstances beyond the control will be enforced unless previously negotiated.	Ag TI U	ੋਂ		_	_	_	_														
			eceive	s and cor eyond the negotiat	U	N. K		+	-	4	_	+	_	_	1										
			d by: (nditions e control ed.		se Ag		-	\dashv	+	+	-	-		+				 .					-	
			Received by: (Signature)		16	Se Ag SiO2 Na		+	+					\dashv	+				·····						
			e 		31 / 24												I A								
1	+				5.1 / 74	Sr TI Sn									4. 13	Sample	itarts the							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Work C
			Date/Time √		1631 / 245.1 / 7470 / 7471 : Hg	υVZn										Sample Comments	TAT starts the day recevied by the lab, if received by 4:30pm								Work Order Notes

Revised Date 051418 Rev. 2018.1

Deliverables: EDD

ADaPT 🗆

Other:

Reporting:Level III X Level III PST/UST TRRP Level IV

Program: UST/PST□ PRP□ Brownfields〗 RR□ Superfur□

Work Order Comments

www.xenco.com

Page

'호 |

State of Project:

Arizona

Inter-Office Shipment

IOS Number : **51947**

Date/Time: 11.08.2019 Created by: Emily Petrunia Please send report to: Ruriko Konuma

Lab# From: **Phoenix** Delivery Priority: Address: 2525 West Huntington Drive, Suite 102

Lab# To: **Houston** Air Bill No.: 776943469016 E-Mail: ruriko.konuma@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
642702-001	W	D-TOTE-110719	11.07.2019 11:30	SW8270D_SIM_PAH	PAHs by SW846 8270D SIM	11.14.2019	11.14.2019 11:30	RKO	ACNP ACNPY ANTH BZ	
642702-001	W	D-TOTE-110719	11.07.2019 11:30	E608_PCB	PCBs by EPA 608	11.14.2019	11.14.2019 11:30	RKO	PCB1016 PCB1221 PCB1	
642702-001	W	D-TOTE-110719	11.07.2019 11:30	SW8260C_AZ	VOCs by SW-846 8260C	11.14.2019	11.21.2019	RKO	ACE BDCME BRBZ BRO	
642702-001	W	D-TOTE-110719	11.07.2019 11:30	E245.1	Mercury, Total by EPA 245.1	11.14.2019	12.05.2019	RKO	HG	
642702-001	W	D-TOTE-110719	11.07.2019 11:30	E200.8	Recoverable Metals, Total, by EPA 200.8	11.14.2019	05.05.2020	RKO	AG AS BA BE CD CO CI	
642702-001	W	D-TOTE-110719	11.07.2019 11:30	E335.4	Total Cyanide by EPA 335.4	11.14.2019	11.21.2019	RKO	CN	
642702-001	W	D-TOTE-110719	11.07.2019 11:30	SW1010_200F	Flash Point (200F) by SW 1010	11.14.2019	12.07.2019	RKO	FLASHPT	

Inter Office Shipment or Sample Comments:

Relinquished By:

Emily Petrunia

Date Relinquished: 11.11.2019

Received By:

Monica Shakhshir

Date Received:

11.09.2019

Cooler Temperature: 1.8

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Acceptable Temperature Range: 0 - 6 degC Sent To: Houston Air and Metal samples Acceptable Range: Ambient IOS #: 51947 Temperature Measuring device used: HOU-068

Sent By: **Emily Petrunia** Date Sent: 11 08 2019 09 35 AM

Sent by.	Inny i enuma	Date Sent.	11.00.2019 09.337	TAIVI	
Received By: N	Monica Shakhshir	Date Received:	11.09.2019 10.00	AM	
		Sample Rec	ceipt Checklist		Comments
#1 *Temperate	ure of cooler(s)?			1.8	
#2 *Shipping o	container in good condition	n?		Yes	
#3 *Samples r	eceived with appropriate	temperature?		Yes	
#4 *Custody S	Seals intact on shipping c	ontainer/ cooler?		Yes	
#5 *Custody S	Seals Signed and dated for	or Containers/coole	ers	Yes	
#6 *IOS prese	nt?			Yes	
#7 Any missin	g/extra samples?			No	
#8 IOS agrees	with sample label(s)/ma	trix?		Yes	
#9 Sample ma	atrix/ properties agree wit	h IOS?		Yes	
#10 Samples i	in proper container/ bottle	?		Yes	
#11 Samples	properly preserved?			Yes	
#12 Sample co	ontainer(s) intact?			Yes	
#13 Sufficient	sample amount for indica	ated test(s)?		Yes	
#14 All sample	es received within hold tir	ne?		Yes	
* Must be comp	oleted for after-hours d	elivery of samples	s prior to placing i	n the refrigerat	or
NonConformand	ce:				
Corrective Actio	on Taken:				
		Nonconforr	mance Documenta	tion	
Contact:		Contacted by :			Date:
		Contacted by .			
C	hecklist reviewed by:	Anding or			
•		I halling - 1	,	Date: 11.09.20	19

Monica Shakhshir

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Work Order #: 642702

Date/ Time Received: 11/08/2019 02:40:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Date, Time Received: 1,700,2010 02.101001.

#16 All samples received within hold time?

#18 Water VOC samples have zero headspace?

#17 Subcontract of sample(s)?

Temperature Measuring device used: IR#1

Yes

Yes

Yes

Xenco Stafford

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		2.8	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping conta	ainer/ cooler?	N/A	
#5 Custody Seals intact on sample bottles	?	N/A	
#6*Custody Seals Signed and dated?		N/A	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinquis	shed/ received?	Yes	
#10 Chain of Custody agrees with sample	labels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated	test(s)?	Yes	

Analyst: EP PH Device/Lot#: LRS-4801

Checklist completed by: Emily Petrunia

Date: 11/08/2019

Checklist reviewed by:

Date: 11/08/2019

Ruriko Konuma

Date: 11/08/20

^{*} Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analytical Report 642703

for

APS

Project Manager: Judy Heywood

APS MGP Douglas, AZ D3118600.A.CS.EV.DG.05-1B 11.19.2019

Collected By: Client

2525 West Huntington Drive, Suite 102 Tempe, AZ 85282 Ph: (480) 355-0900

Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Houston (EPA Lab code: TX00122): Arizona (AZ0765) Xenco-Dallas (EPA Lab code: TX01468): Arizona (AZ0809)

11.19.2019

Project Manager: Judy Heywood

APS P.O. Box 53999 Mail Station 8376

Phoenix, AZ 85072

Reference: TWA Report No(s): **642703 APS MGP Douglas, AZ**

Project Address:

Judy Heywood:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the TWA Report Number(s) 642703. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the ADHS certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with ADHS standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and ADHS Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by TransWest Analytical. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 642703 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting TransWest Analytical to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ruriko Konuma

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

CASE NARRATIVE

Client Name: APS

Project Name: APS MGP Douglas, AZ

 Project ID:
 D3118600.A. CS. EV. DG. 0.
 Report Date:
 11.19.2019

 Work Order Number(s):
 642703
 Date Received:
 11.08.2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3107624 PCBs by SW-846 8082A

642703-001 analyzed at a dilution due to physical characteristics.

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADHS Data Qualifiers, Revision 4.0 9/05/2012. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- **D1** Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.

Sample Cross Reference 642703

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D-BIN-110719	S	11.07.2019 10:30		642703-001
D-TB02-110719	S	11.07.2019 10:00		642703-002

Tech:

Certificate of Analytical Results 642703

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-BIN-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-001 Date Collected: 11.07.2019 10:30

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

KCS % Solids:

Analyst: KCS Date Prep: 11.12.2019 09:24 Basis: Wet Weight

Seq Number: 3107194 SUB: AZ0765

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Cyanide, Total
 57-12-5
 <0.0582</td>
 0.0582
 mg/kg
 11.12.2019 15:53
 D1
 11.65

Analytical Method: Mercury by SW 7471B Prep Method: SW7471P

Tech: ADS % Solids:

Analyst: ANJ Date Prep: 11.14.2019 07:30 Basis: Wet Weight

Seq Number: 3107510 SUB: AZ0765

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Mercury
 7439-97-6
 <0.0196</td>
 0.0196
 mg/kg
 11.14.2019 14:51
 J
 0.98

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B

Tech: PJB % Solids:

Analyst: DEP Date Prep: 11.12.2019 10:00 Basis: Wet Weight

Seq Number: 3107240 SUB: AZ0765

Result **Parameter** Cas Number RL Dil Units **Analysis Date** Flag 11.1 1.92 11.12.2019 21:40 D2 Arsenic 7440-38-2 9.62 mg/kg D2 Barium 7440-39-3 129 3.85 11.12.2019 21:40 9.62 mg/kg Cadmium 7440-43-9 <1.92 1.92 11.12.2019 21:40 D1 9.62 mg/kg Chromium 7440-47-3 22.4 3.85 11.12.2019 21:40 D2 9.62 mg/kg Lead 7439-92-1 27.0 1.92 mg/kg 11.12.2019 21:40 D2 9.62 Selenium 7782-49-2 < 1.92 1.92 11.12.2019 21:40 D1 9.62 mg/kg Silver 7440-22-4 < 1.92 1.92 mg/kg 11.12.2019 21:40 D1 9.62

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-BIN-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-001 Date Collected: 11.07.2019 10:30

Analytical Method: Ignitability Of Solids By SW1030

Tech: MON % Solids:

Analyst: TNL Basis: Wet Weight

Seq Number: 3107869

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilIgnitabilityNON-Ignitable200mm/2min11.19.2019 08:001

Analytical Method: Paint Filter Liquids Test by SW 9095B

Tech: MON % Solids:

Analyst: TNL Basis: Wet Weight

Seq Number: 3107228

ParameterCas NumberResultRLUnitsAnalysis DateFlagDilPaint FilterPAIFILTERNO FREE LIQUI11.12.2019 10:301

Analytical Method: Soil pH by SW-846 9045C

Tech: KBU % Solids:

Analyst: KBU Basis: Wet Weight

Seq Number: 3107197 SUB: AZ0765

Parameter RL Cas Number Result Dil Units **Analysis Date** Flag SU 11.12.2019 12:26 8.02 pН 12408-02-5 1 Temperature TEMP 25.1 11.12.2019 12:26 1 Deg C

AHI

Tech:

Certificate of Analytical Results 642703

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-BIN-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-001 Date Collected: 11.07.2019 10:30

Analytical Method: PCBs by SW-846 8082A Prep Method: SW3550

% Solids:

Analyst: SHM Date Prep: 11.14.2019 12:15 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PCB-1016	12674-11-2	< 0.0333	0.0333	mg/kg	11.14.2019 22:02	D1	2
PCB-1221	11104-28-2	< 0.0333	0.0333	mg/kg	11.14.2019 22:02	D1	2
PCB-1232	11141-16-5	< 0.0333	0.0333	mg/kg	11.14.2019 22:02	D1	2
PCB-1242	53469-21-9	< 0.0333	0.0333	mg/kg	11.14.2019 22:02	D1	2
PCB-1248	12672-29-6	< 0.0333	0.0333	mg/kg	11.14.2019 22:02	D1	2
PCB-1254	11097-69-1	< 0.0333	0.0333	mg/kg	11.14.2019 22:02	D1	2
PCB-1260	11096-82-5	< 0.0333	0.0333	mg/kg	11.14.2019 22:02	D1	2

	% Recovery				
Surrogate		Units	Limits	Analysis Date	Flag
Decachlorobiphenyl	95	%	39-125	11.14.2019 22:02	
Tetrachloro-m-xylene	63	%	37-124	11.14.2019 22:02	

JOZ

Tech:

Certificate of Analytical Results 642703

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-BIN-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-001 Date Collected: 11.07.2019 10:30

Analytical Method: PAHs by 8270D SIM Prep Method: SW3550

% Solids:

Analyst: DNE Date Prep: 11.12.2019 12:15 Basis: Wet Weight

Seq Number: 3107242 SUB: AZ0765

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
							riag	— <u> </u>
Acenaphthene	83-32-9	< 0.00167	0.00167		mg/kg	11.12.2019 16:08		1
Acenaphthylene	208-96-8	0.00729	0.00167		mg/kg	11.12.2019 16:08		1
Anthracene	120-12-7	0.00602	0.00167		mg/kg	11.12.2019 16:08		1
Benzo(a)anthracene	56-55-3	0.0210	0.00167		mg/kg	11.12.2019 16:08		1
Benzo(a)pyrene	50-32-8	0.0337	0.00167		mg/kg	11.12.2019 16:08		1
Benzo(b) fluoranthene	205-99-2	0.0497	0.00167		mg/kg	11.12.2019 16:08		1
Benzo(g,h,i)perylene	191-24-2	0.0225	0.00167		mg/kg	11.12.2019 16:08		1
Benzo(k) fluoranthene	207-08-9	0.0148	0.00167		mg/kg	11.12.2019 16:08		1
Chrysene	218-01-9	0.0288	0.00167		mg/kg	11.12.2019 16:08		1
Dibenz(a,h)Anthracene	53-70-3	< 0.00167	0.00167		mg/kg	11.12.2019 16:08		1
Fluoranthene	206-44-0	0.0597	0.00167		mg/kg	11.12.2019 16:08		1
Fluorene	86-73-7	0.00186	0.00167		mg/kg	11.12.2019 16:08		1
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.0184	0.00167		mg/kg	11.12.2019 16:08		1
Naphthalene	91-20-3	< 0.0167	0.0167		mg/kg	11.12.2019 16:08		1
Phenanthrene	85-01-8	0.0313	0.00167		mg/kg	11.12.2019 16:08		1
Pyrene	129-00-0	0.0716	0.00167		mg/kg	11.12.2019 16:08		1
		% Recovery						
Surrogate			Units	Limits	Analy	ysis Date Fla	ag	
Nitrobenzene-d5		125	%	31-130	11.12	2.2019 16:08		
2-Fluorobiphenyl		99	%	51-133	11.12	2.2019 16:08		
Terphenyl-D14		113	%	46-137	11.12	2.2019 16:08		

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-BIN-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-001 Date Collected: 11.07.2019 10:30

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Solids:

Analyst: SAD Date Prep: 11.11.2019 15:50 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,1,1-Trichloroethane	71-55-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,1,2,2-Tetrachloroethane	79-34-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,1,2-Trichloroethane	79-00-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,1-Dichloroethane	75-34-3	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,1-Dichloroethene	75-35-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,1-Dichloropropene	563-58-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2,3-Trichlorobenzene	87-61-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2,3-Trichloropropane	96-18-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2,4-Trichlorobenzene	120-82-1	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2,4-Trimethylbenzene	95-63-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2-Dibromoethane	106-93-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2-Dichlorobenzene	95-50-1	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2-Dichloroethane	107-06-2	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,2-Dichloropropane	78-87-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,3,5-Trimethylbenzene	108-67-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,3-Dichlorobenzene	541-73-1	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,3-Dichloropropane	142-28-9	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,4-Dichlorobenzene	106-46-7	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
2,2-Dichloropropane	594-20-7	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
2-Butanone	78-93-3	<1.06	1.06	mg/kg	11.11.2019 20:12	U	52.97
2-Chlorotoluene	95-49-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
2-Hexanone	591-78-6	<2.65	2.65	mg/kg	11.11.2019 20:12	U	52.97
4-Chlorotoluene	106-43-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
4-Methyl-2-Pentanone	108-10-1	<2.65	2.65	mg/kg	11.11.2019 20:12	U	52.97
Acetone	67-64-1	<5.30	5.30	mg/kg	11.11.2019 20:12	U	52.97
Benzene	71-43-2	< 0.0530	0.0530	mg/kg	11.11.2019 20:12	U	52.97
Bromobenzene	108-86-1	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Bromochloromethane	74-97-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Bromodichloromethane	75-27-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Bromoform	75-25-2	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Bromomethane	74-83-9	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Carbon Disulfide	75-15-0	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Carbon Tetrachloride	56-23-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Chlorobenzene	108-90-7	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Chloroethane	75-00-3	< 0.530	0.530	mg/kg	11.11.2019 20:12	U	52.97
Chloroform	67-66-3	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: D-BIN-110719 Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-001 Date Collected: 11.07.2019 10:30

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Solids:

Analyst: SAD Date Prep: 11.11.2019 15:50 Basis: Wet Weight

Parameter	Cas Number	Result RL		Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
cis-1,2-Dichloroethene	156-59-2	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
cis-1,3-Dichloropropene	10061-01-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Dibromochloromethane	124-48-1	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Dibromomethane	74-95-3	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Dichlorodifluoromethane	75-71-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Ethylbenzene	100-41-4	< 0.0530	0.0530	mg/kg	11.11.2019 20:12	U	52.97
Hexachlorobutadiene	87-68-3	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Iodomethane (Methyl Iodide)	74-88-4	<1.06	1.06	mg/kg	11.11.2019 20:12	U	52.97
Isopropylbenzene	98-82-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
m,p-Xylenes	179601-23-1	< 0.106	0.106	mg/kg	11.11.2019 20:12	U	52.97
Methylene Chloride	75-09-2	<1.06	1.06	mg/kg	11.11.2019 20:12	U	52.97
MTBE	1634-04-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Naphthalene	91-20-3	< 0.530	0.530	mg/kg	11.11.2019 20:12	U	52.97
n-Butylbenzene	104-51-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
n-Propylbenzene	103-65-1	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
o-Xylene	95-47-6	< 0.0530	0.0530	mg/kg	11.11.2019 20:12	U	52.97
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Sec-Butylbenzene	135-98-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Styrene	100-42-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
tert-Butylbenzene	98-06-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Tetrachloroethylene	127-18-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Toluene	108-88-3	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Total Xylenes	1330-20-7	< 0.0530	0.0530	mg/kg	11.11.2019 20:12	U	52.97
trans-1,2-dichloroethene	156-60-5	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
trans-1,3-dichloropropene	10061-02-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Trichloroethene	79-01-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Trichlorofluoromethane	75-69-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Vinyl Acetate	108-05-4	< 0.530	0.530	mg/kg	11.11.2019 20:12	U	52.97
Vinyl Chloride	75-01-4	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
1,3-Butadiene	106-99-0	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Cyclohexane	110-82-7	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Dicyclopentadiene	77-73-6	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Methylcyclohexane	108-87-2	< 0.530	0.530	mg/kg	11.11.2019 20:12	U	52.97
n-Hexane	110-54-3	< 0.530	0.530	mg/kg	11.11.2019 20:12	U	52.97
4-Ethyltoluene	622-96-8	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97
Propene	115-07-1	< 0.265	0.265	mg/kg	11.11.2019 20:12	U	52.97

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-BIN-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-001 Date Collected: 11.07.2019 10:30

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Solids:

Analyst: SAD Date Prep: 11.11.2019 15:50 Basis: Wet Weight

% Recovery										
Surrogate		Units	Limits	Analysis Date	Flag					
Dibromofluoromethane	96	%	53-142	11.11.2019 20:12						
1,2-Dichloroethane-D4	101	%	56-150	11.11.2019 20:12						
Toluene-D8	104	%	70-130	11.11.2019 20:12						
4-Bromofluorobenzene	96	%	68-152	11.11.2019 20:12						

Tech:

Certificate of Analytical Results 642703

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-TB02-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-002 Date Collected: 11.07.2019 10:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Solids:

Analyst: SAD Date Prep: 11.11.2019 15:50 Basis: Wet Weight

Parameter	Cas Number	Result RL			Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,1,1-Trichloroethane	71-55-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,1,2,2-Tetrachloroethane	79-34-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,1,2-Trichloroethane	79-00-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,1-Dichloroethane	75-34-3	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,1-Dichloroethene	75-35-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,1-Dichloropropene	563-58-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2,3-Trichlorobenzene	87-61-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2,3-Trichloropropane	96-18-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2,4-Trichlorobenzene	120-82-1	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2,4-Trimethylbenzene	95-63-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2-Dibromoethane	106-93-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2-Dichlorobenzene	95-50-1	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2-Dichloroethane	107-06-2	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,2-Dichloropropane	78-87-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,3,5-Trimethylbenzene	108-67-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,3-Dichlorobenzene	541-73-1	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,3-Dichloropropane	142-28-9	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,4-Dichlorobenzene	106-46-7	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
2,2-Dichloropropane	594-20-7	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
2-Butanone	78-93-3	<1.00	1.00	mg/kg	11.11.2019 20:33	U	50
2-Chlorotoluene	95-49-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
2-Hexanone	591-78-6	< 2.50	2.50	mg/kg	11.11.2019 20:33	U	50
4-Chlorotoluene	106-43-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
4-Methyl-2-Pentanone	108-10-1	< 2.50	2.50	mg/kg	11.11.2019 20:33	U	50
Acetone	67-64-1	< 5.00	5.00	mg/kg	11.11.2019 20:33	U	50
Benzene	71-43-2	< 0.0500	0.0500	mg/kg	11.11.2019 20:33	U	50
Bromobenzene	108-86-1	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Bromochloromethane	74-97-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Bromodichloromethane	75-27-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Bromoform	75-25-2	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Bromomethane	74-83-9	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Carbon Disulfide	75-15-0	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Carbon Tetrachloride	56-23-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Chlorobenzene	108-90-7	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Chloroethane	75-00-3	< 0.500	0.500	mg/kg	11.11.2019 20:33	U	50
Chloroform	67-66-3	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50

Tech:

Certificate of Analytical Results 642703

APS, Phoenix, AZAPS MGP Douglas, AZ

Sample Id: **D-TB02-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-002 Date Collected: 11.07.2019 10:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

SAD % Solids:

Analyst: SAD Date Prep: 11.11.2019 15:50 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloromethane	74-87-3	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
cis-1,2-Dichloroethene	156-59-2	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
cis-1,3-Dichloropropene	10061-01-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Dibromochloromethane	124-48-1	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Dibromomethane	74-95-3	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Dichlorodifluoromethane	75-71-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Ethylbenzene	100-41-4	< 0.0500	0.0500	mg/kg	11.11.2019 20:33	U	50
Hexachlorobutadiene	87-68-3	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Iodomethane (Methyl Iodide)	74-88-4	<1.00	1.00	mg/kg	11.11.2019 20:33	U	50
Isopropylbenzene	98-82-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
m,p-Xylenes	179601-23-1	< 0.100	0.100	mg/kg	11.11.2019 20:33	U	50
Methylene Chloride	75-09-2	<1.00	1.00	mg/kg	11.11.2019 20:33	U	50
MTBE	1634-04-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Naphthalene	91-20-3	< 0.500	0.500	mg/kg	11.11.2019 20:33	U	50
n-Butylbenzene	104-51-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
n-Propylbenzene	103-65-1	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
o-Xylene	95-47-6	< 0.0500	0.0500	mg/kg	11.11.2019 20:33	U	50
p-Cymene (p-Isopropyltoluene)	99-87-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Sec-Butylbenzene	135-98-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Styrene	100-42-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
tert-Butylbenzene	98-06-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Tetrachloroethylene	127-18-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Toluene	108-88-3	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Total Xylenes	1330-20-7	< 0.0500	0.0500	mg/kg	11.11.2019 20:33	U	50
trans-1,2-dichloroethene	156-60-5	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
trans-1,3-dichloropropene	10061-02-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Trichloroethene	79-01-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Trichlorofluoromethane	75-69-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Vinyl Acetate	108-05-4	< 0.500	0.500	mg/kg	11.11.2019 20:33	U	50
Vinyl Chloride	75-01-4	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
1,3-Butadiene	106-99-0	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Cyclohexane	110-82-7	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Dicyclopentadiene	77-73-6	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Methylcyclohexane	108-87-2	< 0.500	0.500	mg/kg	11.11.2019 20:33	U	50
n-Hexane	110-54-3	< 0.500	0.500	mg/kg	11.11.2019 20:33	U	50
4-Ethyltoluene	622-96-8	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50
Propene	115-07-1	< 0.250	0.250	mg/kg	11.11.2019 20:33	U	50

APS, Phoenix, AZ

APS MGP Douglas, AZ

Sample Id: **D-TB02-110719** Matrix: Soil Date Received:11.08.2019 14:40

Lab Sample Id: 642703-002 Date Collected: 11.07.2019 10:00

Analytical Method: Volatiles by SW 8260C Prep Method: SW5035A

Tech: SAD % Solids:

Analyst: SAD Date Prep: 11.11.2019 15:50 Basis: Wet Weight

	% Recovery				
Surrogate	•	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	95	%	53-142	11.11.2019 20:33	
1,2-Dichloroethane-D4	99	%	56-150	11.11.2019 20:33	
Toluene-D8	101	%	70-130	11.11.2019 20:33	
4-Bromofluorobenzene	94	%	68-152	11.11.2019 20:33	

APS

APS MGP Douglas, AZ

Analytical Method: Total Cyanide by SW 9012 E335.4P Prep Method: Seq Number: 3107194 Matrix: Solid Date Prep: 11.12.2019

7690106-1-BLK LCS Sample Id: 7690106-1-BKS MB Sample Id:

< 0.00349

0.182

LCS LCS MB Spike Limits Units Analysis Flag **Parameter** Result Amount Result %Rec Date

< 0.0286 1.15 1.11 97 85-115 11.12.2019 15:33 Cyanide, Total mg/kg

Analytical Method: Total Cyanide by SW 9012 Prep Method: E335.4P

Seq Number: 3107194 Matrix: Soil Date Prep: 11.12.2019 MS Sample Id: 642585-004 S MSD Sample Id: 642585-004 SD Parent Sample Id: 642585-004

%RPD Parent Spike MS MS MSD MSD Limits RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date 20 11.12.2019 15:48 Cyanide, Total < 0.0297 2.39 1.89 79 1.84 76 85-115 3 mg/kg M2

SW7471P Analytical Method: Mercury by SW 7471B Prep Method:

3107510 Seq Number: Matrix: Solid Date Prep: 11.14.2019 LCS Sample Id: 7690315-1-BKS LCSD Sample Id: 7690315-1-BSD MB Sample Id: 7690315-1-BLK

96

RPD MR Spike LCS LCS %RPD Units Analysis LCSD LCSD Limits Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec

0.181

99

80-120

20

mg/kg

4

11.14.2019 13:08

SW7471P Analytical Method: Mercury by SW 7471B Prep Method:

0.174

Seq Number: 3107510 Matrix: Soil 11.14.2019 Date Prep: Parent Sample Id: 642592-001 MS Sample Id: 642592-001 S MSD Sample Id: 642592-001 SD

RPD **Parent** Spike MS MS MSD MSD Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 11.14.2019 15:01 0.00791 95 94 20 Mercury 0.217 0.214 0.209 75-125 2 mg/kg

SW7471P **Analytical Method:** Mercury by SW 7471B Prep Method:

Seq Number: 3107510 Matrix: Soil Date Prep: 11.14.2019 642672-005 S MSD Sample Id: 642672-005 SD Parent Sample Id: 642672-005 MS Sample Id:

Parent Spike MS MS Limits %RPD RPD Units Analysis MSD MSD Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec

11.14.2019 13:13 20 Mercury 0.00606 0.202 0.201 97 0.198 97 75-125 2 mg/kg

Mercury

APS

APS MGP Douglas, AZ

Analytical Method: Metals, RCRA List, by SW 6020 Prep Method: SW3050B Seq Number: 3107240 Matrix: Solid Date Prep: 11.12.2019

MB Sample Id: 7690131-1-BLK LCS Sample Id: 7690131-1-BKS LCSD Sample Id: 7690131-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	< 0.200	10.0	9.78	98	9.68	97	80-120	1	20	mg/kg	11.12.2019 20:19	
Barium	< 0.400	10.0	9.78	98	9.67	97	80-120	1	20	mg/kg	11.12.2019 20:19	
Cadmium	< 0.200	10.0	9.72	97	9.76	98	80-120	0	20	mg/kg	11.12.2019 20:19	
Chromium	< 0.400	10.0	9.72	97	9.77	98	80-120	1	20	mg/kg	11.12.2019 20:19	
Lead	< 0.200	10.0	9.84	98	9.82	98	80-120	0	20	mg/kg	11.12.2019 20:19	
Selenium	< 0.200	10.0	9.79	98	9.81	98	80-120	0	20	mg/kg	11.12.2019 20:19	
Silver	< 0.200	5.00	5.01	100	5.02	100	80-120	0	20	mg/kg	11.12.2019 20:19	

Analytical Method: Metals, RCRA List, by SW 6020

 Seq Number:
 3107240
 Matrix:
 Soil
 Date Prep:
 11.12.2019

 Parent Sample Id:
 642586-001
 MS Sample Id:
 642586-001 S
 MSD Sample Id:
 642586-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Arsenic	2.52	12.6	15.6	104	12.8	98	75-125	20	30	mg/kg	11.12.2019 20:28	
Barium	83.2	12.6	102	149	86.1	28	75-125	17	30	mg/kg	11.12.2019 20:28	M1M2
Cadmium	< 0.146	12.6	12.8	102	10.6	101	75-125	19	30	mg/kg	11.12.2019 20:28	
Chromium	15.0	12.6	29.6	116	24.6	91	75-125	18	30	mg/kg	11.12.2019 20:28	
Lead	14.4	12.6	29.3	118	24.4	95	75-125	18	30	mg/kg	11.12.2019 20:28	
Selenium	< 0.623	12.6	13.7	109	11.2	101	75-125	20	30	mg/kg	11.12.2019 20:28	
Silver	< 0.200	6.28	5.88	94	4.86	93	75-125	19	30	mg/kg	11.12.2019 20:28	

Analytical Method: Paint Filter Liquids Test by SW 9095B

Seq Number: 3107228 Matrix: Soil

Parent Sample Id: 642703-001 MD Sample Id: 642703-001 D

MD %RPD RPD Parent Units Analysis Flag **Parameter** Result Result Limit Date NO FREE LIQU 11.12.2019 10:30 Paint Filter NO FREE L 0 0

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3107197 Matrix: Soil

Parent Sample Id: 642671-001 MD Sample Id: 642671-001 D

MD %RPD RPD **Parent** Units Analysis Flag **Parameter** Result Result Limit Date pН 8.40 8.41 0 20 SU11.12.2019 12:26 11.12.2019 12:26 23.2 23.5 25 Deg C Temperature

Prep Method:

SW3050B

APS

APS MGP Douglas, AZ

Analytical Method: Soil pH by SW-846 9045C

Seq Number: 3107197 Matrix: Solid

< 0.0167

0.167

Parent Sample Id: 642675-007 MD Sample Id: 642675-007 D

Parameter	Parent Result	MD Result	%RPD	RPD Limit	Units	Analysis Date	Flag
pH	8.91	8.92	0	20	SU	11.12.2019 12:26	
Temperature	25.3	25.1	1	25	Deg C	11.12.2019 12:26	

Analytical Method:PCBs by SW-846 8082APrep Method:SW3550Seq Number:3107624Matrix: SolidDate Prep:11.14.2019

MB Sample Id: 7690334-1-BLK LCS Sample Id: 7690334-1-BKS LCSD Sample Id: 7690334-1-BSD

Spike LCS RPD Units MB LCS Limits %RPD Analysis LCSD LCSD Flag **Parameter** Limit Result Amount Result %Rec Date Result %Rec 11.14.2019 12:52 PCB-1016 < 0.0167 0.167 0.111 66 0.110 66 54-121 1 20 mg/kg 20 11.14.2019 12:52 PCB-1260 < 0.0167 0.167 0.130 78 0.124 74 41-126 5 mg/kg

LCSD MB LCS MB LCS LCSD Limits Units Analysis Surrogate Flag Flag Flag %Rec Date %Rec %Rec 11.14.2019 12:52 92 87 % Decachlorobiphenyl 93 39-125 11.14.2019 12:52 % Tetrachloro-m-xylene 54 53 63 37-124

Analytical Method: PCBs by SW-846 8082A Prep Method: SW3550

0.128

41

 Seq Number:
 3107624
 Matrix:
 Soil
 Date Prep:
 11.14.2019

 Parent Sample Id:
 642366-011
 MS Sample Id:
 642366-011 S
 MSD Sample Id:
 642366-011 SD

Spike MS %RPD RPD Analysis Parent MS MSD **MSD** Limits Units **Parameter** Limit Date Result Amount Result %Rec Result %Rec 11.14.2019 17:13 PCB-1016 < 0.0167 0.167 0.134 80 0.136 81 54-121 1 20 mg/kg

77

0.134

80

62

41-126

5

20

37-124

mg/kg

%

11.14.2019 17:13

11.14.2019 17:13

MS MS **MSD** MSD Limits Units Analysis **Surrogate** Flag Flag %Rec %Rec Date 11.14.2019 17:13 Decachlorobiphenyl 95 93 39-125 %

PCB-1260

Tetrachloro-m-xylene

Flag

QC Summary 642703

APS APS MGP Douglas, AZ

Prep Method: SW3550 Analytical Method: PAHs by 8270D SIM Seq Number: 3107242 Matrix: Solid Date Prep: 11.12.2019 LCSD Sample Id: 7690109-1-BSD

LCS Sample Id: 7690109-1-BKS MB Sample Id: 7690109-1-BLK

mb bumple id.	7070107 I BEIL			1								
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	1
Acenaphthene	< 0.00167	0.0333	0.0273	82	0.0270	81	42-116	1	25	mg/kg	11.12.2019 10:57	
Acenaphthylene	< 0.00167	0.0333	0.0264	79	0.0264	79	42-121	0	25	mg/kg	11.12.2019 10:57	
Anthracene	< 0.00167	0.0333	0.0256	77	0.0256	77	44-120	0	25	mg/kg	11.12.2019 10:57	
Benzo(a)anthracene	< 0.00167	0.0333	0.0286	86	0.0284	85	52-121	1	25	mg/kg	11.12.2019 10:57	
Benzo(a)pyrene	< 0.00167	0.0333	0.0262	79	0.0263	79	50-128	0	25	mg/kg	11.12.2019 10:57	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0319	96	0.0303	91	49-137	5	25	mg/kg	11.12.2019 10:57	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0273	82	0.0270	81	47-132	1	25	mg/kg	11.12.2019 10:57	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0289	87	0.0304	91	48-133	5	25	mg/kg	11.12.2019 10:57	
Chrysene	< 0.00167	0.0333	0.0280	84	0.0279	84	54-113	0	25	mg/kg	11.12.2019 10:57	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0294	88	0.0291	87	48-133	1	25	mg/kg	11.12.2019 10:57	
Fluoranthene	< 0.00167	0.0333	0.0280	84	0.0278	83	54-128	1	25	mg/kg	11.12.2019 10:57	
Fluorene	< 0.00167	0.0333	0.0281	84	0.0279	84	44-118	1	25	mg/kg	11.12.2019 10:57	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0289	87	0.0286	86	49-129	1	25	mg/kg	11.12.2019 10:57	
Naphthalene	< 0.0167	0.0333	0.0267	80	0.0266	80	40-135	0	25	mg/kg	11.12.2019 10:57	
Phenanthrene	< 0.00167	0.0333	0.0284	85	0.0281	84	44-119	1	25	mg/kg	11.12.2019 10:57	
Pyrene	< 0.00167	0.0333	0.0304	91	0.0302	91	50-126	1	25	mg/kg	11.12.2019 10:57	

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
Nitrobenzene-d5	115		120		122		31-130	%	11.12.2019 10:57
2-Fluorobiphenyl	94		97		99		51-133	%	11.12.2019 10:57
Terphenyl-D14	100		104		107		46-137	%	11.12.2019 10:57

Flag

APS APS MGP Douglas, AZ

Analytical Method: PAHs by 8270D SIM

Prep Method: SW3550 Seq Number: 3107242 Matrix: Soil Date Prep: 11.12.2019 MS Sample Id: 642294-001 S Parent Sample Id: 642294-001 MSD Sample Id: 642294-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	< 0.00167	0.0333	0.0272	82	0.0240	72	42-116	13	25	mg/kg	11.12.2019 14:45	
Acenaphthylene	< 0.00167	0.0333	0.0268	80	0.0237	71	42-121	12	25	mg/kg	11.12.2019 14:45	
Anthracene	< 0.00167	0.0333	0.0288	86	0.0256	77	44-120	12	25	mg/kg	11.12.2019 14:45	
Benzo(a)anthracene	< 0.00167	0.0333	0.0308	92	0.0273	82	52-121	12	25	mg/kg	11.12.2019 14:45	
Benzo(a)pyrene	< 0.00167	0.0333	0.0317	95	0.0280	84	50-128	12	25	mg/kg	11.12.2019 14:45	
Benzo(b)fluoranthene	< 0.00167	0.0333	0.0356	107	0.0317	95	49-137	12	25	mg/kg	11.12.2019 14:45	
Benzo(g,h,i)perylene	< 0.00167	0.0333	0.0218	65	0.0176	53	47-132	21	25	mg/kg	11.12.2019 14:45	
Benzo(k)fluoranthene	< 0.00167	0.0333	0.0321	96	0.0289	87	48-133	10	25	mg/kg	11.12.2019 14:45	
Chrysene	< 0.00167	0.0333	0.0297	89	0.0263	79	54-113	12	25	mg/kg	11.12.2019 14:45	
Dibenz(a,h)Anthracene	< 0.00167	0.0333	0.0260	78	0.0218	65	48-133	18	25	mg/kg	11.12.2019 14:45	
Fluoranthene	< 0.00167	0.0333	0.0296	89	0.0260	78	54-128	13	25	mg/kg	11.12.2019 14:45	
Fluorene	< 0.00167	0.0333	0.0280	84	0.0248	74	44-118	12	25	mg/kg	11.12.2019 14:45	
Indeno(1,2,3-c,d)Pyrene	< 0.00167	0.0333	0.0248	74	0.0206	62	49-129	19	25	mg/kg	11.12.2019 14:45	
Naphthalene	< 0.0167	0.0333	0.0263	79	0.0234	70	40-135	12	25	mg/kg	11.12.2019 14:45	
Phenanthrene	< 0.00167	0.0333	0.0292	88	0.0260	78	44-119	12	25	mg/kg	11.12.2019 14:45	
Pyrene	< 0.00167	0.0333	0.0324	97	0.0284	85	50-126	13	25	mg/kg	11.12.2019 14:45	
Surragata			N	IS I	MS	MSD	MSI) Li	mits	Units	Analysis	

Surrogate	MS MS %Rec Flag	112020	ISD Limits Flag	Units	Analysis Date
Nitrobenzene-d5	124	106	31-130	%	11.12.2019 14:45
2-Fluorobiphenyl	101	87	51-133	%	11.12.2019 14:45
Terphenyl-D14	118	101	46-137	%	11.12.2019 14:45

QC Summary 642703

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: Seq Number: 3107061 Matrix: Solid Date Prep: 11.11.2019 LCS Sample Id: 7690080-1-BKS MB Sample Id: 7690080-1-BLK LCSD Sample Id: 7690080-1-BSD

WIB Sample Id. 703000	0-1-DLK		200 041	p.10 10.	, 0, 0000	2110		200.	o oumpre	14. 709	0000 1 202	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0492	98	0.0520	104	72-125	6	25	mg/kg	11.11.2019 10:30	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0476	95	0.0485	97	75-125	2	25	mg/kg	11.11.2019 10:30	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0491	98	0.0502	100	74-125	2	25	mg/kg	11.11.2019 10:30	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0486	97	0.0485	97	75-127	0	25	mg/kg	11.11.2019 10:30	
1,1-Dichloroethane	< 0.00500	0.0500	0.0488	98	0.0501	100	72-125	3	25	mg/kg	11.11.2019 10:30	
1,1-Dichloroethene	< 0.00500	0.0500	0.0494	99	0.0513	103	59-172	4	25	mg/kg	11.11.2019 10:30	
1,1-Dichloropropene	< 0.00500	0.0500	0.0483	97	0.0503	101	75-125	4	25	mg/kg	11.11.2019 10:30	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0486	97	0.0528	106	75-137	8	25	mg/kg	11.11.2019 10:30	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0488	98	0.0484	97	75-125	1	25	mg/kg	11.11.2019 10:30	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0494	99	0.0533	107	75-135	8	25	mg/kg	11.11.2019 10:30	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0477	95	0.0504	101	75-125	6	25	mg/kg	11.11.2019 10:30	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0511	102	0.0525	105	59-125	3	25	mg/kg	11.11.2019 10:30	
1,2-Dibromoethane	< 0.00500	0.0500	0.0482	96	0.0489	98	73-125	1	25	mg/kg	11.11.2019 10:30	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0484	97	0.0509	102	75-125	5	25	mg/kg	11.11.2019 10:30	
1,2-Dichloroethane	< 0.00500	0.0500	0.0460	92	0.0465	93	68-127	1	25	mg/kg	11.11.2019 10:30	
1,2-Dichloropropane	< 0.00500	0.0500	0.0481	96	0.0477	95	74-125	1	25	mg/kg	11.11.2019 10:30	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0506	101	0.0549	110	70-130	8	25	mg/kg	11.11.2019 10:30	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0501	100	0.0510	102	75-125	2	25	mg/kg	11.11.2019 10:30	
1,3-Dichloropropane	< 0.00500	0.0500	0.0516	103	0.0510	102	75-125	1	25	mg/kg	11.11.2019 10:30	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0489	98	0.0501	100	75-125	2	25	mg/kg	11.11.2019 10:30	
2,2-Dichloropropane	< 0.00500	0.0500	0.0488	98	0.0500	100	75-125	2	25	mg/kg	11.11.2019 10:30	
2-Butanone	< 0.0200	0.250	0.197	79	0.204	82	75-125	3	25	mg/kg	11.11.2019 10:30	
2-Chlorotoluene	< 0.00500	0.0500	0.0492	98	0.0520	104	73-125	6	25	mg/kg	11.11.2019 10:30	
2-Hexanone	< 0.0500	0.250	0.235	94	0.219	88	75-125	7	25	mg/kg	11.11.2019 10:30	
4-Chlorotoluene	< 0.00500	0.0500	0.0499	100	0.0515	103	74-125	3	25	mg/kg	11.11.2019 10:30	
4-Methyl-2-Pentanone	< 0.0500	0.250	0.246	98	0.233	93	60-140	5	25	mg/kg	11.11.2019 10:30	
Acetone	< 0.100	0.250	0.153	61	0.156	62	50-150	2	25	mg/kg	11.11.2019 10:30	
Benzene	< 0.00100	0.0500	0.0473	95	0.0484	97	66-142	2	25	mg/kg	11.11.2019 10:30	
Bromobenzene	< 0.00500	0.0500	0.0497	99	0.0516	103	75-125	4	25	mg/kg	11.11.2019 10:30	
Bromochloromethane	< 0.00500	0.0500	0.0476	95	0.0490	98	60-140	3	25	mg/kg	11.11.2019 10:30	
Bromodichloromethane	< 0.00500	0.0500	0.0500	100	0.0507	101	75-125	1	25	mg/kg	11.11.2019 10:30	
Bromoform	< 0.00500	0.0500	0.0618	124	0.0605	121	75-125	2	25	mg/kg	11.11.2019 10:30	
Bromomethane	< 0.00500	0.0500	0.0389	78	0.0397	79	60-140	2	25	mg/kg	11.11.2019 10:30	
Carbon Disulfide	< 0.00500	0.0500	0.0585	117	0.0596	119	60-140	2	25	mg/kg	11.11.2019 10:30	
Carbon Tetrachloride	< 0.00500	0.0500	0.0492	98	0.0507	101	62-125	3	25	mg/kg	11.11.2019 10:30	
Chlorobenzene	< 0.00500	0.0500	0.0478	96	0.0488	98	60-133	2	25	mg/kg	11.11.2019 10:30	
Chloroethane	< 0.0100	0.0500	0.0383	77	0.0391	78	60-140	2	25	mg/kg	11.11.2019 10:30	
Chloroform	< 0.00500	0.0500	0.0470	94	0.0482	96	74-125	3	25	mg/kg	11.11.2019 10:30	
Chloromethane	< 0.00500	0.0500	0.0473	95	0.0508	102	60-140	7	25	mg/kg	11.11.2019 10:30	
cis-1,2-Dichloroethene	< 0.00500	0.0500	0.0474	95	0.0490	98	75-125	3	25	mg/kg	11.11.2019 10:30	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0518	104	0.0507	101	74-125	2	25	mg/kg	11.11.2019 10:30	
Dibromochloromethane	< 0.00500	0.0500	0.0539	108	0.0551	110	73-125	2	25	mg/kg	11.11.2019 10:30	
Dibromomethane	< 0.00500	0.0500	0.0479	96	0.0471	94	69-127	2	25	mg/kg	11.11.2019 10:30	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0663	133	0.0659	132	65-135	1	25	mg/kg	11.11.2019 10:30	
Ethylbenzene	< 0.00100	0.0500	0.0497	99	0.0500	100	75-125	1	25	mg/kg	11.11.2019 10:30	
Hexachlorobutadiene	< 0.00500	0.0500	0.0502	100	0.0534	107	75-125	6	25	mg/kg	11.11.2019 10:30	
Iodomethane (Methyl Iodide)	< 0.0200	0.0500	0.0408	82	0.0417	83	75-125	2	25	mg/kg	11.11.2019 10:30	
Isopropylbenzene	< 0.00500	0.0500	0.0519	104	0.0547	109	75-125	5	25	mg/kg	11.11.2019 10:30	
m,p-Xylenes	< 0.00200	0.100	0.101	101	0.102	102	75-125	1	25	mg/kg	11.11.2019 10:30	
Methylene Chloride	< 0.0200	0.0500	0.0513	103	0.0529	106	75-125	3	25	mg/kg	11.11.2019 10:30	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B

RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

QC Summary 642703

APS APS MGP Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3107061Matrix:SolidDate Prep:11.11.2019MB Sample Id:7690080-1-BLKLCS Sample Id:7690080-1-BKSLCSD Sample Id:7690080-1-BSD

WID Sample Id. 703	70000-1- DL IX		200 000	p.10 10.	,0,0000	2110		200.	o oumpi		0000 1 202	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.00500	0.0500	0.0482	96	0.0495	99	60-140	3	25	mg/kg	11.11.2019 10:30	
Naphthalene	< 0.0100	0.0500	0.0518	104	0.0562	112	70-130	8	25	mg/kg	11.11.2019 10:30	
n-Butylbenzene	< 0.00500	0.0500	0.0492	98	0.0521	104	75-125	6	25	mg/kg	11.11.2019 10:30	
n-Propylbenzene	< 0.00500	0.0500	0.0504	101	0.0524	105	75-125	4	25	mg/kg	11.11.2019 10:30	
o-Xylene	< 0.00100	0.0500	0.0518	104	0.0537	107	75-125	4	25	mg/kg	11.11.2019 10:30	
p-Cymene (p-Isopropyltoluer	(e) <0.00500	0.0500	0.0468	94	0.0502	100	75-125	7	25	mg/kg	11.11.2019 10:30	
Sec-Butylbenzene	< 0.00500	0.0500	0.0480	96	0.0519	104	75-125	8	25	mg/kg	11.11.2019 10:30	
Styrene	< 0.00500	0.0500	0.0515	103	0.0520	104	75-125	1	25	mg/kg	11.11.2019 10:30	
tert-Butylbenzene	< 0.00500	0.0500	0.0533	107	0.0583	117	75-125	9	25	mg/kg	11.11.2019 10:30	
Tetrachloroethylene	< 0.00500	0.0500	0.0488	98	0.0494	99	71-125	1	25	mg/kg	11.11.2019 10:30	
Toluene	< 0.00500	0.0500	0.0478	96	0.0484	97	59-139	1	25	mg/kg	11.11.2019 10:30	
trans-1,2-dichloroethene	< 0.00500	0.0500	0.0476	95	0.0494	99	75-125	4	25	mg/kg	11.11.2019 10:30	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0510	102	0.0516	103	66-125	1	25	mg/kg	11.11.2019 10:30	
Trichloroethene	< 0.00500	0.0500	0.0435	87	0.0442	88	62-137	2	25	mg/kg	11.11.2019 10:30	
Trichlorofluoromethane	< 0.00500	0.0500	0.0433	87	0.0434	87	67-125	0	25	mg/kg	11.11.2019 10:30	
Vinyl Acetate	< 0.0100	0.250	0.199	80	0.201	80	60-140	1	25	mg/kg	11.11.2019 10:30	
Vinyl Chloride	< 0.00500	0.0500	0.0461	92	0.0494	99	60-140	7	25	mg/kg	11.11.2019 10:30	
1,3-Butadiene	< 0.00500	0.0500	0.0517	103	0.0551	110	70-130	6	25	mg/kg	11.11.2019 10:30	
Cyclohexane	< 0.00500	0.0500	0.0434	87	0.0451	90	70-130	4	25	mg/kg	11.11.2019 10:30	
Dicyclopentadiene	< 0.00500	0.0500	0.0418	84	0.0457	91	70-120	9	25	mg/kg	11.11.2019 10:30	
Methylcyclohexane	< 0.0100	0.0500	0.0465	93	0.0478	96	65-135	3	25	mg/kg	11.11.2019 10:30	
n-Hexane	< 0.0100	0.0500	0.0431	86	0.0432	86	72-125	0	25	mg/kg	11.11.2019 10:30	
4-Ethyltoluene	< 0.00500	0.0500	0.0485	97	0.0505	101	70-130	4	25	mg/kg	11.11.2019 10:30	
Propene	< 0.00500	0.0500	0.0423	85	0.0429	86	70-130	1	25	mg/kg	11.11.2019 10:30	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Dibromofluoromethane	105		ç	98		100		53	-142	%	11.11.2019 10:30	
1,2-Dichloroethane-D4	99		9	96		97		56	-150	%	11.11.2019 10:30	
Toluene-D8	101		1	00		102		70	-130	%	11.11.2019 10:30	

99

100

4-Bromofluorobenzene

97

11.11.2019 10:30

68-152

APS APS MGP Douglas, AZ

Analytical Method: Volatiles by SW 8260C SW5035A Prep Method: 3107061 Date Prep: 11.11.2019 Seq Number: Matrix: Soil

642676-001 MS Sample Id: 642676-001 S Parent Sample Id:

Parent Sample Id: 64267	6-001		MS Sar	nple Id:	642676-001 S			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00454	0.0454	0.0367	81	72-125	mg/kg	11.11.2019 11:37	
1,1,1-Trichloroethane	< 0.00454	0.0454	0.0391	86	75-125	mg/kg	11.11.2019 11:37	
1,1,2,2-Tetrachloroethane	< 0.00454	0.0454	0.0353	78	74-125	mg/kg	11.11.2019 11:37	
1,1,2-Trichloroethane	< 0.00454	0.0454	0.0324	71	75-127	mg/kg	11.11.2019 11:37	X
1,1-Dichloroethane	< 0.00454	0.0454	0.0379	83	72-125	mg/kg	11.11.2019 11:37	
1,1-Dichloroethene	< 0.00454	0.0454	0.0425	94	59-172	mg/kg	11.11.2019 11:37	
1,1-Dichloropropene	< 0.00454	0.0454	0.0364	80	75-125	mg/kg	11.11.2019 11:37	
1,2,3-Trichlorobenzene	< 0.00454	0.0454	0.0192	42	75-137	mg/kg	11.11.2019 11:37	X
1,2,3-Trichloropropane	< 0.00454	0.0454	0.0341	75	75-125	mg/kg	11.11.2019 11:37	
1,2,4-Trichlorobenzene	< 0.00454	0.0454	0.0206	45	75-135	mg/kg	11.11.2019 11:37	X
1,2,4-Trimethylbenzene	< 0.000231	0.0454	0.0331	73	75-125	mg/kg	11.11.2019 11:37	X
1,2-Dibromo-3-Chloropropane	< 0.00454	0.0454	0.0342	75	59-125	mg/kg	11.11.2019 11:37	
1,2-Dibromoethane	< 0.00454	0.0454	0.0316	70	73-125	mg/kg	11.11.2019 11:37	X
1,2-Dichlorobenzene	< 0.00454	0.0454	0.0295	65	75-125	mg/kg	11.11.2019 11:37	X
1,2-Dichloroethane	< 0.00454	0.0454	0.0311	69	68-127	mg/kg	11.11.2019 11:37	
1,2-Dichloropropane	< 0.00454	0.0454	0.0332	73	74-125	mg/kg	11.11.2019 11:37	X
1,3,5-Trimethylbenzene	< 0.00454	0.0454	0.0368	81	70-130	mg/kg	11.11.2019 11:37	
1,3-Dichlorobenzene	< 0.00454	0.0454	0.0300	66	75-125	mg/kg	11.11.2019 11:37	X
1,3-Dichloropropane	< 0.00454	0.0454	0.0330	73	75-125	mg/kg	11.11.2019 11:37	X
1,4-Dichlorobenzene	< 0.00454	0.0454	0.0290	64	75-125	mg/kg	11.11.2019 11:37	X
2,2-Dichloropropane	< 0.00454	0.0454	0.0419	92	75-125	mg/kg	11.11.2019 11:37	
2-Butanone	0.0260	0.227	0.138	49	75-125	mg/kg	11.11.2019 11:37	X
2-Chlorotoluene	< 0.00454	0.0454	0.0351	77	73-125	mg/kg	11.11.2019 11:37	
2-Hexanone	< 0.0454	0.227	0.140	62	75-125	mg/kg	11.11.2019 11:37	X
4-Chlorotoluene	< 0.00454	0.0454	0.0334	74	74-125	mg/kg	11.11.2019 11:37	
4-Methyl-2-Pentanone	< 0.0454	0.227	0.149	66	60-140	mg/kg	11.11.2019 11:37	
Acetone	0.125	0.227	0.159	15	50-150	mg/kg	11.11.2019 11:37	X
Benzene	0.000240	0.0454	0.0350	77	66-142	mg/kg	11.11.2019 11:37	
Bromobenzene	< 0.00454	0.0454	0.0338	74	75-125	mg/kg	11.11.2019 11:37	X
Bromochloromethane	< 0.00454	0.0454	0.0342	75	60-140	mg/kg	11.11.2019 11:37	
Bromodichloromethane	< 0.00454	0.0454	0.0336	74	75-125	mg/kg	11.11.2019 11:37	X
Bromoform	< 0.00454	0.0454	0.0378	83	75-125	mg/kg	11.11.2019 11:37	
Bromomethane	< 0.00454	0.0454	0.0350	77	60-140	mg/kg	11.11.2019 11:37	
Carbon Disulfide	0.000560	0.0454	0.0509	111	60-140	mg/kg	11.11.2019 11:37	
Carbon Tetrachloride	< 0.00454	0.0454	0.0397	87	62-125	mg/kg	11.11.2019 11:37	
Chlorobenzene	< 0.00454	0.0454	0.0320	70	60-133	mg/kg	11.11.2019 11:37	
Chloroethane	< 0.00908	0.0454	0.0321	71	60-140	mg/kg	11.11.2019 11:37	
Chloroform	< 0.00454	0.0454	0.0353	78	74-125	mg/kg	11.11.2019 11:37	
Chloromethane	< 0.00454	0.0454	0.0396	87	60-140	mg/kg	11.11.2019 11:37	
cis-1,2-Dichloroethene	< 0.00454	0.0454	0.0356	78	75-125	mg/kg	11.11.2019 11:37	
cis-1,3-Dichloropropene	< 0.00454	0.0454	0.0321	71	74-125	mg/kg	11.11.2019 11:37	X
Dibromochloromethane	< 0.00454	0.0454	0.0358	79	73-125	mg/kg	11.11.2019 11:37	
Dibromomethane	< 0.00454	0.0454	0.0320	70	69-127	mg/kg	11.11.2019 11:37	
Dichlorodifluoromethane	< 0.00454	0.0454	0.0517	114	65-135	mg/kg	11.11.2019 11:37	
Ethylbenzene	0.000708	0.0454	0.0354	76	75-125	mg/kg	11.11.2019 11:37	
Hexachlorobutadiene	< 0.00454	0.0454	0.0183	40	75-125	mg/kg	11.11.2019 11:37	X
Iodomethane (Methyl Iodide)	< 0.0182	0.0454	0.0338	74	75-125	mg/kg	11.11.2019 11:37	X
Isopropylbenzene	< 0.00454	0.0454	0.0367	81	75-125	mg/kg	11.11.2019 11:37	
m,p-Xylenes	< 0.000396	0.0908	0.0693	76	75-125	mg/kg	11.11.2019 11:37	
Methylene Chloride	0.00493	0.0454	0.0429	84	75-125	mg/kg	11.11.2019 11:37	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\label{eq:c-A} \begin{split} [D] &= 100*(C-A) \, / \, B \\ RPD &= 200* \, | \, (C-E) \, / \, (C+E) \, | \\ [D] &= 100*(C) \, / \, [B] \\ Log \ Diff. &= Log(Sample \ Duplicate) \, - \ Log(Original \ Sample) \end{split}$$

LCS = Laboratory Control Sample

A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

$$\begin{split} MS &= Matrix \; Spike \\ B &= \; Spike \; Added \\ D &= MSD/LCSD \; \% \; Rec \end{split}$$

APS APS MGP Douglas, AZ

Analytical Method:Volatiles by SW 8260CPrep Method:SW5035ASeq Number:3107061Matrix:SoilDate Prep:11.11.2019

Parent Sample Id: 642676-001 MS Sample Id: 642676-001 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date	Flag
MTBE	< 0.000371	0.0454	0.0350	77	60-140	mg/kg	11.11.2019 11:37	
Naphthalene	< 0.00908	0.0454	0.0240	53	70-130	mg/kg	11.11.2019 11:37	X
n-Butylbenzene	< 0.00454	0.0454	0.0285	63	75-125	mg/kg	11.11.2019 11:37	X
n-Propylbenzene	< 0.00454	0.0454	0.0356	78	75-125	mg/kg	11.11.2019 11:37	
o-Xylene	< 0.000908	0.0454	0.0367	81	75-125	mg/kg	11.11.2019 11:37	
p-Cymene (p-Isopropyltoluene)	0.000308	0.0454	0.0305	67	75-125	mg/kg	11.11.2019 11:37	X
Sec-Butylbenzene	< 0.00454	0.0454	0.0314	69	75-125	mg/kg	11.11.2019 11:37	X
Styrene	< 0.00454	0.0454	0.0325	72	75-125	mg/kg	11.11.2019 11:37	X
tert-Butylbenzene	< 0.00454	0.0454	0.0366	81	75-125	mg/kg	11.11.2019 11:37	
Tetrachloroethylene	< 0.00454	0.0454	0.0347	76	71-125	mg/kg	11.11.2019 11:37	
Toluene	< 0.000908	0.0454	0.0351	77	59-139	mg/kg	11.11.2019 11:37	
trans-1,2-dichloroethene	< 0.00454	0.0454	0.0389	86	75-125	mg/kg	11.11.2019 11:37	
trans-1,3-dichloropropene	< 0.00454	0.0454	0.0324	71	66-125	mg/kg	11.11.2019 11:37	
Trichloroethene	< 0.00454	0.0454	0.0309	68	62-137	mg/kg	11.11.2019 11:37	
Trichlorofluoromethane	< 0.00454	0.0454	0.0353	78	67-125	mg/kg	11.11.2019 11:37	
Vinyl Acetate	< 0.00908	0.227	0.0790	35	60-140	mg/kg	11.11.2019 11:37	X
Vinyl Chloride	< 0.00454	0.0454	0.0410	90	60-140	mg/kg	11.11.2019 11:37	
1,3-Butadiene	< 0.00454	0.0454	0.0457	101	70-130	mg/kg	11.11.2019 11:37	
Cyclohexane	< 0.00454	0.0454	0.0341	75	70-130	mg/kg	11.11.2019 11:37	
Dicyclopentadiene	< 0.00454	0.0454	0.0295	65	70-120	mg/kg	11.11.2019 11:37	X
Methylcyclohexane	< 0.00908	0.0454	0.0311	69	65-135	mg/kg	11.11.2019 11:37	
n-Hexane	< 0.00908	0.0454	0.0268	59	72-125	mg/kg	11.11.2019 11:37	X
4-Ethyltoluene	< 0.00454	0.0454	0.0343	76	70-130	mg/kg	11.11.2019 11:37	
Propene	0.00296	0.0454	0.0376	76	70-130	mg/kg	11.11.2019 11:37	
Surrogate			N	4S	MS	Limits Units	Analysis	

Surrogate	MS MS %Rec Flag	Limits Units	Analysis Date
Dibromofluoromethane	102	53-142 %	11.11.2019 11:37
1,2-Dichloroethane-D4	101	56-150 %	11.11.2019 11:37
Toluene-D8	103	70-130 %	11.11.2019 11:37
4-Bromofluorobenzene	104	68-152 %	11.11.2019 11:37

DRATORIES

Address:

PO Box53999, MS 9303

Phone email

480-273-4084
Bernice Kidd@jacobs.com matt.branche@jacobs.com

Company Name: Send results to

Jacobs

Company Name: Project Manager:

APS

Judy Heywood

City, State ZIP:

Phoenix, AZ 85072-3999

Chain of Custody

Work Order No: 642703

Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296

Bernice Kidd Matt Branche

Phone:	602-818-0259		Email: Jud	Email: Judith.Heywood@aps.com	aps.com					<u></u> ₽	Deliverables: EDD	ED0		ADaPT 🗆		Other:
Project Name:	APS MGP Douglas, AZ	as, AZ	Turn Around	round				ANALY	LYSIS REQUEST	QUEST					¥	Work Order Notes
Project Number:	D3118600.A.CS.EV.DG.05-1B	EV.DG.05-1B	Routine	×									_			
P.O. Number	700735632		Rush:		RA)	ved)										
Sampler's Name:			Due Date		8 RC	rese		lity								
SAMPLE RECEIPT		Temp Blank: (Yes) No	Wet loe: Yes	No	tals (ОН р		itabil	,	de 						
Temperature (°C):	3.5	(ĦΙ		l me	(Ме		- Ign		yani						
Received Intact	(ves) 1	No No		nta	 Tota	OCs	lter	.12		ai Cy						
Cooler Custody Seals	s: Yes No	NO COM	Correction Factor:	Co		al V		ie 7	-	Tota					TAT star	TAT starts the day recevied by the
Sample Custody Seals	als: Yes No	(N/A) Tota	Total Containers:	or of		Tota		Artic	рН	14 -					lab,	lab, if received by 4:30pm
Sample Identification		Matrix Date	Time	Depth .	270 SI 010B/	260B ·	082 - I 095B -	W846	045B -	013/90					Sar	Sample Comments
D-BIN-110719	s 6/40	5rt-11	030	1	싁	>	4			>						
1-7802-1	-1107/9 s	11-7-49	1000	— <u>)</u>		R										
	S															
	S															
	S															
	S															
	S													1.		
	S															
							-									
Total 200.7 / 6010	010 200.8 / 6020:		8RCRA 13PPM	Texas 11 Al S	Sb As Ba	Ве В С	Cd Ca	Cr Co	Cu Fe	Pb Mg Mn Mo	Mn Mc	Z.	Se Ag	SiO2 Na	a Sr Tl	Sn U V Zn
Circle Method	Circle Method(s) and Metal(s) to be analyzed	be analyzed	TCLP / SPLP 6010	8RCRA	Sb As Ba	Be Cd	Cr Cr	Cu Pb	Mn	Mn Mo Ni Se Ag	e Ag T	TI U			1 / 245.1	631 / 245.1 / 7470 / 7471 : Hg
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	document and relinquis liable only for the cost of arge of \$75.00 will be ap	nature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	titutes a valid purchas t assume any respons nd a charge of \$5 for e	e order from client ibility for any losse ach sample submit	company to X s or expenses ted to Xenco, I	enco, its aff incurred b out not anal	filiates and y the clier yzed. The	subcontr t if such k	actors. It osses are vill be enfo	assigns st due to circ orced unles	andard tel umstances s previous	rms and co beyond to sly negotia	onditions he contro			
Relinquished by: (Signature)	: (Signature)	Received	Received by: (Signature)		Date/Time		Reling	Relinquished by: (Signature)	oy: (Sig	nature)		Receiv	ed by: (Received by: (Signature)	е)	Date/Time
min		Z	12-	11-6	OAN(: 61-8-11	2										
ω						4										
5		,				6										

Revised Date 051418 Rev. 2018.1

Reporting:Level III X Level III PST/US-

TRRPD Level IV

Program: UST/PST∐ PRP⊟ Brownfield⊴ RR⊟

Superfur[]

Work Order Comments

www.xenco.com

Page

State of Project:

Arizona

Inter-Office Shipment

IOS Number : **51909**

Date/Time: 11.08.2019 Created by: Emily Petrunia Please send report to: Ruriko Konuma

Lab# From: **Phoenix** Delivery Priority: Address: 2525 West Huntington Drive, Suite 102

Lab# To: **Houston** Air Bill No.: 776943469016 E-Mail: ruriko.konuma@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
642703-001	S	D-BIN-110719	11.07.2019 10:30	SW8082A	PCBs by SW-846 8082A	11.14.2019	11.21.2019	RKO	PCB1016 PCB1221 PCB1	
642703-001	S	D-BIN-110719	11.07.2019 10:30	SIM_PAH_D	PAHs by 8270D SIM	11.14.2019	11.21.2019	RKO	ACNP ACNPY ANTH BZ	
642703-001	S	D-BIN-110719	11.07.2019 10:30	SW8260C_AZ	Volatiles by SW 8260C	11.14.2019	11.21.2019	RKO	ACE BDCME BRBZ BRO	
642703-001	S	D-BIN-110719	11.07.2019 10:30	SW9012B_Total	Total Cyanide by SW 9012	11.14.2019	11.21.2019	RKO	CN	
642703-001	S	D-BIN-110719	11.07.2019 10:30	SW6020RCRA	Metals, RCRA List, by SW 6020	11.14.2019	05.05.2020	RKO	AG AS BA CD CR PB SE	
642703-001	S	D-BIN-110719	11.07.2019 10:30	SW7471B	Mercury by SW 7471B	11.14.2019	12.05.2019	RKO	HG	
642703-001	S	D-BIN-110719	11.07.2019 10:30	SW9045C	Soil pH by SW-846 9045C	11.14.2019	12.05.2019	RKO		
642703-002	S	D-TB02-110719	11.07.2019 10:00	SW8260C_AZ	Volatiles by SW 8260C	11.14.2019	11.21.2019	RKO	ACE BDCME BRBZ BRC	

Inter Office Shipment or Sample Comments:

Relinquished By:

Emily Petrunia

Date Relinquished: 11.08.2019

Received By:

Monica Shakhshir

Date Received: 11.09.2019

Cooler Temperature: 1.8

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Acceptable Temperature Range: 0 - 6 degC Sent To: Houston Air and Metal samples Acceptable Range: Ambient IOS #: 51909 Temperature Measuring device used: HOU-068

Sent Bv: **Emily Petrunia** Date Sent: 11 08 2019 05 51 PM

Sent by.	Litiliy i etiurila	Date Jent. 11.00.20	19 03.31 1 101	
Received By:	: Monica Shakhshir	Date Received: 11.09.20	19 10.00 AM	
		Sample Receipt Che	ecklist	Comments
#1 *Tempera	ature of cooler(s)?		1.8	
#2 *Shipping	g container in good condit	ion?	Yes	
#3 *Samples	s received with appropriat	e temperature?	Yes	
#4 *Custody	Seals intact on shipping	container/ cooler?	Yes	
	Seals Signed and dated		Yes	
#6 *IOS pres	sent?		Yes	
#7 Any miss	sing/extra samples?		No	
#8 IOS agre	es with sample label(s)/m	natrix?	Yes	
#9 Sample n	matrix/ properties agree w	rith IOS?	Yes	
#10 Samples	s in proper container/ bot	tle?	Yes	
#11 Samples	s properly preserved?		Yes	
#12 Sample	container(s) intact?		Yes	
#13 Sufficier	nt sample amount for indi	cated test(s)?	Yes	
#14 All samp	ples received within hold	time?	Yes	
* Must be cor	mpleted for after-hours	delivery of samples prior to	placing in the refrigerator	
NonConforma	ince:			
Corrective Act	tion Taken:			
		Nonconformance Do	ocumentation	
Contact:		Contacted by :	Date):
	Chaplifiet reviews dis-	0 00		
	Checklist reviewed by:	Shallinger	Date: 11.09.2019	

Monica Shakhshir

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: APS

Date/ Time Received: 11/08/2019 02:40:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Date: 11/08/2019

Work Order #: 642703

Temperature Measuring device used: IR#1

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		2.8	
#2 *Shipping container in good condition	?	Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A	
#5 Custody Seals intact on sample bottle	es?	N/A	
#6*Custody Seals Signed and dated?		N/A	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinque	uished/ received?	Yes	
#10 Chain of Custody agrees with samp	e labels/matrix?	Yes	
#11 Container label(s) legible and intact	?	Yes	
#12 Samples in proper container/ bottle?	•	Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicat	ed test(s)?	Yes	
#16 All samples received within hold time	e?	Yes	
#17 Subcontract of sample(s)?		Yes	Xenco Stafford
#18 Water VOC samples have zero head	dspace?	N/A	
* Must be completed for after-hours de Analyst:	elivery of samples prior to placing in	n the refrig	erator
Checklist completed by:	Eght. Emily Petrunia	Date: <u>11/</u>	08/2019
Checklist reviewed by:	(minto powery)	Date: 11/	08/2010

Ruriko Konuma

Appendix H
Pre-design Testing Investigation Data
Evaluation

Arizona Public Service Former Manufactured Gas Plant, Douglas Site Soil and Groundwater Sampling 2019 Data Quality Evaluation Report

Introduction

The objective of this data quality evaluation (DQE) report is to assess the data quality of analytical results for soil and groundwater samples collected at the Arizona Public Service Former Manufactured Gas Plant, Douglas Site as part of a site investigation. Individual method requirements and guidelines from the Arizona Public Service Quality Assurance Project Plan (QAPP) (Jacobs, 2019) were used in this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 168 normal soil samples, 4 normal groundwater samples, 20 soil field duplicates (FD), one groundwater FD, 2 equipment blanks (EB), and 6 trip blanks (TB). Samples were collected between October 27 and November 7, 2019. A list of sample identifications and collection dates is included in Attachment A at the end of this report.

The analyses were performed by Xenco Laboratories in Tempe, AZ. Samples were collected and delivered by courier to the laboratory for analysis. The sample results were reported in seven sample delivery groups (SDGs): 641446, 641801, 641882, 642000, 642303, 642585, and 642698.

Selected samples were analyzed for one or more of the following analytes and methods presented in Table 1.

Table 1. Analytical Parameters

Method	Parameter
SW6010C	TCLP Metals
SW6020/E200.8	Metals
SW7470A/SW7471B	Mercury and TCLP Mercury
SW8082	Polychlorinated biphenyls
SW8260C	Volatile organic compounds
SW8270D/SW8270D-SIM	Polynuclear aromatic hydrocarbons
SW1010	Ignitability
SW9012	Cyanide
SW9045D	рН
SW9095	Free liquids

The assessment of data includes a review of: (1) the chain-of-custody (CoC) documentation; (2) holding-time compliance; (3) the required field and laboratory quality control (QC) samples; (4) method blanks;

(5) laboratory control samples and laboratory control sample duplicates (LCS/LCSDs); (6) surrogate spike recoveries for organic analyses; and, (7) matrix spikes and matrix spike duplicate samples (MS/MSDs).

Field samples were also reviewed to ascertain field compliance and data quality issues. This included a review of FDs, EBs, and TBs.

Data flags are assigned according to the QAPP. These flags, as well as the reason for each flag, are entered into an electronic database. Multiple flags are routinely applied to specific sample method, matrix, and analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes blank sample impacts.

The data flags are defined as follows:

- J = Analyte was present, but the reported value may not be accurate or precise (estimated). The result was estimated due to either being less than the referenced reporting limit but greater than the method detection limit or due to a QC exceedance.
- R = The result was unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
- U = Analyte was not detected at the specified detection limit.
- UJ = Analyte was not detected, and the specified detection limit may not be accurate or precise (estimated).

Findings

The overall summaries of the data validation findings are contained in the following sections and summarized in Attachment B at the end of this DQE report.

Holding Times

All holding-time criteria were met.

Calibration

Initial and continuing calibration data were not supplied in the data packages and were not part of the routine validation performed. The laboratory did not report any criteria exceedances in the case narratives.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination that would affect the sample results.

Field Blanks

Two EBs and six TBs were collected at the required frequency and were free of contamination that would affect the sample results.

Matrix Spike Samples

The results of MS/MSD analyses provide information about the possible influence of the matrix on either accuracy or precision of the measurements. MS/MSD recoveries and the associated RPDs met criteria with the following exceptions:

• The recoveries of arsenic, barium, chromium and lead were greater than the upper control limits in the MSs and /or MSDs of six soil samples for Method SW6020, indicating the associated

- parent sample results are possibly biased high. Eleven associated detected results were qualified as estimated and flagged "J".
- The recoveries of lead and silver were less than the lower control limit in the MSs and MSDs of three soil samples for Method SW6020, indicating the associated parent sample results are possibly biased low. Two associated nondetected results were qualified as estimated and flagged "UJ"; one associated detected result was qualified as estimated and flagged "J".
- The recovery of cyanide was less than the lower control limit in the MSs and MSDs of two soil samples for Method SW9012, indicating the associated parent sample results are possibly biased low. One associated nondetected result was qualified as estimated and flagged "UJ"; one associated detected result was qualified as estimated and flagged "J".
- The recovery of acetone was less than the lower control limit in the MS of one groundwater sample for Method SW8260C, indicating the associated parent sample result is possibly biased low. One associated nondetected result was qualified as estimated and flagged "UJ".
- The recoveries of 2-butanone, bromomethane, chloroethane, bromoform, 1,1,1trichloroethane, acetone, cyclohexane, iodomethane, n-hexane, propene and
 trichlorofluoromethane were less than the lower control limits in the MSs and/or MSDs of three
 soil samples for Method SW8260C, indicating the associated parent sample results are possibly
 biased low. Sixteen associated nondetected results were qualified as estimated and flagged
 "UJ".
- The recoveries of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, fluoranthene, indeno(1,2,3-c,d)pyrene, phenanthrene and pyrene were less than the lower control limits in the MSs and/or MSDs of two soil samples for Method SW8270D-SIM, indicating the associated parent sample results are possibly biased low. Seventeen associated detected results were qualified as estimated and flagged "J".
- The recoveries of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, fluoranthene, indeno(1,2,3-c,d)pyrene, phenanthrene and pyrene were greater than the upper control limits in the MSs and/or MSDs of six soil samples for Method SW8270D-SIM, indicating the associated parent sample results are possibly biased high. Twenty-three associated detected results were qualified as estimated and flagged "J".
- The relative percent differences (RPD) of acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, indeno(1,2,3-c,d)pyrene, phenanthrene and pyrene were greater than the control limit in the MS/MSD sets of four soil samples for Method SW8270D-SIM, indicating associated sample results are possibly biased. Nineteen associated detected results were qualified as estimated and flagged "J".

Field Duplicates

Twenty-one FD sets were collected and analyzed with this event. A list of the FD and associated parent sample identifications (IDs) is included in Table 2.

Table 2. List of Field Duplicates

Associated Parent Sample ID	Field Duplicate Sample ID
D-B12-5.0-5.5	D-FD02-103119
D-B13-15.0-15.5	D-FD01-103119
D-B15-10.0-10.5	D-FD04-110119

Table 2. List of Field Duplicates

Field Duplicate Sample ID
D-FD03-110119
D-FD02-102919
D-FD01-102919
D-FD03-102819
D-FD01-102719
D-FD02-110119
D-FD03-103119
D-FD01-103019
D-FD04-103119
D-FD05-110119
D-FD01-110319
D-FD02-110319
D-FD01-110219
D-FD03-102919
D-FD01-110119
B-FD02-102819
D-FD01-102819
D-FD01-110719

All precision criteria were met with the following exceptions:

- The RPDs of 15 analytes were greater than the acceptance criterion in FD set D-B12-5.0-5.5/D-FD02-103119 for Method SW8270D-SIM. Twenty-seven detected results were qualified as estimated and flagged "J"; three nondetected results were qualified as estimated and flagged "UJ".
- The RPDs of 13 analytes were greater than the acceptance criterion in FD set D-B13-15.0-15.5/D-FD01-103119 for Method SW8270D-SIM. Twenty-six detected results were qualified as estimated and flagged "J".
- The RPDs of 13 analytes were greater than the acceptance criterion in FD set D-B16-15.0-15.5/D-FD02-102919 for Method SW8270D-SIM. Twenty-five detected results were qualified as estimated and flagged "J"; one nondetected result was qualified as estimated and flagged "UJ".
- The RPDs of two analytes were greater than the acceptance criterion in FD set D-B23-25-3.0/D-FD03-103119 for Method SW8270D-SIM. Four detected results were qualified as estimated and flagged "J".
- The RPDs of 15 analytes were greater than the acceptance criterion in FD set D-B24-19.5-20.0/D-FD01-103019 for Method SW8270D-SIM. Twenty-seven detected results were qualified as estimated and flagged "J"; three nondetected results were qualified as estimated and flagged "UJ".

- The RPD of barium was greater than the acceptance criterion in FD set D-B27-2.5-3.0/D-FD01-110319 for Method SW6020. Two detected results were qualified as estimated and flagged "J".
- The RPDs of 10 analytes were greater than the acceptance criterion in FD set D-B28-5.0-5.5/D-FD03-102919 for Method SW8270D-SIM. Nineteen detected results were qualified as estimated and flagged "J"; one nondetected result was qualified as estimated and flagged "UJ".
- The RPDs of 10 analytes were greater than the acceptance criterion in FD set D-B32-5.0-5.5/B-FD02-102819 for Method SW8270D-SIM. Twenty detected results were qualified as estimated and flagged "J".
- The RPDs of 10 analytes were greater than the acceptance criterion in FD set D-B34-0-102719/D-FD01-102819 for Method SW8270D-SIM. Sixteen detected results were qualified as estimated and flagged "J"; four nondetected results were qualified as estimated and flagged "UJ".
- The RPDs of 11 analytes were greater than the acceptance criterion in FD set D-B18-5.0-5.5/D-FD03-102819 for Method SW8270D-SIM. Twenty-two detected results were qualified as estimated and flagged "J".
- The RPDs of two analytes were greater than the acceptance criterion in FD set D-B16-2.5-3.0/D-FD01-102919 for Method SW8270D-SIM. Three detected results were qualified as estimated and flagged "J"; one nondetected result was qualified as estimated and flagged "UJ".
- The RPD of lead was greater than the acceptance criterion in FD set D-B30-5.0-5.5/D-FD01-110119 for Method SW6020. Two detected results were qualified as estimated and flagged "J".
- The RPD of chromium was greater than the acceptance criterion in FD set D-B32-5.0-5.5/B-FD02-102819 for Method SW6020. Two detected results were qualified as estimated and flagged "J".
- The RPDs of arsenic, lead and chromium were greater than the acceptance criterion in FD set D-B18-5.0-5.5/D-FD03-102819 for Method SW6020. Six detected results were qualified as estimated and flagged "J".
- The RPDs of barium and lead were greater than the acceptance criterion in FD set D-B34-0-102719/D-FD01-102819 for Method SW6020. Four detected results were qualified as estimated and flagged "J".
- The RPD of naphthalene was greater than the acceptance criterion in FD set D-B20-0-102719/ D-FD01-102719 for Method SW8270D-SIM. One detected result was qualified as estimated and flagged "J"; one nondetected result was qualified as estimated and flagged "UJ".
- The RPD of mercury was greater than the acceptance criterion in FD sets D-B30-5.0-5.5/D-FD01-110119, D-B18-5.0-5.5 D-FD03-102819, D-B34-0-102719/ D-FD01-102819 and D-B32-5.0-5.5/B-FD02-102819 for Method SW7471B. Four detected results were qualified as estimated and flagged "J"; four nondetected results were qualified as estimated and flagged "UJ".

Surrogates

Surrogate spikes were analyzed in each sample as required. All acceptance criteria were met with the following exception:

• Surrogate recovery was greater than the upper control limit in soil samples D-B12-7.5-8.0, D-B13-1.0-1.5, D-B29-10.0-10.5, D-B29-15.0-15.5, D-B34-5.0-5.5-102819 and D-B29-20.0-20.5 for Method SW8270D-SIM, indicating associated sample results are possibly biased high. Sixty-six associated detected results were qualified as estimated and flagged "J".

Internal Standards

Internal standard data were not supplied in the data packages and were not part of the routine validation performed. The laboratory did not report any criteria exceedances in the case narratives.

Laboratory Control Samples

LCS/LCSDs were analyzed for all methods as required and all accuracy and precision criteria were met with the following exceptions:

- The recoveries of iodomethane, n-hexane and propene were less than criteria in a LCS for Method SW8260C, indicating associated sample results are possibly biased low. Three associated nondetected results were qualified as estimated and flagged "UJ".
- The recovery of mercury was less than criteria in a LCS for Method SW7471B, indicating
 associated sample results are possibly biased low. Ten associated nondetected results were
 qualified as estimated and flagged "UJ"; one associated detected result was qualified as
 estimated and flagged "J".

Miscellaneous

The cyclohexane results in the groundwater samples were noted by the laboratory as having interference. The four associated nondetected results were qualified as estimated and flagged "UJ".

Chain of Custody and Sample Receipt

Each sample was documented in a completed CoC form. All samples were received at the laboratory within temperature criteria and properly preserved.

Overall Assessment

The final activity in the DQE is an assessment of whether the data meet the data quality objectives (DQOs). The goal of this assessment is to demonstrate that a sufficient number of representative samples was collected and the resulting analytical data can be used to support the decision-making process. The following summary highlights the data evaluation findings for the events defined herein:

- 1. The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the QAPP goals have been met.
- 2. No data were rejected. Completeness was 100 percent for all method/matrix/analyte combinations.
- 3. No data were qualified due to associated laboratory, EB or TB contamination.
- 4. Approximately 5 percent of the data were qualified due to QC exceedances. These exceedances include the following: FD RPD exceedances, LCS recovery exceedances, MS/MSD recovery and RPD exceedances, surrogate recovery exceedances, and matrix interference.
- 5. The field crews and laboratory followed QAPP and project documents, thereby assuring representativeness and comparability with previous studies.

ATTACHMENT A

Samples Associated with Data Quality Evaluation

Sample ID	Sample Date	Sample Purpose	Matrix
D-EB01-102919	29-Oct-19	EB	WATER
D-EB01-110219	02-Nov-19	EB	WATER
B-FD02-102819	28-Oct-19	FD	SOIL
D-FD01-102719	27-Oct-19	FD	SOIL
D-FD01-102819	28-Oct-19	FD	SOIL
D-FD01-102919	29-Oct-19	FD	SOIL
D-FD03-102819	28-Oct-19	FD	SOIL
D-FD01-103019	30-Oct-19	FD	SOIL
D-FD01-103119	31-Oct-19	FD	SOIL
D-FD01-110119	01-Nov-19	FD	SOIL
D-FD01-110219	02-Nov-19	FD	SOIL
D-FD01-110319	03-Nov-19	FD	SOIL
D-FD01-110719	07-Nov-19	FD	WATER
D-FD02-102919	29-Oct-19	FD	SOIL
D-FD02-103119	31-Oct-19	FD	SOIL
D-FD02-110119	01-Nov-19	FD	SOIL
D-FD02-110319	03-Nov-19	FD	SOIL
D-FD03-102919	29-Oct-19	FD	SOIL
D-FD03-103119	31-Oct-19	FD	SOIL
D-FD03-110119	01-Nov-19	FD	SOIL
D-FD04-103119	31-Oct-19	FD	SOIL
D-FD04-110119	01-Nov-19	FD	SOIL
D-FD05-110119	01-Nov-19	FD	SOIL
D-B11-1.0-1.5	30-Oct-19	N	SOIL
D-B14-1.0-1.5	29-Oct-19	N	SOIL
D-B14-2.5-3.0	29-Oct-19	N	SOIL
D-B14-5.0-5.5	29-Oct-19	N	SOIL
D-B16-0-102719	27-Oct-19	N	SOIL
D-B16-2.5-3.0	29-Oct-19	N	SOIL

Sample ID	Sample Date	Sample Purpose	Matrix
D-B16-5.0-5.5	29-Oct-19	N	SOIL
D-B17-0-102719	27-Oct-19	N	SOIL
D-B18-0-102719	27-Oct-19	N	SOIL
D-B18-2.0-2.5	28-Oct-19	N	SOIL
D-B18-5.0-5.5	28-Oct-19	N	SOIL
D-B18-7.0-7.5	28-Oct-19	N	SOIL
D-B19-0-102719	27-Oct-19	N	SOIL
D-B20-0-102719	27-Oct-19	N	SOIL
D-B21-0-102719	27-Oct-19	N	SOIL
D-B22-0-102719	27-Oct-19	N	SOIL
D-B22-2.5-3.0	29-Oct-19	N	SOIL
D-B23-0-102719	27-Oct-19	N	SOIL
D-B24-0-102719	28-Oct-19	N	SOIL
D-B25-0-102719	27-Oct-19	N	SOIL
D-B26-0-102719	28-Oct-19	N	SOIL
D-B27-0-102719	27-Oct-19	N	SOIL
D-B28-0-102719	27-Oct-19	N	SOIL
D-B29-0-102719	27-Oct-19	N	SOIL
D-B30-0-102719	28-Oct-19	N	SOIL
D-B31-0-102719	27-Oct-19	N	SOIL
D-B31-5.0-5.5	28-Oct-19	N	SOIL
D-B32-0-102719	27-Oct-19	N	SOIL
D-B32-5.0-5.5	28-Oct-19	N	SOIL
D-B33-0-102719	27-Oct-19	N	SOIL
D-B33-5.0-5.5	28-Oct-19	N	SOIL
D-B34-0-102719	27-Oct-19	N	SOIL
D-B34-5.0-5.5-102819	28-Oct-19	N	SOIL
D-B35-0-102719	27-Oct-19	N	SOIL
D-B35-5.0-5.5	28-Oct-19	N	SOIL
D-B11-10.0-10.5	30-Oct-19	N	SOIL
D-B11-15.0-15.5	30-Oct-19	N	SOIL
D-B11-19.5-20.0	30-Oct-19	N	SOIL

Sample ID	Sample Date	Sample Purpose	Matrix
D-B11-2.5-3.0	30-Oct-19	N	SOIL
D-B11-5.0-5.5	30-Oct-19	N	SOIL
D-B11-7.5-8.0	30-Oct-19	N	SOIL
D-B12-1.0-1.5	31-Oct-19	N	SOIL
D-B12-10.0-10.5	31-Oct-19	N	SOIL
D-B12-15.0-15.5	31-Oct-19	N	SOIL
D-B12-19.5-20	31-Oct-19	N	SOIL
D-B12-2.5-3.0	31-Oct-19	N	SOIL
D-B12-24.5-25.0	31-Oct-19	N	SOIL
D-B12-5.0-5.5	31-Oct-19	N	SOIL
D-B12-7.5-8.0	31-Oct-19	N	SOIL
D-B13-1.0-1.5	31-Oct-19	N	SOIL
D-B13-10.0-10.5	31-Oct-19	N	SOIL
D-B13-15.0-15.5	31-Oct-19	N	SOIL
D-B13-19.5-20.0	31-Oct-19	N	SOIL
D-B13-2.5-3.0	31-Oct-19	N	SOIL
D-B13-5.0-5.5	31-Oct-19	N	SOIL
D-B13-7.5-8.0	31-Oct-19	N	SOIL
D-B14-10.0-10.5	29-Oct-19	N	SOIL
D-B14-15.0-15.5	29-Oct-19	N	SOIL
D-B14-19.5-20.0	29-Oct-19	N	SOIL
D-B14-7.5-8.0	29-Oct-19	N	SOIL
D-B15-1.0-1.5	01-Nov-19	N	SOIL
D-B15-10.0-10.5	01-Nov-19	N	SOIL
D-B15-14.5-15.0	01-Nov-19	N	SOIL
D-B15-2.5-3.0	01-Nov-19	N	SOIL
D-B15-5.0-5.5	01-Nov-19	N	SOIL
D-B15-7.5-8.0	01-Nov-19	N	SOIL
D-B16-10.0-10.5	29-Oct-19	N	SOIL
D-B16-15.0-15.5	29-Oct-19	N	SOIL
D-B16-19.5-20.0	29-Oct-19	N	SOIL
D-B16-7.5-8.0	29-Oct-19	N	SOIL

Sample ID	Sample Date	Sample Purpose	Matrix
D-B17-10.0-10.5	30-Oct-19	N	SOIL
D-B17-15.0-15.5	30-Oct-19	N	SOIL
D-B17-19.5-20.0	30-Oct-19	N	SOIL
D-B17-2.5-3.0	30-Oct-19	N	SOIL
D-B17-5.0-5.5	30-Oct-19	N	SOIL
D-B17-7.5-8.0	30-Oct-19	N	SOIL
D-B18-10.0-10.5	05-Nov-19	N	SOIL
D-B18-15.0-15.5	05-Nov-19	N	SOIL
D-B19-10.0-10.5	02-Nov-19	N	SOIL
D-B19-15.0-15.5	02-Nov-19	N	SOIL
D-B19-19.5-20.0	02-Nov-19	N	SOIL
D-B19-2.5-3.0	01-Nov-19	N	SOIL
D-B19-5.0-5.5	01-Nov-19	N	SOIL
D-B19-7.5-8.0	01-Nov-19	N	SOIL
D-B20-14.5-15.0	02-Nov-19	N	SOIL
D-B20-19.5-20.0	02-Nov-19	N	SOIL
D-B20-2.5-3.0	30-Oct-19	N	SOIL
D-B20-5.0-5.5	30-Oct-19	N	SOIL
D-B20-7.5-8.0	02-Nov-19	N	SOIL
D-B20-9.5-10.0	02-Nov-19	N	SOIL
D-B21-10.0-10.5	01-Nov-19	N	SOIL
D-B21-15.0-15.5	01-Nov-19	N	SOIL
D-B21-19.5-20.0	01-Nov-19	N	SOIL
D-B21-2.5-3.0	01-Nov-19	N	SOIL
D-B21-24.5-25.0	01-Nov-19	N	SOIL
D-B21-5.0-5.5	01-Nov-19	N	SOIL
D-B21-7.5-8.0	01-Nov-19	N	SOIL
D-B22-10.0-10.5	29-Oct-19	N	SOIL
D-B22-15.0-15.5	29-Oct-19	N	SOIL
D-B22-5.0-5.5	29-Oct-19	N	SOIL
D-B22-7.5-8.0	29-Oct-19	N	SOIL
D-B23-14.5-15.0	31-Oct-19	N	SOIL

Sample ID	Sample Date	Sample Purpose	Matrix
D-B23-19.5-20.0	31-Oct-19	N	SOIL
D-B23-25-3.0	31-Oct-19	N	SOIL
D-B23-5.0-5.5	31-Oct-19	N	SOIL
D-B23-7.5-8.0	31-Oct-19	N	SOIL
D-B23-9.5-10.0	31-Oct-19	N	SOIL
D-B24-10.0-10.5	30-Oct-19	N	SOIL
D-B24-15.0-15.5	30-Oct-19	N	SOIL
D-B24-19.5-20.0	30-Oct-19	N	SOIL
D-B24-2.5-3.0	30-Oct-19	N	SOIL
D-B24-5.0-5.5	30-Oct-19	N	SOIL
D-B24-7.5-8.0	30-Oct-19	N	SOIL
D-B25-10.0-10.5	31-Oct-19	N	SOIL
D-B25-15.0-15.5	31-Oct-19	N	SOIL
D-B25-2.5-3.0	30-Oct-19	N	SOIL
D-B25-20.0-20.5	31-Oct-19	N	SOIL
D-B25-25.0-25.5	31-Oct-19	N	SOIL
D-B25-30.0-30.5	31-Oct-19	N	SOIL
D-B25-40.0-40.5	31-Oct-19	N	SOIL
D-B25-5.0-5.5	30-Oct-19	N	SOIL
D-B25-7.5-8.0	30-Oct-19	N	SOIL
D-B26-10.0-10.5	02-Nov-19	N	SOIL
D-B26-15.0-15.5	02-Nov-19	N	SOIL
D-B26-2.5-3.0	01-Nov-19	N	SOIL
D-B26-20.0-20.5	02-Nov-19	N	SOIL
D-B26-25.0-25.5	02-Nov-19	N	SOIL
D-B26-30.0-30.5	02-Nov-19	N	SOIL
D-B26-40.0-40.5	02-Nov-19	N	SOIL
D-B26-5.0-5.5	01-Nov-19	N	SOIL
D-B26-7.5-8.0	02-Nov-19	N	SOIL
D-B27-10.0-10.5	03-Nov-19	N	SOIL
D-B27-15.0-15.5	03-Nov-19	N	SOIL
D-B27-2.5-3.0	03-Nov-19	N	SOIL

Sample ID	Sample Date	Sample Purpose	Matrix
D-B27-20.0-20.5	03-Nov-19	N	SOIL
D-B27-25.0-25.5	03-Nov-19	N	SOIL
D-B27-30.0-30.5	04-Nov-19	N	SOIL
D-B27-40.0-40.5	04-Nov-19	N	SOIL
D-B27-5.0-5.5	03-Nov-19	N	SOIL
D-B27-7.5-8.0	03-Nov-19	N	SOIL
D-B28-10.0-10.5	29-Oct-19	N	SOIL
D-B28-15.0-15.5	29-Oct-19	N	SOIL
D-B28-19.5-20.0	29-Oct-19	N	SOIL
D-B28-5.0-5.5	29-Oct-19	N	SOIL
D-B29-10.0-10.5	07-Nov-19	N	SOIL
D-B29-15.0-15.5	07-Nov-19	N	SOIL
D-B29-20.0-20.5	07-Nov-19	N	SOIL
D-B29-5.0-5.5	07-Nov-19	N	SOIL
D-B30-10.0-10.5	01-Nov-19	N	SOIL
D-B30-15.0-15.5	01-Nov-19	N	SOIL
D-B30-19.5-20.0	01-Nov-19	N	SOIL
D-B30-5.0-5.5	01-Nov-19	N	SOIL
D-B31-10.0-10.5	06-Nov-19	N	SOIL
D-B31-15.0-15.5	06-Nov-19	N	SOIL
D-B31-20.0-20.5	06-Nov-19	N	SOIL
D-B32-10.0-10.5	06-Nov-19	N	SOIL
D-B32-15.0-15.5	06-Nov-19	N	SOIL
D-B32-20.0-20.5	06-Nov-19	N	SOIL
D-B33-10.0-10.5	06-Nov-19	N	SOIL
D-B33-15.0-15.5	06-Nov-19	N	SOIL
D-B33-20.0-20.5	06-Nov-19	N	SOIL
D-B34-10.0-10.5	06-Nov-19	N	SOIL
D-B34-15.0-15.5	06-Nov-19	N	SOIL
D-B34-20.0-20.5	06-Nov-19	N	SOIL
D-B35-10.0-10.5	05-Nov-19	N	SOIL
D-B35-15.0-15.5	05-Nov-19	N	SOIL

Sample ID	Sample Date	Sample Purpose	Matrix
D-B35-20.0-20.5	05-Nov-19	N	SOIL
D-MW25	07-Nov-19	N	WATER
D-MW26	07-Nov-19	N	WATER
D-MW27	07-Nov-19	N	WATER
D-TAR-01	02-Nov-19	N	WATER
D-TAR-01	02-Nov-19	N	SOIL
D-TB01-102719	27-Oct-19	N	SOIL
D-TB01-102919	29-Oct-19	TB	SOIL
D-TB01-103119	31-Oct-19	TB	SOIL
D-TB01-110119	01-Nov-19	TB	SOIL
D-TB01-110719	07-Nov-19	TB	SOIL
D-TB03-110819	08-Nov-19	ТВ	WATER

Notes:

EB = equipment blank

FD = field duplicate

ID = identification

REG = regular sample

TB = trip blank

ATTACHMENT B

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B12-5.0-5.5	SW8270D-SIM	Acenaphthene	0.0553	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Acenaphthylene	0.847	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Anthracene	0.427	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Benzo(a)anthracene	1.24	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Benzo(a)pyrene	2.65	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Benzo(b)fluoranthene	2.58	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Benzo(g,h,i)perylene	3.17	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Benzo(k)fluoranthene	0.777	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Chrysene	1.61	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Fluoranthene	5.61	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Fluorene	0.134	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	2.16	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Naphthalene	0.775	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Phenanthrene	3.83	MG/KG	J	FD>RPD
D-B12-5.0-5.5	SW8270D-SIM	Pyrene	6.53	MG/KG	J	FD>RPD
D-B12-7.5-8.0	SW8270D-SIM	Acenaphthylene	1.84	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Anthracene	0.826	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Benzo(a)anthracene	2.79	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Benzo(a)pyrene	5.93	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Benzo(b)fluoranthene	6.16	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Benzo(g,h,i)perylene	7.41	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Benzo(k)fluoranthene	2.26	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Chrysene	3.59	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Fluoranthene	11.5	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	5.01	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Phenanthrene	7.2	MG/KG	J	Sur>UCL
D-B12-7.5-8.0	SW8270D-SIM	Pyrene	14.2	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Acenaphthene	0.544	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Acenaphthene	0.544	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Acenaphthylene	14.2	MG/KG	J	Sur>UCL

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B13-1.0-1.5	SW8270D-SIM	Acenaphthylene	14.2	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Anthracene	6.63	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Anthracene	6.63	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(a)anthracene	17.5	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(a)anthracene	17.5	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(a)pyrene	28.9	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(a)pyrene	28.9	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(b)fluoranthene	26.4	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(b)fluoranthene	26.4	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(g,h,i)perylene	30.3	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(g,h,i)perylene	30.3	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(k)fluoranthene	7.09	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Benzo(k)fluoranthene	7.09	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Chrysene	20.7	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Chrysene	20.7	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Fluoranthene	71	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Fluoranthene	71	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Fluorene	4.49	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Fluorene	4.49	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	21.5	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	21.5	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Naphthalene	35.9	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Naphthalene	35.9	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Phenanthrene	70.8	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Phenanthrene	70.8	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Pyrene	83.6	MG/KG	J	Sur>UCL
D-B13-1.0-1.5	SW8270D-SIM	Pyrene	83.6	MG/KG	J	Sur>UCL
D-B13-15.0-15.5	SW8270D-SIM	Anthracene	0.0267	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Benzo(a)anthracene	0.055	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Benzo(a)pyrene	0.0817	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Benzo(b)fluoranthene	0.0832	MG/KG	J	FD>RPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B13-15.0-15.5	SW8270D-SIM	Benzo(g,h,i)perylene	0.0836	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Benzo(k)fluoranthene	0.0268	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Chrysene	0.0607	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Dibenz(a,h)Anthracene	0.00962	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Fluoranthene	0.206	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Fluorene	0.0284	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0589	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Phenanthrene	0.246	MG/KG	J	FD>RPD
D-B13-15.0-15.5	SW8270D-SIM	Pyrene	0.243	MG/KG	J	FD>RPD
D-B13-2.5-3.0	SW8260C	2-Butanone	0.971	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B13-2.5-3.0	SW8260C	Bromomethane	0.243	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B13-2.5-3.0	SW8260C	Bromomethane	0.243	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B13-2.5-3.0	SW8260C	Chloroethane	0.485	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B13-2.5-3.0	SW8260C	Chloroethane	0.485	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B13-2.5-3.0	SW9012	Cyanide, Total	0.0668	MG/KG	J	SD <lcl< td=""></lcl<>
D-B13-2.5-3.0	SW9012	Cyanide, Total	0.0668	MG/KG	J	MS <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW6020	Arsenic	10.8	MG/KG	J	MS>UCL
D-B15-2.5-3.0	SW6020	Chromium	11.1	MG/KG	J	SD>UCL
D-B15-2.5-3.0	SW6020	Chromium	11.1	MG/KG	J	MS>UCL
D-B15-2.5-3.0	SW6020	Lead	30.5	MG/KG	J	MS>UCL
D-B15-2.5-3.0	SW6020	Lead	30.5	MG/KG	J	SD>UCL
D-B15-2.5-3.0	SW8270D-SIM	Acenaphthylene	0.00936	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Anthracene	0.00878	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Benzo(a)anthracene	0.0242	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Benzo(a)anthracene	0.0242	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Benzo(a)pyrene	0.0329	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Benzo(a)pyrene	0.0329	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Benzo(b)fluoranthene	0.0454	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Benzo(b)fluoranthene	0.0454	MG/KG	J	MS>UCL
D-B15-2.5-3.0	SW8270D-SIM	Benzo(b)fluoranthene	0.0454	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Benzo(g,h,i)perylene	0.0228	MG/KG	J	MSRPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B15-2.5-3.0	SW8270D-SIM	Benzo(g,h,i)perylene	0.0228	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Benzo(k)fluoranthene	0.00917	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Chrysene	0.0341	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Chrysene	0.0341	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Fluoranthene	0.0644	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Fluoranthene	0.0644	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Fluoranthene	0.0644	MG/KG	J	MS>UCL
D-B15-2.5-3.0	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0149	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0149	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Phenanthrene	0.0504	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Phenanthrene	0.0504	MG/KG	J	SD <lcl< td=""></lcl<>
D-B15-2.5-3.0	SW8270D-SIM	Phenanthrene	0.0504	MG/KG	J	MS>UCL
D-B15-2.5-3.0	SW8270D-SIM	Pyrene	0.0776	MG/KG	J	MSRPD
D-B15-2.5-3.0	SW8270D-SIM	Pyrene	0.0776	MG/KG	J	MS>UCL
D-B15-2.5-3.0	SW8270D-SIM	Pyrene	0.0776	MG/KG	J	SD <lcl< td=""></lcl<>
D-B16-15.0-15.5	SW8270D-SIM	Acenaphthylene	0.0368	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Anthracene	0.0245	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Benzo(a)anthracene	0.0722	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Benzo(a)pyrene	0.13	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Benzo(b)fluoranthene	0.136	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Benzo(g,h,i)perylene	0.113	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Chrysene	0.0877	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Fluoranthene	0.221	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Fluorene	0.00932	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0802	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Naphthalene	0.0279	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Phenanthrene	0.152	MG/KG	J	FD>RPD
D-B16-15.0-15.5	SW8270D-SIM	Pyrene	0.281	MG/KG	J	FD>RPD
D-B20-2.5-3.0	SW6020	Arsenic	11.7	MG/KG	J	MS>UCL
D-B20-2.5-3.0	SW6020	Arsenic	11.7	MG/KG	J	SD>UCL
D-B20-2.5-3.0	SW6020	Chromium	13.1	MG/KG	J	MS>UCL

D-B20-2.5-3.0 SW6020 Chromium 13.1 MG/KG J D-B20-2.5-3.0 SW8270D-SIM Benzo(a)anthracene 0.0502 MG/KG J D-B20-2.5-3.0 SW8270D-SIM Benzo(a)anthracene 0.0502 MG/KG J	SD>UCL SD <lcl MS<lcl SD<lcl< th=""></lcl<></lcl </lcl
•	MS <lcl SD<lcl< td=""></lcl<></lcl
D-B20-2.5-3.0 SW8270D-SIM Benzo(a)anthracene 0.0502 MG/KG J	SD <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Benzo(a)pyrene 0.0716 MG/KG J	
D-B20-2.5-3.0 SW8270D-SIM Benzo(a)pyrene 0.0716 MG/KG J	MS <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Benzo(b)fluoranthene 0.0991 MG/KG J	MS <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Benzo(b)fluoranthene 0.0991 MG/KG J	SD <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Benzo(g,h,i)perylene 0.0538 MG/KG J	MS <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Benzo(g,h,i)perylene 0.0538 MG/KG J	SD <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Chrysene 0.0711 MG/KG J	MS <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Chrysene 0.0711 MG/KG J	SD <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Fluoranthene 0.119 MG/KG J	MS <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Indeno(1,2,3-c,d)Pyrene 0.0454 MG/KG J	SD <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Indeno(1,2,3-c,d)Pyrene 0.0454 MG/KG J	MS <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Phenanthrene 0.0505 MG/KG J	MSRPD
D-B20-2.5-3.0 SW8270D-SIM Phenanthrene 0.0505 MG/KG J	SD>UCL
D-B20-2.5-3.0 SW8270D-SIM Pyrene 0.111 MG/KG J	SD <lcl< td=""></lcl<>
D-B20-2.5-3.0 SW8270D-SIM Pyrene 0.111 MG/KG J	MS <lcl< td=""></lcl<>
D-B20-7.5-8.0 SW7471B Mercury 0.0304 MG/KG J	LCS <lcl< td=""></lcl<>
D-B20-9.5-10.0 SW7471B Mercury 0.0189 MG/KG UJ	LCS <lcl< td=""></lcl<>
D-B23-25-3.0 SW8270D-SIM Benzo(a)anthracene 0.117 MG/KG J	FD>RPD
D-B23-25-3.0 SW8270D-SIM Chrysene 0.143 MG/KG J	FD>RPD
D-B23-5.0-5.5 SW8270D-SIM Benzo(a)anthracene 0.00635 MG/KG J	SD>UCL
D-B23-5.0-5.5 SW8270D-SIM Benzo(a)anthracene 0.00635 MG/KG J	MS>UCL
D-B23-5.0-5.5 SW8270D-SIM Benzo(a)pyrene 0.0133 MG/KG J	SD>UCL
D-B23-5.0-5.5 SW8270D-SIM Benzo(a)pyrene 0.0133 MG/KG J	MS>UCL
D-B23-5.0-5.5 SW8270D-SIM Benzo(b)fluoranthene 0.0148 MG/KG J	MS>UCL
D-B23-5.0-5.5 SW8270D-SIM Benzo(b)fluoranthene 0.0148 MG/KG J	SD>UCL
D-B23-5.0-5.5 SW8270D-SIM Benzo(g,h,i)perylene 0.0194 MG/KG J	MS>UCL
D-B23-5.0-5.5 SW8270D-SIM Benzo(g,h,i)perylene 0.0194 MG/KG J	SD>UCL
D-B23-5.0-5.5 SW8270D-SIM Chrysene 0.00828 MG/KG J	MS>UCL

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B23-5.0-5.5	SW8270D-SIM	Chrysene	0.00828	MG/KG	J	SD>UCL
D-B23-5.0-5.5	SW8270D-SIM	Fluoranthene	0.0251	MG/KG	J	SD>UCL
D-B23-5.0-5.5	SW8270D-SIM	Fluoranthene	0.0251	MG/KG	J	MS>UCL
D-B23-5.0-5.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0125	MG/KG	J	MS>UCL
D-B23-5.0-5.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0125	MG/KG	J	SD>UCL
D-B23-5.0-5.5	SW8270D-SIM	Phenanthrene	0.0149	MG/KG	J	MS>UCL
D-B23-5.0-5.5	SW8270D-SIM	Phenanthrene	0.0149	MG/KG	J	SD>UCL
D-B23-5.0-5.5	SW8270D-SIM	Pyrene	0.0293	MG/KG	J	SD>UCL
D-B23-5.0-5.5	SW8270D-SIM	Pyrene	0.0293	MG/KG	J	MS>UCL
D-B24-19.5-20.0	SW8270D-SIM	Acenaphthene	0.00198	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Acenaphthylene	0.0382	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Anthracene	0.018	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Benzo(a)anthracene	0.0411	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Benzo(a)pyrene	0.0818	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Benzo(b)fluoranthene	0.0813	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Benzo(g,h,i)perylene	0.104	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Benzo(k)fluoranthene	0.0239	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Chrysene	0.0506	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Fluoranthene	0.181	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Fluorene	0.00825	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0649	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Naphthalene	0.0215	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Phenanthrene	0.145	MG/KG	J	FD>RPD
D-B24-19.5-20.0	SW8270D-SIM	Pyrene	0.215	MG/KG	J	FD>RPD
D-B26-10.0-10.5	SW8270D-SIM	Fluoranthene	0.0194	MG/KG	J	SD>UCL
D-B26-10.0-10.5	SW8270D-SIM	Phenanthrene	0.00888	MG/KG	J	SD>UCL
D-B26-10.0-10.5	SW8270D-SIM	Pyrene	0.0238	MG/KG	J	SD>UCL
D-B26-15.0-15.5	SW7471B	Mercury	0.0185	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B26-2.5-3.0	SW7471B	Mercury	0.0189	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B26-20.0-20.5	SW7471B	Mercury	0.0189	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B26-25.0-25.5	SW7471B	Mercury	0.0192	MG/KG	UJ	LCS <lcl< td=""></lcl<>

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B26-5.0-5.5	SW6020	Arsenic	21.2	MG/KG	J	MS>UCL
D-B26-7.5-8.0	SW7471B	Mercury	0.0192	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B27-10.0-10.5	SW6020	Barium	84.7	MG/KG	J	SD>UCL
D-B27-2.5-3.0	SW6020	Barium	426	MG/KG	J	FD>RPD
D-B27-25.0-25.5	SW7471B	Mercury	0.0172	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B28-15.0-15.5	SW6020	Barium	82.8	MG/KG	J	MS>UCL
D-B28-5.0-5.5	SW8270D-SIM	Anthracene	0.00206	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Benzo(a)anthracene	0.0104	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Benzo(a)pyrene	0.0177	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Benzo(b)fluoranthene	0.0291	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Benzo(g,h,i)perylene	0.0201	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Benzo(k)fluoranthene	0.00705	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Chrysene	0.0148	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Fluoranthene	0.0261	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0158	MG/KG	J	FD>RPD
D-B28-5.0-5.5	SW8270D-SIM	Phenanthrene	0.011	MG/KG	J	FD>RPD
D-B29-10.0-10.5	SW8270D-SIM	Benzo(a)anthracene	0.00596	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Benzo(a)pyrene	0.00735	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Benzo(b)fluoranthene	0.0102	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Benzo(g,h,i)perylene	0.00666	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Benzo(k)fluoranthene	0.00267	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Chrysene	0.00635	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Fluoranthene	0.00866	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.00507	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Phenanthrene	0.00384	MG/KG	J	Sur>UCL
D-B29-10.0-10.5	SW8270D-SIM	Pyrene	0.0107	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Acenaphthylene	0.00628	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Anthracene	0.00384	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Benzo(a)anthracene	0.0376	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Benzo(a)pyrene	0.0772	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Benzo(b)fluoranthene	0.0766	MG/KG	J	Sur>UCL

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B29-15.0-15.5	SW8270D-SIM	Benzo(g,h,i)perylene	0.0918	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Benzo(k)fluoranthene	0.0253	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Chrysene	0.046	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Fluoranthene	0.087	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.062	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Phenanthrene	0.025	MG/KG	J	Sur>UCL
D-B29-15.0-15.5	SW8270D-SIM	Pyrene	0.138	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Acenaphthylene	0.00219	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Anthracene	0.00183	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Benzo(a)anthracene	0.012	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Benzo(a)pyrene	0.022	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Benzo(b)fluoranthene	0.0257	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Benzo(g,h,i)perylene	0.0165	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Benzo(k)fluoranthene	0.00794	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Chrysene	0.0143	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Fluoranthene	0.028	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0128	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Phenanthrene	0.00921	MG/KG	J	Sur>UCL
D-B29-20.0-20.5	SW8270D-SIM	Pyrene	0.0409	MG/KG	J	Sur>UCL
D-B29-5.0-5.5	SW6020	Arsenic	15.9	MG/KG	J	MS>UCL
D-B29-5.0-5.5	SW6020	Chromium	18.1	MG/KG	J	SD>UCL
D-B29-5.0-5.5	SW6020	Chromium	18.1	MG/KG	J	MS>UCL
D-B29-5.0-5.5	SW6020	Lead	32.8	MG/KG	J	MS>UCL
D-B29-5.0-5.5	SW6020	Lead	32.8	MG/KG	J	SD>UCL
D-B29-5.0-5.5	SW6020	Silver	1.85	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW6020	Silver	1.85	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	1,1,1-Trichloroethane	0.245	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	2-Butanone	0.978	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	2-Butanone	0.978	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Acetone	4.89	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Bromomethane	0.245	MG/KG	UJ	MS <lcl< td=""></lcl<>

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B29-5.0-5.5	SW8260C	Bromomethane	0.245	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Chloroethane	0.489	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Chloroethane	0.489	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Cyclohexane	0.245	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Cyclohexane	0.245	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Iodomethane (Methyl Iodide)	0.978	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Iodomethane (Methyl Iodide)	0.978	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Iodomethane (Methyl Iodide)	0.978	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Iodomethane (Methyl Iodide)	0.978	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	n-Hexane	0.489	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	n-Hexane	0.489	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	n-Hexane	0.489	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	n-Hexane	0.489	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Propene	0.245	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Propene	0.245	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Propene	0.245	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Trichlorofluoromethane	0.245	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8260C	Trichlorofluoromethane	0.245	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW8270D-SIM	Benzo(b)fluoranthene	0.0122	MG/KG	J	SD>UCL
D-B29-5.0-5.5	SW8270D-SIM	Benzo(b)fluoranthene	0.0122	MG/KG	J	MSRPD
D-B29-5.0-5.5	SW8270D-SIM	Pyrene	0.0211	MG/KG	J	MSRPD
D-B29-5.0-5.5	SW8270D-SIM	Pyrene	0.0211	MG/KG	J	SD>UCL
D-B29-5.0-5.5	SW9012	Cyanide, Total	0.0545	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B29-5.0-5.5	SW9012	Cyanide, Total	0.0545	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-B30-5.0-5.5	SW6020	Lead	26.8	MG/KG	J	FD>RPD
D-B30-5.0-5.5	SW7471B	Mercury	0.0182	MG/KG	UJ	FD>RPD
D-B35-15.0-15.5	SW6020	Silver	1.85	MG/KG	UJ	MS <lcl< td=""></lcl<>
D-B35-15.0-15.5	SW6020	Silver	1.85	MG/KG	UJ	SD <lcl< td=""></lcl<>
D-FD01-103019	SW8270D-SIM	Acenaphthene	0.00167	MG/KG	UJ	FD>RPD
D-FD01-103019	SW8270D-SIM	Acenaphthylene	0.0103	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Anthracene	0.00347	MG/KG	J	FD>RPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-FD01-103019	SW8270D-SIM	Benzo(a)anthracene	0.00975	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Benzo(a)pyrene	0.0232	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Benzo(b)fluoranthene	0.0237	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Benzo(g,h,i)perylene	0.0322	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Benzo(k)fluoranthene	0.00611	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Chrysene	0.0131	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Fluoranthene	0.0471	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Fluorene	0.00167	MG/KG	UJ	FD>RPD
D-FD01-103019	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0202	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Naphthalene	0.0167	MG/KG	UJ	FD>RPD
D-FD01-103019	SW8270D-SIM	Phenanthrene	0.0327	MG/KG	J	FD>RPD
D-FD01-103019	SW8270D-SIM	Pyrene	0.0615	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Anthracene	0.0495	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Benzo(a)anthracene	0.124	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Benzo(a)pyrene	0.184	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Benzo(b)fluoranthene	0.196	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Benzo(g,h,i)perylene	0.173	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Benzo(k)fluoranthene	0.0654	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Chrysene	0.161	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Dibenz(a,h)Anthracene	0.025	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Fluoranthene	0.491	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Fluorene	0.0474	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.131	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Phenanthrene	0.529	MG/KG	J	FD>RPD
D-FD01-103119	SW8270D-SIM	Pyrene	0.524	MG/KG	J	FD>RPD
D-FD01-110119	SW6020	Lead	52.3	MG/KG	J	FD>RPD
D-FD01-110119	SW7471B	Mercury	0.0208	MG/KG	J	FD>RPD
D-FD01-110219	SW7471B	Mercury	0.0172	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-FD01-110319	SW6020	Barium	142	MG/KG	J	FD>RPD
D-FD01-110719	SW8260C	Cyclohexane	0.005	MG/L	UJ	Misc
D-FD02-102919	SW8270D-SIM	Acenaphthylene	0.0175	MG/KG	J	FD>RPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-FD02-102919	SW8270D-SIM	Anthracene	0.013	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Benzo(a)anthracene	0.0406	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Benzo(a)pyrene	0.0676	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Benzo(b)fluoranthene	0.0674	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Benzo(g,h,i)perylene	0.056	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Chrysene	0.046	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Fluoranthene	0.127	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Fluorene	0.00482	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.0401	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Naphthalene	0.0167	MG/KG	UJ	FD>RPD
D-FD02-102919	SW8270D-SIM	Phenanthrene	0.0837	MG/KG	J	FD>RPD
D-FD02-102919	SW8270D-SIM	Pyrene	0.155	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Acenaphthene	0.0166	MG/KG	UJ	FD>RPD
D-FD02-103119	SW8270D-SIM	Acenaphthylene	0.107	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Anthracene	0.047	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Benzo(a)anthracene	0.175	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Benzo(a)pyrene	0.386	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Benzo(b)fluoranthene	0.418	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Benzo(g,h,i)perylene	0.468	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Benzo(k)fluoranthene	0.0903	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Chrysene	0.228	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Fluoranthene	0.633	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Fluorene	0.0166	MG/KG	UJ	FD>RPD
D-FD02-103119	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.317	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Naphthalene	0.166	MG/KG	UJ	FD>RPD
D-FD02-103119	SW8270D-SIM	Phenanthrene	0.367	MG/KG	J	FD>RPD
D-FD02-103119	SW8270D-SIM	Pyrene	0.777	MG/KG	J	FD>RPD
D-FD02-110319	SW7471B	Mercury	0.0179	MG/KG	UJ	LCS <lcl< td=""></lcl<>
D-FD03-102919	SW8270D-SIM	Anthracene	0.00167	MG/KG	UJ	FD>RPD
D-FD03-102919	SW8270D-SIM	Benzo(a)anthracene	0.00596	MG/KG	J	FD>RPD
D-FD03-102919	SW8270D-SIM	Benzo(a)pyrene	0.00826	MG/KG	J	FD>RPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-FD03-102919	SW8270D-SIM	Benzo(b)fluoranthene	0.0119	MG/KG	J	FD>RPD
D-FD03-102919	SW8270D-SIM	Benzo(g,h,i)perylene	0.00581	MG/KG	J	FD>RPD
D-FD03-102919	SW8270D-SIM	Benzo(k)fluoranthene	0.00307	MG/KG	J	FD>RPD
D-FD03-102919	SW8270D-SIM	Chrysene	0.00764	MG/KG	J	FD>RPD
D-FD03-102919	SW8270D-SIM	Fluoranthene	0.0125	MG/KG	J	FD>RPD
D-FD03-102919	SW8270D-SIM	Indeno(1,2,3-c,d)Pyrene	0.00471	MG/KG	J	FD>RPD
D-FD03-102919	SW8270D-SIM	Phenanthrene	0.00619	MG/KG	J	FD>RPD
D-FD03-103119	SW8270D-SIM	Benzo(a)anthracene	0.206	MG/KG	J	FD>RPD
D-FD03-103119	SW8270D-SIM	Chrysene	0.243	MG/KG	J	FD>RPD
D-FD05-110119	SW7471B	Mercury	0.0192	MG/KG	UJ	LCS <lcl< td=""></lcl<>
B-FD02-102819	SW6020	Chromium	4.01	MG/KG	J	FD>RPD
B-FD02-102819	SW7471B	Mercury	0.0192	MG/KG	UJ	FD>RPD
B-FD02-102819	SW8270SIM	Benzo(a)anthracene	0.00975	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Benzo(a)pyrene	0.0176	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Benzo(b)fluoranthene	0.026	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Benzo(g,h,i)perylene	0.00904	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Benzo(k)fluoranthene	0.00721	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Chrysene	0.013	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Fluoranthene	0.0258	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Indeno(1,2,3-c,d)Pyrene	0.00772	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Phenanthrene	0.00975	MG/KG	J	FD>RPD
B-FD02-102819	SW8270SIM	Pyrene	0.0358	MG/KG	J	FD>RPD
D-B16-2.5-3.0	SW8270SIM	Fluorene	0.0249	MG/KG	J	FD>RPD
D-B16-2.5-3.0	SW8270SIM	Naphthalene	0.167	MG/KG	UJ	FD>RPD
D-B18-5.0-5.5	SW6020	Arsenic	9.69	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW6020	Chromium	8.67	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW6020	Lead	38.1	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW7471B	Mercury	0.0237	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Acenaphthylene	0.0179	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Anthracene	0.0165	MG/KG	J	FD>RPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B18-5.0-5.5	SW8270SIM	Benzo(a)anthracene	0.0643	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Benzo(a)pyrene	0.115	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Benzo(b)fluoranthene	0.179	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Benzo(g,h,i)perylene	0.0661	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Benzo(k)fluoranthene	0.0389	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Chrysene	0.0865	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Fluoranthene	0.181	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Indeno(1,2,3-c,d)Pyrene	0.0541	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Phenanthrene	0.0744	MG/KG	J	FD>RPD
D-B18-5.0-5.5	SW8270SIM	Pyrene	0.25	MG/KG	J	FD>RPD
D-B20-0-102719	SW8270SIM	Naphthalene	0.0238	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW6020	Chromium	8.2	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW7471B	Mercury	0.0492	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Benzo(a)anthracene	0.00468	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Benzo(a)pyrene	0.00652	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Benzo(b)fluoranthene	0.0113	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Benzo(g,h,i)perylene	0.00345	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Benzo(k)fluoranthene	0.00328	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Chrysene	0.00657	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Fluoranthene	0.0103	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Indeno(1,2,3-c,d)Pyrene	0.00278	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Phenanthrene	0.00484	MG/KG	J	FD>RPD
D-B32-5.0-5.5	SW8270SIM	Pyrene	0.0123	MG/KG	J	FD>RPD
D-B34-0-102719	SW6020	Barium	208	MG/KG	J	FD>RPD
D-B34-0-102719	SW6020	Lead	41.3	MG/KG	J	FD>RPD
D-B34-0-102719	SW7471B	Mercury	0.0288	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Benzo(a)anthracene	0.0335	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Benzo(a)pyrene	0.0467	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Benzo(b)fluoranthene	0.0888	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Benzo(g,h,i)perylene	0.0371	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Benzo(k)fluoranthene	0.0221	MG/KG	J	FD>RPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-B34-0-102719	SW8270SIM	Chrysene	0.0504	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Fluoranthene	0.0847	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Indeno(1,2,3-c,d)Pyrene	0.0323	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Phenanthrene	0.0273	MG/KG	J	FD>RPD
D-B34-0-102719	SW8270SIM	Pyrene	0.0729	MG/KG	J	FD>RPD
D-FD01-102719	SW8270SIM	Naphthalene	0.0166	MG/KG	UJ	FD>RPD
D-FD01-102819	SW6020	Barium	76.4	MG/KG	J	FD>RPD
D-FD01-102819	SW6020	Lead	12.6	MG/KG	J	FD>RPD
D-FD01-102819	SW7471B	Mercury	0.0185	MG/KG	UJ	FD>RPD
D-FD01-102819	SW8270SIM	Benzo(a)anthracene	0.00166	MG/KG	UJ	FD>RPD
D-FD01-102819	SW8270SIM	Benzo(a)pyrene	0.00234	MG/KG	J	FD>RPD
D-FD01-102819	SW8270SIM	Benzo(b)fluoranthene	0.00385	MG/KG	J	FD>RPD
D-FD01-102819	SW8270SIM	Benzo(g,h,i)perylene	0.00166	MG/KG	UJ	FD>RPD
D-FD01-102819	SW8270SIM	Benzo(k)fluoranthene	0.00166	MG/KG	UJ	FD>RPD
D-FD01-102819	SW8270SIM	Chrysene	0.0021	MG/KG	J	FD>RPD
D-FD01-102819	SW8270SIM	Fluoranthene	0.00468	MG/KG	J	FD>RPD
D-FD01-102819	SW8270SIM	Indeno(1,2,3-c,d)Pyrene	0.00166	MG/KG	UJ	FD>RPD
D-FD01-102819	SW8270SIM	Phenanthrene	0.00198	MG/KG	J	FD>RPD
D-FD01-102819	SW8270SIM	Pyrene	0.00575	MG/KG	J	FD>RPD
D-FD01-102919	SW8270SIM	Fluorene	0.0441	MG/KG	J	FD>RPD
D-FD01-102919	SW8270SIM	Naphthalene	0.136	MG/KG	J	FD>RPD
D-FD03-102819	SW6020	Arsenic	20.7	MG/KG	J	FD>RPD
D-FD03-102819	SW6020	Chromium	16.6	MG/KG	J	FD>RPD
D-FD03-102819	SW6020	Lead	15.6	MG/KG	J	FD>RPD
D-FD03-102819	SW7471B	Mercury	0.0172	MG/KG	UJ	FD>RPD
D-FD03-102819	SW8270SIM	Benzo(a)anthracene	0.00597	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Benzo(a)pyrene	0.0106	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Benzo(b)fluoranthene	0.0149	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Benzo(g,h,i)perylene	0.00603	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Benzo(k)fluoranthene	0.00427	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Chrysene	0.00728	MG/KG	J	FD>RPD

Sample ID	Method	Analyte	Final Result	Units	Validation Flag	Validation Reason
D-FD03-102819	SW8270SIM	Fluoranthene	0.0151	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Indeno(1,2,3-c,d)Pyrene	0.00495	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Phenanthrene	0.00538	MG/KG	J	FD>RPD
D-FD03-102819	SW8270SIM	Pyrene	0.0224	MG/KG	J	FD>RPD
D-MW25	SW8260C	Cyclohexane	0.005	MG/L	UJ	Misc
D-MW26	SW8260C	Cyclohexane	0.005	MG/L	UJ	Misc
D-MW27	SW8260C	Acetone	0.1	MG/L	UJ	MS <lcl< td=""></lcl<>
D-MW27	SW8260C	Cyclohexane	0.005	MG/L	UJ	Misc

Notes:

FD>RPD = Field duplicate relative percent difference criterion exceeded

LCS<LCL = Laboratory control sample recovery less than the lower control limit

MISC = Laboratory flagged for matrix interference

MS<LCL = Matrix spike recovery less than the lower control limit

MS>UCL = Matrix spike recovery greater than the upper control limit

MSRPD = Matrix spike duplicate relative percent difference criterion exceeded

SD<LCL = Matrix spike duplicate recovery less than the lower control limit

SD>UCL = Matrix spike duplicate recovery greater than the upper control limit

Sur>UCL = Surrogate recovery greater than the upper control limit

Appendix I Manifests and Bills of Lading

Manifests will be provided when available.

Appendix J Statistical Evaluation Supporting Documentation

Tables

Table J-1Summary Statistics for Arsenic Concentrations in Soil (Upper 20 Feet)

		Frequ	ency of Det	ection	Minimur	n Values	Maximu	m Values	Depth of							sw
				Detect	Non-		Non-		Max			Standard	Coefficient			Normality
		Total	Detect	Freq.	Detect	Detect	Detect	Detect	Detect	Mean	Median	Deviation	of			Test
Location	Borehole	Samples	Results	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	Variation	Skewness	Kurtosis	(p-value)
	B18	7	7	100		8.70		21.8	7.25	16.0	16.4	5.07	0.317	-0.575	-1.13	0.326
	B22	6	6	100		9.18		25.8	5.25	19.0	19.4	6.42	0.338	-0.518	-0.871	0.591
	B27	8	8	100		13.8		24.1	5.25	18.1	18.0	3.97	0.219	0.235	-1.81	0.148
	B28	6	6	100		9.02		23.1	5.25	14.5	14.7	5.20	0.359	0.740	0.688	0.419
	B29	5	5	100		7.22		22.5	20.3	16.2	15.9	5.90	0.364	-0.834	0.693	0.658
Background	B30	6	6	100		9.51		16.0	19.8	12.5	12.1	2.76	0.221	0.335	-1.89	0.373
	B31	5	5	100		9.08		18.4	15.3	14.1	12.8	3.87	0.274	-0.065	-1.67	0.497
	B32	6	6	100		7.13		10.3	5.25	9.12	9.24	1.24	0.136	-0.720	-0.381	0.396
1	B33	5	5	100		7.47		32.6	15.3	15.9	10.0	10.7	0.668	1.23	0.362	0.157
	B34	6	6	100		8.59	<u> </u>	15.7	10.3	11.5	10.4	3.05	0.265	0.673	-1.84	0.172
	B35	5	5	100		7.69		14.6	10.3	12.7	13.8	2.84	0.224	-2.00	4.13	0.024
	B11	7	7	100		12.9		23.5	10.3	19.0	19.5	3.46	0.182	-0.785	0.692	0.782
1	B12	8	8	100		14.10		23.1	15.3	18.0	17.6	2.81	0.156	0.72	0.60	0.750
	B13	8	8	100		12.0		24.5	7.75	17.9	18.0	4.75	0.266	0.022	-1.53	0.574
1	B14	7	7	100		10.9		25.5	5.25	20.4	21.3	5.26	0.258	-0.953	0.393	0.264
	B15	8	8	100		9.77		24.0	10.3	16.0	14.5	5.38	0.335	0.403	-1.64	0.350
	B16	10	10	100		8.71		23.0	15.3	14.9	13.8	5.19	0.348	0.346	-1.49	0.355
Site	B17	6	6	100		7.44	<u> </u>	19.4	10.3	15.1	16.9	4.35	0.289	-1.31	1.25	0.199
Oito	B19	7	7	100		7.73		20.6	5.25	13.3	13.7	4.40	0.331	0.481	-0.169	0.911
	B20	8	8	100		8.99		21.0	5.25	13.2	12.2	3.81	0.288	1.24	1.78	0.344
	B21	8	8	100		7.38		19.7	7.75	13.6	12.3	5.10	0.374	0.276	-1.99	0.093
İ	B23	8	8	100		9.68	<u> </u>	42.5	14.8	20.3	16.3	10.5	0.519	1.52	2.48	0.119
	B24	8	8	100		7.55		41.6	5.25	16.0	11.7	11.2	0.700	2.09	4.67	0.008
1	B25	5	5	100		10.90		50.3	5.25	24.4	22.2	15.4	0.632	1.60	2.91	0.178
	B26	8	8	100		8.55		21.6	7.75	16.1	17.1	4.57	0.284	-0.453	-0.75	0.664

Notes:
"---" = not applicable

% = percent

bgs = below ground surface

Freq. = frequency ft = feet

max = maximum

mg/kg = milligrams per kilogram p-value = probability value SW = Shapiro-Wilk

Table J-2Summary Statistics for Lead Concentrations in Soil (Upper 20 Feet)

		Frequ	ency of Det	ection	Minimur	n Values	Maximu	m Values	Depth of							sw
				Detect	Non-		Non-		Max			Standard	Coefficient			Normality
		Total	Detect	Freq.	Detect	Detect	Detect	Detect	Detect	Mean	Median	Deviation	of			Test
Location	Borehole	Samples	Results	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	Variation	Skewness	Kurtosis	(p-value)
	B18	7	7	100		13.3		38.1	5.25	22.6	23.0	8.34	0.369	1.00	1.21	0.435
	B22	6	6	100		11.2		117	5.25	43.0	29.0	38.5	0.896	1.88	3.74	0.050
	B27	8	8	100		11.10		17.0	20.3	13.2	12.3	2.16	0.163	1.237	0.02	0.031
	B28	6	6	100		9.89		45.9	0	19.0	14.5	13.7	0.721	2.09	4.57	0.008
	B29	5	5	100		12.6		32.8	5.25	20.4	20.3	8.02	0.393	0.958	0.723	0.521
Background	B30	6	6	100		14.1		52.3	5.25	31.0	31.8	14.8	0.479	0.208	-1.23	0.688
	B31	5	5	100		6.48		98.2	5.25	30.7	7.26	39.6	1.29	1.79	3.02	0.019
	B32	6	6	100		3.86		62.5	5.25	31.3	34.1	23.6	0.754	-0.063	-1.61	0.567
	B33	5	5	100		9.34		222	5.25	56.5	11.7	92.9	1.64	2.19	4.83	0.001
	B34	6	6	100		7.70		41.3	0	16.1	11.7	12.5	0.779	2.28	5.38	0.003 0.168
	B35	5	5	100		12.6		30.3	0	22.1	24.1	8.53	0.385	-0.289	-3.00	0.168
	B11	7	7	100		16.4		420	2.75	130	93.2	139	1.07	1.83	3.82	0.041
	B12	8	8	100		8.74		531	7.75	138	87.9	171	1.24	2.12	4.97	0.007
	B13	8	8	100		6.70		89.4	1.25	31.3	19.2	28.2	0.902	1.43	1.72	0.063 0.020
	B14	7	7	100		9.49		48.7	1.25	20.0	14.0	13.6	0.683	1.95	4.09	
	B15	8	8	100		12.6		56.2	1.25	29.5	30.5	15.6	0.530	0.531	-0.555	0.348
	B16	10	10	100		9.81		60.8	0	28.0	26.2	16.7	0.598	0.749	-0.121	0.346
Site	B17	6	6	100		7.38		43.6	2.75	22.6	18.0	14.8	0.655	0.674	-1.53	0.336
Oile	B19	7	7	100		4.67		29.7	0	16.3	12.3	9.17	0.563	0.420	-1.27	0.591
	B20	8	8	100		5.25		112	5.25	44.4	29.8	41.9	0.943	1.11	-0.393	0.033
	B21	8	8	100		10.70		72.8	2.75	42.5	47.4	20.7	0.488	-0.290	-0.70	0.722
	B23	8	8	100		9.97		69.0	2.75	25.4	15.7	21.5	0.845	1.52	1.50	0.016
	B24	8	8	100		9.28		77.3	10.3	29.3	17.8	27.1	0.925	1.34	0.066	0.006
	B25	5	5	100		9.12		57.5	0	21.5	13.8	20.3	0.942	2.16	4.75	0.004
	B26	8	8	100		9.02		41.4	0	15.5	11.4	10.8	0.700	2.48	6.43	0.000

Notes:
"---" = not applicable % = percent

bgs = below ground surface

Freq. = frequency ft = feet

max = maximum

mg/kg = milligrams per kilogram p-value = probability value SW = Shapiro-Wilk

Table J-3Rank-Transformed Two-Way ANOVA

_	_	Total	Detect	Г	Pepth Interval	В	oring Location
Area	Parameter	Samples	Results	Calculated Probability	Decision	Calculated Probability	Decision
Background	Arsenic	65	65	0.102 No Significant Difference		0.018	Significant Difference
Background	Lead	65	65	< 0.001	Significant Difference	0.063	No Significant Difference
Site	Arsenic	106	106	< 0.001	Significant Difference	0.012	Significant Difference
Site	Lead	106	106	< 0.001	Significant Difference	< 0.001	Significant Difference

Notes:

[&]quot;<" = less than

Table J-4Kruskal Wallis (Nonparametric) ANOVA Comparisons Between Depth Intervals

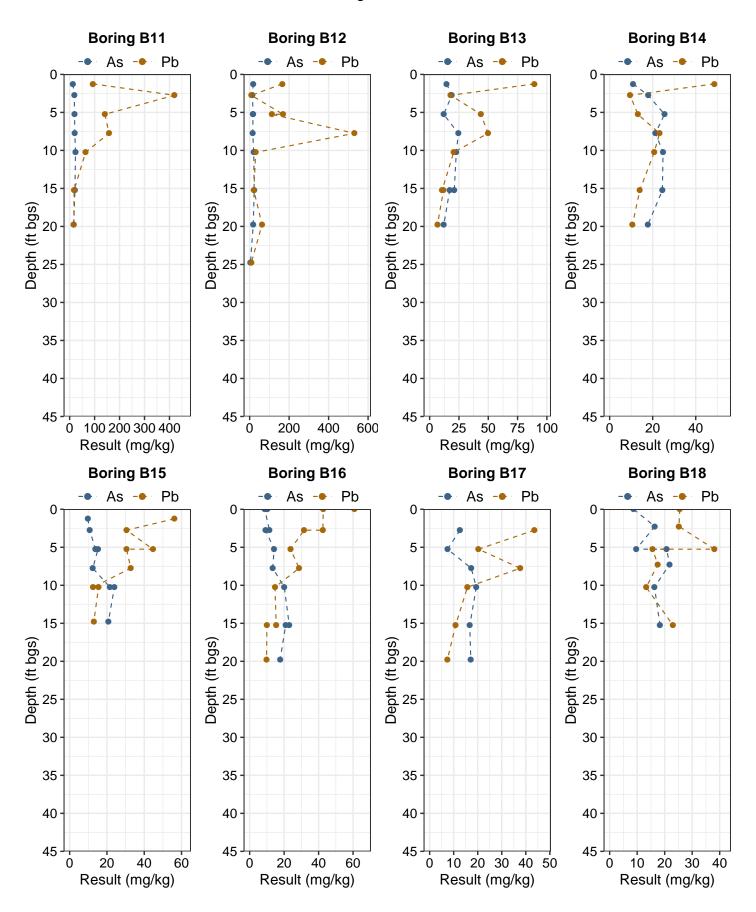
Area	Parameter	Total Samples	Detect Results	Calculated Probability	Decision	Depth Intervals Statisticaly Different
	Arsenic	65	65	0.181	No Significant Difference	
Background						0-5 ft / 5-10 ft
	Lead	65	65	< 0.001	Significant Difference	0-5 ft / 10-15 ft
						0-5 ft / 15-20 ft
						0-5 ft / 5-10 ft
	Arsenic	106	106	< 0.001	Significant Difference	0-5 ft / 10-15 ft
	Arsenic	100	100	< 0.001	Significant Difference	5-10 ft / 15-20 ft
Site						10-15 ft / 15-20 ft
Site						0-5 ft / 10-15 ft
	امما	400	400	4.0.004	Cincificant Difference	0-5 ft / 15-20 ft
	Lead	106	106	< 0.001	Significant Difference	5-10 ft / 10-15 ft
						5-10 ft / 15-20 ft

Notes:

"---" = not applicable

"<" = less than

ft = feet


Table J-5Central Tendency Comparison Test Results by Depth Interval

			Site Sa	amples			Backgrour	nd Samples		F-Test for				Wilcoxon	Quantile		
					Normality				Normality	Equal	Student's	Welch's	KS	Rank Sum	(0.80)	Are site results	
	Depth	No. of	No. of	Percent	Test	No. of	No. of	Percent	Test	Variance	t-test	t-test	Test	Test	Test	greater than	Basis of
Parameter	Interval	Samples	Detects	Detects	(p-value)	Samples	Detects	Detects	(p-value)	(p-value)	(p-value)	(p-value)	(p-value)	(p-value)	(p-value)	background?	Decision
Arsenic	0 - 5 ft	49	49	100	0.000	31	31	100	0.011	0.021	0.137	0.116	0.208	0.155	0.349	No	KS
Arsenic	5 - 10 ft	29	29	100	0.046	14	14	100	0.136	0.634	0.010	0.014	0.046	0.016	0.030	Yes	WRS
Arsenic	10 - 15 ft	15	15	100	0.001	11	11	100	0.659	0.974	0.148	0.148	0.148	0.097	0.654	No	WRS
Arsenic	15 - 20 ft	13	13	100	0.039	9	9	100	0.240	0.966	0.559	0.559	0.271	0.513	0.450	No	WRS
Lead	0 - 5 ft	49	49	100	0.000	31	31	100	0.000	0.008	0.127	0.104	0.089	0.131	0.165	No	KS
Lead	5 - 10 ft	29	29	100	0.000	14	14	100	0.085	0.000	0.129	0.055	0.049	0.022	0.180	Yes	KS
Lead	10 - 15 ft	15	15	100	0.000	11	11	100	0.620	0.060	0.311	0.296	0.657	0.552	0.918	No	WRS
Lead	15 - 20 ft	13	13	100	0.000	9	9	100	0.732	0.002	0.318	0.291	0.777	0.722	0.833	No	KS

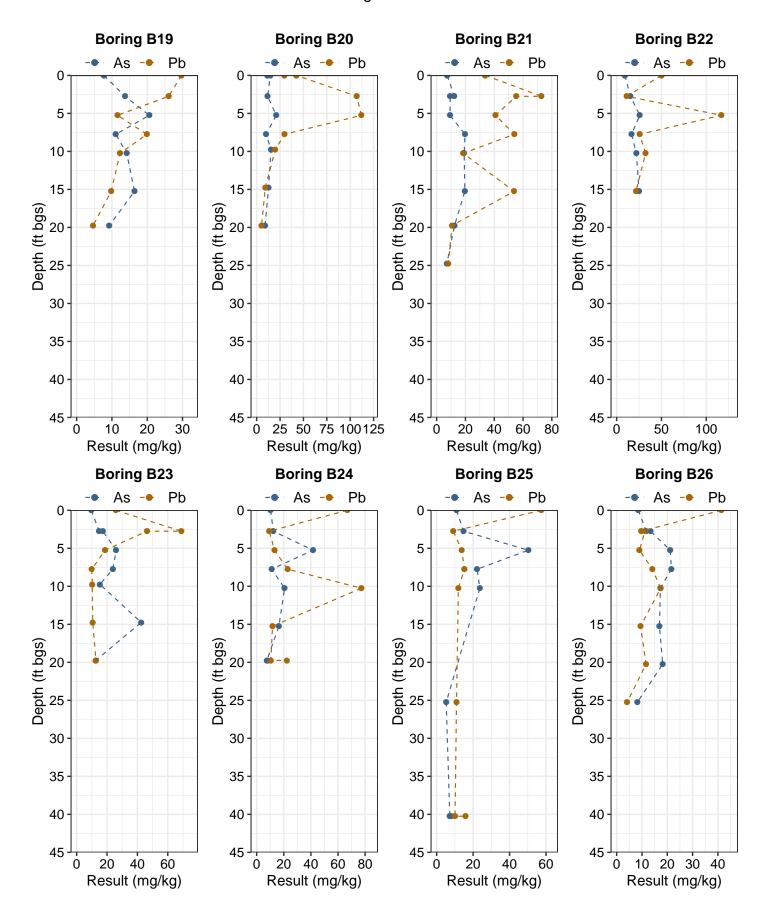
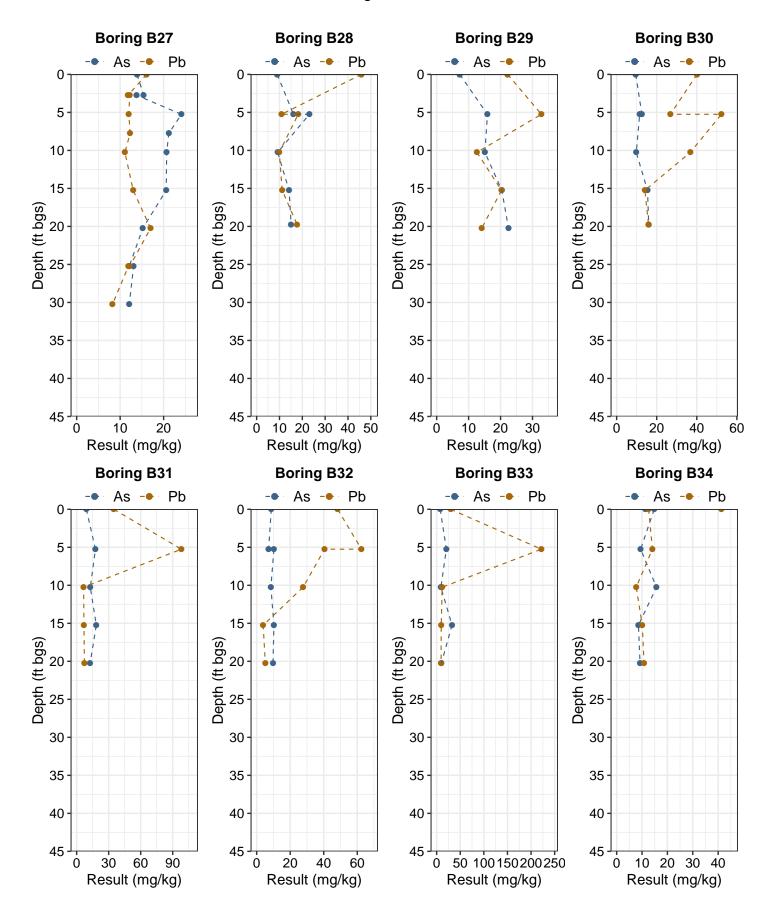
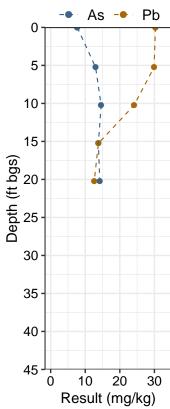

Notes:
"---" = not applicable
KS = Kolmogorov-Smirnov
WRS = Wilcoxon Rank Sum

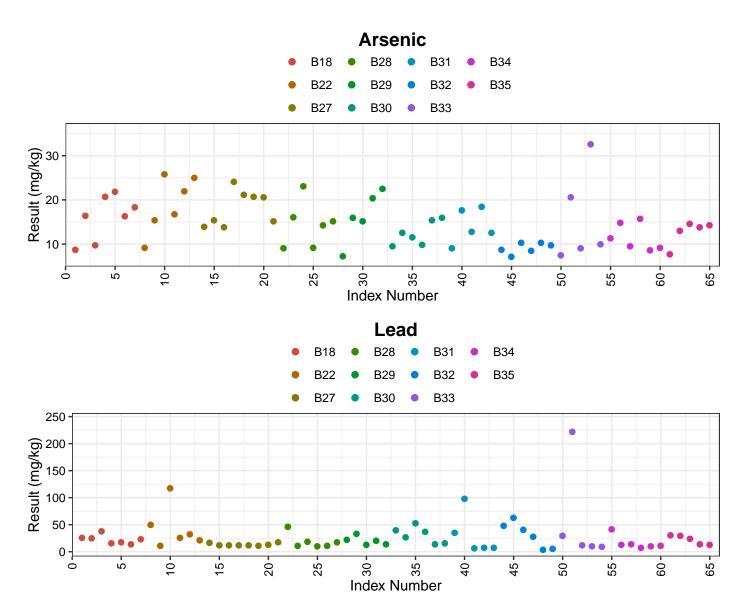
Figure J-1

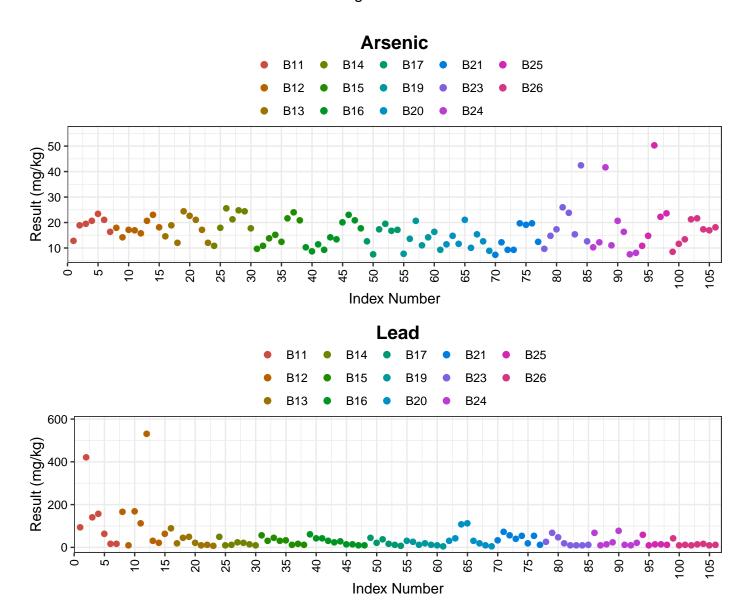

Depth Profiles for Arsenic and Lead (nondetects plotted using open symbols at one–half the DL) Page 1 of 4

Depth Profiles for Arsenic and Lead (nondetects plotted using open symbols at one–half the DL) Page 2 of 4



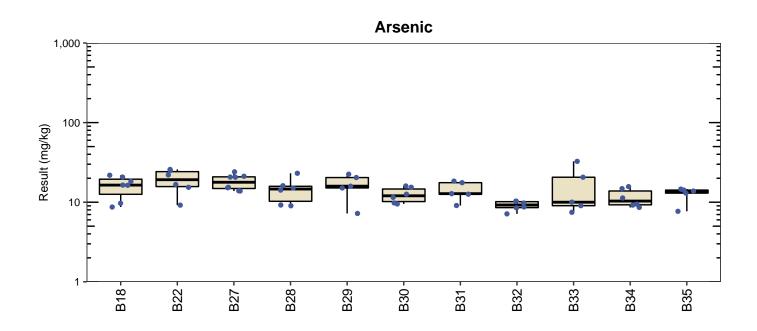
Depth Profiles for Arsenic and Lead (nondetects plotted using open symbols at one–half the DL) Page 3 of 4

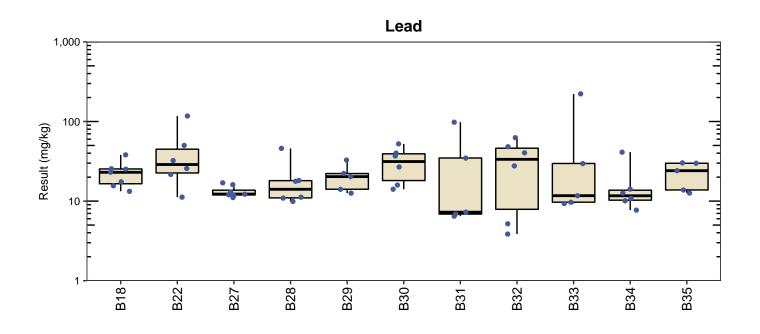

Depth Profiles for Arsenic and Lead (nondetects plotted using open symbols at one–half the DL) Page 4 of 4

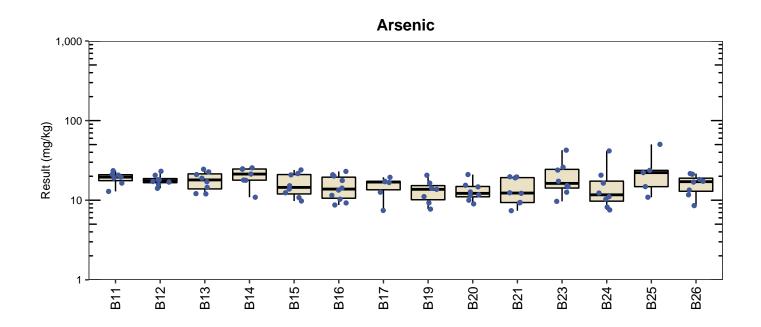


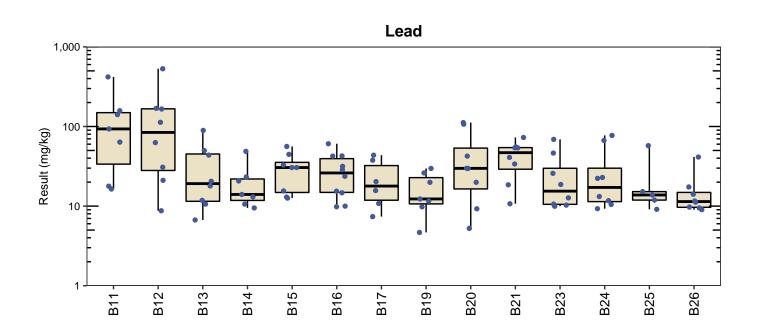
Attachment J-1 Index Plots

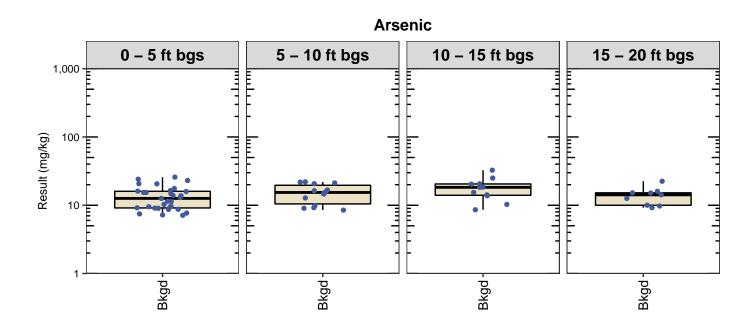
Index Plots for Arsenic and Lead in Background Soil (open symbols represent nondetect values at one-half the DL) Page 1 of 1

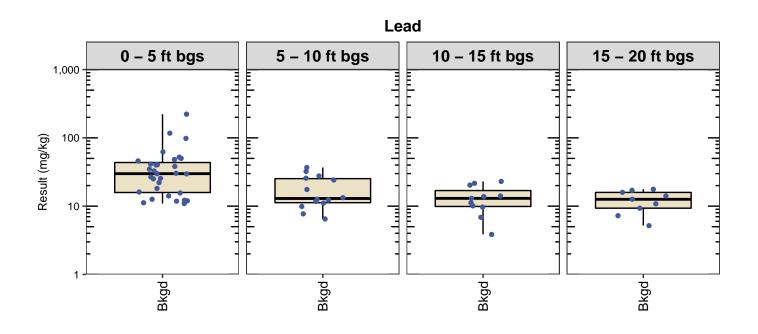


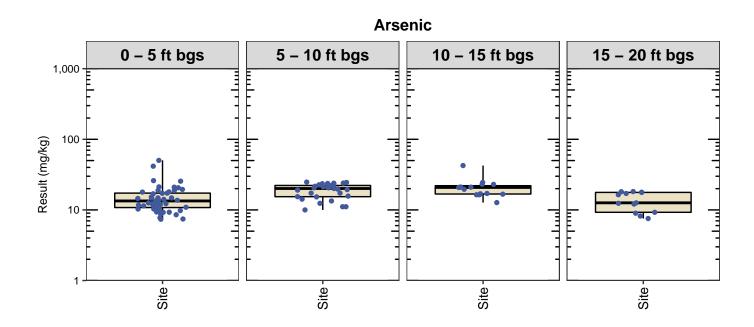

Index Plots for Arsenic and Lead in Site Soil (open symbols represent nondetect values at one–half the DL) Page 1 of 1

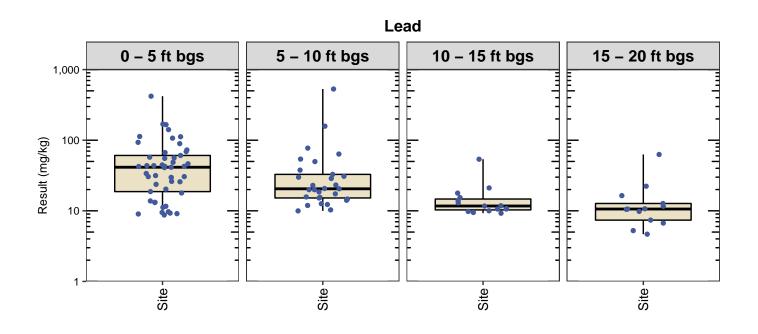

Attachment J-2
Box Plots

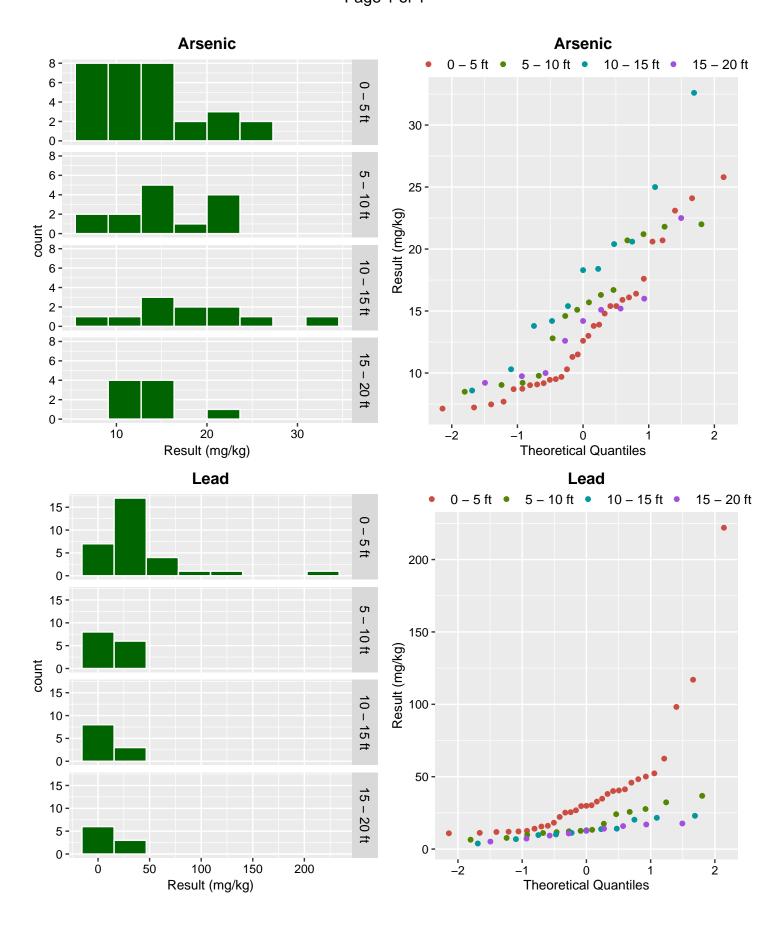

Box Plot of Arsenic and Lead Concentrations in Background Soil (nondetects plotted at one-half the DL) Page 1 of 1

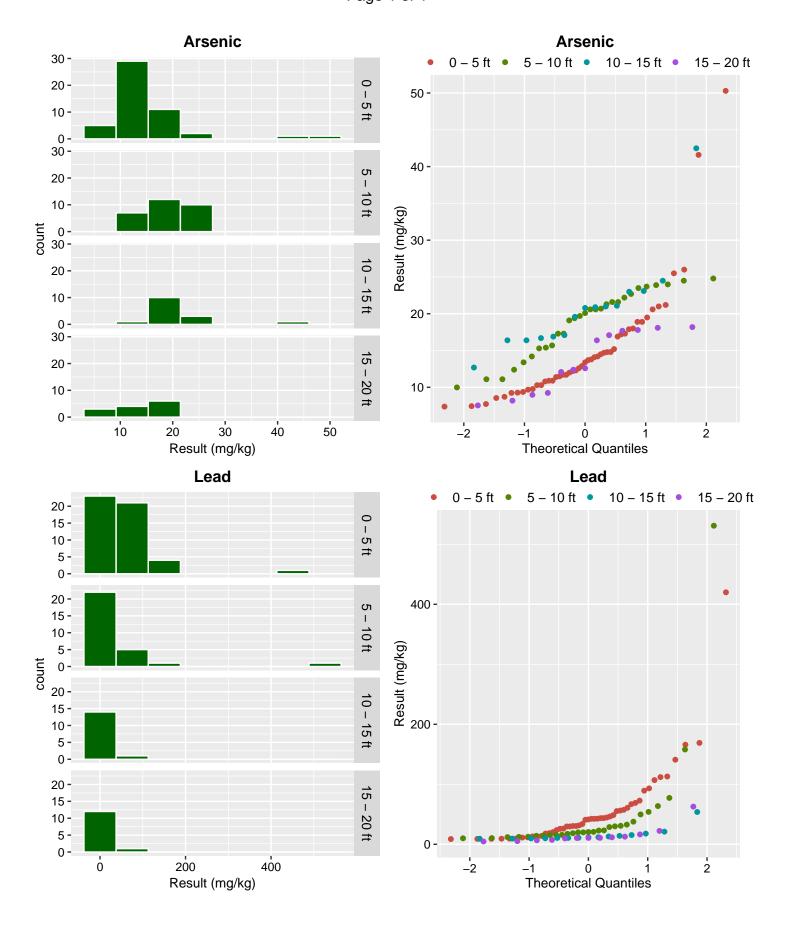



Box Plot of Arsenic and Lead Concentrations in Site Soil (nondetects plotted at one-half the DL) Page 1 of 1



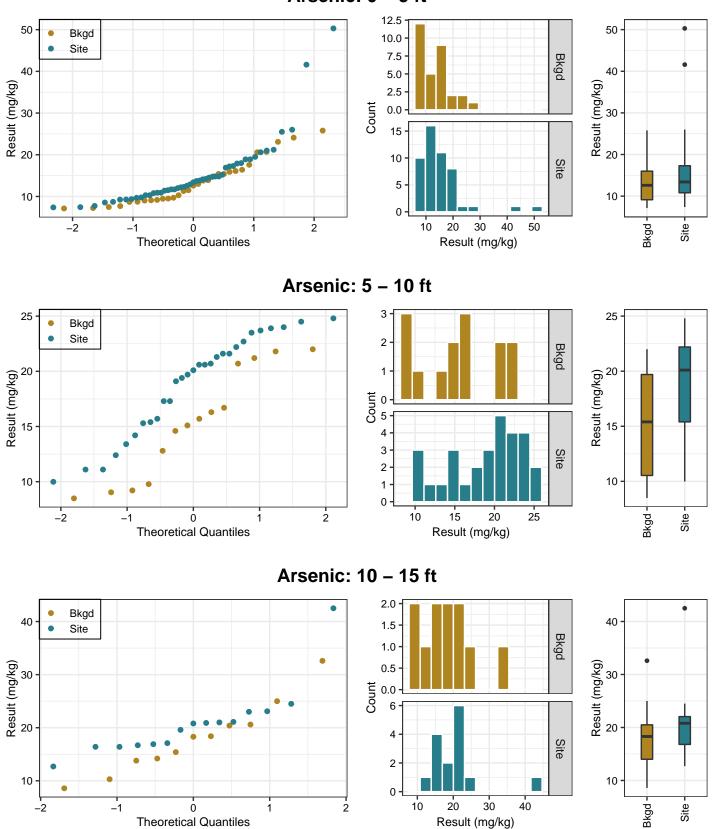

Box Plot of Arsenic and Lead Concentrations in Background Soil (nondetects plotted at one-half the DL) Page 1 of 1


Box Plot of Arsenic and Lead Concentrations in Site Soil (nondetects plotted at one-half the DL) Page 1 of 1

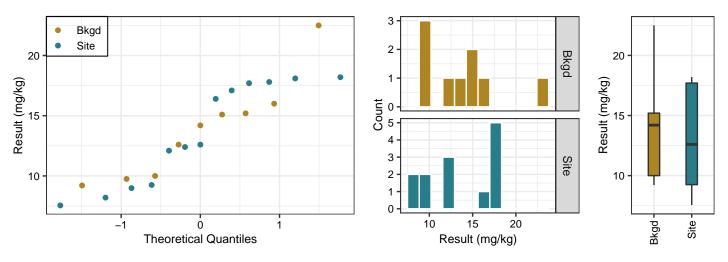


Attachment J-3 Historical Q-Q Plots

Histograms and QQ-Plots for Arsenic and Lead in Background Soil (nondetects plotted at one-half the DL) Page 1 of 1


Histograms and QQ-Plots for Arsenic and Lead in Site Soil (nondetects plotted at one-half the DL) Page 1 of 1

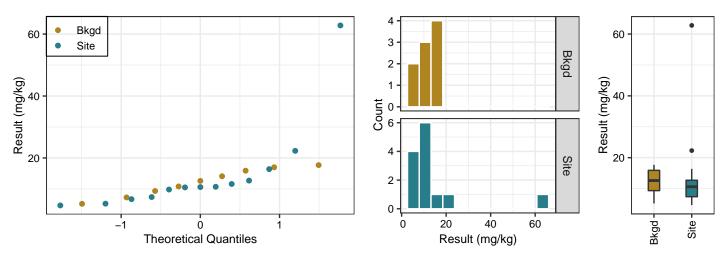
Attachment J-4 Combined Plots


Combined Plots for Arsenic (background versus site concentrations) Page 1 of 2

Arsenic: 0 - 5 ft

Combined Plots for Arsenic (background versus site concentrations) Page 2 of 2

Arsenic: 15 - 20 ft


Combined Plots for Lead (background versus site concentrations) Page 1 of 2

Lead: 0 - 5 ft

Combined Plots for Lead (background versus site concentrations) Page 2 of 2

Lead: 15 - 20 ft

Appendix K Human Health Risk Assessment

Table K-1
Soil Samples Used in Human Health Risk Assessment
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Sample Location	Sample Date	Sample ID	Sample Type	Top Depth (Feet bgs)	Bottom Depth (Feet bgs)	Depth Group (Feet bgs)	Exposure Area
B11	30-Oct-19	•	N N	1		0-15	
		D-B11-1.0-1.5	-		1.5		Onsite
B11	30-Oct-19	D-B11-2.5-3.0	N	2.5	3	0-15	Onsite
B11	30-Oct-19	D-B11-5.0-5.5	N	5	5.5	0-15	Onsite
B11	30-Oct-19	D-B11-7.5-8.0	N	7.5	8	0-15	Onsite
B11	30-Oct-19	D-B11-10.0-10.5	N	10	10.5	0-15	Onsite
B11	30-Oct-19	D-B11-15.0-15.5	N	15	15.5	>15	Onsite
B11	30-Oct-19	D-B11-19.5-20.0	N	19.5	20	>15	Onsite
B12	31-Oct-19	D-B12-1.0-1.5	N	1	1.5	0-15	Onsite
B12	31-Oct-19	D-B12-2.5-3.0	N	2.5	3	0-15	Onsite
B12	31-Oct-19	D-B12-5.0-5.5	N	5	5.5	0-15	Onsite
B12	31-Oct-19	D-FD02-103119	FD	5	5.5	0-15	Onsite
B12	31-Oct-19	D-B12-7.5-8.0	N	7.5	8	0-15	Onsite
B12	31-Oct-19	D-B12-10.0-10.5	N	10	10.5	0-15	Onsite
B12	31-Oct-19	D-B12-15.0-15.5	N	15	15.5	>15	Onsite
B12	31-Oct-19	D-B12-19.5-20	N	19.5	20	>15	Onsite
B12	31-Oct-19	D-B12-24.5-25.0	N	24.5	25	>15	Onsite
B13	31-Oct-19	D-B13-1.0-1.5	N	1	1.5	0-15	Onsite
B13	31-Oct-19	D-B13-1.0-1.3 D-B13-2.5-3.0	N	2.5	3	0-15	Onsite
B13			N	5	5.5	0-15	
	31-Oct-19	D-B13-5.0-5.5	1				Onsite
B13	31-Oct-19	D-B13-7.5-8.0	N	7.5	8	0-15	Onsite
B13	31-Oct-19	D-B13-10.0-10.5	N	10	10.5	0-15	Onsite
B13	31-Oct-19	D-B13-15.0-15.5	N	15	15.5	>15	Onsite
B13	31-Oct-19	D-FD01-103119	FD	15	15.5	>15	Onsite
B13	31-Oct-19	D-B13-19.5-20.0	N	19.5	20	>15	Onsite
B14	29-Oct-19	D-B14-1.0-1.5	N	1	1.5	0-15	Onsite
B14	29-Oct-19	D-B14-2.5-3.0	N	2.5	3	0-15	Onsite
B14	29-Oct-19	D-B14-5.0-5.5	N	5	5.5	0-15	Onsite
B14	29-Oct-19	D-B14-7.5-8.0	N	7.5	8	0-15	Onsite
B14	29-Oct-19	D-B14-10.0-10.5	N	10	10.5	0-15	Onsite
B14	29-Oct-19	D-B14-15.0-15.5	N	15	15.5	>15	Onsite
B14	29-Oct-19	D-B14-19.5-20.0	N	19.5	20	>15	Onsite
B15	01-Nov-19	D-B15-1.0-1.5	N	1	1.5	0-15	Onsite
B15	01-Nov-19	D-B15-2.5-3.0	N	2.5	3	0-15	Onsite
B15	01-Nov-19	D-B15-5.0-5.5	N	5	5.5	0-15	Onsite
B15	01-Nov-19	D-FD03-110119	FD	5	5.5	0-15	Onsite
B15	01-Nov-19	D-B15-7.5-8.0	N	7.5	8	0-15	Onsite
B15	01-Nov-19	D-B15-7.3-8.0	N	10	10.5	0-15	Onsite
			1				
B15	01-Nov-19	D-FD04-110119	FD	10	10.5	0-15	Onsite
B15	01-Nov-19	D-B15-14.5-15.0	N	14.5	15	0-15	Onsite
B16	27-Oct-19	D-B16-0-102719	N	0	0.25	0-15	Onsite
B16	29-Oct-19	D-B16-2.5-3.0	N	2.5	3	0-15	Onsite
B16	29-Oct-19	D-FD01-102919	FD	5	5.5	0-15	Onsite
B16	29-Oct-19	D-B16-5.0-5.5	N	5	5.5	0-15	Onsite
B16	29-Oct-19	D-B16-7.5-8.0	N	7.5	8	0-15	Onsite
B16	29-Oct-19	D-B16-10.0-10.5	N	10	10.5	0-15	Onsite
B16	29-Oct-19	D-B16-15.0-15.5	N	15	15.5	>15	Onsite
B16	29-Oct-19	D-FD02-102919	FD	15	15.5	>15	Onsite
B16	29-Oct-19	D-B16-19.5-20.0	N	19.5	20	>15	Onsite
B16	29-Oct-19	D-FD01-102919	FD	2.5	3	0-15	Onsite
B16	27-Oct-19	D-B17-0-102719	N	0	0.25	0-15	Onsite
B17	27-Oct-19	D-B17-0-102719	N	0	0.25	0-15	Onsite
B17	30-Oct-19	D-B17-2.5-3.0	N	2.5	3	0-15	Onsite
B17	30-Oct-19	D-B17-5.0-5.5	N	5	5.5	0-15	Onsite
B17	30-Oct-19	D-B17-7.5-8.0	N	7.5	8	0-15	Onsite

Table K-1
Soil Samples Used in Human Health Risk Assessment
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Sample Location	Sample Date	Sample ID	Sample Type	Top Depth (Feet bgs)	Bottom Depth (Feet bgs)	Depth Group (Feet bgs)	Exposure Area
B17	30-Oct-19	D-B17-10.0-10.5	N	10	10.5	0-15	Onsite
B17	30-Oct-19	D-B17-15.0-15.5	N	15	15.5	>15	Onsite
B17	30-Oct-19	D-B17-19.5-20.0	N	19.5	20	>15	Onsite
B18	27-Oct-19	D-B17-13.3-20.0 D-B18-0-102719	N	0	0.25	0-15	Background (Offsite)
B18	28-Oct-19	D-B18-2.0-2.5	N	2.5	3	0-15	Background (Offsite)
				5	5.5		
B18	28-Oct-19	D-B18-5.0-5.5	N			0-15	Background (Offsite)
B18	28-Oct-19	D-FD03-102819	FD	5	5.5	0-15	Background (Offsite)
B18	28-Oct-19	D-B18-7.0-7.5	N	7	7.5	0-15	Background (Offsite)
B18	05-Nov-19	D-B18-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B18	05-Nov-19	D-B18-15.0-15.5	N	15	15.5	>15	Background (Offsite
B18	28-Oct-19	D-B18-2.0-2.5	N	2	2.5	0-15	Background (Offsite
B19	27-Oct-19	D-B19-0-102719	N	0	0.25	0-15	Onsite
B19	01-Nov-19	D-B19-2.5-3.0	N	2.5	3	0-15	Onsite
B19	01-Nov-19	D-B19-5.0-5.5	N	5	5.5	0-15	Onsite
B19	01-Nov-19	D-B19-7.5-8.0	N	7.5	8	0-15	Onsite
B19	02-Nov-19	D-B19-10.0-10.5	N	10	10.5	0-15	Onsite
B19	02-Nov-19	D-B19-15.0-15.5	N	15	15.5	>15	Onsite
B19	02-Nov-19	D-B19-19.5-20.0	N	19.5	20	>15	Onsite
B20	27-Oct-19	D-B20-0-102719	N	0	0.25	0-15	Onsite
B20	27-Oct-19	D-FD01-102719	FD	0	0.25	0-15	Onsite
B20	30-Oct-19	D-B20-2.5-3.0	N	2.5	3	0-15	Onsite
B20	30-Oct-19	D-B20-5.0-5.5	N	5	5.5	0-15	Onsite
B20	02-Nov-19	D-B20-7.5-8.0	N	7.5	8	0-15	Onsite
				9.5			
B20	02-Nov-19	D-B20-9.5-10.0	N		10	0-15	Onsite
B20	02-Nov-19	D-B20-14.5-15.0	N	14.5	15	0-15	Onsite
B20	02-Nov-19	D-B20-19.5-20.0	N	19.5	20	>15	Onsite
B21	27-Oct-19	D-B21-0-102719	N	0	0.25	0-15	Onsite
B21	01-Nov-19	D-B21-2.5-3.0	N	2.5	3	0-15	Onsite
B21	01-Nov-19	D-FD02-110119	FD	2.5	3	0-15	Onsite
B21	01-Nov-19	D-B21-5.0-5.5	N	5	5.5	0-15	Onsite
B21	01-Nov-19	D-B21-7.5-8.0	N	7.5	8	0-15	Onsite
B21	01-Nov-19	D-B21-10.0-10.5	N	10	10.5	0-15	Onsite
B21	01-Nov-19	D-B21-15.0-15.5	N	15	15.5	>15	Onsite
B21	01-Nov-19	D-B21-19.5-20.0	N	19.5	20	>15	Onsite
B21	01-Nov-19	D-B21-24.5-25.0	N	24.5	25	>15	Onsite
B22	27-Oct-19	D-B22-0-102719	N	0	0.25	0-15	Background (Offsite
B22	29-Oct-19	D-B22-2.5-3.0	N	2.5	3	0-15	Background (Offsite
B22	29-Oct-19	D-B22-5.0-5.5	N	5	5.5	0-15	Background (Offsite
B22	29-Oct-19	D-B22-7.5-8.0	N	7.5	8	0-15	Background (Offsite
B22	29-Oct-19	D-B22-10.0-10.5	N	10	10.5	0-15	Background (Offsite
B22	29-Oct-19	D-B22-15.0-15.5	N	15	15.5	>15	Background (Offsite
B23	27-Oct-19	D-B23-0-102719	N	0	0.25	0-15	Onsite
B23	31-Oct-19	D-B23-25-3.0	N	2.5	3	0-15	Onsite
B23	31-0ct-19 31-0ct-19	D-B23-25-3.0 D-FD03-103119	FD	2.5	3	0-15	Onsite
B23	31-Oct-19	D-B23-5.0-5.5	N	5	5.5	0-15	Onsite
B23	31-Oct-19	D-B23-7.5-8.0	N	7.5	8	0-15	Onsite
B23	31-Oct-19	D-B23-9.5-10.0	N	9.5	10	0-15	Onsite
B23	31-Oct-19	D-B23-14.5-15.0	N	14.5	15	0-15	Onsite
B23	31-Oct-19	D-B23-19.5-20.0	N	19.5	20	>15	Onsite
B24	28-Oct-19	D-B24-0-102719	N	0	0.25	0-15	Onsite
B24	30-Oct-19	D-B24-2.5-3.0	N	2.5	3	0-15	Onsite
B24	30-Oct-19	D-B24-5.0-5.5	N	5	5.5	0-15	Onsite
B24	30-Oct-19	D-B24-7.5-8.0	N	7.5	8	0-15	Onsite
B24	30-Oct-19	D-B24-10.0-10.5	N	10	10.5	0-15	Onsite

Table K-1
Soil Samples Used in Human Health Risk Assessment
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Camania I 11 -	Cample Bet	Camerile ID	Cample 7	Top Depth	Bottom Depth	Depth Group	
Sample Location	Sample Date	Sample ID	Sample Type	(Feet bgs)	(Feet bgs)	(Feet bgs)	Exposure Area
B24	30-Oct-19	D-B24-15.0-15.5	N	15	15.5	>15	Onsite
B24	30-Oct-19	D-B24-19.5-20.0	N	19.5	20	>15	Onsite
B24	30-Oct-19	D-FD01-103019	FD	19.5	20	>15	Onsite
B25	27-Oct-19	D-B25-0-102719	N	0	0.25	0-15	Onsite
B25	30-Oct-19	D-B25-2.5-3.0	N	2.5	3	0-15	Onsite
B25	30-Oct-19	D-B25-5.0-5.5	N	5	5.5	0-15	Onsite
B25	30-Oct-19	D-B25-7.5-8.0	N	7.5	8	0-15	Onsite
B25	31-Oct-19	D-B25-10.0-10.5	N	10	10.5	0-15	Onsite
B25	31-Oct-19	D-B25-15.0-15.5	N	15	15.5	>15	Onsite
B25	31-Oct-19	D-B25-20.0-20.5	N	20	20.5	>15	Onsite
B25	31-Oct-19	D-B25-25.0-25.5	N	25	25.5	>15	Onsite
B25	31-Oct-19	D-B25-30.0-30.5	N	30	30.5	>15	Onsite
B25	31-Oct-19	D-B25-40.0-40.5	N	40	40.5	>15	Onsite
B25	31-Oct-19	D-FD04-103119	FD	40	40.5	>15	Onsite
B26	28-Oct-19	D-B26-0-102719	N	0	0.25	0-15	Onsite
B26	01-Nov-19	D-B26-2.5-3.0	N	2.5	3	0-15	Onsite
B26	01-Nov-19	D-FD05-110119	FD	2.5	3	0-15	Onsite
B26	01-Nov-19	D-B26-5.0-5.5	N N	5	5.5	0-15	Onsite
B26	02-Nov-19		N	7.5	8	0-15	
		D-B26-7.5-8.0	1				Onsite
B26	02-Nov-19	D-B26-10.0-10.5	N	10	10.5	0-15	Onsite
B26	02-Nov-19	D-B26-15.0-15.5	N	15	15.5	>15	Onsite
B26	02-Nov-19	D-B26-20.0-20.5	N	20	20.5	>15	Onsite
B26	02-Nov-19	D-B26-25.0-25.5	N	25	25.5	>15	Onsite
B26	02-Nov-19	D-B26-30.0-30.5	N	30	30.5	>15	Onsite
B26	02-Nov-19	D-B26-40.0-40.5	N	40	40.5	>15	Onsite
B27	27-Oct-19	D-B27-0-102719	N	0	0.25	0-15	Background (Offsite)
B27	03-Nov-19	D-B27-2.5-3.0	N	2.5	3	0-15	Background (Offsite)
B27	03-Nov-19	D-FD01-110319	FD	2.5	3	0-15	Background (Offsite)
B27	03-Nov-19	D-B27-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B27	03-Nov-19	D-B27-7.5-8.0	N	7.5	8	0-15	Background (Offsite)
B27	03-Nov-19	D-B27-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B27	03-Nov-19	D-B27-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B27	03-Nov-19	D-B27-20.0-20.5	N	20	20.5	>15	Background (Offsite)
B27	03-Nov-19	D-B27-25.0-25.5	N	25	25.5	>15	Background (Offsite)
B27	03-Nov-19	D-FD02-110319	FD	25	25.5	>15	Background (Offsite)
B27	04-Nov-19	D-B27-30.0-30.5	N	30	30.5	>15	Background (Offsite)
B27	02-Nov-19	D-FD01-110219	FD	30	30.5	>15	Background (Offsite)
B27	04-Nov-19	D-B27-40.0-40.5	N	40	40.5	>15	Background (Offsite)
B28	27-Oct-19	D-B28-0-102719	N	0	0.25	0-15	Background (Offsite)
B28	29-Oct-19	D-B28-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B28	29-Oct-19	D-FD03-102919	FD	5	5.5	0-15	Background (Offsite)
B28	29-Oct-19	D-B28-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B28	29-Oct-19			15	15.5	>15	Background (Offsite)
B28	29-0ct-19 29-0ct-19	D-B28-15.0-15.5	N N	19.5	20	>15	Background (Offsite)
		D-B28-19.5-20.0					
B29	27-Oct-19	D-B29-0-102719	N	0	0.25	0-15	Background (Offsite)
B29	07-Nov-19	D-B29-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B29	07-Nov-19	D-B29-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B29	07-Nov-19	D-B29-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B29	07-Nov-19	D-B29-20.0-20.5	N	20	20.5	>15	Background (Offsite)
B30	07-Nov-19	D-B29-20.0-20.5	N	19.5	20	>15	Background (Offsite)
B30	28-Oct-19	D-B30-0-102719	N	0	0.25	0-15	Background (Offsite)
B30	01-Nov-19	D-B30-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B30	01-Nov-19	D-FD01-110119	FD	5	5.5	0-15	Background (Offsite)
B30	01-Nov-19	D-B30-10.0-10.5	N	10	10.5	0-15	Background (Offsite)

Table K-1 Soil Samples Used in Human Health Risk Assessment

		ner Manajactarea Gas F		Top Depth	Bottom Depth	Depth Group	
Sample Location	Sample Date	Sample ID	Sample Type	(Feet bgs)	(Feet bgs)	(Feet bgs)	Exposure Area
B30	01-Nov-19	D-B30-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B30	01-Nov-19	D-B30-19.5-20.0	N	19.5	20	>15	Background (Offsite)
B31	27-Oct-19	D-B31-0-102719	N	0	0.25	0-15	Background (Offsite)
B31	28-Oct-19	D-B31-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B31	06-Nov-19	D-B31-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B31	06-Nov-19	D-B31-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B31	06-Nov-19	D-B31-20.0-20.5	N	20	20.5	>15	Background (Offsite)
B32	27-Oct-19	D-B32-0-102719	N	0	0.25	0-15	Background (Offsite)
B32	28-Oct-19	D-B32-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B32	28-Oct-19	B-FD02-102819	FD	5	5.5	0-15	Background (Offsite)
B32	06-Nov-19	D-B32-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B32	06-Nov-19	D-B32-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B32	06-Nov-19	D-B32-20.0-20.5	N	20	20.5	>15	Background (Offsite)
B33	27-Oct-19	D-B33-0-102719	N	0	0.25	0-15	Background (Offsite)
B33	28-Oct-19	D-B33-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B33	06-Nov-19	D-B33-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B33	06-Nov-19	D-B33-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B33	06-Nov-19	D-B33-20.0-20.5	N	20	20.5	>15	Background (Offsite)
B34	27-Oct-19	D-B34-0-102719	N	0	0.25	0-15	Background (Offsite)
B34	27-Oct-19	D-FD01-102819	FD	0	0.25	0-15	Background (Offsite)
B34	28-Oct-19	D-B34-5.0-5.5-102819	N	5	5.5	0-15	Background (Offsite)
B34	06-Nov-19	D-B34-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B34	06-Nov-19	D-B34-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B34	06-Nov-19	D-B34-20.0-20.5	N	20	20.5	>15	Background (Offsite)
B34	28-Oct-19	D-FD01-102819	FD	0	0.25	0-15	Background (Offsite)
B35	27-Oct-19	D-B35-0-102719	N	0	0.25	0-15	Background (Offsite)
B35	28-Oct-19	D-B35-5.0-5.5	N	5	5.5	0-15	Background (Offsite)
B35	05-Nov-19	D-B35-10.0-10.5	N	10	10.5	0-15	Background (Offsite)
B35	05-Nov-19	D-B35-15.0-15.5	N	15	15.5	>15	Background (Offsite)
B35	05-Nov-19	D-B35-20.0-20.5	N	20	20.5	>15	Background (Offsite)

Notes:

bgs = below ground surface

FD = Field Duplicale

N = Normal

Table K-2 Groundwater Samples Used in Human Health Risk Assessment

				Sample Depth
Sample Location	Sample Date	Sample ID	Sample Type	(Feet bgs)
D-MW25	07-Nov-19	D-MW25	N	26.48
D-MW26	07-Nov-19	D-MW26	N	28.79
D-MW27	07-Nov-19	D-MW27	N	29.38
D-MW27	07-Nov-19	D-FD01-110719	FD	29.38

Notes:

bgs = below ground surface

FD = Field Duplicale

N = Normal

Table K-3
Summary Statistics for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Conference of Conference Coll		-												$\overline{}$
Surface and Subsurface Soil	(U-15 feet bgs) All	units are milligra	ms per Kilogram (тд/кд)	1	1	1	I	1			T		Т
												Maximum	Maximum	
												Detected	Detected	
					Minimum	Maximum	Minimum	Maximum		Residential RSL	Industrial RSL	Concentration	Concentration	
		Number of	Number of	Detection	Nondetect	Nondetect	Detected	Detected	Mean	(TR = 1E-05)	(TR = 1E-05)	Exceeds	Exceeds	
Analyte	CAS#	Samples	Detects	Frequency	Concentration	Concentration	Concentration	Concentration	Concentration	(THQ = 1)	(THQ = 1)	Residential RSL	Industrial RSL	95% UCL
Acenaphthene	83-32-9	73		18%	0.00166	0.669	0.00198	0.955	0.195	3600 N	45000 N	No	No	NC
Acenaphthylene [1]	208-96-8	73	13 57	78%	0.00166	0.0333	0.00198	14.2	0.195	3600 N	45000 N	No	No	NC
Anthracene	120-12-7			74%						18000 N	230000 N	No	No	NC
Arsenic	7440-38-2	73	54	100%	0.00166	0.0334	0.0022	6.63	0.456	6.8 C	30 C	Yes	Yes	18.65
	7440-38-2	73	73	100%	N/A	N/A	7.38	50.3	17.22	15000 N	220000 N			
Barium	7440-39-3	73	73		N/A	N/A	53.3	937	184.7		51 C	No	No	NC NC
Benzene		18	1	6%	0.0419	0.0628	0.509	0.509	0.509	12 C 11 C	210 C	No	No	NC 5.662
Benzo[a]anthracene [3]	56-55-3	73	66	90%	0.00167	0.00834	0.00177	17.5	0.963			Yes	No	
Benzo[a]pyrene [2]	50-32-8	73	70	96%	0.00167	0.00832	0.00222	28.9	1.53	18 N	220 N	Yes	No	10.87
BAP TEQ (ND = 1/2*RL)	50-32-8	79	74	94%	0.002	0.01	0.004	35.56	2.023	1.1 C	21 C	Yes	Yes	12.41
BAP TEQ (ND = 0)	50-32-8	79	74	94%	0	0	0.003	35.53	2.01	1.1 C	21 C	Yes	Yes	7.43
Benzo[b]fluoranthene [3]	205-99-2	73	71	97%	0.00167	0.00167	0.00248	26.4	1.534	11 C	210 C	Yes	No	10.18
Benzo[g,h,i]perylene [1]	191-24-2	73	70	96%	0.00167	0.00832	0.00175	30.3	1.524	1800 N	23000 N	No	No	NC
Benzo[k]fluoranthene [3]	207-08-9	73	59	81%	0.00166	0.00834	0.00175	7.09	0.538	110 C	2100 C	No	No	NC
Cadmium	7440-43-9	73	1	1%	1.67	2	2.2	2.2	2.2	71 N	980 N	No	No	NC
Chromium [1]	7440-47-3	73	73	100%	N/A	N/A	5.51	43.2	13.07	3.0 C	63 C	Yes	No	14.28
Chrysene [3]	218-01-9	73	69	95%	0.00167	0.00832	0.00179	20.7	1.115	1100 C	21000 C	No	No	NC
Dibenz[a,h]anthracene [3]	53-70-3	73	5	7%	0.00166	0.669	0.00541	1.26	0.364	1.1 C	21 C	Yes	No	0.101
Fluoranthene	206-44-0	73	71	97%	0.00167	0.00167	0.00377	71	3.394	2400 N	30000 N	No	No	NC
Fluorene	86-73-7	73	34	47%	0.00166	0.669	0.00212	5.82	0.546	2400 N	30000 N	No	No	NC
Indeno[1,2,3-cd]pyrene [3]	193-39-5	73	69	95%	0.00167	0.00832	0.00187	21.5	1.106	11 C	210 C	Yes	No	6.883
Lead	7439-92-1	73	73	100%	N/A	N/A	8.74	531	52.27	400 N	800 N	Yes	No	60.03
m,p-Xylenes [1]	108-38-3	18	1	6%	0.0839	0.126	0.197	0.197	0.197	550 N	2400 N	No	No	NC
Mercury	7439-97-6	73	38	52%	0.0167	0.0625	0.0174	0.127	0.0382	11 N	46 N	No	No	NC
Naphthalene	91-20-3	73	20	27%	0.0166	6.69	0.021	35.9	4.757	38 C	170 C	No	No	NC
o-Xylene	95-47-6	18	1	6%	0.0419	0.0628	0.133	0.133	0.133	650 N	2800 N	No	No	NC
Phenanthrene [1]	85-01-8	73	71	97%	0.00167	0.00167	0.00226	70.8	3.184	18000 N	230000 N	No	No	NC
Pyrene	129-00-0	73	71	97%	0.00167	0.00167	0.00469	83.6	4.062	1800 N	23000 N	No	No	NC
Toluene	108-88-3	18	1	6%	0.21	0.314	0.38	0.38	0.38	4900 N	47000 N	No	No	NC
Total Xylenes	1330-20-7	18	1	6%	0.0419	0.0628	0.33	0.33	0.33	580 N	2500 N	No	No	NC

Notes:

[1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:

RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, anthracene for phenanthrene, m- Xylene for m,p-xylenes, hexavalent chromium for total chromium.

[2] Benzo(a) pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a) pyrene concentration.

[3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations [4] Lead is evaluated by comparing EPC with RSL only.

-- = not applicable because of no RSL available

(ND = 0) = Indicates that for nondetects the value used in the BAP TEQ calculation was zero.

(ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit

bgs = below ground surface

C = RSL based on cancer effects

COPC = chemical of potential concern

N = RSL based on noncancer effects

NA = not available or not applicable

NC = not calculated (maximum detected concentration does not exceed RSL)

ND = nondetect

BAP TEQ = benzo(a)pyrene toxicity equivalent

RL = reporting limit

RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

Table K-4 Summary Statistics for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)

Human Health Risk Assessr	nent, Former N	1anufacture	ed Gas Plan	t Site, Dougle	as, Arizona									
Surface and Subsurface Soil ((0-15 feet bgs) <i>A</i>	ll units are i	milligrams p	er kilogram (ı	ng/kg)									
		Number of	Number	Detection	Minimum Nondetect	Maximum Nondetect	Minimum Detected	Maximum Detected	Mean	Residential RSL (TR = 1E-05)	Industrial RSL (TR = 1E-05)	Maximum Concentration Exceeds	Maximum Concentration Exceeds	
Analyte	CAS#	Samples	of Detects	Frequency	Concentration	Concentration	Concentration	Concentration	Concentration	(THQ = 1)	(THQ = 1)	Residential RSL	Industrial RSL	95% UCL
Acenaphthylene [1]	208-96-8	39	18	46%	0.00166	0.0167	0.00226	0.0883	0.0187	3600 N	45000 N	No	No	NC
Anthracene	120-12-7	39	19	49%	0.00165	0.0167	0.00206	0.0726	0.0162	18000 N	230000 N	No	No	NC
Arsenic	7440-38-2	39	39	100%	N/A	N/A	7.22	25.8	14.34	6.8 C	30 C	Yes	No	15.78
Barium	7440-39-3	39	39	100%	N/A	N/A	39.5	607	159	15000 N	220000 N	No	No	NC
Benzo[a]anthracene [3]	56-55-3	39	28	72%	0.00165	0.00834	0.00405	0.287	0.0458	11 C	210 C	No	No	NC
Benzo[a]pyrene [2]	50-32-8	39	31	79%	0.00165	0.00167	0.0021	0.392	0.0619	18 N	220 N	No	No	NC
BAP TEQ (ND = $1/2*RL$)	50-32-8	43	36	84%	0.002	0.002	0.002	0.535	0.0701	1.1 C	21 C	No	No	NC
BAP TEQ (ND = 0)	50-32-8	43	36	84%	0	0	0.0002	0.535	0.0674	1.1 C	21 C	No	No	NC
Benzo[b]fluoranthene [3]	205-99-2	39	33	85%	0.00166	0.00167	0.00184	0.456	0.0838	11 C	210 C	No	No	NC
Benzo[g,h,i]perylene [1]	191-24-2	39	30	77%	0.00165	0.00167	0.00232	0.265	0.0449	1800 N	23000 N	No	No	NC
Benzo[k]fluoranthene [3]	207-08-9	39	24	62%	0.00165	0.0167	0.00267	0.142	0.0297	110 C	2100 C	No	No	NC
Cadmium	7440-43-9	39	1	3%	1.67	2	2.78	2.78	2.78	71 N	980 N	No	No	NC
Chromium [1]	7440-47-3	39	39	100%	N/A	N/A	6.16	22.6	10.95	3.0 C	63 C	Yes	No	11.87
Chrysene [3]	218-01-9	39	31	79%	0.00165	0.00167	0.00178	0.325	0.053	1100 C	21000 C	No	No	NC
Dibenz[a,h]anthracene [3]	53-70-3	39	3	8%	0.00165	0.0167	0.00245	0.045	0.0167	1.1 C	21 C	No	No	NC
Fluoranthene	206-44-0	39	32	82%	0.00166	0.00167	0.00205	0.603	0.102	2400 N	30000 N	No	No	NC
Fluorene	86-73-7	39	4	10%	0.00165	0.0167	0.00471	0.0405	0.0158	2400 N	30000 N	No	No	NC
Indeno[1,2,3-cd]pyrene [3]	193-39-5	39	28	72%	0.00165	0.0167	0.0018	0.218	0.0379	11 C	210 C	No	No	NC
Lead	7439-92-1	39	39	100%	N/A	N/A	6.48	222	35.36	400 N	800 N	No	No	NC
Mercury	7439-97-6	39	21	54%	0.0167	0.0196	2.28E-04	0.242	0.0515	11 N	46 N	No	No	NC
Naphthalene	91-20-3	39	1	3%	0.0165	0.167	0.0168	0.0168	0.0168	38 C	170 C	No	No	NC
Phenanthrene [1]	85-01-8	39	28	72%	0.00166	0.0167	0.00169	0.641	0.0717	18000 N	230000 N	No	No	NC
Pyrene	129-00-0	39	33	85%	0.00166	0.00167	0.00187	0.75	0.115	1800 N	23000 N	No	No	NC

Notes:

- [1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:
- RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, anthracene for phenanthrene, hexavalent chromium for total chromium.

- [2] Benzo(a)pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a)pyrene concentration.
- [3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations

[4] Lead is evaluated by comparing EPC with RSL only.

- -- = not applicable because of no RSL available
- (ND = 0) = Indicates that for nondetects the value used in the BAP TEQ calculation was zero.
- (ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit
- bgs = below ground surface
- C = RSL based on cancer effects
- COPC = chemical of potential concern
- N = RSL based on noncancer effects
- NA = not available or not applicable
- NC = not calculated (maximum detected concentration does not exceed RSL)
- ND = nondetect
- BAP TEQ = benzo(a)pyrene toxicity equivalent
- RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.
- THQ = target hazard quotient
- TR = target risk
- UCL = upper confidence limit

Table K-5 Summary Statistics for Deep Soil (>15 feet) - Onsite

Deep Soil (>15 feet bgs) All u	nits are milligra	ams per kilog	ram (mg/kg	1)										
		Number			Minimum	Maximum Nondetect	Minimum	Maximum		Residential RSL	Industrial RSL	Maximum Concentration	Maximum Concentration Exceeds	
Analyte	CAS#	of Samples	Number of Detects	Detection Frequency	Nondetect Concentration	Concentrati on	Detected Concentration	Detected Concentration	Mean Concentration	(TR = 1E-05) (THQ = 1)	(TR = 1E-05) (THQ = 1)	Exceeds Residential RSL	Industrial RSL	95% UCL
Acenaphthene	83-32-9	32	5	16%	0.00166	0.0333	0.00187	0.00607	0.00312	3600 N	45000 N	No	No	NC
Acenaphthylene [1]	208-96-8	32	20	63%	0.00166	0.00167	0.00187	0.538	0.00312	3600 N	45000 N	No	No	NC
Anthracene	120-12-7	32	19	59%	0.00166	0.00167	0.00173	0.347	0.0487	18000 N	230000 N	No	No	NC
Arsenic	7440-38-2	27	27	100%	N/A	N/A	4.16	24.5	14.83	6.8 C	30 C	Yes	No	16.73
Barium	7440-39-3	27	27	100%	N/A	N/A	35.2	906	172.2	15000 N	220000 N	No	No	NC
Benzo(a)anthracene [3]	56-55-3	32	22	69%	0.00166	0.00167	0.00227	1.52	0.155	11 C	210 C	No	No	NC
Benzo(a)pyrene [2]	50-32-8	32	24	75%	0.00166	0.00167	0.00268	2.73	0.266	18 N	220 N	No	No	NC
BAP TEQ (ND = 1/2*RL)	50-32-8	35	35	100%	N/A	N/A	0.002	3.4	0.239	1.1 C	21 C	Yes	No	0.931
BAP TEQ (ND = 0)	50-32-8	35	35	100%	N/A	N/A	0.003	3.383	0.237	1.1 C	21 C	Yes	No	0.718
Benzo(b)fluoranthene [3]	205-99-2	32	24	75%	0.00166	0.00167	0.00319	3.04	0.289	11 C	210 C	No	No	NC
Benzo[g,h,i]perylene [1]	191-24-2	32	24	75%	0.00166	0.00167	0.00299	2.6	0.266	1800 N	23000 N	No	No	NC
Benzo(k)fluoranthene [3]	207-08-9	32	20	63%	0.00166	0.00167	0.00238	0.698	0.0929	110 C	2100 C	No	No	NC
Chromium [1]	7440-47-3	27	27	100%	N/A	N/A	3.78	129	24.54	3 C	63 C	Yes	Yes	32.34
Chrysene [3]	218-01-9	32	24	75%	0.00166	0.00167	0.00176	1.89	0.179	1100 C	21000 C	No	No	NC
Dibenz(a,h)Anthracene [3]	53-70-3	32	2	6%	0.00166	0.0333	0.025	0.165	0.095	1.1 C	21 C	No	No	NC
Fluoranthene	206-44-0	32	24	75%	0.00166	0.00167	0.00495	4.96	0.508	2400 N	30000 N	No	No	NC
Fluorene	86-73-7	32	14	44%	0.00166	0.0167	0.00211	0.141	0.0276	2400 N	30000 N	No	No	NC
Indeno(1,2,3-c,d)Pyrene [3]	193-39-5	32	24	75%	0.00166	0.00167	0.00233	1.88	0.19	11 C	210 C	No	No	NC
Lead [4]	7439-92-1	27	27	100%	N/A	N/A	4.13	62.8	14.98	400.0 N	800 N	No	No	NC
Mercury	7439-97-6	27	1	4%	0.0167	0.189	0.0235	0.0235	0.0235	11.0 N	46 N	No	No	NC
Naphthalene	91-20-3	32	7	22%	0.0166	0.333	0.0188	0.514	0.151	38 C	170 C	No	No	NC
Phenanthrene [1]	85-01-8	32	24	75%	0.00166	0.00167	0.00245	3.12	0.352	18000 N	230000 N	No	No	NC
Pyrene	129-00-0	32	24	75%	0.00166	0.00167	0.00624	6.63	0.64	1800 N	23000 N	No	No	NC

Notes:

[1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:

RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, and anthracene for phenanthrene, hexavalent chromium for total chromium.

[2] Benzo(a)pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a)pyrene concentration.

[3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations

[4] Lead is evaluated by comparing EPC with RSL only.

-- = not applicable because of no RSL exceedance (i.e., no COPC identified)

(ND = 0) Indicates that for nondetects the value used in the BAP TEQ calculation was zero.

(ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit

bgs = below ground surface

C = RSL based on cancer effects

COPC = chemical of potential concern

N = RSL based on noncancer effects

NC = not calculated (maximum detected concentration does not exceed RSL)

ND = nondetect

BAP TEQ = benzo(a)pyrene toxicity equivalent

RL = reporting limit

RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

Table K-6
Summary Statistics for Deep Soil (>15 feet) - Background (Offsite)

Deep Soil (>15 feet bgs) All u	nits are milligro	ams per kilog	ram (mg/kg	1)										
Analyte	CAS#	Number of Samples	Number of Detects	Detection Frequency	Minimum Nondetect Concentration	Maximum Nondetect Concentration	Minimum Detected Concentration	Maximum Detected Concentration	Mean Concentration	Residential RSL (TR = 1E-05) (THQ = 1)	Industrial RSL (TR = 1E-05) (THQ = 1)	Maximum Concentration Exceeds Residential RSL	Maximum Concentration Exceeds Industrial RSL	95% UCL
Acenaphthylene [1]	208-96-8	23	8	35%	0.00166	0.00167	0.00219	0.0127	0.00559	3600 N	45000 N	No	No	NC
Anthracene	120-12-7	23	6	26%	0.00166	0.00167	0.00183	0.00962	0.00474	18000 N	230000 N	No	No	NC
Arsenic	7440-38-2	22	22	100%	N/A	N/A	8.59	32.6	15.79	6.8 C	30 C	Yes	Yes	17.92
Barium	7440-39-3	22	22	100%	N/A	N/A	18.9	767	184.3	15000 N	220000 N	No	No	NC
Benzo(a)anthracene [3]	56-55-3	23	10	43%	0.00166	0.00167	0.00178	0.044	0.0163	11 C	210 C	No	No	NC
Benzo(a)pyrene [2]	50-32-8	23	11	48%	0.00166	0.00167	0.00198	0.0882	0.028	18 N	220 N	No	No	NC
BAP TEQ (ND = $1/2*RL$)	50-32-8	25	14	56%	0.002	0.002	0.002	0.111	0.0169	1.1 C	21 C	No	No	NC
BAP TEQ (ND = 0)	50-32-8	25	14	56%	0	0	0	0.11	0.0154	1.1 C	21 C	No	No	NC
Benzo(b)fluoranthene [3]	205-99-2	23	14	61%	0.00166	0.00167	0.00198	0.117	0.0276	11 C	210 C	No	No	NC
Benzo[g,h,i]perylene [1]	191-24-2	23	11	48%	0.00166	0.00167	0.00211	0.0918	0.0268	1800 N	23000 N	No	No	NC
Benzo(k)fluoranthene [3]	207-08-9	23	10	43%	0.00166	0.00167	0.00176	0.0313	0.011	110 C	2100 C	No	No	NC
Chromium [1]	7440-47-3	22	22	100%	N/A	N/A	5.12	63	14.64	3 C	63 C	Yes	No	25.4
Chrysene [3]	218-01-9	23	10	43%	0.00166	0.00167	0.00352	0.0629	0.0217	1100 C	21000 C	No	No	NC
Fluoranthene	206-44-0	23	14	61%	0.00166	0.00167	0.00217	0.124	0.0327	2400 N	30000 N	No	No	NC
Indeno(1,2,3-c,d)Pyrene [3]	193-39-5	23	11	48%	0.00166	0.00167	0.00175	0.062	0.0197	11 C	210 C	No	No	NC
Lead [4]	7439-92-1	22	22	100%	N/A	N/A	3.86	23	12.63	400.0 N	800 N	No	No	NC
Phenanthrene [1]	85-01-8	23	9	39%	0.00166	0.00167	0.00383	0.049	0.0209	18000 N	230000 N	No	No	NC
Pyrene	129-00-0	23	14	61%	0.00166	0.00167	0.00226	0.155	0.042	1800 N	23000 N	No	No	NC

Notes:

[1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:

RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, and anthracene for phenanthrene, hexavalent chromium for total chromium.

[2] Benzo(a) pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a) pyrene concentration.

[3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations

[4] Lead is evaluated by comparing EPC with RSL only.

-- = not applicable because of no RSL exceedance (i.e., no COPC identified)

(ND = 0) Indicates that for nondetects the value used in the BAP TEQ calculation was zero.

(ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit

bgs = below ground surface

C = RSL based on cancer effects

COPC = chemical of potential concern

N = RSL based on noncancer effects

NC = not calculated (maximum detected concentration does not exceed RSL)

ND = nondetect

BAP TEQ = benzo(a)pyrene toxicity equivalent

RL = reporting limit

RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

Table K-7 **Summary Statistics for Groundwater**

Groundwater All unit	s are milliaram i	per liter
----------------------	-------------------	-----------

Groundwater All units	are milligram per lit	er														
											Maximum					
					Minimum	Maximum				Tap Water RSL	Concentration					
		Number of	Number of	Detection	Nondetect	Nondetect	Minimum Detected	Maximum Detected	Mean	(TR = 1E-05)	Exceeds				Residential	Residential
Analyte	CAS#	Samples	Detects	Frequency	Concentration	Concentration	Concentration	Concentration	Concentration	(THQ = 1)	Residential RSL	95% UCL	EPC	EPC Basis	ELCR	HQ
1,1-Dichloroethene	75-35-4	3	2	67%	0.001	0.001	0.00402	0.00437	0.0042	0.28 N	No	NC	0.00437	Maximum		0.00002
Arsenic	7440-38-2	3	3	100%	N/A	N/A	0.00466	0.0068	0.00573	0.00052 C	Yes	0.00754	0.0068	Maximum	1.3E-07	0.001
Barium	7440-39-3	3	3	100%	N/A	N/A	0.0431	0.0557	0.0474	3.8 N	No	NC	0.0557	Maximum		0.00001
Copper	7440-50-8	3	1	33%	0.004	0.004	0.00488	0.00488	0.00488	0.8 N	No	NC	0.00488	Maximum		0.00001
Manganese	7439-96-5	3	3	100%	N/A	N/A	0.0536	0.367	0.159	0.43 N	No	NC	0.367	Maximum		0.0009
Molybdenum	7439-98-7	3	2	67%	0.002	0.002	0.00275	0.00311	0.00293	0.1 N	No	NC	0.00311	Maximum		0.00003
Nickel	7440-02-0	3	1	33%	0.002	0.002	0.00367	0.00367	0.00367	0.39 N	No	NC	0.00367	Maximum		0.00001
Selenium	7782-49-2	3	3	100%	N/A	N/A	0.00498	0.0115	0.00838	0.1 N	No	NC	0.0115	Maximum		0.0001
Toluene	108-88-3	3	3	100%	N/A	N/A	0.00224	0.00792	0.00536	1.1 N	No	NC	0.00792	Maximum		0.00001
Trichloroethylene	79-01-6	3	3	100%	N/A	N/A	0.0129	0.078	0.054	0.0028 N	Yes	0.114	0.078	Maximum	1.6E-07	0.03

Notes:

-- = not applicable because of no RSL available

C = RSL based on cancer effects

COPC = chemical of potential concern

ELCR = excess lifetime cancer risk

HI = hazard index

N = RSL based on noncancer effects

NA = not available or not applicable

NC = not calculated

ND = nondetect

RL = reporting limit

RSL = EPA Regional Screening Level for Tap Water (Accessed 11/27/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

UCL = upper confidence limit

Total Risk/HI

3E-07

0.03

Table K-8
Risk Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Surface and Subsurface Soil													
Analyte	CAS#	Number of Samples	Number of Detects	Detection Frequency	Minimum Detected Concentration	Maximum Detected Concentration	95% UCL	EPC	EPC Basis	Residential ELCR	Residential HQ	Industrial ELCR	Industrial HQ
Acenaphthene	83-32-9	73	13	18%	0.00198	0.955	NC	0.955	Maximum		0.0003		0.00002
Acenaphthylene [1]	208-96-8	73	57	78%	0.00183	14.2	NC	14.2	Maximum		0.004		0.0003
Anthracene	120-12-7	73	54	74%	0.0022	6.63	NC	6.63	Maximum		0.0004		0.00003
Arsenic	7440-38-2	73	73	100%	7.38	50.3	18.65	18.65	95% Approximate Gamma UCL	2.7E-05	1	6.2E-06	0.04
Barium	7440-39-3	73	73	100%	53.3	937	NC	937	Maximum		0.06		0.004
Benzene	71-43-2	18	1	6%	0.509	0.509	NC	0.509	Maximum	4.2E-07	0.006	1.0E-07	0.001
Benzo[a]anthracene [3]	56-55-3	73	66	90%	0.00177	17.5	5.662	5.662	KM H-UCL				
Benzo[a]pyrene [2]	50-32-8	73	70	96%	0.00222	28.9	10.87	10.87	KM H-UCL		0.6		0.05
BAP TEQ (ND = 1/2*RL)	50-32-8	79	74	94%	0.004	35.56	12.41	12.41	KM H-UCL	1.1E-04		5.9E-06	
BAP TEQ (ND = 0)	50-32-8	79	74	94%	0.003	35.53	7.43	7.43	99% KM (Chebyshev) UCL	6.8E-05		3.5E-06	
Benzo[b]fluoranthene [3]	205-99-2	73	71	97%	0.00248	26.4	10.18	10.18	KM H-UCL				
Benzo[g,h,i]perylene [1]	191-24-2	73	70	96%	0.00175	30.3	NC	30.3	Maximum		0.02		0.001
Benzo[k]fluoranthene [3]	207-08-9	73	59	81%	0.00175	7.09	NC	7.09	Maximum				
Cadmium	7440-43-9	73	1	1%	2.2	2.2	NC	2.2	Maximum	1.0E-09	0.03	2.4E-10	0.002
Chromium [1]	7440-47-3	73	73	100%	5.51	43.2	14.28	14.28	95% Student's-t UCL	4.8E-05	0.06	2.3E-06	0.004
Chrysene [3]	218-01-9	73	69	95%	0.00179	20.7	NC	20.7	Maximum				
Dibenz[a,h]anthracene [3]	53-70-3	73	5	7%	0.00541	1.26	0.101	0.101	95% KM Approximate Gamma UCL				
Fluoranthene	206-44-0	73	71	97%	0.00377	71	NC	71	Maximum		0.03		0.002
Fluorene	86-73-7	73	34	47%	0.00212	5.82	NC	5.82	Maximum		0.002		0.0002
Indeno[1,2,3-cd]pyrene [3]	193-39-5	73	69	95%	0.00187	21.5	6.883	6.883	KM H-UCL				
Lead	7439-92-1	73	73	100%	8.74	531	60.03	60.03	95% H-UCL				
m,p-Xylenes [1]	108-38-3	18	1	6%	0.197	0.197	NC	0.197	Maximum		0.0004		0.00008
Mercury	7439-97-6	73	38	52%	0.0174	0.127	NC	0.127	Maximum		0.01		0.003
Naphthalene	91-20-3	73	20	27%	0.021	35.9	NC	35.9	Maximum	9.4E-06	0.3	2.1E-06	0.06
o-Xylene	95-47-6	18	1	6%	0.133	0.133	NC	0.133	Maximum		0.0002		0.00005
Phenanthrene [1]	85-01-8	73	71	97%	0.00226	70.8	NC	70.8	Maximum		0.004		0.0003
Pyrene	129-00-0	73	71	97%	0.00469	83.6	NC	83.6	Maximum		0.05		0.004
Toluene	108-88-3	18	1	6%	0.38	0.38	NC	0.38	Maximum		0.0001		0.00001
Total Xylenes	1330-20-7	18	1	6%	0.33	0.33	NC	0.33	Maximum		0.0006		0.000

Notes:

[1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:

RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, anthracene for phenanthrene, m- Xylene for m,p-xylenes, hexavalent chromium for total chromium.

[2] Benzo(a) pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a) pyrene concentration.

[3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations

[4] Lead is evaluated by comparing EPC with RSL only.

-- = not applicable because of no RSL available

(ND = 0) = Indicates that for nondetects the value used in the BAP TEQ calculation was zero.

(ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit

bgs = below ground surface

C = RSL based on cancer effects

COPC = chemical of potential concern

ELCR = excess lifetime cancer risk

EPC = exposure point concentration

HI = hazard index

N = RSL based on noncancer effects

NA = not available or not applicable

NC = not calculated

ND = nondetect

BAP TEQ = benzo(a)pyrene toxicity equivalent

RL = reporting limit

RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

UCL = upper confidence limit

Total Risk/HI (BAP TEQ, ND = 1/2*RL):	2E-04	2	2E-05	0.2
Total Risk/HI (BAP TEQ, ND = 0):	2E-04	2	1E-05	0.2

Risk estimates for site-related COPCs (excludes Chromium):

communication and relation do real ferr	0.0000 0 0	, .		
Total Risk/HI (BAP TEQ, ND = 1/2*RL):	2E-04	2	1E-05	0.2
Total Risk/HI (BAP TEQ, ND = 0):	1E-04	2	1E-05	0.2

Table K-9
Risk Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Surface and Subsurface Soil (0-15 feet bgs) All units are milligrams per kilogram (mg/kg)

Surface and Subsurface Son (1 10 1000 1000 171			g, kg,				1 1			Maximum	Maximum	1						_
				Minimum	Maximum	Minimum	Maximum		Residential RSL	Industrial RSL	Concentration	Concentration							
		Number of Number	of Detection	Nondetect	Nondetect	Detected	Detected	Mean	(TR = 1E-05)	(TR = 1E-05)	Exceeds	Exceeds				Residential	Residential	Industrial	4
Analyte	CAS#	Samples Detec				Concentration	Concentration	Concentration	(THQ = 1)	(THQ = 1)	Residential RSL	Industrial RSL	95% UCL	EPC	EPC Basis	ELCR	HQ	ELCR	Industrial HQ
Acenaphthylene [1]	208-96-8	39 18	46%	0.00166	0.0167	0.00226	0.0883	0.0187	3600 N	45000 N	No	No	NC	0.0883	Maximum		0.00002		0.000002
Anthracene	120-12-7	39 19	49%	0.00165	0.0167	0.00206	0.0726	0.0162	18000 N	230000 N	No	No	NC	0.0726	Maximum		0.000004		0.0000003
Arsenic	7440-38-2	39 39	100%	N/A	N/A	7.22	25.8	14.34	6.8 C	30 C	Yes	No	15.78	15.78	95% Student's-t UCL	2.3E-05	0.5	5.3E-06	0.03
Barium	7440-39-3	39 39	100%	N/A	N/A	39.5	607	159	15000 N	220000 N	No	No	NC	607	Maximum		0.04		0.003
Benzo[a]anthracene [3]	56-55-3	39 28	72%	0.00165	0.00834	0.00405	0.287	0.0458	11 C	210 C	No	No	NC	0.287	Maximum				
Benzo[a]pyrene [2]	50-32-8	39 31	79%	0.00165	0.00167	0.0021	0.392	0.0619	18 N	220 N	No	No	NC	0.392	Maximum		0.02		0.002
BAP TEQ (ND = $1/2*RL$)	50-32-8	43 36	84%	0.002	0.002	0.002	0.535	0.0701	1.1 C	21 C	No	No	NC	0.535	Maximum	4.9E-06	0.03	2.5E-07	0.002
BAP TEQ (ND = 0)	50-32-8	43 36	84%	0	0	0.0002	0.535	0.0674	1.1 C	21 C	No	No	NC	0.535	Maximum	4.9E-06	0.03	2.5E-07	0.002
Benzo[b]fluoranthene [3]	205-99-2	39 33	85%	0.00166	0.00167	0.00184	0.456	0.0838	11 C	210 C	No	No	NC	0.456	Maximum				
Benzo[g,h,i]perylene [1]	191-24-2	39 30	77%	0.00165	0.00167	0.00232	0.265	0.0449	1800 N	23000 N	No	No	NC	0.265	Maximum	-	0.0001		0.00001
Benzo[k]fluoranthene [3]	207-08-9	39 24	62%	0.00165	0.0167	0.00267	0.142	0.0297	110 C	2100 C	No	No	NC	0.142	Maximum	-			
Cadmium	7440-43-9	39 1	3%	1.67	2	2.78	2.78	2.78	71 N	980 N	No	No	NC	2.78	Maximum	1.3E-09	0.04	3.0E-10	0.003
Chromium [1]	7440-47-3	39 39	100%	N/A	N/A	6.16	22.6	10.95	3.0 C	63 C	Yes	No	11.87	11.87	95% Adjusted Gamma UCL	4.0E-05	0.05	1.9E-06	0.003
Chrysene [3]	218-01-9	39 31	79%	0.00165	0.00167	0.00178	0.325	0.053	1100 C	21000 C	No	No	NC	0.325	Maximum	-			
Dibenz[a,h]anthracene [3]	53-70-3	39 3	8%	0.00165	0.0167	0.00245	0.045	0.0167	1.1 C	21 C	No	No	NC	0.045	Maximum	-			
Fluoranthene	206-44-0	39 32	82%	0.00166	0.00167	0.00205	0.603	0.102	2400 N	30000 N	No	No	NC	0.603	Maximum	-	0.0003		0.00002
Fluorene	86-73-7	39 4	10%	0.00165	0.0167	0.00471	0.0405	0.0158	2400 N	30000 N	No	No	NC	0.0405	Maximum	-	0.00002		0.000001
Indeno[1,2,3-cd]pyrene [3]	193-39-5	39 28	72%	0.00165	0.0167	0.0018	0.218	0.0379	11 C	210 C	No	No	NC	0.218	Maximum				
Lead	7439-92-1	39 39	100%	N/A	N/A	6.48	222	35.36	400 N	800 N	No	No	NC	222	Maximum				
Mercury	7439-97-6	39 21	54%	0.0167	0.0196	2.28E-04	0.242	0.0515	11 N	46 N	No	No	NC	0.242	Maximum		0.02		0.005
Naphthalene	91-20-3	39 1	3%	0.0165	0.167	0.0168	0.0168	0.0168	38 C	170 C	No	No	NC	0.0168	Maximum	4.4E-09	0.0001	9.9E-10	0.00003
Phenanthrene [1]	85-01-8	39 28	72%	0.00166	0.0167	0.00169	0.641	0.0717	18000 N	230000 N	No	No	NC	0.641	Maximum		0.00004		0.000003
Pyrene	129-00-0	39 33	85%	0.00166	0.00167	0.00187	0.75	0.115	1800 N	23000 N	No	No	NC	0.75	Maximum		0.0004		0.00003

Notes:

[1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:

RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, anthracene for phenanthrene, hexavalent chromium for total chromium.

[2] Benzo(a)pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a)pyrene concentration.

[3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations

[4] Lead is evaluated by comparing EPC with RSL only.

-- = not applicable because of no RSL available

(ND = 0) = Indicates that for nondetects the value used in the BAP TEQ calculation was zero.

(ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit

bgs = below ground surface

C = RSL based on cancer effects

COPC = chemical of potential concern

ELCR = excess lifetime cancer risk

EPC = exposure point concentration

HI = hazard index

N = RSL based on noncancer effects

NA = not available or not applicable

NC = not calculated

ND = nondetect

BAP TEQ = benzo(a)pyrene toxicity equivalent

RL = reporting limit

RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

UCL = upper confidence limit

7E-06

7E-06

0.05

0.05

Total Risk/HI (BAP TEQ, ND = 1/2*RL):

Total Risk/HI (BAP TEQ, ND = 0):

7E-05

Table K-10 Risk Calculations for Deep Soil (>15 feet) - Onsite

Deep Soil (>15 feet bgs) All u		-			,															
beep son (>15 feet ugs) Air t	annes are miningra	inis per knogi	rum (mg/ kg	3/		Maximum						Maximum	Maximum Concentration	I						
					Minimum	Nondetect	Minimum	Maximum		Residential RSL	Industrial RSI		Exceeds							
		Number of	Number of	Detection	Nondetect	Concentrati	Detected	Detected	Mean	(TR = 1E-05)	(TR = 1E-05)	Residential	Industrial				Residential	Residential	Industrial	Industrial
Analyte	CAS#	Samples	Detects	Frequency	Concentration	on	Concentration	Concentration	Concentration	(THQ = 1)	(THQ = 1)	RSL	RSL	95% UCL	EPC	EPC Basis	ELCR	HQ	ELCR	HQ
Acenaphthene	83-32-9	32	5	16%	0.00166	0.0333	0.00187	0.00607	0.00312	3600 N	45000 N	No	No	NC	0.006	Maximum		0.000002		0.0000001
Acenaphthylene [1]	208-96-8	32	20	63%	0.00166	0.00167	0.00175	0.538	0.0841	3600 N	45000 N	No	No	NC	0.538	Maximum		0.0001		0.00001
Anthracene	120-12-7	32	19	59%	0.00166	0.00167	0.00256	0.347	0.0487	18000 N	230000 N	No	No	NC	0.347	Maximum		0.00002		0.000002
Arsenic	7440-38-2	27	27	100%	N/A	N/A	4.16	24.5	14.83	6.8 C	30 C	Yes	No	16.73	16.73	95% students-t UCL	2.5E-05	0.5	5.6E-06	0.03
Barium	7440-39-3	27	27	100%	N/A	N/A	35.2	906	172.2	15000 N	220000 N	No	No	NC	906	Maximum		0.1		0.004
Benzo(a)anthracene [3]	56-55-3	32	22	69%	0.00166	0.00167	0.00227	1.52	0.155	11 C	210 C	No	No	NC	1.5	Maximum				
Benzo(a)pyrene [2]	50-32-8	32	24	75%	0.00166	0.00167	0.00268	2.73	0.266	18 N	220 N	No	No	NC	2.73	Maximum		0.2		0.01
BAP TEQ (ND = $1/2*RL$)	50-32-8	35	35	100%	N/A	N/A	0.002	3.4	0.239	1.1 C	21 C	Yes	No	0.931	0.93	97.5% Chebyshev (Mean, Sd) UCL	8.5E-06	0.05	4.4E-07	0.004
BAP TEQ (ND = 0)	50-32-8	35	35	100%	N/A	N/A	0.003	3.383	0.237	1.1 C	21 C	Yes	No	0.718	0.72	95% Chebyshev (Mean, Sd) UCL	6.5E-06	0.04	3.4E-07	0.003
Benzo(b)fluoranthene [3]	205-99-2	32	24	75%	0.00166	0.00167	0.00319	3.04	0.289	11 C	210 C	No	No	NC	3.04	Maximum				
Benzo[g,h,i]perylene [1]	191-24-2	32	24	75%	0.00166	0.00167	0.00299	2.6	0.266	1800 N	23000 N	No	No	NC	2.60	Maximum		0.001		0.000
Benzo(k)fluoranthene [3]	207-08-9	32	20	63%	0.00166	0.00167	0.00238	0.698	0.0929	110 C	2100 C	No	No	NC	0.70	Maximum				
Chromium [1]	7440-47-3	27	27	100%	N/A	N/A	3.78	129	24.54	3 C	63 C		Yes	32.34	32.34	95% Adjusted Gamma UCL	1.1E-04	0.14	5.1E-06	0.009
Chrysene [3]	218-01-9	32	24	75%	0.00166	0.00167	0.00176	1.89	0.179	1100 C	21000 C		No	NC	1.89	Maximum				
Dibenz(a,h)Anthracene [3]	53-70-3	32	2	6%	0.00166	0.0333	0.025	0.165	0.095	1.1 C	21 C		No	NC	0.17	Maximum				
Fluoranthene	206-44-0	32	24	75%	0.00166	0.00167	0.00495	4.96	0.508	2400 N	30000 N		No	NC	4.96	Maximum		0.002		0.000
Fluorene	86-73-7	32	14	44%	0.00166	0.0167	0.00211	0.141	0.0276	2400 N	30000 N		No	NC	0.14	Maximum		0.00006		0.000
Indeno(1,2,3-c,d)Pyrene [3]	193-39-5	32	24	75%	0.00166	0.00167	0.00233	1.88	0.19	11 C	210 C		No	NC	1.88	Maximum				
Lead [4]	7439-92-1	27	27	100%	N/A	N/A	4.13	62.8	14.98	400.0 N	800 N		No	NC	62.80	Maximum				
Mercury	7439-97-6	27	1	4%	0.0167	0.189	0.0235	0.0235	0.0235	11.0 N	46 N	No	No	NC	0.02	Maximum		0.002		0.001

38 C 18000 N

1800 N

230000 N

23000 N

No

No

Notes:

Pyrene

Naphthalene

Phenanthrene [1]

[1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:

24

24

32

32

RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, and anthracene for phenanthrene, hexavalent chromium for total chromium.

0.0166

0.00166

0.00166

[2] Benzo(a)pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a)pyrene concentration.

22%

75%

75%

[3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations

0.333

0.00167

0.00167

0.0188

0.00245

0.00624

0.514

3.12

6.63

0.151

0.352

0.64

[4] Lead is evaluated by comparing EPC with RSL only.

-- = not applicable because of no RSL exceedance (i.e., no COPC identified)

91-20-3 85-01-8

129-00-0

(ND = 0) Indicates that for nondetects the value used in the BAP TEQ calculation was zero.

(ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit

bgs = below ground surface

C = RSL based on cancer effects

COPC = chemical of potential concern

ELCR = excess lifetime cancer risk

HI = hazard index

N = RSL based on noncancer effects

NC = not calculated

ND = nondetect

BAP TEQ = benzo(a)pyrene toxicity equivalent

RL = reporting limit

RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

UCL = upper confidence limit

Total Risk/HI (BAP TEQ, ND = 1/2*RL):	1E-04	0.9	1E-05	0.07
Total Risk/HI (BAP TEQ, ND = 0):	1E-04	0.9	1E-05	0.07

1.4E-07

0.004

0.0002

0.004

3.0E-08

0.001

0.00001

0.0003

Risk estimates for site-related COPCs (excludes Arsenic and Chromium):

Maximum

Maximum

Maximum

NC NC

NC

No

No

0.51 3.12

6.63

mak estimates for site related cor t	os (excludes i	a seriile aria ei	n onnann,.	
Total Risk/HI (BAP TEQ, ND = 1/2*RL):	9E-06	0.3	5E-07	0.02
Total Risk/HI (BAP TEQ, ND = 0):	7E-06	0.3	4E-07	0.02

Table K-11
Risk Calculations for Deep Soil (>15 feet) - Background (Offsite)

Deep Soil (>15 fee	t bgs) All units are r	milliarams per kil	oaram (ma/ka)

Deep Soil (>15 feet bgs) All u												Maximum	Maximum							T
												Concentration	Concentration							
					Minimum	Maximum	Minimum	Maximum		Residential RSI	Industrial RSL	Exceeds	Exceeds							
		Number of	Number of	f Detection	Nondetect	Nondetect	Detected	Detected	Mean	(TR = 1E-05)	(TR = 1E-05)	Residential	Industrial				Residential	Residential	Industrial	Industri
Analyte	CAS#	Samples	Detects	Frequency	Concentration	Concentration	Concentration	Concentration	Concentration	(THQ = 1)	(THQ = 1)	RSL	RSL	95% UCL	EPC	EPC Basis	ELCR	HQ	ELCR	HQ
Acenaphthylene [1]	208-96-8	23	8	35%	0.00166	0.00167	0.00219	0.0127	0.00559	3600 N	45000 N	No	No	NC	0.013	Maximum		0.000004		0.000000
Inthracene	120-12-7	23	6	26%	0.00166	0.00167	0.00183	0.00962	0.00474	18000 N	230000 N	No	No	NC	0.010	Maximum		0.000001		0.000000
Arsenic	7440-38-2	22	22	100%	N/A	N/A	8.59	32.6	15.79	6.8 C	30 C	Yes	Yes	17.92	17.92	95% Student's-t UCL	2.6E-05	0.5	6.0E-06	0.04
Barium	7440-39-3	22	22	100%	N/A	N/A	18.9	767	184.3	15000 N	220000 N	No	No	NC	767	Maximum		0.05		0.003
Benzo(a)anthracene [3]	56-55-3	23	10	43%	0.00166	0.00167	0.00178	0.044	0.0163	11 C	210 C	No	No	NC	0.0	Maximum				
Benzo(a)pyrene [2]	50-32-8	23	11	48%	0.00166	0.00167	0.00198	0.0882	0.028	18 N	220 N	No	No	NC	0.09	Maximum		0.005		0.0004
BAP TEQ (ND = 1/2*RL)	50-32-8	25	14	56%	0.002	0.002	0.002	0.111	0.0169	1.1 C	21 C	No	No	NC	0.11	Maximum	1.0E-06	0.006	5.3E-08	0.0005
BAP TEQ (ND = 0)	50-32-8	25	14	56%	0	0	0	0.11	0.0154	1.1 C	21 C	No	No	NC	0.11	Maximum	1.0E-06	0.006	5.2E-08	0.0005
Benzo(b)fluoranthene [3]	205-99-2	23	14	61%	0.00166	0.00167	0.00198	0.117	0.0276	11 C	210 C	No	No	NC	0.12	Maximum				
Benzo[g,h,i]perylene [1]	191-24-2	23	11	48%	0.00166	0.00167	0.00211	0.0918	0.0268	1800 N	23000 N	No	No	NC	0.09	Maximum		0.00005		0.000004
Benzo(k)fluoranthene [3]	207-08-9	23	10	43%	0.00166	0.00167	0.00176	0.0313	0.011	110 C	2100 C	No	No	NC	0.03	Maximum				
Chromium [1]	7440-47-3	22	22	100%	N/A	N/A	5.12	63	14.64	3 C	63 C	Yes	No	25.4	25.40	95% Chebyshev (Mean, Sd) UCL	8.5E-05	0.1	4.0E-06	0.007
Chrysene [3]	218-01-9	23	10	43%	0.00166	0.00167	0.00352	0.0629	0.0217	1100 C	21000 C	No	No	NC	0.06	Maximum				
Fluoranthene	206-44-0	23	14	61%	0.00166	0.00167	0.00217	0.124	0.0327	2400 N	30000 N	No	No	NC	0.12	Maximum		0.00005		0.000004
ndeno(1,2,3-c,d)Pyrene [3]	193-39-5	23	11	48%	0.00166	0.00167	0.00175	0.062	0.0197	11 C	210 C	No	No	NC	0.06	Maximum				
.ead [4]	7439-92-1	22	22	100%	N/A	N/A	3.86	23	12.63	400.0 N	800 N	No	No	NC	23.00	Maximum				
Phenanthrene [1]	85-01-8	23	9	39%	0.00166	0.00167	0.00383	0.049	0.0209	18000 N	230000 N	No	No	NC	0.05	Maximum		0.000003		0.000000
Pyrene	129-00-0	23	14	61%	0.00166	0.00167	0.00226	0.155	0.042	1800 N	23000 N	No	No	NC	0.16	Maximum		0.00009		0.000007

Notes:

[1] For chemicals without published Regional Screening Levels, surrogate values were selected as indicated below:

RSLs for acenapthhene was used for acenaphthylene, pyrene for benzo(g,h,i)perylene, and anthracene for phenanthrene, hexavalent chromium for total chromium.

[2] Benzo(a)pyrene was evaluated both as a carcinogen using a BAP TEQ concentration and as a noncarcinogen using benzo(a)pyrene concentration.

[3] Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,23-c,d)pyrene were evaluated as a carcinogen using a BAP TEQ concentration for risk calculations

[4] Lead is evaluated by comparing EPC with RSL only.

-- = not applicable because of no RSL exceedance (i.e., no COPC identified)

(ND = 0) Indicates that for nondetects the value used in the BAP TEQ calculation was zero.

(ND = 1/2*RL) = Indicates that for nondetects the value used in the BAP TEQ calculation was half the reporting limit

bgs = below ground surface

C = RSL based on cancer effects

COPC = chemical of potential concern

ELCR = excess lifetime cancer risk

HI = hazard index

N = RSL based on noncancer effects

NC = not calculated

ND = nondetect

BAP TEQ = benzo(a)pyrene toxicity equivalent

RL = reporting limit

RSL = EPA Regional Screening Level for Residential and industrial soil (Accessed 12/02/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient

TR = target risk

Total Risk/HI (BAP TEQ, ND = 1/2*RL):	1E-04	0.7	1E-05	0.05
Total Risk/HI (BAP TEQ, ND = 0):	1E-04	0.7	1E-05	0.05

Table K-12
Risk Calculations for Groundwater

Groundwater All units	are milligram per lit	er											
		Number of	Number of	Datastica	Minimum Datastad	Maximum Detected				Tap Water RSL Cancer Effects	Residential	Tap Water RSL Noncancer Effects	Residential
Analyte	CAS#	Samples	Detects	Detection Frequency	Concentration	Concentration	95% UCL	EPC	EPC Basis	(TR = 1E-05)	ELCR		HQ
		Samples	Detects							(IK = IE-05)	ELCN	(THQ = 1)	
1,1-Dichloroethene	75-35-4	3	2	67%	0.00402	0.00437	NC	0.00437	Maximum			280	0.00002
Arsenic	7440-38-2	3	3	100%	0.00466	0.0068	0.00754	0.0068	Maximum	5.2E-01	1.3E-07	6	0.001
Barium	7440-39-3	3	3	100%	0.0431	0.0557	NC	0.0557	Maximum			3800	0.00001
Copper	7440-50-8	3	1	33%	0.00488	0.00488	NC	0.00488	Maximum			800	0.00001
Manganese	7439-96-5	3	3	100%	0.0536	0.367	NC	0.367	Maximum			430	0.0009
Molybdenum	7439-98-7	3	2	67%	0.00275	0.00311	NC	0.00311	Maximum			100	0.00003
Nickel	7440-02-0	3	1	33%	0.00367	0.00367	NC	0.00367	Maximum			390	0.00001
Selenium	7782-49-2	3	3	100%	0.00498	0.0115	NC	0.0115	Maximum			100	0.0001
Toluene	108-88-3	3	3	100%	0.00224	0.00792	NC	0.00792	Maximum			1100	0.00001
Trichloroethylene	79-01-6	3	3	100%	0.0129	0.078	0.114	0.078	Maximum	4.9E+00	1.6E-07	3	0.03

Total ELCR: 3E-07

HI:

0.03

Notes:

-- = not applicable because of no RSL available

ELCR = excess lifetime cancer risk

HI = hazard index

HQ = hazard quotient

Maximum = maximum detected concentration

NC = not calculated

RSL = EPA Regional Screening Level for Tap Water (Accessed 11/27/2019). Cancer-based RSLs were adjusted to a target risk of 1E-05 per agreement with the Arizona Department of Environmental Quality.

THQ = target hazard quotient (noncancer)

TR = target risk

Table K-12 Risk Summary

Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Exposure					Total ELCR for Site-Related	Site-related Primary		
Scenario	Area	Exposure Medium	Total ELCR ¹	Primary Contributors ²	COPCs ³	Contributor ³	Hazard Index	Primary Contributors ²
Industrial	Onsite	Surface and Subsurface Soil (0-15 feet bgs)	2E-05	arsenic, chromium, BAP TEQ, naphthalene	1E-05	arsenic (5-10 bgs only), BAP TEQ, naphthalene	0.2	none
		Deep Soil (>15 feet bgs)	1E-05	arsenic, chromium	5E-07	none	0.07	none
	Background (Offsite)	Surface and Subsurface Soil (0-15 feet bgs)	7E-06	arsenic, chromium	N/A	N/A	0.05	none
		Deep Soil (>15 feet bgs)	1E-05	arsenic, chromium	N/A	N/A	0.05	none
Residential	Onsite	Surface and Subsurface Soil (0-15 feet bgs)	2E-04	arsenic, chromium, BAP TEQ, naphthalene	2E-04	arsenic (5-10 ft bgs only), BAP TEQ, naphthalene	2	none
		Deep Soil (>15 feet bgs)	1E-04	arsenic, chromium, BAP TEQ	9E-06	none	0.9	none
	Background (Offsite)	Surface and Subsurface Soil (0-15 feet bgs)	7E-05	arsenic, chromium, BAP TEQ	N/A	N/A	0.7	none
		Deep Soil (>15 feet bgs)	1E-04	arsenic, chromium, BAP TEQ	N/A	N/A	0.7	none
	N/A	Groundwater	3E-07	none	N/A	none	0.03	none

Notes:

- 1. ELCR with BAP TEQ, ND = 1/2*RL is presented.
- 2. Primary contributors are identified if individual COPC ELCR > 1E-06 or HQ > 1.
- 3. Based on background risk estimates and statistical comparsion (Section 4), arsenic is not considered site related in 0 to 5 feet bgs and in deep (> 15 feet bgs) soil. For chromium, risks were calculated using hexavalent chromium. Based on background risk estimates, chromium is not considered site related in surface and subsurface soil, and deep soil.

BAP TEQ = benzo(a)pyrene toxicity equivalent concentration

bgs = below ground surface

COPC = chemical of potential concern

ELCR = excess lifetime cancer risk

HQ = hazard quotient

RL = Reporting limit

Table K-13
Chemicals of Concern

Exposure Scenario	Area	Exposure Medium	Chemical of Concern	Basis ¹
Industrial	Onsite	Surface and Subsurface Soil (0-15 feet bgs)	arsenic, BAP TEQ, naphthalene	Arsenic (5-10 ft bgs), BAP TEQ and naphthalene for cancer risk (ELCR).
		Deep Soil (>15 feet bgs)	none	Total cancer risk estimate (ELCR)/non-cancer hazard estimate (HI) less than 1E-05/1
Residential	Onsite	Surface and Subsurface Soil (0-15 feet bgs)	arsenic, BAP TEQ, naphthalene	Arsenic (5-10 ft bgs), BAP TEQ and naphthalene for cancer risk (ELCR).
		Deep Soil (>15 feet bgs)	none	Total cancer risk estimate (ELCR)/non-cancer hazard estimate (HI) less than 1E-05/1
	N/A	Groundwater	none	Total cancer risk estimate (ELCR)/non-cancer hazard estimate (HI) less than 1E-05/1

Notes:

1. COCs identified if total ELCR > 1E-05 or HI > 1 and individual chemical ELCR > 1E_06 or HQ > 1.

BAP TEQ = benzo(a)pyrene toxicity equivalent concentration

bgs = below ground surface

COC = chemical concern

ELCR = excess lifetime cancer risk

HQ = hazard quotient

Attachment 1
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B13	Onsite	N	31-Oct-19	D-B13-1.0-1.5	1.0-1.5	0-15	PAHs	Benzo(a)pyrene	28.9	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(a)pyrene	9.99		Υ
B13	Onsite	N	31-Oct-19	D-B13-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	3.21		Υ
B13	Onsite	N	31-Oct-19	D-B13-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(a)pyrene	11.1		Υ
B13	Onsite	N	31-Oct-19	D-B13-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	2.44		Υ
B13	Onsite	N	31-Oct-19	D-B13-1.0-1.5	1.0-1.5	0-15	PAHs	Benzo(b)fluoranthene	26.4	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(b)fluoranthene	10		Υ
B13	Onsite	N	31-Oct-19	D-B13-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	3.49		Υ
B13	Onsite	N	31-Oct-19	D-B13-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(b)fluoranthene	10.3		Υ
B13	Onsite	N	31-Oct-19	D-B13-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	2.39		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth	I				
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Arsenic	8.7		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Arsenic	16.4		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	9.69	J	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Arsenic	20.7	J	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Arsenic	21.8		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	16.3		Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Arsenic	9.18		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Arsenic	15.4		Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	25.8		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Arsenic	16.7		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	22		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Arsenic	13.9		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Arsenic	15.4		Υ
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Arsenic	13.8		N
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	24.1		Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Arsenic	21.2		Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	20.7		Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Arsenic	9.02		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	16.1		N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Arsenic	23.1		Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	9.21		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Arsenic	7.22		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	15.9	J	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	15.1		Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Arsenic	9.51		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	12.6		Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Arsenic	11.5		N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	9.78		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Arsenic	9.08		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	17.6		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	12.8		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Arsenic	8.73		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	7.13		N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Arsenic	10.3		Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	8.49		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Arsenic	7.47		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	20.6		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	9.04		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Arsenic	11.3		N
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Arsenic	14.8		Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Arsenic	9.45		Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	15.7		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Arsenic	7.69		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Arsenic	13		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Arsenic	14.6		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Barium	148		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Barium	65.7		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Barium	190		N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Barium	215		Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Barium	138		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Barium	39.5		Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Barium	111		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Barium	127		Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Barium	245		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Barium	150		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Barium	146		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Barium	70.5		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Barium	426	J	Υ
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Barium	142	J	N
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Barium	151		Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Barium	171		Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Barium	84.7	J	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Barium	93.7		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Barium	84.3		N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Barium	110		Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Barium	94.4		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Barium	62.9		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Barium	178		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Barium	607		Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Barium	139		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Barium	133		N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Barium	162		Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Barium	112		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Barium	186		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Barium	143		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Barium	211		Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Barium	176		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Barium	107		N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Barium	114		Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Barium	156		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Barium	149		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Barium	158		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Barium	65.1		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Barium	208	J	Υ
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Barium	76.4	J	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Barium	104		Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Barium	195		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Barium	181		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Barium	174		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Barium	132		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Cadmium	1.89	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Cadmium	1.67	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	2	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Cadmium	2	U	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Cadmium	1.89	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.89	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Cadmium	1.92	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Cadmium	1.96	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.92	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Cadmium	2	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	2	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Cadmium	2	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Cadmium	2	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Cadmium	1.79	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.67	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Cadmium	1.69	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.75	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Cadmium	1.96	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.89	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Cadmium	1.72	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	2	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Cadmium	1.82	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.85	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.92	U	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Cadmium	1.85	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.85	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Cadmium	1.89	U	N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.85	U	Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Cadmium	1.92	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.96	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.82	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Cadmium	2	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.85	U	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Cadmium	1.67	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.67	U	Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Cadmium	1.85	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	2.78		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.67	U	Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Cadmium	1.92	U	N
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Cadmium	1.72	U	Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Cadmium	1.92	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	2	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Cadmium	1.89	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Cadmium	1.89	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Cadmium	1.85	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Chromium	10		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Chromium	8.37		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	8.67	J	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Chromium	16.6	J	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Chromium	11.5		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	8.93		Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Chromium	9.8		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Chromium	13.1		Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	9.75		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Chromium	13.6		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	22.6		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Chromium	8.01		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Chromium	8.79		N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Chromium	9.14		Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	11.8		Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Chromium	10.3		Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	16.5		Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Chromium	6.96		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	9.3		N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Chromium	11.6		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	10.3		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Chromium	6.16		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	18.1	J	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	12.6		Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Chromium	10.4		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	10.2		N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Chromium	11.5		Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	8.93		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Chromium	10.3		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	11.4		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	8.25		Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Chromium	9.26		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	8.2	J	Υ
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Chromium	4.01	J	N
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	7.09		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Chromium	8.64		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	14		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	9.26		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Chromium	11		Υ
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Chromium	10.5		N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Chromium	10.6		Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	6.74		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Chromium	10.1		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Chromium	14.1		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Chromium	11.6		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Lead	25.5		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Lead	25.2		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Lead	38.1	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Lead	15.6	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Lead	17.5		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Lead	13.3		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Lead	50.1		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Lead	11.2		Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Lead	117		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Lead	25.7		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Lead	32.3		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Lead	16.1		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Lead	11.8		N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Lead	12.2		Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Lead	12		Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Lead	12.3		Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Lead	11.1		Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Lead	45.9		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Lead	10.9		N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Lead	18.2		Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Lead	9.89		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Lead	22.2		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Lead	32.8	J	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Lead	12.6		Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Lead	40.1		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Lead	26.8	J	N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Lead	52.3	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Lead	36.8		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Lead	34.8		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Lead	98.2		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Lead	6.48		Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Lead	48.3		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Lead	62.5		Υ
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Lead	40.5		N
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Lead	27.7		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Lead	29.7		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Lead	222		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Lead	11.7		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Lead	41.3	J	Υ
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Lead	12.6	J	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Lead	14.1		Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Lead	7.7		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Lead	30.3		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Lead	29.9	J	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Lead	24.1		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Mercury	0.0202		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Mercury	0.0219		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.0237	U	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Mercury	0.0172	UJ	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Mercury	0.0179	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0196	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Mercury	0.0734		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Mercury	0.0189	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.0263		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Mercury	0.0172	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0189	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Mercury	0.0227		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Mercury	0.0182	U	Υ
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Mercury	0.0185	U	N
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.0172	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Mercury	0.0196		Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0185	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Mercury	0.0513		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.0185	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Mercury	0.0167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0185	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Mercury	0.0574		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.0494		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0192	U	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Mercury	0.0249		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.0182	UJ	N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Mercury	0.0208	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.025		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Mercury	0.0211		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.228		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0185	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Mercury	0.0294		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.0492	J	Υ
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Mercury	0.0192	UJ	N
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0336		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Mercury	0.0289		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.242		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0196	U	Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Mercury	0.0288	J	Υ
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Mercury	0.0185	UJ	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Mercury	0.0196	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0175	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Mercury	0.0268		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Mercury	0.000228		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Mercury	0.0196	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Selenium	1.89	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Selenium	1.67	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	2	U	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Selenium	2	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Selenium	1.89	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.89	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Selenium	1.92	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Selenium	1.96	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.92	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Selenium	2	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	2	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Selenium	2	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Selenium	2	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Selenium	1.79	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.67	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Selenium	1.69	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.75	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Selenium	1.96	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.89	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Selenium	1.72	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	2	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Selenium	1.82	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.85	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.92	U	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Selenium	1.85	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.85	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Selenium	1.89	U	N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.85	U	Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Selenium	1.92	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.96	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.82	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Selenium	2	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.85	U	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Selenium	1.67	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.67	U	Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Selenium	1.85	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.89	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.67	U	Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Selenium	1.92	U	N
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Selenium	1.72	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					l
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Selenium	1.92	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	2	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Selenium	1.89	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Selenium	1.89	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Selenium	1.85	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	Metals	Silver	1.89	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.0-2.5	0-15	Metals	Silver	1.67	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	Metals	Silver	2	U	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	Metals	Silver	2	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	Metals	Silver	1.89	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.89	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	Metals	Silver	1.92	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	Metals	Silver	1.96	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.92	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	Metals	Silver	2	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	Metals	Silver	2	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	Metals	Silver	2	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	Metals	Silver	2	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	Metals	Silver	1.79	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.67	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	Metals	Silver	1.69	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.75	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	Metals	Silver	1.96	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.89	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	Metals	Silver	1.72	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	Metals	Silver	2	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	Metals	Silver	1.82	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.85	UJ	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.92	U	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	Metals	Silver	1.85	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.85	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	Metals	Silver	1.89	U	N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.85	U	Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	Metals	Silver	1.92	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.96	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.82	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	Metals	Silver	2	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.85	U	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	Metals	Silver	1.67	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.67	U	Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	Metals	Silver	1.85	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.89	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.67	U	Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	Metals	Silver	1.92	U	N
B34	Offsite	FD	28-Oct-19	D-FD01-102819	0-0	0-15	Metals	Silver	1.72	U	Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	Metals	Silver	1.92	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	Metals	Silver	2	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	Metals	Silver	1.89	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	Metals	Silver	1.89	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	Metals	Silver	1.85	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1,2-Tetrachloroethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,1,1,2-Tetrachloroethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1,2-Tetrachloroethane	0.245	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1,2-Tetrachloroethane	0.213	U	Υ
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	1,1,1,2-Tetrachloroethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1,2-Tetrachloroethane	0.324	U	Υ
B28	Offsite	N		D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1-Trichloroethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,1,1-Trichloroethane	0.226	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1-Trichloroethane	0.245	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1-Trichloroethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,1,1-Trichloroethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,1-Trichloroethane	0.324	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth			T		
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2,2-Tetrachloroethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,1,2,2-Tetrachloroethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2,2-Tetrachloroethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2,2-Tetrachloroethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,1,2,2-Tetrachloroethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2,2-Tetrachloroethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2-Trichloroethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,1,2-Trichloroethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2-Trichloroethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2-Trichloroethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,1,2-Trichloroethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,1,2-Trichloroethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,1-Dichloroethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,1-Dichloroethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,1-Dichloroethene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,1-Dichloroethene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloroethene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloropropene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,1-Dichloropropene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloropropene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloropropene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,1-Dichloropropene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,1-Dichloropropene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichlorobenzene	0.259	U	N

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2,3-Trichlorobenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichlorobenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichlorobenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2,3-Trichlorobenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichlorobenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichloropropane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2,3-Trichloropropane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichloropropane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichloropropane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2,3-Trichloropropane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,3-Trichloropropane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trichlorobenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2,4-Trichlorobenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trichlorobenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trichlorobenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2,4-Trichlorobenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trichlorobenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trimethylbenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2,4-Trimethylbenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trimethylbenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trimethylbenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2,4-Trimethylbenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2,4-Trimethylbenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromo-3-Chloropropane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2-Dibromo-3-Chloropropane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromo-3-Chloropropane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromo-3-Chloropropane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2-Dibromo-3-Chloropropane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromo-3-Chloropropane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromoethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2-Dibromoethane	0.226	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromoethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromoethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2-Dibromoethane	0.266	-	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dibromoethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichlorobenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2-Dichlorobenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichlorobenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichlorobenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2-Dichlorobenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichlorobenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloroethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2-Dichloroethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloroethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloroethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2-Dichloroethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloroethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloropropane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,2-Dichloropropane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloropropane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloropropane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,2-Dichloropropane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,2-Dichloropropane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,3,5-Trimethylbenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,3,5-Trimethylbenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,3,5-Trimethylbenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,3,5-Trimethylbenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,3,5-Trimethylbenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,3,5-Trimethylbenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Butadiene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,3-Butadiene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Butadiene	0.245	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	_	Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Butadiene	0.213	U	Υ
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	1,3-Butadiene	0.266		N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Butadiene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichlorobenzene	0.259	_	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	VOCs	1,3-Dichlorobenzene	0.226	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichlorobenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichlorobenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,3-Dichlorobenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichlorobenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichloropropane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,3-Dichloropropane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichloropropane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichloropropane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,3-Dichloropropane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,3-Dichloropropane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	1,4-Dichlorobenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	1,4-Dichlorobenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	1,4-Dichlorobenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	1,4-Dichlorobenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	1,4-Dichlorobenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	1,4-Dichlorobenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	2,2-Dichloropropane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	2,2-Dichloropropane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	2,2-Dichloropropane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	2,2-Dichloropropane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	2,2-Dichloropropane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	2,2-Dichloropropane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	2-Butanone	1.04	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	2-Butanone	0.906	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	2-Butanone	0.978	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	2-Butanone	0.853	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	2-Butanone	1.06	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	2-Butanone	1.3	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	2-Chlorotoluene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	2-Chlorotoluene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	2-Chlorotoluene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	2-Chlorotoluene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	2-Chlorotoluene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	2-Chlorotoluene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	2-Hexanone	2.59	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	2-Hexanone	2.26	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	2-Hexanone	2.45	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	2-Hexanone	2.13	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	2-Hexanone	2.66	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	2-Hexanone	3.24	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	4-Chlorotoluene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	4-Chlorotoluene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	4-Chlorotoluene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	4-Chlorotoluene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	4-Chlorotoluene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	4-Chlorotoluene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	4-Ethyltoluene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	4-Ethyltoluene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	4-Ethyltoluene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	4-Ethyltoluene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	4-Ethyltoluene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	4-Ethyltoluene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	4-Methyl-2-Pentanone	2.59	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	4-Methyl-2-Pentanone	2.26	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	4-Methyl-2-Pentanone	2.45	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	4-Methyl-2-Pentanone	2.13	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	4-Methyl-2-Pentanone	2.66	U	N

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	4-Methyl-2-Pentanone	3.24	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Acetone	5.18	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Acetone	4.53	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Acetone	4.89	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Acetone	4.27	U	Υ
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	Acetone	5.32	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Acetone	6.48	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Benzene	0.0518	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Benzene	0.0453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Benzene	0.0489	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Benzene	0.0427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Benzene	0.0532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Benzene	0.0648	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Bromobenzene	0.259	U	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	VOCs	Bromobenzene	0.226	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Bromobenzene	0.245	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Bromobenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Bromobenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Bromobenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Bromochloromethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Bromochloromethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Bromochloromethane	0.245	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Bromochloromethane	0.213	U	Υ
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	Bromochloromethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Bromochloromethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Bromodichloromethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Bromodichloromethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Bromodichloromethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Bromodichloromethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Bromodichloromethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Bromodichloromethane	0.324	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Bromoform	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Bromoform	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Bromoform	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Bromoform	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Bromoform	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Bromoform	0.324	UJ	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Bromomethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Bromomethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Bromomethane	0.245	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Bromomethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Bromomethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Bromomethane	0.324	UJ	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Disulfide	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Carbon Disulfide	0.226	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Disulfide	0.245	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Disulfide	0.213	U	Υ
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	Carbon Disulfide	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Disulfide	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Tetrachloride	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Carbon Tetrachloride	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Tetrachloride	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Tetrachloride	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Carbon Tetrachloride	0.266	U	N
B35	Offsite	N		D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Carbon Tetrachloride	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Chlorobenzene	0.259	U	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	VOCs	Chlorobenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Chlorobenzene	0.245	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Chlorobenzene	0.213	U	Υ
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	Chlorobenzene	0.266	_	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Chlorobenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroethane	0.518	U	N

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Chloroethane	0.453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroethane	0.489	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroethane	0.427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Chloroethane	0.532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroethane	0.648	UJ	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroform	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Chloroform	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroform	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroform	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Chloroform	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Chloroform	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Chloromethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Chloromethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Chloromethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Chloromethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Chloromethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Chloromethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,2-Dichloroethene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	cis-1,2-Dichloroethene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,2-Dichloroethene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,2-Dichloroethene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	cis-1,2-Dichloroethene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,2-Dichloroethene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,3-Dichloropropene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	cis-1,3-Dichloropropene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,3-Dichloropropene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,3-Dichloropropene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	cis-1,3-Dichloropropene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	cis-1,3-Dichloropropene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Cyclohexane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Cyclohexane	0.226	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Cyclohexane	0.245	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Cyclohexane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Cyclohexane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Cyclohexane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromochloromethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Dibromochloromethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromochloromethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromochloromethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Dibromochloromethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromochloromethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromomethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Dibromomethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromomethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromomethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Dibromomethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Dibromomethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Dichlorodifluoromethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Dichlorodifluoromethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Dichlorodifluoromethane	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Dichlorodifluoromethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Dichlorodifluoromethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Dichlorodifluoromethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Dicyclopentadiene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Dicyclopentadiene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Dicyclopentadiene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Dicyclopentadiene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Dicyclopentadiene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Dicyclopentadiene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Ethylbenzene	0.0518	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Ethylbenzene	0.0453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Ethylbenzene	0.0489	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Ethylbenzene	0.0427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Ethylbenzene	0.0532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Ethylbenzene	0.0648	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Hexachlorobutadiene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Hexachlorobutadiene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Hexachlorobutadiene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Hexachlorobutadiene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Hexachlorobutadiene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Hexachlorobutadiene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	lodomethane (Methyl lodide)	1.04	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	lodomethane (Methyl lodide)	0.906	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	lodomethane (Methyl lodide)	0.978	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	lodomethane (Methyl lodide)	0.853	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	lodomethane (Methyl lodide)	1.06	U	N
B35	Offsite	N		D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	lodomethane (Methyl lodide)	1.3	U	Υ
B28	Offsite	N		D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Isopropylbenzene	0.259	U	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	VOCs	Isopropylbenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Isopropylbenzene	0.245	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Isopropylbenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Isopropylbenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Isopropylbenzene	0.324	U	Υ
B28	Offsite	N		D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	m,p-Xylenes	0.104	U	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	VOCs	m,p-Xylenes	0.0906	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	m,p-Xylenes	0.0978	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	m,p-Xylenes	0.0853	U	Υ
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	m,p-Xylenes	0.106	U	N
B35	Offsite	N		D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	m,p-Xylenes	0.13	U	Υ
B28	Offsite	N		D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Methylcyclohexane	0.518	U	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	VOCs	Methylcyclohexane	0.453	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Methylcyclohexane	0.489	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Methylcyclohexane	0.427	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	VOCs	Methylcyclohexane	0.532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Methylcyclohexane	0.648	U	Υ
B28	Offsite	N		D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Methylene Chloride	1.04	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Methylene Chloride	0.906	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Methylene Chloride	0.978	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Methylene Chloride	0.853	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Methylene Chloride	1.06	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Methylene Chloride	1.3	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	MTBE	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	MTBE	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	MTBE	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	MTBE	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	MTBE	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	MTBE	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Naphthalene	0.518	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Naphthalene	0.453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Naphthalene	0.489	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Naphthalene	0.427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Naphthalene	0.532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Naphthalene	0.648	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	n-Butylbenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	n-Butylbenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	n-Butylbenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	n-Butylbenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	n-Butylbenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	n-Butylbenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	n-Hexane	0.518	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	n-Hexane	0.453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	n-Hexane	0.489	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	n-Hexane	0.427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	n-Hexane	0.532	U	N

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	n-Hexane	0.648	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	n-Propylbenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	n-Propylbenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	n-Propylbenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	n-Propylbenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	n-Propylbenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	n-Propylbenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	o-Xylene	0.0518	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	o-Xylene	0.0453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	o-Xylene	0.0489	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	o-Xylene	0.0427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	o-Xylene	0.0532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	o-Xylene	0.0648	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	p-Cymene (p-Isopropyltoluene)	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	p-Cymene (p-Isopropyltoluene)	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	p-Cymene (p-Isopropyltoluene)	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	p-Cymene (p-Isopropyltoluene)	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	p-Cymene (p-Isopropyltoluene)	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	p-Cymene (p-Isopropyltoluene)	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Propene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Propene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Propene	0.245	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Propene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Propene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Propene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Sec-Butylbenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Sec-Butylbenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Sec-Butylbenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Sec-Butylbenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Sec-Butylbenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Sec-Butylbenzene	0.324	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Styrene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Styrene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Styrene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Styrene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Styrene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Styrene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	tert-Butylbenzene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	tert-Butylbenzene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	tert-Butylbenzene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	tert-Butylbenzene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	tert-Butylbenzene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	tert-Butylbenzene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Tetrachloroethylene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Tetrachloroethylene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Tetrachloroethylene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Tetrachloroethylene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Tetrachloroethylene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Tetrachloroethylene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Toluene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Toluene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Toluene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Toluene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Toluene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Toluene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Total Xylenes	0.0518	U	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	VOCs	Total Xylenes	0.0453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Total Xylenes	0.0489	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Total Xylenes	0.0427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Total Xylenes	0.0532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Total Xylenes	0.0648	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,2-dichloroethene	0.259	U	N

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					1
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	trans-1,2-dichloroethene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,2-dichloroethene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,2-dichloroethene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	trans-1,2-dichloroethene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,2-dichloroethene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,3-dichloropropene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	trans-1,3-dichloropropene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,3-dichloropropene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,3-dichloropropene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	trans-1,3-dichloropropene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	trans-1,3-dichloropropene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Trichloroethene	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Trichloroethene	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Trichloroethene	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Trichloroethene	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Trichloroethene	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Trichloroethene	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Trichlorofluoromethane	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Trichlorofluoromethane	0.226	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Trichlorofluoromethane	0.245	UJ	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Trichlorofluoromethane	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Trichlorofluoromethane	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Trichlorofluoromethane	0.324	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Acetate	0.0518	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Vinyl Acetate	0.0453	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Acetate	0.0489	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Acetate	0.0427	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Vinyl Acetate	0.0532	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Acetate	0.648	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Chloride	0.259	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	VOCs	Vinyl Chloride	0.226	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Chloride	0.245	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Chloride	0.213	U	Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	VOCs	Vinyl Chloride	0.266	U	N
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	VOCs	Vinyl Chloride	0.324	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Acenaphthene	0.00834	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Acenaphthene	0.00334	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00333	U	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Acenaphthene	0.00832	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.0166	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00835	U	Υ
B27	Offsite	N		D-B27-0-102719	0-0	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B27	Offsite	N		D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Acenaphthene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B27	Offsite	N		D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B27	Offsite	N		D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B28	Offsite	N		D-B28-0-102719	0-0	0-15	PAHs	Acenaphthene	0.0167	U	Υ
B28	Offsite	N		D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00167	U	N
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B28	Offsite	N		D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00165	U	Υ
B29	Offsite	N		D-B29-0-102719	0-0	0-15	PAHs	Acenaphthene	0.00834	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B29	Offsite	N		D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B30	Offsite	N		D-B30-0-102719	0-0	0-15	PAHs	Acenaphthene	0.00334	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00833	U	N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Acenaphthene	0.00832	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00835	U	Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Acenaphthene	0.0167	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00265	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Acenaphthene	0.0167	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00167	U	N
B32	Offsite	FD		B-FD02-102819	5.0-5.5	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Acenaphthene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.00333	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Acenaphthene	0.0167	U	N
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Acenaphthene	0.00166	U	Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Acenaphthene	0.0167	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthene	0.0167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthene	0.00167	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.00834	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Acenaphthylene	0.00979		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.0179	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00166	U	N
B18	Offsite	N		D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Acenaphthylene	0.00688		Υ
B18	Offsite	N		D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.0239		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.0325		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Acenaphthylene	0.0103		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00835	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Acenaphthylene	0.00167	U	N

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Acenaphthylene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.0167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00167	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00284		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.0883		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00226		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00166	U	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.00566		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.0154		Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Acenaphthylene	0.0125		N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.0336		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.0167	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.0436		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.0167	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00212		N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00333		Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00289		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.0241		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00292		Υ
B34	Offsite	N		D-B34-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.0167	U	N
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Acenaphthylene	0.00166	U	Υ
B34	Offsite	N		D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.00167	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Acenaphthylene	0.0167	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Acenaphthylene	0.0167	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Acenaphthylene	0.0107		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Anthracene	0.0096		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Anthracene	0.00752		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.0165	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Anthracene	0.00166	U	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Anthracene	0.00478		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Anthracene	0.0228		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Anthracene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.0276		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Anthracene	0.00711		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00835	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Anthracene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00167	U	Υ
B28	Offsite	N		D-B28-0-102719	0-0	0-15	PAHs	Anthracene	0.0206		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.00206	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Anthracene	0.00167	UJ	N
B28	Offsite	N		D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00165	U	Υ
B29	Offsite	N		D-B29-0-102719	0-0	0-15	PAHs	Anthracene	0.0726		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.00167	U	Υ
B29	Offsite	N		D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00166	U	Υ
B30	Offsite	N		D-B30-0-102719	0-0	0-15	PAHs	Anthracene	0.00735		Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.00931		N
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	PAHs	Anthracene	0.0115		Υ
B30	Offsite	N		D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.0219		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Anthracene	0.0167	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.0254		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Anthracene	0.0167	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.00219		N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Anthracene	0.00279		Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00379		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Anthracene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.0326		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00302		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Anthracene	0.0167	U	N
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Anthracene	0.00166	U	Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Anthracene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00167	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Anthracene	0.0167	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Anthracene	0.0167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Anthracene	0.00893		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0425		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Benzo(a)anthracene	0.0276		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.0643	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.00597	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Benzo(a)anthracene	0.0195		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0688		Υ
B22	Offsite	N		D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.0907		Υ
B22	Offsite	N		D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(a)anthracene	0.0199		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.0247		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B27	Offsite	N		D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(a)anthracene	0.00167	U	N
B27	Offsite	FD		D-FD01-110319	2.5-3.0	0-15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(a)anthracene	0.00167	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0999		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.0104	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.00596	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.00165	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.287		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.00661		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.00596	J	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0235		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.0376		N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.0439		Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.0705		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0182		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.115		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0233		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.00468	J	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.00975	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.0134		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.0745		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.00986		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0335	J	Υ
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Benzo(a)anthracene	0.00166	UJ	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.00405		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Benzo(a)anthracene	0.0211		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)anthracene	0.0225		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)anthracene	0.0325		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.0583		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Benzo(a)pyrene	0.0474		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.115	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.0106	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Benzo(a)pyrene	0.0353		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.101		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.113		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(a)pyrene	0.0248		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.0282		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.0021		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(a)pyrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B28	Offsite	N		D-B28-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.116		Υ
B28	Offsite	N		D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.0177	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.00826	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.00165	U	Υ
B29	Offsite	N		D-B29-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.392		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.00983		Υ
B29	Offsite	N		D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.00735	J	Υ
B30	Offsite	N		D-B30-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.035		Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.0672		N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.0719		Υ
B30	Offsite	N		D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.115		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.0216		Υ
B31	Offsite	N		D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.217		Υ
B31	Offsite	N		D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B32	Offsite	N		D-B32-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.0319		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.00652	J	N

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					Ī
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.0176	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.0192		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.00972		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.112		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.0135		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.0467	J	Υ
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Benzo(a)pyrene	0.00234	J	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.00228	J	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.00804		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Benzo(a)pyrene	0.0285		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(a)pyrene	0.0385		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(a)pyrene	0.064		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.0912		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Benzo(b)fluoranthene	0.0698		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.179	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.0149	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Benzo(b)fluoranthene	0.0528		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.154		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.164		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(b)fluoranthene	0.0379		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.0419		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.00294		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(b)fluoranthene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(b)fluoranthene	0.00184		Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.191		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.0291	J	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B28	Offsite	FD		D-FD03-102919	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.0119	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.00248		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.456		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.0122	J	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.0102	J	Υ
B30	Offsite	N		D-B30-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.0644		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.0795		N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.116		Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.147		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.0355		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.274		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.0581		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.0113	J	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.026	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.0339		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.0184		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.169		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.0286		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.0888	J	Υ
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.00385	J	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.00419	J	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.00966		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Benzo(b)fluoranthene	0.0541		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(b)fluoranthene	0.0501	J	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(b)fluoranthene	0.0898		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.0386		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Benzo(g,h,i)perylene	0.0267		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0661	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00603	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Benzo(g,h,i)perylene	0.021		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B18	Offsite	N		D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.0664		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.101		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(g,h,i)perylene	0.0167		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0237		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.00232		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(g,h,i)perylene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.0595		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0201	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00581	J	N
B28	Offsite	N		D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00165	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.265		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0102		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00666	J	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.021		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0744		Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0533		N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.105		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.0206		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.109		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.032		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00345	J	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00904	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.011		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.0102		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B33	Offsite	N		D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.051		Υ
B33	Offsite	N		D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00871		Υ
B34	Offsite	N		D-B34-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.0371	J	Υ
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.00166	UJ	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.00588		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Benzo(g,h,i)perylene	0.0247		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0521		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(g,h,i)perylene	0.0502		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.0261		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Benzo(k)fluoranthene	0.019		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.0389	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00427	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Benzo(k)fluoranthene	0.0151		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.0454		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.0368		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(k)fluoranthene	0.0122		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00974		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Benzo(k)fluoranthene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.051		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00705	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00307	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00165	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.142		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	_	Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00358	1	Υ
B29	Offsite	N		D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00267	J	Υ
B30	Offsite	N		D-B30-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.0192		Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.0232		N
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.0307		Υ
B30	Offsite	N		D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.0405		Υ
B31	Offsite	N		D-B31-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.0167	U	Υ
B31	Offsite	N		D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.081		Υ
B31	Offsite	N		D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B32	Offsite	N		D-B32-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.0167	U	Υ
B32	Offsite	N		D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00328	J	N
B32	Offsite	FD		B-FD02-102819	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00721	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00799		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.0575		Υ
B33	Offsite	N		D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00756		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.0221	J	Υ
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.00166	UJ	N
B34	Offsite	N		D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.00302		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Benzo(k)fluoranthene	0.0167	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Benzo(k)fluoranthene	0.0167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Benzo(k)fluoranthene	0.0255		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Chrysene	0.0591		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Chrysene	0.0356		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.0865	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Chrysene	0.00728	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Chrysene	0.025		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Chrysene	0.0859		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Chrysene	0.00167	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.106		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Chrysene	0.0253		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.0288		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Chrysene	0.00178		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Chrysene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Chrysene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Chrysene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Chrysene	0.12		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.0148	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Chrysene	0.00764	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.00165	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Chrysene	0.325		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.00777		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.00635	J	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Chrysene	0.0335		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.0484		N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Chrysene	0.0631		Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.0867		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Chrysene	0.0242		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.149		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Chrysene	0.0342		Υ
B32	Offsite	N		D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.00657	J	N
B32	Offsite	FD		B-FD02-102819	5.0-5.5	0-15	PAHs	Chrysene	0.013	J	Υ
B32	Offsite	N		D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.0176		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Chrysene	0.0113		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.0967		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.0143		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Chrysene	0.0504	J	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Chrysene	0.0021	J	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Chrysene	0.00191	J	Υ
B34	Offsite	N		D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.00499		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Chrysene	0.0311		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Chrysene	0.0343	J	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Chrysene	0.0474		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00834	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00334	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00333	U	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00832	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.0166	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00835	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00165	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.045		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00334	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00833	U	N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00832	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00835	U	Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00245		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00333	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00253		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	N
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Fluoranthene	0.112		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Fluoranthene	0.0757		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.181	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Fluoranthene	0.0151	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Fluoranthene	0.0595		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Fluoranthene	0.169		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Fluoranthene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.244		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Fluoranthene	0.0625		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.0597		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Fluoranthene	0.00205		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Fluoranthene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Fluoranthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Fluoranthene	0.199		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.0261	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Fluoranthene	0.0125	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.00246		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Fluoranthene	0.603		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.0157		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.00866	J	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Fluoranthene	0.0624		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.14		Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Fluoranthene	0.119		N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.226		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Fluoranthene	0.0413		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.309		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Fluoranthene	0.058		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.0103	J	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Fluoranthene	0.0258	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.0288		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Fluoranthene	0.0192		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.191		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.0241		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Fluoranthene	0.0847	J	Υ
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Fluoranthene	0.00468	J	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Fluoranthene	0.00314	J	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.0101		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Fluoranthene	0.0513		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Fluoranthene	0.0622	J	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Fluoranthene	0.0934		Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Fluorene	0.00834	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Fluorene	0.00334	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00333	U	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Fluorene	0.00166	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Fluorene	0.00832	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Fluorene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.0166	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Fluorene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00835	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Fluorene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Fluorene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Fluorene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Fluorene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Fluorene	0.0167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00167	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00165	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Fluorene	0.0405		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00166	U	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Fluorene	0.00334	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00833	U	N
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Fluorene	0.00832	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.0105		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Fluorene	0.0167	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00748		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Fluorene	0.0167	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00167	U	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Fluorene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Fluorene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.00471		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00166	U	Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Fluorene	0.0167	U	N
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Fluorene	0.00166	U	Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B35	Offsite	N		D-B35-0-102719	0-0	0-15	PAHs	Fluorene	0.0167	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Fluorene	0.0167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Fluorene	0.00167	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0326		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0218		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0541	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00495	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0169		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B22	Offsite	N		D-B22-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0522		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0811		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0143		Υ
B22	Offsite	N		D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0189		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0018		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location B27 B27	Area Offsite	Sample Type	Sample			Depth					
B27 B27		Type			Depth	Group	Chemical		Result		Best
B27	Offsite	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
		N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0564		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0158	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00471	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00165	U	Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.218		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00727		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00507	J	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0175		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0536		Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0441		N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0795		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0167	U	Υ
B31	Offsite	N		D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0885		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0258		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00278	J	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00772	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00987		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0461		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00753		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0323	J	Υ
B34	Offsite	FD		D-FD01-102819	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene		UJ	N
B34	Offsite	N		D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B34	Offsite	N		D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00452		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0191		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0346		Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.039		Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Naphthalene	0.0834	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Naphthalene	0.0334	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0333	U	N
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Naphthalene	0.0166	U	Υ
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Naphthalene	0.0832	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Naphthalene	0.0167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.166	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Naphthalene	0.0167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0835	U	Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Naphthalene	0.0166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Naphthalene	0.0167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Naphthalene	0.0166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Naphthalene	0.0167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Naphthalene	0.167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0167	U	N
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B28	Offsite	N		D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0165	U	Υ
B29	Offsite	N		D-B29-0-102719	0-0	0-15	PAHs	Naphthalene	0.0834	U	Υ
B29	Offsite	N		D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0166	U	Υ
B30	Offsite	N		D-B30-0-102719	0-0	0-15	PAHs	Naphthalene	0.0334	U	Υ
B30	Offsite	N		D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0833		N
B30	Offsite	FD		D-FD01-110119	5.0-5.5	0-15	PAHs	Naphthalene	0.0832	U	Υ
B30	Offsite	N		D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0835	U	Υ
B31	Offsite	N		D-B31-0-102719	0-0	0-15	PAHs	Naphthalene	0.167	U	Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0168		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0167	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Naphthalene	0.167	U	Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0167	U	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Naphthalene	0.0166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Naphthalene	0.0834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.0333	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0166	U	Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Naphthalene	0.167	U	N
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Naphthalene	0.0166	U	Υ
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Naphthalene	0.167	U	Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Naphthalene	0.167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Naphthalene	0.0167	U	Υ
B18	Offsite	N	27-Oct-19	D-B18-0-102719	0-0	0-15	PAHs	Phenanthrene	0.057		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Phenanthrene	0.0394		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.0744	J	Υ
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Phenanthrene	0.00538	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Phenanthrene	0.026		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Phenanthrene	0.0945		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Phenanthrene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.162		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Phenanthrene	0.0539		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.0395		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Phenanthrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Phenanthrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Phenanthrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Phenanthrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.00167	U	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Phenanthrene	0.0929		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.011	J	Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Phenanthrene	0.00619	J	N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.00169		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Phenanthrene	0.641		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.012		Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.00384	J	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Phenanthrene	0.0281		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.1		Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Phenanthrene	0.0498		N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.156		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Phenanthrene	0.0169		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.164		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.00167	U	Υ
B32	Offsite	N		D-B32-0-102719	0-0	0-15	PAHs	Phenanthrene	0.0183		Υ
B32	Offsite	N		D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.00484	J	N
B32	Offsite	FD		B-FD02-102819	5.0-5.5	0-15	PAHs	Phenanthrene	0.00975	J	Υ
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.0107		Υ
B33	Offsite	N		D-B33-0-102719	0-0	0-15	PAHs	Phenanthrene	0.00834	U	Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.096		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.0102		Υ
B34	Offsite	N		D-B34-0-102719	0-0	0-15	PAHs	Phenanthrene	0.0273	J	Υ
B34	Offsite	FD		D-FD01-102819	0-0	0-15	PAHs	Phenanthrene	0.00198	J	N
B34	Offsite	N		D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Phenanthrene	0.00167	UJ	Υ
B34	Offsite	N		D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.00276		Υ
B35	Offsite	N		D-B35-0-102719	0-0	0-15	PAHs	Phenanthrene	0.0167	U	Υ
B35	Offsite	N		D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Phenanthrene	0.0182		Υ
B35	Offsite	N		D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Phenanthrene	0.0408		Υ
B18	Offsite	N		D-B18-0-102719	0-0	0-15	PAHs	Pyrene	0.1		Υ
B18	Offsite	N	28-Oct-19	D-B18-2.0-2.5	2.5-3.0	0-15	PAHs	Pyrene	0.105		Υ
B18	Offsite	N	28-Oct-19	D-B18-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.25	J	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B18	Offsite	FD	28-Oct-19	D-FD03-102819	5.0-5.5	0-15	PAHs	Pyrene	0.0224	J	N
B18	Offsite	N	28-Oct-19	D-B18-7.0-7.5	7.0-7.5	0-15	PAHs	Pyrene	0.0872		Υ
B18	Offsite	N	05-Nov-19	D-B18-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.00166	U	Υ
B22	Offsite	N	27-Oct-19	D-B22-0-102719	0-0	0-15	PAHs	Pyrene	0.18		Υ
B22	Offsite	N	29-Oct-19	D-B22-2.5-3.0	2.5-3.0	0-15	PAHs	Pyrene	0.00167	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.252		Υ
B22	Offsite	N	29-Oct-19	D-B22-7.5-8.0	7.5-8.0	0-15	PAHs	Pyrene	0.064		Υ
B22	Offsite	N	29-Oct-19	D-B22-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.0591		Υ
B27	Offsite	N	27-Oct-19	D-B27-0-102719	0-0	0-15	PAHs	Pyrene	0.00275		Υ
B27	Offsite	N	03-Nov-19	D-B27-2.5-3.0	2.5-3.0	0-15	PAHs	Pyrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD01-110319	2.5-3.0	0-15	PAHs	Pyrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-7.5-8.0	7.5-8.0	0-15	PAHs	Pyrene	0.00187		Υ
B27	Offsite	N	03-Nov-19	D-B27-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.00167	U	Υ
B28	Offsite	N	27-Oct-19	D-B28-0-102719	0-0	0-15	PAHs	Pyrene	0.179		Υ
B28	Offsite	N	29-Oct-19	D-B28-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.0216		Υ
B28	Offsite	FD	29-Oct-19	D-FD03-102919	5.0-5.5	0-15	PAHs	Pyrene	0.0131		N
B28	Offsite	N	29-Oct-19	D-B28-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.00246		Υ
B29	Offsite	N	27-Oct-19	D-B29-0-102719	0-0	0-15	PAHs	Pyrene	0.75		Υ
B29	Offsite	N	07-Nov-19	D-B29-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.0211	J	Υ
B29	Offsite	N	07-Nov-19	D-B29-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.0107	J	Υ
B30	Offsite	N	28-Oct-19	D-B30-0-102719	0-0	0-15	PAHs	Pyrene	0.0736		Υ
B30	Offsite	N	01-Nov-19	D-B30-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.172		Υ
B30	Offsite	FD	01-Nov-19	D-FD01-110119	5.0-5.5	0-15	PAHs	Pyrene	0.133		N
B30	Offsite	N	01-Nov-19	D-B30-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.266		Υ
B31	Offsite	N	27-Oct-19	D-B31-0-102719	0-0	0-15	PAHs	Pyrene	0.0366		Υ
B31	Offsite	N	28-Oct-19	D-B31-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.439		Υ
B31	Offsite	N	06-Nov-19	D-B31-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.00167	U	Υ
B32	Offsite	N	27-Oct-19	D-B32-0-102719	0-0	0-15	PAHs	Pyrene	0.0515		Υ
B32	Offsite	N	28-Oct-19	D-B32-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.0123	J	N
B32	Offsite	FD	28-Oct-19	B-FD02-102819	5.0-5.5	0-15	PAHs	Pyrene	0.0358	J	Υ

Attachment 2
Data Used in HHRA for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B32	Offsite	N	06-Nov-19	D-B32-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.0272		Υ
B33	Offsite	N	27-Oct-19	D-B33-0-102719	0-0	0-15	PAHs	Pyrene	0.0175		Υ
B33	Offsite	N	28-Oct-19	D-B33-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.244		Υ
B33	Offsite	N	06-Nov-19	D-B33-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.0191		Υ
B34	Offsite	N	27-Oct-19	D-B34-0-102719	0-0	0-15	PAHs	Pyrene	0.0729	J	Υ
B34	Offsite	FD	27-Oct-19	D-FD01-102819	0-0	0-15	PAHs	Pyrene	0.00575	J	N
B34	Offsite	N	28-Oct-19	D-B34-5.0-5.5-102819	5.0-5.5	0-15	PAHs	Pyrene	0.00388	J	Υ
B34	Offsite	N	06-Nov-19	D-B34-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.014		Υ
B35	Offsite	N	27-Oct-19	D-B35-0-102719	0-0	0-15	PAHs	Pyrene	0.0442		Υ
B35	Offsite	N	28-Oct-19	D-B35-5.0-5.5	5.0-5.5	0-15	PAHs	Pyrene	0.0733	J	Υ
B35	Offsite	N	05-Nov-19	D-B35-10.0-10.5	10.0-10.5	0-15	PAHs	Pyrene	0.114		Υ

Notes:

CAS = chemical abstract service

FD = field duplicate

J = estimated

mg/kg = milligram per kilogram

N= normal

PAH = polycyclic aromatic hydrocarbons

U = nondetect

VOC = volatile organic compound

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	21.1		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	16.4		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	23.1		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Arsenic	18.1		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Arsenic	4.16		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	21		Υ
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Arsenic	17.1		N
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	12.1		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	24.5		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	17.8		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	23		Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Arsenic	20.9		N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	17.7		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	16.7		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	17.1		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	16.4		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	9.25		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	8.99		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	19.6		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	12.4		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Arsenic	7.08		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	12.6		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	16.4		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	7.55		N
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Arsenic	8.2		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Arsenic	5.23		Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Arsenic	7.22		N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Arsenic	8.13		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	_	Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B26	Onsite	N		D-B26-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	16.9		Υ
B26	Onsite	N		D-B26-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	18.2		Υ
B26	Onsite	N		D-B26-25.0-25.5	25.0-25.5	>15	Metals	Arsenic	8.17		Υ
B11	Onsite	N		D-B11-15.0-15.5	15.0-15.5	>15	Metals	Barium	120		Υ
B11	Onsite	N		D-B11-19.5-20.0	19.5-20.0	>15	Metals	Barium	76.4		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Barium	225		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Barium	376		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Barium	44.2		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Barium	76		Υ
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Barium	75.5		N
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Barium	70.5		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Barium	185		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Barium	209		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Barium	284		Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Barium	180		N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Barium	181		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Barium	250		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Barium	131		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Barium	130		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Barium	246		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Barium	36.9		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Barium	232		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Barium	64.3		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Barium	89.3		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Barium	88.8		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Barium	290		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Barium	43.7		N
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Barium	46.1		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Barium	35.2		Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Barium	55.4		N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Barium	68.3		Υ
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	Metals	Barium	134		Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	Metals	Barium	906		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	Metals	Barium	54.5		Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.82	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.96	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.75	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Cadmium	1.92	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Cadmium	1.69	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.79	U	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Cadmium	1.75	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.75	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.67	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.75	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.96	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Cadmium	1.79	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.89	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.67	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	2	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.75	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.69	U	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.92	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.69	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.89	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Cadmium	1.85	U	Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.67	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.96	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.85	U	N
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Cadmium	1.69	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Cadmium	1.96	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Cadmium	1.85	J	N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Cadmium	1.85	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.67	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.96	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	Metals	Cadmium	1.67	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	Metals	Chromium	8.53		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	Metals	Chromium	11.8		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Chromium	38.9		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Chromium	49.2		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Chromium	23.1		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Chromium	6.13		N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Chromium	8.37		Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Chromium	18.7		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Chromium	23.5		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Chromium	32.2		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Chromium	129		Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Chromium	48.8		N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Chromium	37.5		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Chromium	7.87		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Chromium	23.3		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Chromium	20.1		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Chromium	27.7		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Chromium	18.7		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Chromium	17.8		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		C	6		Double	Depth	Ch a mai a a l		Doroth		Doot
Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Chromium	38.9		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Chromium	28.5		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Chromium	9.66		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Chromium	5		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Chromium	19.5		Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Chromium	17.4		N
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Chromium	21		Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Chromium	11		N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Chromium	14.4		Υ
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	Metals	Chromium	3.78		Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	Metals	Chromium	16.1		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	Metals	Chromium	9.34		Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	Metals	Lead	17.8		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	Metals	Lead	16.4		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Lead	21.1		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Lead	62.8		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Lead	8.74		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Lead	10.6		N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Lead	11.8		Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Lead	6.7		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Lead	14		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Lead	10.6		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Lead	15.4		Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Lead	10		N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Lead	9.81		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Lead	10.8		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Lead	7.38		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Lead	9.79		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

			6 1		5 11	Depth	a		- L		
Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Lead	4.67	- 0	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Lead	5.25		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Lead	53.8		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Lead	10.7		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Lead	8.11		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Lead	12.7		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Lead	11.7		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Lead	10.5		N
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Lead	22.3		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Lead	10.9		Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Lead	10.1		N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Lead	15.9		Υ
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	Metals	Lead	9.47		Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	Metals	Lead	11.6		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	Metals	Lead	4.13		Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0175	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0175	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0185	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Mercury	0.0182	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Mercury	0.0172	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0172	U	Υ
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Mercury	0.0185	J	N
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0185	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0169	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0167	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0182	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Mercury	0.0169	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.02	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0169	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0172	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.189	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0192	U	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0235		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0192	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Mercury	0.0175	U	Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0172	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0172	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0179	U	N
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Mercury	0.0175	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Mercury	0.0192	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Mercury	0.0192	U	N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Mercury	0.0192	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0185	UJ	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0189	UJ	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	Metals	Mercury	0.0192	UJ	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.82	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.96	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.75	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Selenium	1.92	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Selenium	1.69	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.79	U	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Selenium	1.75	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.75	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.67	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.75	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.96	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Selenium	1.79	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.89	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.67	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Selenium	2	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.75	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.69	U	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.92	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.69	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.89	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Selenium	1.85	U	Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.67	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.96	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.85	U	N
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Selenium	1.69	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Selenium	1.96	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Selenium	1.85	U	N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Selenium	1.85	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.67	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.96	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	Metals	Selenium	1.67	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.82	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.96	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.75	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	Metals	Silver	1.92	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	Metals	Silver	1.69	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.79	U	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	Metals	Silver	1.75	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.75	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.67	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.75	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.96	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	Metals	Silver	1.79	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.89	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.67	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	Metals	Silver	2	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.75	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.69	U	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.92	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.69	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.89	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	Metals	Silver	1.85	U	Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.67	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.96	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.85	U	N
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	Metals	Silver	1.69	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	Metals	Silver	1.96	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	Metals	Silver	1.85	U	N
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	Metals	Silver	1.85	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.67	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.96	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	Metals	Silver	1.67	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,1,1,2-Tetrachloroethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,1,1,2-Tetrachloroethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,1,1,2-Tetrachloroethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,1,1-Trichloroethane	0.267	U	N

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,1,1-Trichloroethane	0.26	J	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,1,1-Trichloroethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,1,2,2-Tetrachloroethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,1,2,2-Tetrachloroethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,1,2,2-Tetrachloroethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,1,2-Trichloroethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,1,2-Trichloroethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,1,2-Trichloroethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,1-Dichloroethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,1-Dichloroethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,1-Dichloroethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,1-Dichloroethene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,1-Dichloroethene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,1-Dichloroethene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,1-Dichloropropene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,1-Dichloropropene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,1-Dichloropropene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2,3-Trichlorobenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2,3-Trichlorobenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2,3-Trichlorobenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2,3-Trichloropropane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2,3-Trichloropropane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2,3-Trichloropropane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2,4-Trichlorobenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2,4-Trichlorobenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2,4-Trichlorobenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2,4-Trimethylbenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2,4-Trimethylbenzene	0.26	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2,4-Trimethylbenzene	0.275	U	Y
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2-Dibromo-3-Chloropropane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2-Dibromo-3-Chloropropane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2-Dibromo-3-Chloropropane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2-Dibromoethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2-Dibromoethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2-Dibromoethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2-Dichlorobenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2-Dichlorobenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2-Dichlorobenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2-Dichloroethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2-Dichloroethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2-Dichloroethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,2-Dichloropropane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,2-Dichloropropane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,2-Dichloropropane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,3,5-Trimethylbenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,3,5-Trimethylbenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,3,5-Trimethylbenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,3-Butadiene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,3-Butadiene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,3-Butadiene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,3-Dichlorobenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,3-Dichlorobenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,3-Dichlorobenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,3-Dichloropropane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,3-Dichloropropane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,3-Dichloropropane	0.275	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	1,4-Dichlorobenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	1,4-Dichlorobenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	1,4-Dichlorobenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	2,2-Dichloropropane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	2,2-Dichloropropane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	2,2-Dichloropropane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	2-Butanone	1.07	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	2-Butanone	1.04	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	2-Butanone	1.1	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	2-Chlorotoluene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	2-Chlorotoluene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	2-Chlorotoluene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	2-Hexanone	2.67	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	2-Hexanone	2.6	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	2-Hexanone	2.75	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	4-Chlorotoluene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	4-Chlorotoluene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	4-Chlorotoluene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	4-Ethyltoluene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	4-Ethyltoluene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	4-Ethyltoluene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	4-Methyl-2-Pentanone	2.67	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	4-Methyl-2-Pentanone	2.6	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	4-Methyl-2-Pentanone	2.75	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Acetone	5.34	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Acetone	5.2	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Acetone	5.49	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Benzene	0.0534	U	N

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Benzene	0.052	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Benzene	0.0549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Bromobenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Bromobenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Bromobenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Bromochloromethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Bromochloromethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Bromochloromethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Bromodichloromethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Bromodichloromethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Bromodichloromethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Bromoform	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Bromoform	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Bromoform	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Bromomethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Bromomethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Bromomethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Carbon Disulfide	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Carbon Disulfide	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Carbon Disulfide	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Carbon Tetrachloride	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Carbon Tetrachloride	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Carbon Tetrachloride	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Chlorobenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Chlorobenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Chlorobenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Chloroethane	0.534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Chloroethane	0.52	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Chloroethane	0.549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Chloroform	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Chloroform	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Chloroform	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Chloromethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Chloromethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Chloromethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	cis-1,2-Dichloroethene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	cis-1,2-Dichloroethene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	cis-1,2-Dichloroethene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	cis-1,3-Dichloropropene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	cis-1,3-Dichloropropene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	cis-1,3-Dichloropropene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Cyclohexane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Cyclohexane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Cyclohexane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Dibromochloromethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Dibromochloromethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Dibromochloromethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Dibromomethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Dibromomethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Dibromomethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Dichlorodifluoromethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Dichlorodifluoromethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Dichlorodifluoromethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Dicyclopentadiene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Dicyclopentadiene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Dicyclopentadiene	0.275	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Ethylbenzene	0.0534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Ethylbenzene	0.052	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Ethylbenzene	0.0549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Hexachlorobutadiene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Hexachlorobutadiene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Hexachlorobutadiene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Iodomethane (Methyl Iodide)	1.07	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Iodomethane (Methyl Iodide)	1.04	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Iodomethane (Methyl Iodide)	1.1	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Isopropylbenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Isopropylbenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Isopropylbenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	m,p-Xylenes	0.107	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	m,p-Xylenes	0.104	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	m,p-Xylenes	0.11	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Methylcyclohexane	0.534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Methylcyclohexane	0.52	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Methylcyclohexane	0.549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Methylene Chloride	1.07	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Methylene Chloride	1.04	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Methylene Chloride	1.1	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	MTBE	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	MTBE	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	MTBE	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Naphthalene	0.534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Naphthalene	0.52	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Naphthalene	0.549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	n-Butylbenzene	0.267	U	N

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	n-Butylbenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	n-Butylbenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	n-Hexane	0.534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	n-Hexane	0.52	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	n-Hexane	0.549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	n-Propylbenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	n-Propylbenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	n-Propylbenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	o-Xylene	0.0534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	o-Xylene	0.052	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	o-Xylene	0.0549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	p-Cymene (p-Isopropyltoluene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	p-Cymene (p-Isopropyltoluene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	p-Cymene (p-Isopropyltoluene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Propene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Propene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Propene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Sec-Butylbenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Sec-Butylbenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Sec-Butylbenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Styrene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Styrene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Styrene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	tert-Butylbenzene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	tert-Butylbenzene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	tert-Butylbenzene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Tetrachloroethylene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Tetrachloroethylene	0.26	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Tetrachloroethylene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Toluene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Toluene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Toluene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Total Xylenes	0.0534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Total Xylenes	0.052	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Total Xylenes	0.0549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	trans-1,2-dichloroethene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	trans-1,2-dichloroethene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	trans-1,2-dichloroethene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	trans-1,3-dichloropropene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	trans-1,3-dichloropropene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	trans-1,3-dichloropropene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Trichloroethene	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Trichloroethene	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Trichloroethene	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Trichlorofluoromethane	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Trichlorofluoromethane	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Trichlorofluoromethane	0.275	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Vinyl Acetate	0.0534	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Vinyl Acetate	0.052	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Vinyl Acetate	0.0549	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	VOCs	Vinyl Chloride	0.267	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	VOCs	Vinyl Chloride	0.26	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	VOCs	Vinyl Chloride	0.275	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.0167	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Acenaphthene	0.0333	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Acenaphthene	0.00187		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00366		N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Acenaphthene	0.00607		Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00265		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00166	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	N
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00166	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00303		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.0333	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.0167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.0167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00198	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Acenaphthene	0.00167	U	N

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.0106		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.0104		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.0552		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Acenaphthylene	0.398		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Acenaphthylene	0.0199		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.0655		N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Acenaphthylene	0.106		Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.0343		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.0475		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.0137		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.0368	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Acenaphthylene	0.0175	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.0241		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00837		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.00175		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.0549		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.0243		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.538		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.0541		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Acenaphthylene	0.00934		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.196		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.0382	J	Υ
B24	Onsite	FD		D-FD01-103019	19.5-20.0	>15	PAHs	Acenaphthylene	0.0103	J	N
B25	Onsite	N		D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Acenaphthylene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00256		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.00327		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.0225		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Anthracene	0.177		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Anthracene	0.00743		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.0267	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Anthracene	0.0495	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.0189		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00412		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.00306		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.0245	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Anthracene	0.013	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.0168		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00471		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.00167	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.0236		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.0151		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.00167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.347		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.0325		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Anthracene	0.006		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.00167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.149		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.018	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Anthracene	0.00347	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Anthracene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Anthracene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Anthracene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Anthracene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Anthracene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Anthracene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Anthracene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0082		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.00982		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.091		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.693		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(a)anthracene	0.0318		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.055	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.124	J	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.0355		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0104		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.00723		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0722	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0406	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.0505		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0191		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.00405		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0643		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.055		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.00227		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	1.52		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.156		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(a)anthracene	0.0293		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.386		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.0411	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.00975	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.00258		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0126		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0154		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.148		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Benzo(a)pyrene	1.38		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(a)pyrene	0.0675		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0817	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.184	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0488		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0123		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0107		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.13	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0676	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0851		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0318		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.00705		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0937		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0947		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.00367		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	2.73		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.301		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(a)pyrene	0.0544		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.00292		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.877		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0818	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0232	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.00369		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.00268		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0192		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.0205		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.172		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	1.49		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(b)fluoranthene	0.0709		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0832	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.196	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.0504		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0181		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.0146		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.136	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0674	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.1		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.033		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.00759		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.11		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.104		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.00577		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	3.04		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.327		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(b)fluoranthene	0.0596		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.00319		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.858		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.0813	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.0237	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.00466		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.00353		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0129		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0141		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.175		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	1.68		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(g,h,i)perylene	0.0806		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0836	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.173	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0455		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0135		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0184		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.113	J	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.056	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0731		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0285		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.00731		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0719		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0802		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.00299		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	2.6		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.295		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(g,h,i)perylene	0.0453		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.00461		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.746		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.104	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0322	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.00446		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.00376		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00639		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00677		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0507		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

			_			Depth					
	A	Sample	Sample	Camarda ID	Depth (5+)	Group	Chemical	Hairan Anabas nana	Result	5 1	Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.453		Υ
B12	Onsite	N		D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(k)fluoranthene	0.0187		Υ
B13	Onsite	N		D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0268	J	N
B13	Onsite	FD		D-FD01-103119	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0654	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.0149		Υ
B14	Onsite	N		D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0048		Υ
B14	Onsite	N		D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00468		Υ
B16	Onsite	N		D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0417		Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0269		N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.0245		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0109		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00238		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0322		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.0357		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.698		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.0947		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Benzo(k)fluoranthene	0.0209		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.247		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.0239	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00611	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	N

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B26	Onsite	N		D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.012		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.0134		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.111		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Chrysene	0.899		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Chrysene	0.0416		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.0607	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Chrysene	0.161	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.038		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.0101		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.00799		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.0877	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Chrysene	0.046	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.0589		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.022		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.00454		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.0725		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.0666		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.00286		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	1.89		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.193		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Chrysene	0.0357		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.00176		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.521		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
	_	Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.0506	J	Υ
B24	Onsite	FD		D-FD01-103019	19.5-20.0	>15	PAHs	Chrysene	0.0131	J	N
B25	Onsite	N		D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.00303		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Chrysene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Chrysene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Chrysene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Chrysene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.00216		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Chrysene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Chrysene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Chrysene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.165		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00962	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.025	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.0333	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.0167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.0273		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.0343		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.338		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Fluoranthene	2.68		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Fluoranthene	0.119		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.206	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Fluoranthene	0.491	J	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		C	Canada		Dth	Depth	Charainal		Dorolle		D t
Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.128		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.026		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.019		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.221	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Fluoranthene	0.127	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.157		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.0671		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.013		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.213		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.178		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.00609		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	4.96		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.512		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Fluoranthene	0.0957		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.00495		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	1.72		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.181	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Fluoranthene	0.0471	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.00704		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Fluoranthene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Fluoranthene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Fluoranthene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.00517		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Fluoranthene	0.00166	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		_				Depth					_
Location	A # 0 0	Sample	Sample	Sample ID	Depth (Fact)	Group	Chemical	Unique Analyte name	Result	Floor	Best
Location	Area	Туре	Date 02 Nov. 10	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B11	Onsite	N		D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Υ
B11	Onsite	N		D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00231		Υ
B12	Onsite	N		D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.0167	U	Υ
B12	Onsite	N		D-B12-19.5-20	19.5-20.0	>15	PAHs	Fluorene	0.0597		Υ
B12	Onsite	N		D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Fluorene	0.00213		Υ
B13	Onsite	N		D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.0284	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Fluorene	0.0474	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.019		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00166	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00932	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Fluorene	0.00482	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00625		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00211		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00167	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.0247		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00782		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.141		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.0167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Fluorene	0.00235		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.0535		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00825	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Fluorene	0.00167	UJ	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00167	U	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Fluorene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Fluorene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Fluorene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Fluorene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Fluorene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Fluorene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Fluorene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0105		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0114		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.123		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	1.16		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0541		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0589	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.131	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0329		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0074		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00855		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0802	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0401	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0509		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0209		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00508		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0547		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0594		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00233		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	1.88		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.213		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0342		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00285		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.538		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0649	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0202	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00309		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00252		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.167	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Naphthalene	0.333	U	Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.116		N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Naphthalene	0.168		Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0518		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0166	U	Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0279	J	Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth			T		
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Naphthalene	0.0167	UJ	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0188		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.514		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.167	U	Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.257		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0215	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Naphthalene	0.0167	UJ	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Naphthalene	0.0167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.0217		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.0288		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.285		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
Location	A # 0 0	Sample	Sample Date	Sample ID	Depth (Feet)	Group	Chemical	Unique Angleta nama	Result (mg/kg)	Floor	Best Result
Location	Area	Туре		•	` '	(Feet)	Group	Unique Analyte name	+	Flag	Kesuit
B12 B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Phenanthrene	1.73		Y
B12	Onsite Onsite	N		D-B12-24.5-25.0 D-B13-15.0-15.5	24.5-25.0 15.0-15.5	>15	PAHs	Phenanthrene	0.0593	ļ	Υ
		N				>15	PAHs	Phenanthrene	0.246	J	N
B13	Onsite	FD		D-FD01-103119	15.0-15.5	>15	PAHs	Phenanthrene	0.529	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.159		Υ
B14	Onsite	N		D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.016		Υ
B14	Onsite	N		D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.0114		Υ
B16	Onsite	N		D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.152	J	Υ
B16	Onsite	FD		D-FD02-102919	15.0-15.5	>15	PAHs	Phenanthrene	0.0837	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.113		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.0485		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.00783		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.253		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.131		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.00245		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	3.12		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.267		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Phenanthrene	0.0523		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.00316		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	1.3		Υ
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.145	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Phenanthrene	0.0327	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.00568		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Phenanthrene	0.00167	U	N

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B26	Onsite	N		D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.00348		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B11	Onsite	N	30-Oct-19	D-B11-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.0284		Υ
B11	Onsite	N	30-Oct-19	D-B11-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.0378		Υ
B12	Onsite	N	31-Oct-19	D-B12-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.4		Υ
B12	Onsite	N	31-Oct-19	D-B12-19.5-20	19.5-20.0	>15	PAHs	Pyrene	3.18		Υ
B12	Onsite	N	31-Oct-19	D-B12-24.5-25.0	24.5-25.0	>15	PAHs	Pyrene	0.15		Υ
B13	Onsite	N	31-Oct-19	D-B13-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.243	J	N
B13	Onsite	FD	31-Oct-19	D-FD01-103119	15.0-15.5	>15	PAHs	Pyrene	0.524	J	Υ
B13	Onsite	N	31-Oct-19	D-B13-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.152		Υ
B14	Onsite	N	29-Oct-19	D-B14-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.0237		Υ
B14	Onsite	N	29-Oct-19	D-B14-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.0218		Υ
B16	Onsite	N	29-Oct-19	D-B16-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.281	J	Υ
B16	Onsite	FD	29-Oct-19	D-FD02-102919	15.0-15.5	>15	PAHs	Pyrene	0.155	J	N
B16	Onsite	N	29-Oct-19	D-B16-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.191		Υ
B17	Onsite	N	30-Oct-19	D-B17-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.0815		Υ
B17	Onsite	N	30-Oct-19	D-B17-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.0161		Υ
B19	Onsite	N	02-Nov-19	D-B19-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.257		Υ
B19	Onsite	N	02-Nov-19	D-B19-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.225		Υ
B20	Onsite	N	02-Nov-19	D-B20-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.00665		Υ
B21	Onsite	N	01-Nov-19	D-B21-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	6.63		Υ
B21	Onsite	N	01-Nov-19	D-B21-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.703		Υ
B21	Onsite	N	01-Nov-19	D-B21-24.5-25.0	24.5-25.0	>15	PAHs	Pyrene	0.128		Υ
B23	Onsite	N	31-Oct-19	D-B23-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.00624		Υ
B24	Onsite	N	30-Oct-19	D-B24-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	2.08		Υ

Attachment 3
Data Used in HHRA for Deep Soil (greater than 15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

			6 1		5	Depth	G				
Location	A # 0 0	Sample	Sample	Comple ID	Depth (Foot)	Group	Chemical	Unique Analyte name	Result	Floor	Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B24	Onsite	N	30-Oct-19	D-B24-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.215	J	Υ
B24	Onsite	FD	30-Oct-19	D-FD01-103019	19.5-20.0	>15	PAHs	Pyrene	0.0615	J	N
B25	Onsite	N	31-Oct-19	D-B25-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.00828		Υ
B25	Onsite	N	31-Oct-19	D-B25-25.0-25.5	25.0-25.5	>15	PAHs	Pyrene	0.00166	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-30.0-30.5	30.0-30.5	>15	PAHs	Pyrene	0.00167	U	Υ
B25	Onsite	N	31-Oct-19	D-B25-40.0-40.5	40.0-40.5	>15	PAHs	Pyrene	0.00166	U	Υ
B25	Onsite	FD	31-Oct-19	D-FD04-103119	40.0-40.5	>15	PAHs	Pyrene	0.00167	U	N
B26	Onsite	N	02-Nov-19	D-B26-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.00657		Υ
B26	Onsite	N	02-Nov-19	D-B26-25.0-25.5	25.0-25.5	>15	PAHs	Pyrene	0.00167	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-30.0-30.5	30.0-30.5	>15	PAHs	Pyrene	0.00166	U	Υ
B26	Onsite	N	02-Nov-19	D-B26-40.0-40.5	40.0-40.5	>15	PAHs	Pyrene	0.00167	U	Υ

Notes:

CAS = chemical abstract service

FD = field duplicate

J = estimated

mg/kg = milligram per kilogram

N= normal

PAH = polycyclic aromatic hydrocarbons

U = nondetect

VOC = volatile organic compound

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	18.3		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	25		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	20.6		Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	15.2		Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Arsenic	12.1		N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Arsenic	13.1		Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Arsenic	12.1		Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	14.2		Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	15.1		Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	20.4		Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	22.5		Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	15.4		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Arsenic	16		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	18.4		Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	12.6		Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	10.3		Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	9.75		Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	32.6		Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	10		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	8.59		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	9.21		Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Arsenic	13.8		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Arsenic	14.2		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Barium	98.3		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Barium	212		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Barium	149		Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Barium	202		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Barium	41.6		N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Barium	42.7		Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Barium	18.9		Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Barium	82.8	J	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Barium	129		Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Barium	413		Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Barium	275		Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Barium	130		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Barium	142		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Barium	114		Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Barium	767		Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Barium	241		Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Barium	236		Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Barium	201		Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Barium	212		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Barium	84.2		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Barium	99.1		Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Barium	170		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Barium	34.7		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.79	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.85	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.92	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.92	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Cadmium	1.72	U	Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Cadmium	1.89	U	N
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Cadmium	1.85	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.67	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.75	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.96	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.75	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.69	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Cadmium	1.82	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.85	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.75	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.67	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.72	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.89	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.75	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.82	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.67	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Cadmium	1.85	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Cadmium	1.85	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Chromium	12.3		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Chromium	63		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Chromium	14		Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Chromium	5.12		Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Chromium	6.93		N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Chromium	7.93		Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Chromium	5.26		Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Chromium	12		Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Chromium	20.7		Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Chromium	15		Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Chromium	12.4		Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Chromium	14		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Chromium	21.8		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Chromium	13.4		Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Chromium	10.6		Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Chromium	10.5		Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Chromium	14		Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Chromium	16.7		Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Chromium	9.87		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Chromium	6.19		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Chromium	11.8		Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Chromium	12.8		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Chromium	12.7		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Lead	23		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Lead	21.6		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Lead	13		Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Lead	17		Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Lead	12.2		Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Lead	11.9		N
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Lead	8.24		Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Lead	11.2		Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Lead	17.7		Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Lead	20.3		Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Lead	14.1		Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Lead	14.1		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Lead	15.9		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Lead	6.87		Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Lead	7.26		Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Lead	3.86		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Lead	5.19		Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Lead	9.69		Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Lead	9.34		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Lead	10.1		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Lead	10.8		Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Lead	13.8		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Lead	12.6		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0382		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0192	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0189	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0172	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Mercury	0.0172	UJ	Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Mercury	0.0179	UJ	N
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Mercury	0.0172	UJ	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0169	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.02	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.02	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0189	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0192	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Mercury	0.0189	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0169	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0182	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0169	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0192	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0172	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0315		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0196	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Mercury	0.0172	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Mercury	0.0261		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.79	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.85	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.92	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.92	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Selenium	1.72	U	Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Selenium	1.89	U	N
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Selenium	1.85	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.67	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.75	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.96	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.75	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.69	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Selenium	1.82	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.85	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.75	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.67	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.72	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.89	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.75	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.82	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.67	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Selenium	1.85	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Selenium	1.85	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.79	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.85	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.92	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.92	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	Metals	Silver	1.72	U	Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	Metals	Silver	1.89	U	N
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	Metals	Silver	1.85	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.67	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.75	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.96	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.75	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.69	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	Metals	Silver	1.82	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.85	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.75	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.67	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.72	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.89	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.75	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.82	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.67	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	Metals	Silver	1.85	UJ	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	Metals	Silver	1.85	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Acenaphthene	0.00167	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Acenaphthene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Acenaphthene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00166	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthene	0.00167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00422		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00408		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Acenaphthylene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B27	Offsite	FD		D-FD01-110219	30.0-30.5	>15	PAHs	Acenaphthylene	0.00167	U	N
B27	Offsite	N N		D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Acenaphthylene	0.00167	U	Y
B28	Offsite	N		D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B28	Offsite	N		D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.00283		Y
B29	Offsite	N		D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00628	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Acenaphthylene	0.00219	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00576		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Acenaphthylene	0.00663		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00166	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Acenaphthylene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Acenaphthylene	0.0127		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00382		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Anthracene	0.00167	U	Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Anthracene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Anthracene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Anthracene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Anthracene	0.00167	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
	A	Sample	Sample	Canada ID	Depth	Group	Chemical	Hairon Analista nama	Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00166	U	Υ
B28	Offsite	N		D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.00166	U	Υ
B29	Offsite	N		D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00384	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Anthracene	0.00183	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00379		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Anthracene	0.00556		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00166	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Anthracene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Anthracene	0.00962		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0139		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00361		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	_	Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B29	Offsite	N		D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0376	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.012	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.0168		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)anthracene	0.0246		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.00178		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00634		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)anthracene	0.00266		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)anthracene	0.044		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0247		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00418		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Benzo(a)pyrene	0.00198		Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0772	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.022	J	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.029		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(a)pyrene	0.0424		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.00274		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.0109		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(a)pyrene	0.00431		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(a)pyrene	0.0882		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0324		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00699		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Benzo(b)fluoranthene	0.00204		Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00201		Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0766	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.0257	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0372		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(b)fluoranthene	0.0558		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

		Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00241		Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00198		Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.00552		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.0142		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(b)fluoranthene	0.00604		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(b)fluoranthene	0.117		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0211		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00283		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Benzo(g,h,i)perylene	0.00264		Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0918	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0165	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.0292		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(g,h,i)perylene	0.0394		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.00166	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	_	Sample	Sample		Depth	Depth Group	Chemical		Result		Best
Location	Area	Туре	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B32	Offsite	N		D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B32	Offsite	N		D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B33	Offsite	N		D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B33	Offsite	N		D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.00211		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00731		Υ
B34	Offsite	N		D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(g,h,i)perylene	0.00598		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(g,h,i)perylene	0.076		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0106		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00222		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0253	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.00794	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.0109		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Benzo(k)fluoranthene	0.0135		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(k)fluoranthene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Benzo(k)fluoranthene	0.00167	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample	Sample Date	Samula ID	Depth (Fact)	Depth Group (Feet)	Chemical	Unimus Angluta nama	Result	Floor	Best Result
B33	Offsite	Type N		Sample ID D-B33-15.0-15.5	(Feet) 15.0-15.5	>15	Group PAHs	Unique Analyte name Benzo(k)fluoranthene	(mg/kg) 0.00167	Flag	Y
B33	Offsite	N		D-B33-19.0-19.5	20.0-20.5	>15	PAHS	Benzo(k)fluoranthene	0.00107	U	Y
B34	Offsite	N		D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00170		Y
B34	Offsite	N		D-B34-19.0-19.5	20.0-20.5	>15	PAHS	Benzo(k)fluoranthene	0.00167	U	Y
B35	Offsite	N		D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Benzo(k)fluoranthene	0.00107	U	Y
B35	Offsite	N		D-B35-20.0-20.5	20.0-20.5	>15	PAHS	Benzo(k)fluoranthene	0.0313		Y
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.0313		Y
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00456		Y
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00167	U	Y
B27	Offsite	N		D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.00166	U	Y
B27	Offsite	N		D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Chrysene	0.00167	U	N
B27	Offsite	FD		D-FD02-110319	25.0-25.5	>15	PAHs	Chrysene	0.00167	U	Y
B27	Offsite	N		D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Chrysene	0.00167	U	Y
B27	Offsite	FD		D-FD01-110219	30.0-30.5	>15	PAHs	Chrysene	0.00167	U	N
B27	Offsite	N		D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Chrysene	0.00167	U	Y
B28	Offsite	N		D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00166	U	Y
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.046	J	Υ
B30	Offsite	N		D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Chrysene	0.0143	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.0218		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Chrysene	0.0327		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.00425		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00809		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Chrysene	0.00352		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Chrysene	0.0629		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00166	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B35	Offsite	N		D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Dibenz(a,h)Anthracene	0.00167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.0418		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.0104		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Fluoranthene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Fluoranthene	0.00218		Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Fluoranthene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00233		Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.087	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Fluoranthene	0.028	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.0526		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Fluoranthene	0.0748		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00282		Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00217		Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.006		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.0158		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Fluoranthene	0.00772		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Fluoranthene	0.124		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Y
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Y
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00167	U	Y
B27	Offsite	N		D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00166	U	Y
B27	Offsite	N		D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Fluorene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Fluorene	0.00167	U	Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Fluorene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Fluorene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Fluorene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00167	U	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Fluorene	0.00167	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Fluorene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00166	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00167	U	Υ
B35	Offsite	N		D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Fluorene	0.00167	U	Υ
B35	Offsite	N		D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Fluorene	0.00167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0163		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00238		Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00178		Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.062	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0128	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0217		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0297		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00175		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00593		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.00395		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Indeno(1,2,3-c,d)Pyrene	0.0579		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0166	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B27	Offsite	N		D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Naphthalene	0.0167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Naphthalene	0.0167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Naphthalene	0.0167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0166	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Naphthalene	0.0167	U	Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.0221		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00921		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Phenanthrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Phenanthrene	0.00167	U	Υ

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Location	Area	Sample Type	Sample Date	Sample ID	Depth (Feet)	Depth Group (Feet)	Chemical Group	Unique Analyte name	Result (mg/kg)	Flag	Best Result
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Phenanthrene	0.00167	U	N
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.025	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Phenanthrene	0.00921	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.025		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Phenanthrene	0.0379		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00647		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Phenanthrene	0.00383		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Phenanthrene	0.049		Υ
B18	Offsite	N	05-Nov-19	D-B18-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.0508		Υ
B22	Offsite	N	29-Oct-19	D-B22-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.0109		Υ
B27	Offsite	N	03-Nov-19	D-B27-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00167	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.00166	U	Υ
B27	Offsite	N	03-Nov-19	D-B27-25.0-25.5	25.0-25.5	>15	PAHs	Pyrene	0.00167	U	N
B27	Offsite	FD	03-Nov-19	D-FD02-110319	25.0-25.5	>15	PAHs	Pyrene	0.0025		Υ
B27	Offsite	N	04-Nov-19	D-B27-30.0-30.5	30.0-30.5	>15	PAHs	Pyrene	0.00167	U	Υ
B27	Offsite	FD	02-Nov-19	D-FD01-110219	30.0-30.5	>15	PAHs	Pyrene	0.00167	U	N

Attachment 4
Data Used in HHRA for Deep Soil (greater than 15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						Depth					
		Sample	Sample		Depth	Group	Chemical		Result		Best
Location	Area	Type	Date	Sample ID	(Feet)	(Feet)	Group	Unique Analyte name	(mg/kg)	Flag	Result
B27	Offsite	N	04-Nov-19	D-B27-40.0-40.5	40.0-40.5	>15	PAHs	Pyrene	0.00167	U	Υ
B28	Offsite	N	29-Oct-19	D-B28-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00257		Υ
B28	Offsite	N	29-Oct-19	D-B28-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.00166	U	Υ
B29	Offsite	N	07-Nov-19	D-B29-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.138	J	Υ
B30	Offsite	N	07-Nov-19	D-B29-20.0-20.5	19.5-20.0	>15	PAHs	Pyrene	0.0409	J	Υ
B30	Offsite	N	01-Nov-19	D-B30-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.0605		Υ
B30	Offsite	N	01-Nov-19	D-B30-19.5-20.0	19.5-20.0	>15	PAHs	Pyrene	0.0845		Υ
B31	Offsite	N	06-Nov-19	D-B31-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00314		Υ
B31	Offsite	N	06-Nov-19	D-B31-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.00166	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00167	U	Υ
B32	Offsite	N	06-Nov-19	D-B32-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.00167	U	Υ
B33	Offsite	N	06-Nov-19	D-B33-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00226		Υ
B33	Offsite	N	06-Nov-19	D-B33-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.0075		Υ
B34	Offsite	N	06-Nov-19	D-B34-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.0196		Υ
B34	Offsite	N	06-Nov-19	D-B34-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.00167	U	Υ
B35	Offsite	N	05-Nov-19	D-B35-15.0-15.5	15.0-15.5	>15	PAHs	Pyrene	0.00917		Υ
B35	Offsite	N	05-Nov-19	D-B35-20.0-20.5	20.0-20.5	>15	PAHs	Pyrene	0.155		Υ

Notes:

CAS = chemical abstract service

FD = field duplicate

J = estimated

mg/kg = milligram per kilogram

N= normal

PAH = polycyclic aromatic hydrocarbons

U = nondetect

VOC = volatile organic compound

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical		T			Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	630-20-6	1,1,1,2-Tetrachloroethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	71-55-6	1,1,1-Trichloroethane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	79-34-5	1,1,2,2-Tetrachloroethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	79-00-5	1,1,2-Trichloroethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-34-3	1,1-Dichloroethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-35-4	1,1-Dichloroethene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	563-58-6	1,1-Dichloropropene	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	87-61-6	1,2,3-Trichlorobenzene	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	96-18-4	1,2,3-Trichloropropane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	120-82-1	1,2,4-Trichlorobenzene	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	95-63-6	1,2,4-Trimethylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	96-12-8	1,2-Dibromo-3-Chloropropane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	106-93-4	1,2-Dibromoethane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	95-50-1	1,2-Dichlorobenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	107-06-2	1,2-Dichloroethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	78-87-5	1,2-Dichloropropane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-67-8	1,3,5-Trimethylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	106-99-0	1,3-Butadiene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	541-73-1	1,3-Dichlorobenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	142-28-9	1,3-Dichloropropane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	106-46-7	1,4-Dichlorobenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	544-10-5	1-Chlorohexane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	594-20-7	2,2-Dichloropropane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	95-49-8	2-Chlorotoluene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	591-78-6	2-Hexanone	0.05	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	106-43-4	4-Chlorotoluene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-10-1	4-Methyl-2-Pentanone	0.05	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	67-64-1	Acetone	0.1	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	71-43-2	Benzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-86-1	Bromobenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	74-97-5	Bromochloromethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-27-4	Bromodichloromethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-25-2	Bromoform	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-15-0	Carbon Disulfide	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	56-23-5	Carbon Tetrachloride	0.005	U	Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample	Ι	Depth		Chemical		T	T		Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-90-7	Chlorobenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-00-3	Chloroethane	0.01	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	67-66-3	Chloroform	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	156-59-2	cis-1,2-Dichloroethylene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	10061-01-5	cis-1,3-Dichloropropene	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	110-82-7	Cyclohexane	0.005	UJ	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	124-48-1	Dibromochloromethane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-71-8	Dichlorodifluoromethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	77-73-6	Dicyclopentadiene	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	100-41-4	Ethylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	87-68-3	Hexachlorobutadiene	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	98-82-8	Isopropylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-38-3	m,p-Xylenes	0.01	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	74-83-9	Methyl bromide	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	74-87-3	Methyl Chloride	0.01	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	78-93-3	Methyl ethyl ketone	0.05	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	74-88-4	Methyl iodide	0.02	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-87-2	Methylcyclohexane	0.01	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	74-95-3	Methylene Bromide	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-09-2	Methylene Chloride	0.01	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	1634-04-4	МТВЕ	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	91-20-3	Naphthalene	0.01	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	104-51-8	n-Butylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	110-54-3	n-Hexane	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	103-65-1	n-Propylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	95-47-6	o-Xylene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	99-87-6	p-Cymene (p-Isopropyltoluene)	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	135-98-8	Sec-Butylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	100-42-5	Styrene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	98-06-6	tert-Butylbenzene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	127-18-4	Tetrachloroethene	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-88-3	Toluene	0.00591		Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	NA	Total Trihalomethanes	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	1330-20-7	Total Xylenes	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	156-60-5	trans-1,2-dichloroethylene	0.001	U	Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample	I	Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	10061-02-6	trans-1,3-dichloropropene	0.005	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	79-01-6	Trichloroethylene	0.0129		Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-69-4	Trichlorofluoromethane	0.001	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	108-05-4	Vinyl Acetate	0.05	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		VOC	75-01-4	Vinyl Chloride	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	630-20-6	1,1,1,2-Tetrachloroethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	71-55-6	1,1,1-Trichloroethane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	79-34-5	1,1,2,2-Tetrachloroethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	79-00-5	1,1,2-Trichloroethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-34-3	1,1-Dichloroethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-35-4	1,1-Dichloroethene	0.00402		Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	563-58-6	1,1-Dichloropropene	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	87-61-6	1,2,3-Trichlorobenzene	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	96-18-4	1,2,3-Trichloropropane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	120-82-1	1,2,4-Trichlorobenzene	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	95-63-6	1,2,4-Trimethylbenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	96-12-8	1,2-Dibromo-3-Chloropropane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	106-93-4	1,2-Dibromoethane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	95-50-1	1,2-Dichlorobenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	107-06-2	1,2-Dichloroethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	78-87-5	1,2-Dichloropropane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-67-8	1,3,5-Trimethylbenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	106-99-0	1,3-Butadiene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	541-73-1	1,3-Dichlorobenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	142-28-9	1,3-Dichloropropane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	106-46-7	1,4-Dichlorobenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	544-10-5	1-Chlorohexane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	594-20-7	2,2-Dichloropropane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	95-49-8	2-Chlorotoluene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	591-78-6	2-Hexanone	0.05	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	106-43-4	4-Chlorotoluene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-10-1	4-Methyl-2-Pentanone	0.05	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	67-64-1	Acetone	0.1	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	71-43-2	Benzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-86-1	Bromobenzene	0.001	U	Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical			1		Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	74-97-5	Bromochloromethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-27-4	Bromodichloromethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-25-2	Bromoform	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-15-0	Carbon Disulfide	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	56-23-5	Carbon Tetrachloride	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-90-7	Chlorobenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-00-3	Chloroethane	0.01	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	67-66-3	Chloroform	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	156-59-2	cis-1,2-Dichloroethylene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	10061-01-5	cis-1,3-Dichloropropene	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	110-82-7	Cyclohexane	0.005	UJ	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	124-48-1	Dibromochloromethane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-71-8	Dichlorodifluoromethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	77-73-6	Dicyclopentadiene	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	100-41-4	Ethylbenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	87-68-3	Hexachlorobutadiene	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	98-82-8	Isopropylbenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-38-3	m,p-Xylenes	0.01	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	74-83-9	Methyl bromide	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	74-87-3	Methyl Chloride	0.01	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	78-93-3	Methyl ethyl ketone	0.05	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	74-88-4	Methyl iodide	0.02	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-87-2	Methylcyclohexane	0.01	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	74-95-3	Methylene Bromide	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-09-2	Methylene Chloride	0.01	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	1634-04-4	MTBE	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	91-20-3	Naphthalene	0.01	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	104-51-8	n-Butylbenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	110-54-3	n-Hexane	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	103-65-1	n-Propylbenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	95-47-6	o-Xylene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	99-87-6	p-Cymene (p-Isopropyltoluene)	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	135-98-8	Sec-Butylbenzene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	100-42-5	Styrene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	98-06-6	tert-Butylbenzene	0.001	U	Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	127-18-4	Tetrachloroethene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-88-3	Toluene	0.00224		Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	NA	Total Trihalomethanes	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	1330-20-7	Total Xylenes	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	156-60-5	trans-1,2-dichloroethylene	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	10061-02-6	trans-1,3-dichloropropene	0.005	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	79-01-6	Trichloroethylene	0.078		Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-69-4	Trichlorofluoromethane	0.001	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	108-05-4	Vinyl Acetate	0.05	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		VOC	75-01-4	Vinyl Chloride	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	630-20-6	1,1,1,2-Tetrachloroethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	71-55-6	1,1,1-Trichloroethane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	79-34-5	1,1,2,2-Tetrachloroethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	79-00-5	1,1,2-Trichloroethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-34-3	1,1-Dichloroethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-35-4	1,1-Dichloroethene	0.00401		N
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	563-58-6	1,1-Dichloropropene	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	87-61-6	1,2,3-Trichlorobenzene	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	96-18-4	1,2,3-Trichloropropane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	120-82-1	1,2,4-Trichlorobenzene	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	95-63-6	1,2,4-Trimethylbenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	96-12-8	1,2-Dibromo-3-Chloropropane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	106-93-4	1,2-Dibromoethane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	95-50-1	1,2-Dichlorobenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	107-06-2	1,2-Dichloroethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	78-87-5	1,2-Dichloropropane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-67-8	1,3,5-Trimethylbenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	106-99-0	1,3-Butadiene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	541-73-1	1,3-Dichlorobenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	142-28-9	1,3-Dichloropropane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	106-46-7	1,4-Dichlorobenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	544-10-5	1-Chlorohexane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	594-20-7	2,2-Dichloropropane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	95-49-8	2-Chlorotoluene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	591-78-6	2-Hexanone	0.05	U	Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	106-43-4	4-Chlorotoluene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-10-1	4-Methyl-2-Pentanone	0.05	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	67-64-1	Acetone	0.1	UJ	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	71-43-2	Benzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-86-1	Bromobenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	74-97-5	Bromochloromethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-27-4	Bromodichloromethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-25-2	Bromoform	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-15-0	Carbon Disulfide	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	56-23-5	Carbon Tetrachloride	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-90-7	Chlorobenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-00-3	Chloroethane	0.01	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	67-66-3	Chloroform	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	156-59-2	cis-1,2-Dichloroethylene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	10061-01-5	cis-1,3-Dichloropropene	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	110-82-7	Cyclohexane	0.005	UJ	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	124-48-1	Dibromochloromethane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-71-8	Dichlorodifluoromethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	77-73-6	Dicyclopentadiene	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	100-41-4	Ethylbenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	87-68-3	Hexachlorobutadiene	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	98-82-8	Isopropylbenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-38-3	m,p-Xylenes	0.01	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	74-83-9	Methyl bromide	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	74-87-3	Methyl Chloride	0.01	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	78-93-3	Methyl ethyl ketone	0.05	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	74-88-4	Methyl iodide	0.02	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-87-2	Methylcyclohexane	0.01	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	74-95-3	Methylene Bromide	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-09-2	Methylene Chloride	0.01	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	1634-04-4	МТВЕ	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	91-20-3	Naphthalene	0.01	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	104-51-8	n-Butylbenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	110-54-3	n-Hexane	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	103-65-1	n-Propylbenzene	0.001	U	Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	95-47-6	o-Xylene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	99-87-6	p-Cymene (p-Isopropyltoluene)	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	135-98-8	Sec-Butylbenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	100-42-5	Styrene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	98-06-6	tert-Butylbenzene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	127-18-4	Tetrachloroethene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-88-3	Toluene	0.0077		N
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	NA	Total Trihalomethanes	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	1330-20-7	Total Xylenes	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	156-60-5	trans-1,2-dichloroethylene	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	10061-02-6	trans-1,3-dichloropropene	0.005	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	79-01-6	Trichloroethylene	0.0688		N
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-69-4	Trichlorofluoromethane	0.001	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	108-05-4	Vinyl Acetate	0.05	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		VOC	75-01-4	Vinyl Chloride	0.002	U	Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	630-20-6	1,1,1,2-Tetrachloroethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	71-55-6	1,1,1-Trichloroethane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	79-34-5	1,1,2,2-Tetrachloroethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	79-00-5	1,1,2-Trichloroethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-34-3	1,1-Dichloroethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-35-4	1,1-Dichloroethene	0.00437		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	563-58-6	1,1-Dichloropropene	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	87-61-6	1,2,3-Trichlorobenzene	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	96-18-4	1,2,3-Trichloropropane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	120-82-1	1,2,4-Trichlorobenzene	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	95-63-6	1,2,4-Trimethylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	96-12-8	1,2-Dibromo-3-Chloropropane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	106-93-4	1,2-Dibromoethane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	95-50-1	1,2-Dichlorobenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	107-06-2	1,2-Dichloroethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	78-87-5	1,2-Dichloropropane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-67-8	1,3,5-Trimethylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	106-99-0	1,3-Butadiene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	541-73-1	1,3-Dichlorobenzene	0.001	U	N

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	142-28-9	1,3-Dichloropropane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	106-46-7	1,4-Dichlorobenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	544-10-5	1-Chlorohexane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	594-20-7	2,2-Dichloropropane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	95-49-8	2-Chlorotoluene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	591-78-6	2-Hexanone	0.05	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	106-43-4	4-Chlorotoluene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-10-1	4-Methyl-2-Pentanone	0.05	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	67-64-1	Acetone	0.1	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	71-43-2	Benzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-86-1	Bromobenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	74-97-5	Bromochloromethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-27-4	Bromodichloromethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-25-2	Bromoform	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-15-0	Carbon Disulfide	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	56-23-5	Carbon Tetrachloride	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-90-7	Chlorobenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-00-3	Chloroethane	0.01	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	67-66-3	Chloroform	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	156-59-2	cis-1,2-Dichloroethylene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	10061-01-5	cis-1,3-Dichloropropene	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	110-82-7	Cyclohexane	0.005	UJ	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	124-48-1	Dibromochloromethane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-71-8	Dichlorodifluoromethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	77-73-6	Dicyclopentadiene	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	100-41-4	Ethylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	87-68-3	Hexachlorobutadiene	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	98-82-8	Isopropylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-38-3	m,p-Xylenes	0.01	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	74-83-9	Methyl bromide	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	74-87-3	Methyl Chloride	0.01	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	78-93-3	Methyl ethyl ketone	0.05	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	74-88-4	Methyl iodide	0.02	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-87-2	Methylcyclohexane	0.01	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	74-95-3	Methylene Bromide	0.001	U	N

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-09-2	Methylene Chloride	0.01	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	1634-04-4	МТВЕ	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	91-20-3	Naphthalene	0.01	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	104-51-8	n-Butylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	110-54-3	n-Hexane	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	103-65-1	n-Propylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	95-47-6	o-Xylene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	99-87-6	p-Cymene (p-Isopropyltoluene)	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	135-98-8	Sec-Butylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	100-42-5	Styrene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	98-06-6	tert-Butylbenzene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	127-18-4	Tetrachloroethene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-88-3	Toluene	0.00792		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	NA	Total Trihalomethanes	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	1330-20-7	Total Xylenes	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	156-60-5	trans-1,2-dichloroethylene	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	10061-02-6	trans-1,3-dichloropropene	0.005	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	79-01-6	Trichloroethylene	0.0712		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-69-4	Trichlorofluoromethane	0.001	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	108-05-4	Vinyl Acetate	0.05	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		VOC	75-01-4	Vinyl Chloride	0.002	U	N
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-36-0	Antimony	0.002	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-38-2	Arsenic	0.00466		Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-39-3	Barium	0.0435		Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-41-7	Beryllium	0.002	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-43-9	Cadmium	0.002	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-47-3	Chromium	0.004	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-48-4	Cobalt	0.002	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-50-8	Copper	0.004	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7439-92-1	Lead	0.002	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7439-96-5	Manganese	0.0536		Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7439-97-6	Mercury	0.0000263	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7439-98-7	Molybdenum	0.00275		Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-02-0	Nickel	0.002	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7782-49-2	Selenium	0.00498		Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-22-4	Silver	0.002	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		Metals	7440-28-0	Thallium	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-36-0	Antimony	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-38-2	Arsenic	0.0068		Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-39-3	Barium	0.0431		Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-41-7	Beryllium	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-43-9	Cadmium	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-47-3	Chromium	0.004	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-48-4	Cobalt	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-50-8	Copper	0.004	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7439-92-1	Lead	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7439-96-5	Manganese	0.0569		Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7439-97-6	Mercury	0.0000263	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7439-98-7	Molybdenum	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-02-0	Nickel	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7782-49-2	Selenium	0.00867		Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-22-4	Silver	0.002	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		Metals	7440-28-0	Thallium	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-36-0	Antimony	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-38-2	Arsenic	0.00496		N
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-39-3	Barium	0.051		N
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-41-7	Beryllium	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-43-9	Cadmium	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-47-3	Chromium	0.004	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-48-4	Cobalt	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-50-8	Copper	0.00409		N
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7439-92-1	Lead	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7439-96-5	Manganese	0.361		N
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7439-97-6	Mercury	0.0000263	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7439-98-7	Molybdenum	0.00293		N
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-02-0	Nickel	0.00317		N
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7782-49-2	Selenium	0.0112		N
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-22-4	Silver	0.002	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		Metals	7440-28-0	Thallium	0.002	U	Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-36-0	Antimony	0.002	U	N

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-38-2	Arsenic	0.00574		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-39-3	Barium	0.0557		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-41-7	Beryllium	0.002	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-43-9	Cadmium	0.002	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-47-3	Chromium	0.004	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-48-4	Cobalt	0.002	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-50-8	Copper	0.00488		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7439-92-1	Lead	0.002	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7439-96-5	Manganese	0.367		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7439-97-6	Mercury	0.0000263	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7439-98-7	Molybdenum	0.00311		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-02-0	Nickel	0.00367		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7782-49-2	Selenium	0.0115		Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-22-4	Silver	0.002	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		Metals	7440-28-0	Thallium	0.002	U	N
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	90-12-0	1-Methylnaphthalene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	91-57-6	2-Methylnaphthalene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	83-32-9	Acenaphthene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	208-96-8	Acenaphthylene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	120-12-7	Anthracene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	56-55-3	Benzo(a)anthracene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	50-32-8	Benzo(a)pyrene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	205-99-2	Benzo(b)fluoranthene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	191-24-2	Benzo(g,h,i)perylene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	207-08-9	Benzo(k)fluoranthene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	218-01-9	Chrysene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	53-70-3	Dibenz(a,h)anthracene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	206-44-0	Fluoranthene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	86-73-7	Fluorene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	193-39-5	Indeno(1,2,3-c,d)Pyrene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	91-20-3	Naphthalene	0.000388	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	85-01-8	Phenanthrene	0.000194	U	Υ
D-MW25	N	07-Nov-19	D-MW25	26.48		PAH	129-00-0	Pyrene	0.000194	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	90-12-0	1-Methylnaphthalene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	91-57-6	2-Methylnaphthalene	0.000187	U	Υ

Attachment 5
Data Used in HHRA for Groundwater
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Туре	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	83-32-9	Acenaphthene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	208-96-8	Acenaphthylene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	120-12-7	Anthracene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	56-55-3	Benzo(a)anthracene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	50-32-8	Benzo(a)pyrene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	205-99-2	Benzo(b)fluoranthene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	191-24-2	Benzo(g,h,i)perylene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	207-08-9	Benzo(k)fluoranthene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	218-01-9	Chrysene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	53-70-3	Dibenz(a,h)anthracene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	206-44-0	Fluoranthene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	86-73-7	Fluorene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	193-39-5	Indeno(1,2,3-c,d)Pyrene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	91-20-3	Naphthalene	0.000373	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	85-01-8	Phenanthrene	0.000187	U	Υ
D-MW26	N	07-Nov-19	D-MW26	28.79		PAH	129-00-0	Pyrene	0.000187	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	90-12-0	1-Methylnaphthalene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	91-57-6	2-Methylnaphthalene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	83-32-9	Acenaphthene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	208-96-8	Acenaphthylene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	120-12-7	Anthracene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	56-55-3	Benzo(a)anthracene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	50-32-8	Benzo(a)pyrene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	205-99-2	Benzo(b)fluoranthene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	191-24-2	Benzo(g,h,i)perylene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	207-08-9	Benzo(k)fluoranthene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	218-01-9	Chrysene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	53-70-3	Dibenz(a,h)anthracene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	206-44-0	Fluoranthene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	86-73-7	Fluorene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	193-39-5	Indeno(1,2,3-c,d)Pyrene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	91-20-3	Naphthalene	0.000391	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	85-01-8	Phenanthrene	0.000196	U	Υ
D-MW27	N	07-Nov-19	D-MW27	29.38		PAH	129-00-0	Pyrene	0.000196	U	Υ
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	90-12-0	1-Methylnaphthalene	0.000194	U	N

Attachment 5

Data Used in HHRA for Groundwater

Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample	Sample		Depth		Chemical					Best
Location	Type	Date	Sample ID	(Feet)	Method	Group	CAS#	Unique Analyte name	Result (mg/L)	Flag	Result
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	91-57-6	2-Methylnaphthalene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	83-32-9	Acenaphthene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	208-96-8	Acenaphthylene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	120-12-7	Anthracene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	56-55-3	Benzo(a)anthracene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	50-32-8	Benzo(a)pyrene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	205-99-2	Benzo(b)fluoranthene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	191-24-2	Benzo(g,h,i)perylene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	207-08-9	Benzo(k)fluoranthene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	218-01-9	Chrysene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	53-70-3	Dibenz(a,h)anthracene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	206-44-0	Fluoranthene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	86-73-7	Fluorene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	193-39-5	Indeno(1,2,3-c,d)Pyrene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	91-20-3	Naphthalene	0.000388	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	85-01-8	Phenanthrene	0.000194	U	N
D-MW27	FD	07-Nov-19	D-FD01-110719	29.38		PAH	129-00-0	Pyrene	0.000194	U	N

Notes:

CAS = chemical abstract service

FD = field duplicate

J = estimated

mg/L = milligram(s) per liter

N= normal

PAH = polycyclic aromatic hydrocarbons

U = nondetect

VOC = volatile organic compound

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B11	Onsite	D-B11-1.0-1.5	30-Oct-19	1.0-1.5	Benzo(a)anthracene	56-55-3	mg/kg	0.232		0.232	0.232	1	0.1	0.0232	0.0232
B11	Onsite	D-B11-1.0-1.5	30-Oct-19	1.0-1.5	Benzo(a)pyrene	50-32-8	mg/kg	0.39		0.39	0.39	1	1	0.39	0.39
B11	Onsite	D-B11-1.0-1.5	30-Oct-19	1.0-1.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.575		0.575	0.575	1	0.1	0.0575	0.0575
B11	Onsite	D-B11-1.0-1.5	30-Oct-19	1.0-1.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.168		0.168	0.168	1	0.01	0.00168	0.00168
B11	Onsite	D-B11-1.0-1.5	30-Oct-19	1.0-1.5	Chrysene	218-01-9	mg/kg	0.37		0.37	0.37	1	0.001	0.00037	0.00037
B11	Onsite	D-B11-1.0-1.5	30-Oct-19	1.0-1.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00833	U	0	0.004165	0	1	0.004165	0
B11	Onsite	D-B11-1.0-1.5	30-Oct-19	1.0-1.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.317		0.317	0.317	1	0.1	0.0317	0.0317
B11	Onsite	D-B11-1.0-1.5			BaP TEQ									0.51	0.50
B11	Onsite	D-B11-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.105		0.105	0.105	1	0.1	0.0105	0.0105
B11	Onsite	D-B11-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.161		0.161	0.161	1	1	0.161	0.161
B11	Onsite	D-B11-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.258		0.258	0.258	1	0.1	0.0258	0.0258
B11	Onsite	D-B11-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0642		0.0642	0.0642	1	0.01	0.000642	0.000642
B11	Onsite	D-B11-10.0-10.5	30-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.167		0.167	0.167	1	0.001	0.000167	0.000167
B11	Onsite	D-B11-10.0-10.5	30-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00832	U	0	0.00416	0	1	0.00416	0
B11	Onsite	D-B11-10.0-10.5	30-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.142		0.142	0.142	1	0.1	0.0142	0.0142
B11	Onsite	D-B11-10.0-10.5			BaP TEQ									0.22	0.21
B11	Onsite	D-B11-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	1.1		1.1	1.1	1	0.1	0.11	0.11
B11	Onsite	D-B11-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	1.66		1.66	1.66	1	1	1.66	1.66
B11	Onsite	D-B11-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	2.9		2.9	2.9	1	0.1	0.29	0.29
B11	Onsite	D-B11-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.729		0.729	0.729	1	0.01	0.00729	0.00729
B11	Onsite	D-B11-2.5-3.0	30-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	1.79		1.79	1.79	1	0.001	0.00179	0.00179
B11	Onsite	D-B11-2.5-3.0	30-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B11	Onsite	D-B11-2.5-3.0	30-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.37		1.37	1.37	1	0.1	0.137	0.137
B11	Onsite	D-B11-2.5-3.0			BaP TEQ									2.21	2.21
B11	Onsite	D-B11-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.132		0.132	0.132	1	0.1	0.0132	0.0132
B11	Onsite	D-B11-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.215		0.215	0.215	1	1	0.215	0.215
B11	Onsite	D-B11-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.388		0.388	0.388	1	0.1	0.0388	0.0388
B11	Onsite	D-B11-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0912		0.0912	0.0912	1	0.01	0.000912	0.000912
B11	Onsite	D-B11-5.0-5.5	30-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.23		0.23	0.23	1	0.001	0.00023	0.00023
B11	Onsite	D-B11-5.0-5.5	30-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B11	Onsite	D-B11-5.0-5.5	30-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.234		0.234	0.234	1	0.1	0.0234	0.0234
B11	Onsite	D-B11-5.0-5.5			BaP TEQ									0.30	0.29
B11	Onsite	D-B11-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.175		0.175	0.175	1	0.1	0.0175	0.0175
B11	Onsite	D-B11-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.28		0.28	0.28	1	1	0.28	0.28
B11	Onsite	D-B11-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.465		0.465	0.465	1	0.1	0.0465	0.0465
B11	Onsite	D-B11-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.103		0.103	0.103	1	0.01	0.00103	0.00103
B11	Onsite	D-B11-7.5-8.0	30-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.302		0.302	0.302	1	0.001	0.000302	0.000302
B11	Onsite	D-B11-7.5-8.0	30-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00834	U	0	0.00417	0	1	0.00417	0
B11	Onsite	D-B11-7.5-8.0	30-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.252		0.252	0.252	1	0.1	0.0252	0.0252

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B11	Onsite	D-B11-7.5-8.0	Sample Date	тор Берин	BaP TEQ	САЗ#	Offics	(1116/116)	Tiug	(1116/116)	(1118/118)	Detect	INFI	0.37	0.37
B12	Onsite	D-B12-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(a)anthracene	56-55-3	mg/kg	0.811		0.811	0.811	1	0.1	0.0811	0.0811
B12	Onsite	D-B12-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(a)pyrene	50-32-8	mg/kg	1.68		1.68	1.68	1	1	1.68	1.68
B12	Onsite	D-B12-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(b)fluoranthene	205-99-2	mg/kg	1.75		1.75	1.75	1	0.1	0.175	0.175
B12	Onsite	D-B12-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.52		0.52	0.52	1	0.01	0.0052	0.0052
B12	Onsite	D-B12-1.0-1.5	31-Oct-19	1.0-1.5	Chrysene	218-01-9	mg/kg	1.04		1.04	1.04	1	0.001	0.00104	0.00104
B12	Onsite	D-B12-1.0-1.5	31-Oct-19	1.0-1.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0666	U	0	0.0333	0	1	0.0333	0
B12	Onsite	D-B12-1.0-1.5	31-Oct-19	1.0-1.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.44		1.44	1.44	1	0.1	0.144	0.144
B12	Onsite	D-B12-1.0-1.5			BaP TEQ		0, 0							2.12	2.09
B12	Onsite	D-B12-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0968		0.0968	0.0968	1	0.1	0.00968	0.00968
B12	Onsite	D-B12-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.18		0.18	0.18	1	1	0.18	0.18
B12	Onsite	D-B12-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.193		0.193	0.193	1	0.1	0.0193	0.0193
B12	Onsite	D-B12-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0597		0.0597	0.0597	1	0.01	0.000597	0.000597
B12	Onsite	D-B12-10.0-10.5	31-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.12		0.12	0.12	1	0.001	0.00012	0.00012
B12	Onsite	D-B12-10.0-10.5	31-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B12	Onsite	D-B12-10.0-10.5	31-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.149		0.149	0.149	1	0.1	0.0149	0.0149
B12	Onsite	D-B12-10.0-10.5			BaP TEQ		<i>O, O</i>							0.23	0.22
B12	Onsite	D-B12-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00481		0.00481	0.00481	1	0.1	0.000481	0.000481
B12	Onsite	D-B12-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00724		0.00724	0.00724	1	1	0.00724	0.00724
B12	Onsite	D-B12-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00736		0.00736	0.00736	1	0.1	0.000736	0.000736
B12	Onsite	D-B12-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00198		0.00198	0.00198	1	0.01	0.0000198	0.0000198
B12	Onsite	D-B12-2.5-3.0	31-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.00503		0.00503	0.00503	1	0.001	0.00000503	0.00000503
B12	Onsite	D-B12-2.5-3.0	31-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B12	Onsite	D-B12-2.5-3.0	31-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00503		0.00503	0.00503	1	0.1	0.000503	0.000503
B12	Onsite	D-B12-2.5-3.0			BaP TEQ									0.01	0.01
B12	Onsite	D-B12-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	1.24	J	1.24	1.24	1	0.1	0.124	0.124
B12	Onsite	D-B12-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	2.65	J	2.65	2.65	1	1	2.65	2.65
B12	Onsite	D-B12-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	2.58	J	2.58	2.58	1	0.1	0.258	0.258
B12	Onsite	D-B12-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.777	J	0.777	0.777	1	0.01	0.00777	0.00777
B12	Onsite	D-B12-5.0-5.5	31-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	1.61	J	1.61	1.61	1	0.001	0.00161	0.00161
B12	Onsite	D-B12-5.0-5.5	31-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0334	U	0	0.0167	0	1	0.0167	0
B12	Onsite	D-B12-5.0-5.5	31-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	2.16	J	2.16	2.16	1	0.1	0.216	0.216
B12	Onsite	D-B12-5.0-5.5			BaP TEQ									3.27	3.26
B12	Onsite	D-B12-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	2.79	J	2.79	2.79	1	0.1	0.279	0.279
B12	Onsite	D-B12-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	5.93	J	5.93	5.93	1	1	5.93	5.93
B12	Onsite	D-B12-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	6.16	J	6.16	6.16	1	0.1	0.616	0.616
B12	Onsite	D-B12-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	2.26	J	2.26	2.26	1	0.01	0.0226	0.0226
B12	Onsite	D-B12-7.5-8.0	31-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	3.59	J	3.59	3.59	1	0.001	0.00359	0.00359
B12	Onsite	D-B12-7.5-8.0	31-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.669	U	0	0.3345	0	1	0.3345	0
B12	Onsite	D-B12-7.5-8.0	31-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	5.01	J	5.01	5.01	1	0.1	0.501	0.501

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result		I	BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B12	Onsite	D-B12-7.5-8.0			BaP TEQ									7.69	7.35
B12	Onsite	D-FD02-103119	31-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.175	J	0.175	0.175	1	0.1	0.0175	0.0175
B12	Onsite	D-FD02-103119	31-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.386	J	0.386	0.386	1	1	0.386	0.386
B12	Onsite	D-FD02-103119	31-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.418	J	0.418	0.418	1	0.1	0.0418	0.0418
B12	Onsite	D-FD02-103119	31-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0903	J	0.0903	0.0903	1	0.01	0.000903	0.000903
B12	Onsite	D-FD02-103119	31-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.228	J	0.228	0.228	1	0.001	0.000228	0.000228
B12	Onsite	D-FD02-103119	31-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0166	U	0	0.0083	0	1	0.0083	0
B12	Onsite	D-FD02-103119	31-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.317	J	0.317	0.317	1	0.1	0.0317	0.0317
B12	Onsite	D-FD02-103119			BaP TEQ									0.49	0.48
B13	Onsite	D-B13-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(a)anthracene	56-55-3	mg/kg	17.5	J	17.5	17.5	1	0.1	1.75	1.75
B13	Onsite	D-B13-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(a)pyrene	50-32-8	mg/kg	28.9	J	28.9	28.9	1	1	28.9	28.9
B13	Onsite	D-B13-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(b)fluoranthene	205-99-2	mg/kg	26.4	J	26.4	26.4	1	0.1	2.64	2.64
B13	Onsite	D-B13-1.0-1.5	31-Oct-19	1.0-1.5	Benzo(k)fluoranthene	207-08-9	mg/kg	7.09	J	7.09	7.09	1	0.01	0.0709	0.0709
B13	Onsite	D-B13-1.0-1.5	31-Oct-19	1.0-1.5	Chrysene	218-01-9	mg/kg	20.7	J	20.7	20.7	1	0.001	0.0207	0.0207
B13	Onsite	D-B13-1.0-1.5	31-Oct-19	1.0-1.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0667	U	0	0.03335	0	1	0.03335	0
B13	Onsite	D-B13-1.0-1.5	31-Oct-19	1.0-1.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	21.5	J	21.5	21.5	1	0.1	2.15	2.15
B13	Onsite	D-B13-1.0-1.5			BaP TEQ									35.56	35.53
B13	Onsite	D-B13-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	1.57		1.57	1.57	1	0.1	0.157	0.157
B13	Onsite	D-B13-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	2.44		2.44	2.44	1	1	2.44	2.44
B13	Onsite	D-B13-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	2.39		2.39	2.39	1	0.1	0.239	0.239
B13	Onsite	D-B13-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.825		0.825	0.825	1	0.01	0.00825	0.00825
B13	Onsite	D-B13-10.0-10.5	31-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	1.86		1.86	1.86	1	0.001	0.00186	0.00186
B13	Onsite	D-B13-10.0-10.5	31-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0334	U	0	0.0167	0	1	0.0167	0
B13	Onsite	D-B13-10.0-10.5	31-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.78		1.78	1.78	1	0.1	0.178	0.178
B13	Onsite	D-B13-10.0-10.5			BaP TEQ									3.04	3.02
B13	Onsite	D-B13-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	7.25		7.25	7.25	1	0.1	0.725	0.725
B13	Onsite	D-B13-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	9.99		9.99	9.99	1	1	9.99	9.99
B13	Onsite	D-B13-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	10		10	10	1	0.1	1	1
B13	Onsite	D-B13-2.5-3.0	31-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	2.73		2.73	2.73	1	0.01	0.0273	0.0273
B13	Onsite	D-B13-2.5-3.0	31-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	7.71		7.71	7.71	1	0.001	0.00771	0.00771
B13	Onsite	D-B13-2.5-3.0	31-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.333	U	0	0.1665	0	1	0.1665	0
B13	Onsite	D-B13-2.5-3.0	31-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	6.18		6.18	6.18	1	0.1	0.618	0.618
B13	Onsite	D-B13-2.5-3.0			BaP TEQ									12.53	12.37
B13	Onsite	D-B13-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	2.13		2.13	2.13	1	0.1	0.213	0.213
B13	Onsite	D-B13-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	3.21		3.21	3.21	1	1	3.21	3.21
B13	Onsite	D-B13-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	3.49		3.49	3.49	1	0.1	0.349	0.349
B13	Onsite	D-B13-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	1.05		1.05	1.05	1	0.01	0.0105	0.0105
B13	Onsite	D-B13-5.0-5.5	31-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	2.69		2.69	2.69	1	0.001	0.00269	0.00269
B13	Onsite	D-B13-5.0-5.5	31-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0666	U	0	0.0333	0	1	0.0333	0
B13	Onsite	D-B13-5.0-5.5	31-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	2.04		2.04	2.04	1	0.1	0.204	0.204

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B13	Onsite	D-B13-5.0-5.5			BaP TEQ									4.02	3.99
B13	Onsite	D-B13-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	7.72		7.72	7.72	1	0.1	0.772	0.772
B13	Onsite	D-B13-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	11.1		11.1	11.1	1	1	11.1	11.1
B13	Onsite	D-B13-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	10.3		10.3	10.3	1	0.1	1.03	1.03
B13	Onsite	D-B13-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	3.68		3.68	3.68	1	0.01	0.0368	0.0368
B13	Onsite	D-B13-7.5-8.0	31-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	8.48		8.48	8.48	1	0.001	0.00848	0.00848
B13	Onsite	D-B13-7.5-8.0	31-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	1.26		1.26	1.26	1	1	1.26	1.26
B13	Onsite	D-B13-7.5-8.0	31-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	7.63		7.63	7.63	1	0.1	0.763	0.763
B13	Onsite	D-B13-7.5-8.0			BaP TEQ									14.97	14.97
B14	Onsite	D-B14-1.0-1.5	29-Oct-19	1.0-1.5	Benzo(a)anthracene	56-55-3	mg/kg	0.017		0.017	0.017	1	0.1	0.0017	0.0017
B14	Onsite	D-B14-1.0-1.5	29-Oct-19	1.0-1.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0157		0.0157	0.0157	1	1	0.0157	0.0157
B14	Onsite	D-B14-1.0-1.5	29-Oct-19	1.0-1.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.044		0.044	0.044	1	0.1	0.0044	0.0044
B14	Onsite	D-B14-1.0-1.5	29-Oct-19	1.0-1.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0109		0.0109	0.0109	1	0.01	0.000109	0.000109
B14	Onsite	D-B14-1.0-1.5	29-Oct-19	1.0-1.5	Chrysene	218-01-9	mg/kg	0.0228		0.0228	0.0228	1	0.001	0.0000228	0.0000228
B14	Onsite	D-B14-1.0-1.5	29-Oct-19	1.0-1.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B14	Onsite	D-B14-1.0-1.5	29-Oct-19	1.0-1.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0081		0.0081	0.0081	1	0.1	0.00081	0.00081
B14	Onsite	D-B14-1.0-1.5			BaP TEQ									0.02	0.02
B14	Onsite	D-B14-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.131		0.131	0.131	1	0.1	0.0131	0.0131
B14	Onsite	D-B14-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.159		0.159	0.159	1	1	0.159	0.159
B14	Onsite	D-B14-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.223		0.223	0.223	1	0.1	0.0223	0.0223
B14	Onsite	D-B14-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0745		0.0745	0.0745	1	0.01	0.000745	0.000745
B14	Onsite	D-B14-10.0-10.5	29-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.138		0.138	0.138	1	0.001	0.000138	0.000138
B14	Onsite	D-B14-10.0-10.5	29-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B14	Onsite	D-B14-10.0-10.5	29-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0959		0.0959	0.0959	1	0.1	0.00959	0.00959
B14	Onsite	D-B14-10.0-10.5			BaP TEQ									0.21	0.20
B14	Onsite	D-B14-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0144		0.0144	0.0144	1	0.1	0.00144	0.00144
B14	Onsite	D-B14-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0165		0.0165	0.0165	1	1	0.0165	0.0165
B14	Onsite	D-B14-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0212		0.0212	0.0212	1	0.1	0.00212	0.00212
B14	Onsite	D-B14-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00832	U	0	0.00416	0	0.01	0.0000416	0
B14	Onsite	D-B14-2.5-3.0	29-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.0129		0.0129	0.0129	1	0.001	0.0000129	0.0000129
B14	Onsite	D-B14-2.5-3.0	29-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00832	U	0	0.00416	0	1	0.00416	0
B14	Onsite	D-B14-2.5-3.0	29-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0209		0.0209	0.0209	1	0.1	0.00209	0.00209
B14	Onsite	D-B14-2.5-3.0			BaP TEQ									0.03	0.02
B14	Onsite	D-B14-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00726		0.00726	0.00726	1	0.1	0.000726	0.000726
B14	Onsite	D-B14-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0162		0.0162	0.0162	1	1	0.0162	0.0162
B14	Onsite	D-B14-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0181		0.0181	0.0181	1	0.1	0.00181	0.00181
B14	Onsite	D-B14-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00539		0.00539	0.00539	1	0.01	0.0000539	0.0000539
B14	Onsite	D-B14-5.0-5.5	29-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00966		0.00966	0.00966	1	0.001	0.00000966	0.00000966
B14	Onsite	D-B14-5.0-5.5	29-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B14	Onsite	D-B14-5.0-5.5	29-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0191		0.0191	0.0191	1	0.1	0.00191	0.00191

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B14	Onsite	D-B14-5.0-5.5			BaP TEQ									0.02	0.02
B14	Onsite	D-B14-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.274		0.274	0.274	1	0.1	0.0274	0.0274
B14	Onsite	D-B14-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.301		0.301	0.301	1	1	0.301	0.301
B14	Onsite	D-B14-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.382		0.382	0.382	1	0.1	0.0382	0.0382
B14	Onsite	D-B14-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.128		0.128	0.128	1	0.01	0.00128	0.00128
B14	Onsite	D-B14-7.5-8.0	29-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.269		0.269	0.269	1	0.001	0.000269	0.000269
B14	Onsite	D-B14-7.5-8.0	29-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00833	U	0	0.004165	0	1	0.004165	0
B14	Onsite	D-B14-7.5-8.0	29-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.219		0.219	0.219	1	0.1	0.0219	0.0219
B14	Onsite	D-B14-7.5-8.0			BaP TEQ									0.39	0.39
B15	Onsite	D-B15-1.0-1.5	01-Nov-19	1.0-1.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00833	U	0	0.004165	0	0.1	0.0004165	0
B15	Onsite	D-B15-1.0-1.5	01-Nov-19	1.0-1.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0115		0.0115	0.0115	1	1	0.0115	0.0115
B15	Onsite	D-B15-1.0-1.5	01-Nov-19	1.0-1.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0168		0.0168	0.0168	1	0.1	0.00168	0.00168
B15	Onsite	D-B15-1.0-1.5	01-Nov-19	1.0-1.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00833	U	0	0.004165	0	0.01	0.00004165	0
B15	Onsite	D-B15-1.0-1.5	01-Nov-19	1.0-1.5	Chrysene	218-01-9	mg/kg	0.0141		0.0141	0.0141	1	0.001	0.0000141	0.0000141
B15	Onsite	D-B15-1.0-1.5	01-Nov-19	1.0-1.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00833	U	0	0.004165	0	1	0.004165	0
B15	Onsite	D-B15-1.0-1.5	01-Nov-19	1.0-1.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0102		0.0102	0.0102	1	0.1	0.00102	0.00102
B15	Onsite	D-B15-1.0-1.5			BaP TEQ									0.02	0.01
B15	Onsite	D-B15-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0935		0.0935	0.0935	1	0.1	0.00935	0.00935
B15	Onsite	D-B15-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.144		0.144	0.144	1	1	0.144	0.144
B15	Onsite	D-B15-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.162		0.162	0.162	1	0.1	0.0162	0.0162
B15	Onsite	D-B15-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0546		0.0546	0.0546	1	0.01	0.000546	0.000546
B15	Onsite	D-B15-10.0-10.5	01-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.106		0.106	0.106	1	0.001	0.000106	0.000106
B15	Onsite	D-B15-10.0-10.5	01-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B15	Onsite	D-B15-10.0-10.5	01-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0862		0.0862	0.0862	1	0.1	0.00862	0.00862
B15	Onsite	D-B15-10.0-10.5			BaP TEQ									0.19	0.18
B15	Onsite	D-B15-14.5-15.0	01-Nov-19	14.5-15.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0731		0.0731	0.0731	1	0.1	0.00731	0.00731
B15	Onsite	D-B15-14.5-15.0	01-Nov-19	14.5-15.0	Benzo(a)pyrene	50-32-8	mg/kg	0.112		0.112	0.112	1	1	0.112	0.112
B15	Onsite	D-B15-14.5-15.0	01-Nov-19	14.5-15.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.125		0.125	0.125	1	0.1	0.0125	0.0125
B15	Onsite	D-B15-14.5-15.0	01-Nov-19	14.5-15.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0398		0.0398	0.0398	1	0.01	0.000398	0.000398
B15	Onsite	D-B15-14.5-15.0	01-Nov-19	14.5-15.0	Chrysene	218-01-9	mg/kg	0.0856		0.0856	0.0856	1	0.001	0.0000856	0.0000856
B15	Onsite	D-B15-14.5-15.0	01-Nov-19	14.5-15.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B15	Onsite	D-B15-14.5-15.0	01-Nov-19	14.5-15.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0688		0.0688	0.0688	1	0.1	0.00688	0.00688
B15	Onsite	D-B15-14.5-15.0			BaP TEQ									0.14	0.14
B15	Onsite	D-B15-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0242	J	0.0242	0.0242	1	0.1	0.00242	0.00242
B15	Onsite	D-B15-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0329	J	0.0329	0.0329	1	1	0.0329	0.0329
B15	Onsite	D-B15-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0454	J	0.0454	0.0454	1	0.1	0.00454	0.00454
B15	Onsite	D-B15-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00917	J	0.00917	0.00917	1	0.01	0.0000917	0.0000917
B15	Onsite	D-B15-2.5-3.0	01-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.0341	J	0.0341	0.0341	1	0.001	0.0000341	0.0000341
B15	Onsite	D-B15-2.5-3.0	01-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00833	U	0	0.004165	0	1	0.004165	0
B15	Onsite	D-B15-2.5-3.0	01-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0149	J	0.0149	0.0149	1	0.1	0.00149	0.00149

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B15	Onsite	D-B15-2.5-3.0			BaP TEQ									0.05	0.04
B15	Onsite	D-B15-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.131		0.131	0.131	1	0.1	0.0131	0.0131
B15	Onsite	D-B15-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.201		0.201	0.201	1	1	0.201	0.201
B15	Onsite	D-B15-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.227		0.227	0.227	1	0.1	0.0227	0.0227
B15	Onsite	D-B15-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0709		0.0709	0.0709	1	0.01	0.000709	0.000709
B15	Onsite	D-B15-5.0-5.5	01-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.151		0.151	0.151	1	0.001	0.000151	0.000151
B15	Onsite	D-B15-5.0-5.5	01-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B15	Onsite	D-B15-5.0-5.5	01-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.116		0.116	0.116	1	0.1	0.0116	0.0116
B15	Onsite	D-B15-5.0-5.5			BaP TEQ									0.27	0.25
B15	Onsite	D-B15-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.658		0.658	0.658	1	0.1	0.0658	0.0658
B15	Onsite	D-B15-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	1.07		1.07	1.07	1	1	1.07	1.07
B15	Onsite	D-B15-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	1.27		1.27	1.27	1	0.1	0.127	0.127
B15	Onsite	D-B15-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.324		0.324	0.324	1	0.01	0.00324	0.00324
B15	Onsite	D-B15-7.5-8.0	01-Nov-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.777		0.777	0.777	1	0.001	0.000777	0.000777
B15	Onsite	D-B15-7.5-8.0	01-Nov-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0334	U	0	0.0167	0	1	0.0167	0
B15	Onsite	D-B15-7.5-8.0	01-Nov-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.611		0.611	0.611	1	0.1	0.0611	0.0611
B15	Onsite	D-B15-7.5-8.0			BaP TEQ									1.34	1.33
B15	Onsite	D-FD03-110119	01-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.286		0.286	0.286	1	0.1	0.0286	0.0286
B15	Onsite	D-FD03-110119	01-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.467		0.467	0.467	1	1	0.467	0.467
B15	Onsite	D-FD03-110119	01-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.519		0.519	0.519	1	0.1	0.0519	0.0519
B15	Onsite	D-FD03-110119	01-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.163		0.163	0.163	1	0.01	0.00163	0.00163
B15	Onsite	D-FD03-110119	01-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.339		0.339	0.339	1	0.001	0.000339	0.000339
B15	Onsite	D-FD03-110119	01-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B15	Onsite	D-FD03-110119	01-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.28		0.28	0.28	1	0.1	0.028	0.028
B15	Onsite	D-FD03-110119			BaP TEQ									0.59	0.58
B15	Onsite	D-FD04-110119	01-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.275		0.275	0.275	1	0.1	0.0275	0.0275
B15	Onsite	D-FD04-110119	01-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.487		0.487	0.487	1	1	0.487	0.487
B15	Onsite	D-FD04-110119	01-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.588		0.588	0.588	1	0.1	0.0588	0.0588
B15	Onsite	D-FD04-110119	01-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.148		0.148	0.148	1	0.01	0.00148	0.00148
B15	Onsite	D-FD04-110119	01-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.358		0.358	0.358	1	0.001	0.000358	0.000358
B15	Onsite	D-FD04-110119	01-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B15	Onsite	D-FD04-110119	01-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.301		0.301	0.301	1	0.1	0.0301	0.0301
B15	Onsite	D-FD04-110119			BaP TEQ									0.62	0.61
B16	Onsite	D-B16-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0245		0.0245	0.0245	1	0.1	0.00245	0.00245
B16	Onsite	D-B16-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0376		0.0376	0.0376	1	1	0.0376	0.0376
B16	Onsite	D-B16-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0742		0.0742	0.0742	1	0.1	0.00742	0.00742
B16	Onsite	D-B16-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0169		0.0169	0.0169	1	0.01	0.000169	0.000169
B16	Onsite	D-B16-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0341		0.0341	0.0341	1	0.001	0.0000341	0.0000341
B16	Onsite	D-B16-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00333	U	0	0.001665	0	1	0.001665	0
B16	Onsite	D-B16-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0188		0.0188	0.0188	1	0.1	0.00188	0.00188

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B16	Onsite	D-B16-0-102719			BaP TEQ									0.05	0.05
B16	Onsite	D-B16-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.103		0.103	0.103	1	0.1	0.0103	0.0103
B16	Onsite	D-B16-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.169		0.169	0.169	1	1	0.169	0.169
B16	Onsite	D-B16-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.184		0.184	0.184	1	0.1	0.0184	0.0184
B16	Onsite	D-B16-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0487		0.0487	0.0487	1	0.01	0.000487	0.000487
B16	Onsite	D-B16-10.0-10.5	29-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.116		0.116	0.116	1	0.001	0.000116	0.000116
B16	Onsite	D-B16-10.0-10.5	29-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00831	U	0	0.004155	0	1	0.004155	0
B16	Onsite	D-B16-10.0-10.5	29-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.126		0.126	0.126	1	0.1	0.0126	0.0126
B16	Onsite	D-B16-10.0-10.5			BaP TEQ									0.22	0.21
B16	Onsite	D-B16-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.238		0.238	0.238	1	0.1	0.0238	0.0238
B16	Onsite	D-B16-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.433		0.433	0.433	1	1	0.433	0.433
B16	Onsite	D-B16-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.486		0.486	0.486	1	0.1	0.0486	0.0486
B16	Onsite	D-B16-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.146		0.146	0.146	1	0.01	0.00146	0.00146
B16	Onsite	D-B16-2.5-3.0	29-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.326		0.326	0.326	1	0.001	0.000326	0.000326
B16	Onsite	D-B16-2.5-3.0	29-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B16	Onsite	D-B16-2.5-3.0	29-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.263		0.263	0.263	1	0.1	0.0263	0.0263
B16	Onsite	D-B16-2.5-3.0			BaP TEQ									0.53	0.53
B16	Onsite	D-B16-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.092		0.092	0.092	1	0.1	0.0092	0.0092
B16	Onsite	D-B16-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.174		0.174	0.174	1	1	0.174	0.174
B16	Onsite	D-B16-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.202		0.202	0.202	1	0.1	0.0202	0.0202
B16	Onsite	D-B16-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0625		0.0625	0.0625	1	0.01	0.000625	0.000625
B16	Onsite	D-B16-5.0-5.5	29-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.112		0.112	0.112	1	0.001	0.000112	0.000112
B16	Onsite	D-B16-5.0-5.5	29-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00334	U	0	0.00167	0	1	0.00167	0
B16	Onsite	D-B16-5.0-5.5	29-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0892		0.0892	0.0892	1	0.1	0.00892	0.00892
B16	Onsite	D-B16-5.0-5.5			BaP TEQ									0.21	0.21
B16	Onsite	D-B16-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.83		0.83	0.83	1	0.1	0.083	0.083
B16	Onsite	D-B16-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	1.31		1.31	1.31	1	1	1.31	1.31
B16	Onsite	D-B16-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	1.41		1.41	1.41	1	0.1	0.141	0.141
B16	Onsite	D-B16-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.363		0.363	0.363	1	0.01	0.00363	0.00363
B16	Onsite	D-B16-7.5-8.0	29-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.975		0.975	0.975	1	0.001	0.000975	0.000975
B16	Onsite	D-B16-7.5-8.0	29-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.171		0.171	0.171	1	1	0.171	0.171
B16	Onsite	D-B16-7.5-8.0	29-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.944		0.944	0.944	1	0.1	0.0944	0.0944
B16	Onsite	D-B16-7.5-8.0			BaP TEQ									1.80	1.80
B17	Onsite	D-FD01-102919	29-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.338		0.338	0.338	1	0.1	0.0338	0.0338
B17	Onsite	D-FD01-102919	29-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.641		0.641	0.641	1	1	0.641	0.641
B17	Onsite	D-FD01-102919	29-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.766		0.766	0.766	1	0.1	0.0766	0.0766
B17	Onsite	D-FD01-102919	29-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.178		0.178	0.178	1	0.01	0.00178	0.00178
B17	Onsite	D-FD01-102919	29-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.434		0.434	0.434	1	0.001	0.000434	0.000434
B17	Onsite	D-FD01-102919	29-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00833	U	0	0.004165	0	1	0.004165	0
B17	Onsite	D-FD01-102919	29-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.329		0.329	0.329	1	0.1	0.0329	0.0329

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

									Ī	Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B17	Onsite	D-FD01-102919			BaP TEQ									0.79	0.79
B17	Onsite	D-B17-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0583		0.0583	0.0583	1	0.1	0.00583	0.00583
B17	Onsite	D-B17-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0835		0.0835	0.0835	1	1	0.0835	0.0835
B17	Onsite	D-B17-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.135		0.135	0.135	1	0.1	0.0135	0.0135
B17	Onsite	D-B17-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0474		0.0474	0.0474	1	0.01	0.000474	0.000474
B17	Onsite	D-B17-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0819		0.0819	0.0819	1	0.001	0.0000819	0.0000819
B17	Onsite	D-B17-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00834	U	0	0.00417	0	1	0.00417	0
B17	Onsite	D-B17-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0362		0.0362	0.0362	1	0.1	0.00362	0.00362
B17	Onsite	D-B17-0-102719			BaP TEQ									0.11	0.11
B17	Onsite	D-B17-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.409		0.409	0.409	1	0.1	0.0409	0.0409
B17	Onsite	D-B17-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.747		0.747	0.747	1	1	0.747	0.747
B17	Onsite	D-B17-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.714		0.714	0.714	1	0.1	0.0714	0.0714
B17	Onsite	D-B17-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.246		0.246	0.246	1	0.01	0.00246	0.00246
B17	Onsite	D-B17-10.0-10.5	30-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.503		0.503	0.503	1	0.001	0.000503	0.000503
B17	Onsite	D-B17-10.0-10.5	30-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00836	U	0	0.00418	0	1	0.00418	0
B17	Onsite	D-B17-10.0-10.5	30-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.633		0.633	0.633	1	0.1	0.0633	0.0633
B17	Onsite	D-B17-10.0-10.5			BaP TEQ									0.93	0.93
B17	Onsite	D-B17-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	2.71		2.71	2.71	1	1	2.71	2.71
B17	Onsite	D-B17-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	5.31		5.31	5.31	1	0.1	0.531	0.531
B17	Onsite	D-B17-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	4.89		4.89	4.89	1	0.01	0.0489	0.0489
B17	Onsite	D-B17-2.5-3.0	30-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	1.37		1.37	1.37	1	0.001	0.00137	0.00137
B17	Onsite	D-B17-2.5-3.0	30-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	3.29		3.29	3.29	1	1	3.29	3.29
B17	Onsite	D-B17-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0167	U	0	0.00835	0	0.1	0.000835	0
B17	Onsite	D-B17-2.5-3.0	30-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	4.31		4.31	4.31	1	0.1	0.431	0.431
B17	Onsite	D-B17-2.5-3.0			BaP TEQ					0	0	1		7.94	7.94
B17	Onsite	D-B17-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.295		0.295	0.295	1	0.1	0.0295	0.0295
B17	Onsite	D-B17-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.544		0.544	0.544	1	1	0.544	0.544
B17	Onsite	D-B17-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.576		0.576	0.576	1	0.1	0.0576	0.0576
B17	Onsite	D-B17-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.177		0.177	0.177	1	0.01	0.00177	0.00177
B17	Onsite	D-B17-5.0-5.5	30-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.351		0.351	0.351	1	0.001	0.000351	0.000351
B17	Onsite	D-B17-5.0-5.5	30-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0668	U	0	0.0334	0	1	0.0334	0
B17	Onsite	D-B17-5.0-5.5	30-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.451		0.451	0.451	1	0.1	0.0451	0.0451
B17	Onsite	D-B17-5.0-5.5			BaP TEQ									0.71	0.68
B17	Onsite	D-B17-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	1.27		1.27	1.27	1	0.1	0.127	0.127
B17	Onsite	D-B17-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	2.33		2.33	2.33	1	1	2.33	2.33
B17	Onsite	D-B17-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	2.37		2.37	2.37	1	0.1	0.237	0.237
B17	Onsite	D-B17-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.799		0.799	0.799	1	0.01	0.00799	0.00799
B17	Onsite	D-B17-7.5-8.0	30-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	1.6		1.6	1.6	1	0.001	0.0016	0.0016
B17	Onsite	D-B17-7.5-8.0	30-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.21		0.21	0.21	1	1	0.21	0.21
B17	Onsite	D-B17-7.5-8.0	30-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.35		1.35	1.35	1	0.1	0.135	0.135

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B17	Onsite	D-B17-7.5-8.0			BaP TEQ									3.05	3.05
B19	Onsite	D-B19-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0204		0.0204	0.0204	1	0.1	0.00204	0.00204
B19	Onsite	D-B19-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0322		0.0322	0.0322	1	1	0.0322	0.0322
B19	Onsite	D-B19-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0594		0.0594	0.0594	1	0.1	0.00594	0.00594
B19	Onsite	D-B19-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0159		0.0159	0.0159	1	0.01	0.000159	0.000159
B19	Onsite	D-B19-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.032		0.032	0.032	1	0.001	0.000032	0.000032
B19	Onsite	D-B19-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00334	U	0	0.00167	0	1	0.00167	0
B19	Onsite	D-B19-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0176		0.0176	0.0176	1	0.1	0.00176	0.00176
B19	Onsite	D-B19-0-102719			BaP TEQ									0.04	0.04
B19	Onsite	D-B19-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0583		0.0583	0.0583	1	0.1	0.00583	0.00583
B19	Onsite	D-B19-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.108		0.108	0.108	1	1	0.108	0.108
B19	Onsite	D-B19-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.126		0.126	0.126	1	0.1	0.0126	0.0126
B19	Onsite	D-B19-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.032		0.032	0.032	1	0.01	0.00032	0.00032
B19	Onsite	D-B19-10.0-10.5	02-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.072		0.072	0.072	1	0.001	0.000072	0.000072
B19	Onsite	D-B19-10.0-10.5	02-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B19	Onsite	D-B19-10.0-10.5	02-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0684		0.0684	0.0684	1	0.1	0.00684	0.00684
B19	Onsite	D-B19-10.0-10.5			BaP TEQ									0.13	0.13
B19	Onsite	D-B19-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0224		0.0224	0.0224	1	0.1	0.00224	0.00224
B19	Onsite	D-B19-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.045		0.045	0.045	1	1	0.045	0.045
B19	Onsite	D-B19-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0611		0.0611	0.0611	1	0.1	0.00611	0.00611
B19	Onsite	D-B19-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0185		0.0185	0.0185	1	0.01	0.000185	0.000185
B19	Onsite	D-B19-2.5-3.0	01-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.0319		0.0319	0.0319	1	0.001	0.0000319	0.0000319
B19	Onsite	D-B19-2.5-3.0	01-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B19	Onsite	D-B19-2.5-3.0	01-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0284		0.0284	0.0284	1	0.1	0.00284	0.00284
B19	Onsite	D-B19-2.5-3.0			BaP TEQ									0.06	0.06
B19	Onsite	D-B19-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00263		0.00263	0.00263	1	0.1	0.000263	0.000263
B19	Onsite	D-B19-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00269		0.00269	0.00269	1	1	0.00269	0.00269
B19	Onsite	D-B19-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00365		0.00365	0.00365	1	0.1	0.000365	0.000365
B19	Onsite	D-B19-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B19	Onsite	D-B19-5.0-5.5	01-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00286		0.00286	0.00286	1	0.001	0.00000286	0.00000286
B19	Onsite	D-B19-5.0-5.5	01-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B19	Onsite	D-B19-5.0-5.5	01-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B19	Onsite	D-B19-5.0-5.5			BaP TEQ									0.004	0.003
B19	Onsite	D-B19-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0227		0.0227	0.0227	1	0.1	0.00227	0.00227
B19	Onsite	D-B19-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.042		0.042	0.042	1	1	0.042	0.042
B19	Onsite	D-B19-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0504		0.0504	0.0504	1	0.1	0.00504	0.00504
B19	Onsite	D-B19-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0148		0.0148	0.0148	1	0.01	0.000148	0.000148
B19	Onsite	D-B19-7.5-8.0	01-Nov-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.0284		0.0284	0.0284	1	0.001	0.0000284	0.0000284
B19	Onsite	D-B19-7.5-8.0	01-Nov-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B19	Onsite	D-B19-7.5-8.0	01-Nov-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0277		0.0277	0.0277	1	0.1	0.00277	0.00277

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B19	Onsite	D-B19-7.5-8.0			BaP TEQ									0.05	0.05
B20	Onsite	D-B20-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.129		0.129	0.129	1	0.1	0.0129	0.0129
B20	Onsite	D-B20-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.23		0.23	0.23	1	1	0.23	0.23
B20	Onsite	D-B20-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.286		0.286	0.286	1	0.1	0.0286	0.0286
B20	Onsite	D-B20-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0737		0.0737	0.0737	1	0.01	0.000737	0.000737
B20	Onsite	D-B20-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.17		0.17	0.17	1	0.001	0.00017	0.00017
B20	Onsite	D-B20-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B20	Onsite	D-B20-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.146		0.146	0.146	1	0.1	0.0146	0.0146
B20	Onsite	D-B20-0-102719			BaP TEQ									0.29	0.29
B20	Onsite	D-B20-14.5-15.0	02-Nov-19	14.5-15.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00539		0.00539	0.00539	1	0.1	0.000539	0.000539
B20	Onsite	D-B20-14.5-15.0	02-Nov-19	14.5-15.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00886		0.00886	0.00886	1	1	0.00886	0.00886
B20	Onsite	D-B20-14.5-15.0	02-Nov-19	14.5-15.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0144		0.0144	0.0144	1	0.1	0.00144	0.00144
B20	Onsite	D-B20-14.5-15.0	02-Nov-19	14.5-15.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00348		0.00348	0.00348	1	0.01	0.0000348	0.0000348
B20	Onsite	D-B20-14.5-15.0	02-Nov-19	14.5-15.0	Chrysene	218-01-9	mg/kg	0.00747		0.00747	0.00747	1	0.001	0.00000747	0.00000747
B20	Onsite	D-B20-14.5-15.0	02-Nov-19	14.5-15.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B20	Onsite	D-B20-14.5-15.0	02-Nov-19	14.5-15.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00549		0.00549	0.00549	1	0.1	0.000549	0.000549
B20	Onsite	D-B20-14.5-15.0			BaP TEQ									0.01	0.01
B20	Onsite	D-B20-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0502	J	0.0502	0.0502	1	0.1	0.00502	0.00502
B20	Onsite	D-B20-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0716	J	0.0716	0.0716	1	1	0.0716	0.0716
B20	Onsite	D-B20-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0991	J	0.0991	0.0991	1	0.1	0.00991	0.00991
B20	Onsite	D-B20-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0371		0.0371	0.0371	1	0.01	0.000371	0.000371
B20	Onsite	D-B20-2.5-3.0	30-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.0711	J	0.0711	0.0711	1	0.001	0.0000711	0.0000711
B20	Onsite	D-B20-2.5-3.0	30-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B20	Onsite	D-B20-2.5-3.0	30-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0454	J	0.0454	0.0454	1	0.1	0.00454	0.00454
B20	Onsite	D-B20-2.5-3.0			BaP TEQ									0.10	0.09
B20	Onsite	D-B20-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.66		0.66	0.66	1	0.1	0.066	0.066
B20	Onsite	D-B20-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	1.34		1.34	1.34	1	1	1.34	1.34
B20	Onsite	D-B20-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	1.34		1.34	1.34	1	0.1	0.134	0.134
B20	Onsite	D-B20-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.398		0.398	0.398	1	0.01	0.00398	0.00398
B20	Onsite	D-B20-5.0-5.5	30-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.833		0.833	0.833	1	0.001	0.000833	0.000833
B20	Onsite	D-B20-5.0-5.5	30-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.175		0.175	0.175	1	1	0.175	0.175
B20	Onsite	D-B20-5.0-5.5	30-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.08		1.08	1.08	1	0.1	0.108	0.108
B20	Onsite	D-B20-5.0-5.5			BaP TEQ									1.83	1.83
B20	Onsite	D-B20-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0261		0.0261	0.0261	1	0.1	0.00261	0.00261
B20	Onsite	D-B20-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0401		0.0401	0.0401	1	1	0.0401	0.0401
B20	Onsite	D-B20-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.076		0.076	0.076	1	0.1	0.0076	0.0076
B20	Onsite	D-B20-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0181		0.0181	0.0181	1	0.01	0.000181	0.000181
B20	Onsite	D-B20-7.5-8.0	02-Nov-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.037		0.037	0.037	1	0.001	0.000037	0.000037
B20	Onsite	D-B20-7.5-8.0	02-Nov-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00541		0.00541	0.00541	1	1	0.00541	0.00541
B20	Onsite	D-B20-7.5-8.0	02-Nov-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0218		0.0218	0.0218	1	0.1	0.00218	0.00218

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B20	Onsite	D-B20-7.5-8.0			BaP TEQ									0.06	0.06
B20	Onsite	D-B20-9.5-10.0	02-Nov-19	9.5-10.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0151		0.0151	0.0151	1	0.1	0.00151	0.00151
B20	Onsite	D-B20-9.5-10.0	02-Nov-19	9.5-10.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0227		0.0227	0.0227	1	1	0.0227	0.0227
B20	Onsite	D-B20-9.5-10.0	02-Nov-19	9.5-10.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0347		0.0347	0.0347	1	0.1	0.00347	0.00347
B20	Onsite	D-B20-9.5-10.0	02-Nov-19	9.5-10.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0107		0.0107	0.0107	1	0.01	0.000107	0.000107
B20	Onsite	D-B20-9.5-10.0	02-Nov-19	9.5-10.0	Chrysene	218-01-9	mg/kg	0.0203		0.0203	0.0203	1	0.001	0.0000203	0.0000203
B20	Onsite	D-B20-9.5-10.0	02-Nov-19	9.5-10.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B20	Onsite	D-B20-9.5-10.0	02-Nov-19	9.5-10.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0142		0.0142	0.0142	1	0.1	0.00142	0.00142
B20	Onsite	D-B20-9.5-10.0			BaP TEQ						0			0.03	0.03
B20	Onsite	D-FD01-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.176		0.176	0.176	1	0.1	0.0176	0.0176
B20	Onsite	D-FD01-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.309		0.309	0.309	1	1	0.309	0.309
B20	Onsite	D-FD01-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.4		0.4	0.4	1	0.1	0.04	0.04
B20	Onsite	D-FD01-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.105		0.105	0.105	1	0.01	0.00105	0.00105
B20	Onsite	D-FD01-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.233		0.233	0.233	1	0.001	0.000233	0.000233
B20	Onsite	D-FD01-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B20	Onsite	D-FD01-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.181		0.181	0.181	1	0.1	0.0181	0.0181
B20	Onsite	D-FD01-102719			BaP TEQ									0.39	0.39
B21	Onsite	D-B21-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.00832	U	0	0.00416	0	0.1	0.000416	0
B21	Onsite	D-B21-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.00832	U	0	0.00416	0	1	0.00416	0
B21	Onsite	D-B21-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0135		0.0135	0.0135	1	0.1	0.00135	0.00135
B21	Onsite	D-B21-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00832	U	0	0.00416	0	0.01	0.0000416	0
B21	Onsite	D-B21-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.00832	U	0	0.00416	0	0.001	0.00000416	0
B21	Onsite	D-B21-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00832	U	0	0.00416	0	1	0.00416	0
B21	Onsite	D-B21-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00832	U	0	0.00416	0	0.1	0.000416	0
B21	Onsite	D-B21-0-102719			BaP TEQ									0.01	0.00
B21	Onsite	D-B21-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	1.5		1.5	1.5	1	0.1	0.15	0.15
B21	Onsite	D-B21-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	2.78		2.78	2.78	1	1	2.78	2.78
B21	Onsite	D-B21-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	3.04		3.04	3.04	1	0.1	0.304	0.304
B21	Onsite	D-B21-10.0-10.5	01-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.792		0.792	0.792	1	0.01	0.00792	0.00792
B21	Onsite	D-B21-10.0-10.5	01-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	1.87		1.87	1.87	1	0.001	0.00187	0.00187
B21	Onsite	D-B21-10.0-10.5	01-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B21	Onsite	D-B21-10.0-10.5	01-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.88		1.88	1.88	1	0.1	0.188	0.188
B21	Onsite	D-B21-10.0-10.5			BaP TEQ									3.45	3.43
B21	Onsite	D-B21-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	6.24		6.24	6.24	1	0.1	0.624	0.624
B21	Onsite	D-B21-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	11.8		11.8	11.8	1	1	11.8	11.8
B21	Onsite	D-B21-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	12.3		12.3	12.3	1	0.1	1.23	1.23
B21	Onsite	D-B21-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	3.69		3.69	3.69	1	0.01	0.0369	0.0369
B21	Onsite	D-B21-2.5-3.0	01-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	8.25		8.25	8.25	1	0.001	0.00825	0.00825
B21	Onsite	D-B21-2.5-3.0	01-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0334	U	0	0.0167	0	1	0.0167	0
B21	Onsite	D-B21-2.5-3.0	01-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	7.56		7.56	7.56	1	0.1	0.756	0.756

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result		I	BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B21	Onsite	D-B21-2.5-3.0			BaP TEQ									14.47	14.46
B21	Onsite	D-B21-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0863		0.0863	0.0863	1	0.1	0.00863	0.00863
B21	Onsite	D-B21-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.154		0.154	0.154	1	1	0.154	0.154
B21	Onsite	D-B21-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.164		0.164	0.164	1	0.1	0.0164	0.0164
B21	Onsite	D-B21-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.051		0.051	0.051	1	0.01	0.00051	0.00051
B21	Onsite	D-B21-5.0-5.5	01-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.101		0.101	0.101	1	0.001	0.000101	0.000101
B21	Onsite	D-B21-5.0-5.5	01-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B21	Onsite	D-B21-5.0-5.5	01-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.101		0.101	0.101	1	0.1	0.0101	0.0101
B21	Onsite	D-B21-5.0-5.5			BaP TEQ									0.21	0.19
B21	Onsite	D-B21-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	1.51		1.51	1.51	1	0.1	0.151	0.151
B21	Onsite	D-B21-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	2.84		2.84	2.84	1	1	2.84	2.84
B21	Onsite	D-B21-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	3.16		3.16	3.16	1	0.1	0.316	0.316
B21	Onsite	D-B21-7.5-8.0	01-Nov-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.78		0.78	0.78	1	0.01	0.0078	0.0078
B21	Onsite	D-B21-7.5-8.0	01-Nov-19	7.5-8.0	Chrysene	218-01-9	mg/kg	1.91		1.91	1.91	1	0.001	0.00191	0.00191
B21	Onsite	D-B21-7.5-8.0	01-Nov-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0332	U	0	0.0166	0	1	0.0166	0
B21	Onsite	D-B21-7.5-8.0	01-Nov-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.95		1.95	1.95	1	0.1	0.195	0.195
B21	Onsite	D-B21-7.5-8.0			BaP TEQ									3.53	3.51
B21	Onsite	D-FD02-110119	01-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	4.91		4.91	4.91	1	0.1	0.491	0.491
B21	Onsite	D-FD02-110119	01-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	9.38		9.38	9.38	1	1	9.38	9.38
B21	Onsite	D-FD02-110119	01-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	9.84		9.84	9.84	1	0.1	0.984	0.984
B21	Onsite	D-FD02-110119	01-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	2.44		2.44	2.44	1	0.01	0.0244	0.0244
B21	Onsite	D-FD02-110119	01-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	6.3		6.3	6.3	1	0.001	0.0063	0.0063
B21	Onsite	D-FD02-110119	01-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B21	Onsite	D-FD02-110119	01-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	5.88		5.88	5.88	1	0.1	0.588	0.588
B21	Onsite	D-FD02-110119			BaP TEQ									11.49	11.47
B23	Onsite	D-B23-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.116		0.116	0.116	1	0.1	0.0116	0.0116
B23	Onsite	D-B23-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.19		0.19	0.19	1	1	0.19	0.19
B23	Onsite	D-B23-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.273		0.273	0.273	1	0.1	0.0273	0.0273
B23	Onsite	D-B23-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0821		0.0821	0.0821	1	0.01	0.000821	0.000821
B23	Onsite	D-B23-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.149		0.149	0.149	1	0.001	0.000149	0.000149
B23	Onsite	D-B23-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00833	U	0	0.004165	0	1	0.004165	0
B23	Onsite	D-B23-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0881		0.0881	0.0881	1	0.1	0.00881	0.00881
B23	Onsite	D-B23-0-102719			BaP TEQ									0.24	0.24
B23	Onsite	D-B23-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00635	J	0.00635	0.00635	1	0.1	0.000635	0.000635
B23	Onsite	D-B23-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0133	J	0.0133	0.0133	1	1	0.0133	0.0133
B23	Onsite	D-B23-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0148	J	0.0148	0.0148	1	0.1	0.00148	0.00148
B23	Onsite	D-B23-5.0-5.5	31-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00424		0.00424	0.00424	1	0.01	0.0000424	0.0000424
B23	Onsite	D-B23-5.0-5.5	31-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00828	J	0.00828	0.00828	1	0.001	0.00000828	0.00000828
B23	Onsite	D-B23-5.0-5.5	31-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B23	Onsite	D-B23-5.0-5.5	31-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0125	J	0.0125	0.0125	1	0.1	0.00125	0.00125

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B23	Onsite	D-B23-5.0-5.5			BaP TEQ									0.02	0.02
B23	Onsite	D-B23-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B23	Onsite	D-B23-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00222		0.00222	0.00222	1	1	0.00222	0.00222
B23	Onsite	D-B23-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00248		0.00248	0.00248	1	0.1	0.000248	0.000248
B23	Onsite	D-B23-7.5-8.0	31-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B23	Onsite	D-B23-7.5-8.0	31-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B23	Onsite	D-B23-7.5-8.0	31-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B23	Onsite	D-B23-7.5-8.0	31-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00187		0.00187	0.00187	1	0.1	0.000187	0.000187
B23	Onsite	D-B23-7.5-8.0			BaP TEQ									0.004	0.003
B23	Onsite	D-B23-9.5-10.0	31-Oct-19	9.5-10.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00314		0.00314	0.00314	1	0.1	0.000314	0.000314
B23	Onsite	D-B23-9.5-10.0	31-Oct-19	9.5-10.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00579		0.00579	0.00579	1	1	0.00579	0.00579
B23	Onsite	D-B23-9.5-10.0	31-Oct-19	9.5-10.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00713		0.00713	0.00713	1	0.1	0.000713	0.000713
B23	Onsite	D-B23-9.5-10.0	31-Oct-19	9.5-10.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00175		0.00175	0.00175	1	0.01	0.0000175	0.0000175
B23	Onsite	D-B23-9.5-10.0	31-Oct-19	9.5-10.0	Chrysene	218-01-9	mg/kg	0.00392		0.00392	0.00392	1	0.001	0.00000392	0.00000392
B23	Onsite	D-B23-9.5-10.0	31-Oct-19	9.5-10.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B23	Onsite	D-B23-9.5-10.0	31-Oct-19	9.5-10.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00523		0.00523	0.00523	1	0.1	0.000523	0.000523
B23	Onsite	D-B23-9.5-10.0			BaP TEQ									0.01	0.01
B24	Onsite	D-FD03-103119	31-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.206	J	0.206	0.206	1	0.1	0.0206	0.0206
B24	Onsite	D-FD03-103119	31-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.322		0.322	0.322	1	1	0.322	0.322
B24	Onsite	D-FD03-103119	31-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.39		0.39	0.39	1	0.1	0.039	0.039
B24	Onsite	D-FD03-103119	31-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0828		0.0828	0.0828	1	0.01	0.000828	0.000828
B24	Onsite	D-FD03-103119	31-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.243	J	0.243	0.243	1	0.001	0.000243	0.000243
B24	Onsite	D-FD03-103119	31-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B24	Onsite	D-FD03-103119	31-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.244		0.244	0.244	1	0.1	0.0244	0.0244
B24	Onsite	D-FD03-103119			BaP TEQ									0.42	0.41
B24	Onsite	D-B24-0-102719	28-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.394		0.394	0.394	1	0.1	0.0394	0.0394
B24	Onsite	D-B24-0-102719	28-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.814		0.814	0.814	1	1	0.814	0.814
B24	Onsite	D-B24-0-102719	28-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.898		0.898	0.898	1	0.1	0.0898	0.0898
B24	Onsite	D-B24-0-102719	28-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.274		0.274	0.274	1	0.01	0.00274	0.00274
B24	Onsite	D-B24-0-102719	28-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.523		0.523	0.523	1	0.001	0.000523	0.000523
B24	Onsite	D-B24-0-102719	28-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00333	U	0	0.001665	0	1	0.001665	0
B24	Onsite	D-B24-0-102719	28-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.369		0.369	0.369	1	0.1	0.0369	0.0369
B24	Onsite	D-B24-0-102719			BaP TEQ									0.99	0.98
B24	Onsite	D-B24-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.538		0.538	0.538	1	0.1	0.0538	0.0538
B24	Onsite	D-B24-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	1.22		1.22	1.22	1	1	1.22	1.22
B24	Onsite	D-B24-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	1.24		1.24	1.24	1	0.1	0.124	0.124
B24	Onsite	D-B24-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.341		0.341	0.341	1	0.01	0.00341	0.00341
B24	Onsite	D-B24-10.0-10.5	30-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.73		0.73	0.73	1	0.001	0.00073	0.00073
B24	Onsite	D-B24-10.0-10.5	30-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0334	U	0	0.0167	0	1	0.0167	0
B24	Onsite	D-B24-10.0-10.5	30-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.958		0.958	0.958	1	0.1	0.0958	0.0958

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B24	Onsite	D-B24-10.0-10.5			BaP TEQ									1.51	1.50
B24	Onsite	D-B24-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0102		0.0102	0.0102	1	0.1	0.00102	0.00102
B24	Onsite	D-B24-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0233		0.0233	0.0233	1	1	0.0233	0.0233
B24	Onsite	D-B24-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0232		0.0232	0.0232	1	0.1	0.00232	0.00232
B24	Onsite	D-B24-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00672		0.00672	0.00672	1	0.01	0.0000672	0.0000672
B24	Onsite	D-B24-2.5-3.0	30-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.0134		0.0134	0.0134	1	0.001	0.0000134	0.0000134
B24	Onsite	D-B24-2.5-3.0	30-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B24	Onsite	D-B24-2.5-3.0	30-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0178		0.0178	0.0178	1	0.1	0.00178	0.00178
B24	Onsite	D-B24-2.5-3.0			BaP TEQ									0.03	0.03
B24	Onsite	D-B24-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.063		0.063	0.063	1	0.1	0.0063	0.0063
B24	Onsite	D-B24-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.15		0.15	0.15	1	1	0.15	0.15
B24	Onsite	D-B24-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.147		0.147	0.147	1	0.1	0.0147	0.0147
B24	Onsite	D-B24-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0434		0.0434	0.0434	1	0.01	0.000434	0.000434
B24	Onsite	D-B24-5.0-5.5	30-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.0875		0.0875	0.0875	1	0.001	0.0000875	0.0000875
B24	Onsite	D-B24-5.0-5.5	30-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B24	Onsite	D-B24-5.0-5.5	30-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.108		0.108	0.108	1	0.1	0.0108	0.0108
B24	Onsite	D-B24-5.0-5.5			BaP TEQ									0.18	0.18
B24	Onsite	D-B24-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.491		0.491	0.491	1	0.1	0.0491	0.0491
B24	Onsite	D-B24-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	1.18		1.18	1.18	1	1	1.18	1.18
B24	Onsite	D-B24-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	1.24		1.24	1.24	1	0.1	0.124	0.124
B24	Onsite	D-B24-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.308		0.308	0.308	1	0.01	0.00308	0.00308
B24	Onsite	D-B24-7.5-8.0	30-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.707		0.707	0.707	1	0.001	0.000707	0.000707
B24	Onsite	D-B24-7.5-8.0	30-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B24	Onsite	D-B24-7.5-8.0	30-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.801		0.801	0.801	1	0.1	0.0801	0.0801
B24	Onsite	D-B24-7.5-8.0			BaP TEQ									1.45	1.44
B25	Onsite	D-B25-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.372		0.372	0.372	1	0.1	0.0372	0.0372
B25	Onsite	D-B25-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.626		0.626	0.626	1	1	0.626	0.626
B25	Onsite	D-B25-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.84		0.84	0.84	1	0.1	0.084	0.084
B25	Onsite	D-B25-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.223		0.223	0.223	1	0.01	0.00223	0.00223
B25	Onsite	D-B25-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.469		0.469	0.469	1	0.001	0.000469	0.000469
B25	Onsite	D-B25-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00832	U	0	0.00416	0	1	0.00416	0
B25	Onsite	D-B25-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.346		0.346	0.346	1	0.1	0.0346	0.0346
B25	Onsite	D-B25-0-102719			BaP TEQ									0.79	0.78
B25	Onsite	D-B25-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B25	Onsite	D-B25-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B25	Onsite	D-B25-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B25	Onsite	D-B25-10.0-10.5	31-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B25	Onsite	D-B25-10.0-10.5	31-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B25	Onsite	D-B25-10.0-10.5	31-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B25	Onsite	D-B25-10.0-10.5	31-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

						2001		Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location B25	Area Onsite	Sample ID D-B25-10.0-10.5	Sample Date	Top Depth	Analyte BaP TEQ	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg) 0.002	(mg/kg) 0.00
B25		D-B25-2.5-3.0	30-Oct-19	2.5-3.0	•	56-55-3	ma a /lea	0.00274		0.00274	0.00274	1	0.1	0.002	0.000274
B25	Onsite	D-B25-2.5-3.0 D-B25-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)anthracene		mg/kg	0.00274		0.00274			0.1		0.000274
B25	Onsite	D-B25-2.5-3.0 D-B25-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8 205-99-2	mg/kg	0.00537		0.00357	0.00357	1	1	0.00357	-
B25	Onsite	D-B25-2.5-3.0 D-B25-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(b)fluoranthene		mg/kg	0.00331	IJ	0.00531	0.00531	0	0.1	0.000531	0.000531
B25	Onsite	D-B25-2.5-3.0 D-B25-2.5-3.0	30-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00107	U		0.000835 0.0032		0.01	0.00000835 0.0000032	
	Onsite	D-B25-2.5-3.0 D-B25-2.5-3.0		2.5-3.0	Chrysene	218-01-9	mg/kg			0.0032		1	0.001		0.0000032
B25 B25	Onsite	D-B25-2.5-3.0 D-B25-2.5-3.0	30-Oct-19 30-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167 0.0025	U	0 0.0025	0.000835	0	1	0.000835	0 00025
<u> </u>	Onsite	D-B25-2.5-3.0	30-001-13	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0023		0.0025	0.0025	1	0.1	0.00025	0.00025 0.00
B25	Onsite	D-B25-2.5-3.0 D-B25-5.0-5.5	30-Oct-19	F 0 F F	BaP TEQ	56.55.3	/1	0.00204	-	0.00204	0.00304	1	0.4	0.01	
B25	Onsite		30-Oct-19 30-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00294		0.00294	0.00294	1	0.1	0.000294	0.000294
B25	Onsite	D-B25-5.0-5.5		5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00501		0.00501	0.00501	1	1	0.00501	0.00501
B25	Onsite	D-B25-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0068	ļ.,	0.0068	0.0068	1	0.1	0.00068	0.00068
B25	Onsite	D-B25-5.0-5.5	30-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B25	Onsite	D-B25-5.0-5.5	30-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00407	 	0.00407	0.00407	1	0.001	0.00000407	0.00000407
B25 B25	Onsite	D-B25-5.0-5.5 D-B25-5.0-5.5	30-Oct-19 30-Oct-19	5.0-5.5 5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167 0.00452	U	0	0.000835	0	1	0.000835	0
	Onsite		30-001-19	3.0-3.3	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00432		0.00452	0.00452	1	0.1	0.000452	0.000452
B25	Onsite	D-B25-5.0-5.5	22.2 : 12	7.5.0.0	BaP TEQ			0.00005						0.01	0.01
B25	Onsite	D-B25-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00205	<u> </u>	0.00205	0.00205	1	0.1	0.000205	0.000205
B25	Onsite	D-B25-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00301		0.00301	0.00301	1	1	0.00301	0.00301
B25	Onsite	D-B25-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00432		0.00432	0.00432	1	0.1	0.000432	0.000432
B25	Onsite	D-B25-7.5-8.0	30-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B25	Onsite	D-B25-7.5-8.0	30-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.00258		0.00258	0.00258	1	0.001	0.00000258	0.00000258
B25	Onsite	D-B25-7.5-8.0	30-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B25	Onsite	D-B25-7.5-8.0	30-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00286		0.00286	0.00286	1	0.1	0.000286	0.000286
B25	Onsite	D-B25-7.5-8.0			BaP TEQ									0.005	0.004
B26	Onsite	D-B26-0-102719	28-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.036		0.036	0.036	1	0.1	0.0036	0.0036
B26	Onsite	D-B26-0-102719	28-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0755		0.0755	0.0755	1	1	0.0755	0.0755
B26	Onsite	D-B26-0-102719	28-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.106		0.106	0.106	1	0.1	0.0106	0.0106
B26	Onsite	D-B26-0-102719	28-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0289		0.0289	0.0289	1	0.01	0.000289	0.000289
B26	Onsite	D-B26-0-102719	28-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0479		0.0479	0.0479	1	0.001	0.0000479	0.0000479
B26	Onsite	D-B26-0-102719	28-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00334	U	0	0.00167	0	1	0.00167	0
B26	Onsite	D-B26-0-102719	28-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0417		0.0417	0.0417	1	0.1	0.00417	0.00417
B26	Onsite	D-B26-0-102719			BaP TEQ									0.10	0.09
B26	Onsite	D-B26-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00834	U	0	0.00417	0	0.1	0.000417	0
B26	Onsite	D-B26-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0107		0.0107	0.0107	1	1	0.0107	0.0107
B26	Onsite	D-B26-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0163		0.0163	0.0163	1	0.1	0.00163	0.00163
B26	Onsite	D-B26-10.0-10.5	02-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00834	U	0	0.00417	0	0.01	0.0000417	0
B26	Onsite	D-B26-10.0-10.5	02-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.00933		0.00933	0.00933	1	0.001	0.00000933	0.00000933
B26	Onsite	D-B26-10.0-10.5	02-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00834	U	0	0.00417	0	1	0.00417	0
B26	Onsite	D-B26-10.0-10.5	02-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0102		0.0102	0.0102	1	0.1	0.00102	0.00102

Attachment 6
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B26	Onsite	D-B26-10.0-10.5			BaP TEQ					, 0, 0,	, 0, 0,			0.02	0.01
B26	Onsite	D-B26-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00264		0.00264	0.00264	1	0.1	0.000264	0.000264
B26	Onsite	D-B26-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00395		0.00395	0.00395	1	1	0.00395	0.00395
B26	Onsite	D-B26-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00455		0.00455	0.00455	1	0.1	0.000455	0.000455
B26	Onsite	D-B26-2.5-3.0	01-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B26	Onsite	D-B26-2.5-3.0	01-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.00307		0.00307	0.00307	1	0.001	0.00000307	0.00000307
B26	Onsite	D-B26-2.5-3.0	01-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-2.5-3.0	01-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0035		0.0035	0.0035	1	0.1	0.00035	0.00035
B26	Onsite	D-B26-2.5-3.0			BaP TEQ									0.01	0.01
B26	Onsite	D-B26-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00177		0.00177	0.00177	1	0.1	0.000177	0.000177
B26	Onsite	D-B26-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00299		0.00299	0.00299	1	1	0.00299	0.00299
B26	Onsite	D-B26-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.004		0.004	0.004	1	0.1	0.0004	0.0004
B26	Onsite	D-B26-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B26	Onsite	D-B26-5.0-5.5	01-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00231		0.00231	0.00231	1	0.001	0.00000231	0.00000231
B26	Onsite	D-B26-5.0-5.5	01-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-5.0-5.5	01-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00299		0.00299	0.00299	1	0.1	0.000299	0.000299
B26	Onsite	D-B26-5.0-5.5			BaP TEQ									0.005	0.004
B26	Onsite	D-B26-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-7.5-8.0	02-Nov-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B26	Onsite	D-B26-7.5-8.0	02-Nov-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B26	Onsite	D-B26-7.5-8.0	02-Nov-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-7.5-8.0	02-Nov-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-7.5-8.0			BaP TEQ									0.002	0.00
B26	Onsite	D-FD05-110119	01-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-FD05-110119	01-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-FD05-110119	01-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-FD05-110119	01-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B26	Onsite	D-FD05-110119	01-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B26	Onsite	D-FD05-110119	01-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-FD05-110119	01-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-FD05-110119			BaP TEQ									0.002	0.00

Notes:

BaP TEQ = Benzo(a)pyrene toxicity equivalent

U = nondetect

UJ = nondetect estimated

J = detect estimated concentration

RL = reporting limit

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Posulta		Result	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	Results (mg/kg)	Flag	[U/UJ=0] (mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	[U/UJ=0] (mg/kg)
B18	Background (Offsite)	D-B18-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0425	1148	0.0425	0.0425	1	0.1	0.00425	0.00425
B18	Background (Offsite)	D-B18-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0583		0.0583	0.0583	1	1	0.0583	0.0583
B18	Background (Offsite)	D-B18-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0912		0.0912	0.0912	1	0.1	0.00912	0.00912
B18	Background (Offsite)	D-B18-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0261		0.0261	0.0312	1	0.01	0.000261	0.000261
B18	Background (Offsite)	D-B18-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0591		0.0591	0.0591	1	0.001	0.000201	0.000201
B18	Background (Offsite)	D-B18-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00834	11	0.0331	0.00417	0	1	0.00417	0.0000331
B18	Background (Offsite)	D-B18-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0326		0.0326	0.0326	1	0.1	0.00326	0.00326
B18	Background (Offsite)	D-B18-0-102719			BaP TEQ	133 33 3	1116/116	0.000		0.0320	0.0320		0.1	0.08	0.00320
B18		D-B18-10.0-10.5	05-Nov-19	10.0-10.5	*	FC FF 2	m = /les	0.00166	11	0	0.00083	0	0.1		0.08
B18	Background (Offsite)	D-B18-10.0-10.5	05-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B18	Background (Offsite)	D-B18-10.0-10.5	05-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U II	_	0.00083		_	0.00083	
B18	Background (Offsite)	D-B18-10.0-10.5		10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
	Background (Offsite)		05-Nov-19		Benzo(k)fluoranthene	207-08-9	mg/kg		U	0	0.00083	0	0.01	0.0000083	0
B18	Background (Offsite)	D-B18-10.0-10.5	05-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.00166	U 	0	0.00083	0	0.001	0.00000083	0
B18 B18	Background (Offsite)	D-B18-10.0-10.5 D-B18-10.0-10.5	05-Nov-19 05-Nov-19	10.0-10.5 10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166 0.00166	U	0	0.00083	0	1	0.00083	0
	Background (Offsite)		03-1107-13	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00100	U	0	0.00083	0	0.1	0.000083	0
B18	Background (Offsite)	D-B18-10.0-10.5	20.0	0.5.00	BaP TEQ			2 22-2						0.002	0.00
B18	Background (Offsite)	D-B18-2.0-2.5	28-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0276		0.0276	0.0276	1	0.1	0.00276	0.00276
B18	Background (Offsite)	D-B18-2.0-2.5	28-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0474		0.0474	0.0474	1	1	0.0474	0.0474
B18	Background (Offsite)	D-B18-2.0-2.5	28-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0698		0.0698	0.0698	1	0.1	0.00698	0.00698
B18	Background (Offsite)	D-B18-2.0-2.5	28-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.019		0.019	0.019	1	0.01	0.00019	0.00019
B18	Background (Offsite)	D-B18-2.0-2.5	28-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.0356		0.0356	0.0356	1	0.001	0.0000356	0.0000356
B18	Background (Offsite)	D-B18-2.0-2.5	28-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00334	U	0	0.00167	0	1	0.00167	0
B18	Background (Offsite)	D-B18-2.0-2.5	28-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0218		0.0218	0.0218	1	0.1	0.00218	0.00218
B18	Background (Offsite)	D-B18-2.0-2.5			BaP TEQ									0.06	0.06
B18	Background (Offsite)	D-B18-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0643	J	0.0643	0.0643	1	0.1	0.00643	0.00643
B18	Background (Offsite)	D-B18-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.115	J	0.115	0.115	1	1	0.115	0.115
B18	Background (Offsite)	D-B18-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.179	J	0.179	0.179	1	0.1	0.0179	0.0179
B18	Background (Offsite)	D-B18-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0389	J	0.0389	0.0389	1	0.01	0.000389	0.000389
B18	Background (Offsite)	D-B18-5.0-5.5	28-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.0865	J	0.0865	0.0865	1	0.001	0.0000865	0.0000865
B18	Background (Offsite)	D-B18-5.0-5.5	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00333	U	0	0.001665	0	1	0.001665	0
B18	Background (Offsite)	D-B18-5.0-5.5	28-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0541	J	0.0541	0.0541	1	0.1	0.00541	0.00541
B18	Background (Offsite)	D-B18-5.0-5.5			BaP TEQ									0.15	0.15
B18	Background (Offsite)	D-B18-7.0-7.5	28-Oct-19	7.0-7.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0195		0.0195	0.0195	1	0.1	0.00195	0.00195
B18	Background (Offsite)	D-B18-7.0-7.5	28-Oct-19	7.0-7.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0353		0.0353	0.0353	1	1	0.0353	0.0353
B18	Background (Offsite)	D-B18-7.0-7.5	28-Oct-19	7.0-7.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0528		0.0528	0.0528	1	0.1	0.00528	0.00528
B18	Background (Offsite)	D-B18-7.0-7.5	28-Oct-19	7.0-7.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0151		0.0151	0.0151	1	0.01	0.000151	0.000151
B18	Background (Offsite)	D-B18-7.0-7.5	28-Oct-19	7.0-7.5	Chrysene	218-01-9	mg/kg	0.025		0.025	0.025	1	0.001	0.000025	0.000025
B18	Background (Offsite)	D-B18-7.0-7.5	28-Oct-19	7.0-7.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B18	Background (Offsite)	D-B18-7.0-7.5	28-Oct-19	7.0-7.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0169		0.0169	0.0169	1	0.1	0.00169	0.00169
B18	Background (Offsite)	D-B18-7.0-7.5			BaP TEQ									0.05	0.04
B18	Background (Offsite)	D-FD03-102819	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00597	J	0.00597	0.00597	1	0.1	0.000597	0.000597
B18	Background (Offsite)	D-FD03-102819	28-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0106	J	0.0106	0.0106	1	1	0.0106	0.0106
B18	Background (Offsite)	D-FD03-102819	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0149	J	0.0149	0.0149	1	0.1	0.00149	0.00149

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Samula Location	Avos	Sample ID	Samula Data	Ton Donth	Analyte	CAS#	Units	Results (mg/kg)	Flag	Result [U/UJ=0] (mg/kg)	Result [U/UJ=1/2RL] (mg/kg)	Detect	RPF	BAP TEQ [U/UJ=1/2RL] (mg/kg)	BAP TEQ [U/UJ=0] (mg/kg)
Sample Location B18	Area Packground (Offsita)	D-FD03-102819	Sample Date 28-Oct-19	Top Depth 5.0-5.5	Analyte Benzo(k)fluoranthene	207-08-9		0.00427	riag	0.00427	0.00427	1	0.01	0.0000427	0.0000427
B18	Background (Offsite) Background (Offsite)	D-FD03-102819	28-Oct-19	5.0-5.5	, ,	218-01-9	mg/kg	0.00427	J	0.00427	0.00427	1	0.01	0.0000427	0.0000427
B18		D-FD03-102819	28-Oct-19	5.0-5.5	Chrysene		mg/kg	0.00728	J	0.00728	0.00728	0			0.00000728 0
B18	Background (Offsite) Background (Offsite)	D-FD03-102819	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene	53-70-3 193-39-5	mg/kg mg/kg	0.00100	ı	0.00495	0.00083	1	0.1	0.00083 0.000495	0.000495
			20 000 13	3.0 3.3		193-39-3	Hig/ kg	0.00433	J	0.00495	0.00495	1	0.1		
B18	Background (Offsite)	D-FD03-102819 D-B22-0-102719	37 Oct 10	0.0	BaP TEQ	56.55.3	/1	0.000		0.0000	0.0500		0.4	0.01	0.01
B22	Background (Offsite)		27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0688		0.0688	0.0688	1	0.1	0.00688	0.00688
B22	Background (Offsite)	D-B22-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.101		0.101	0.101	1	1	0.101	0.101
B22	Background (Offsite)	D-B22-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.154		0.154	0.154	1	0.1	0.0154	0.0154
B22	Background (Offsite)	D-B22-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0454		0.0454	0.0454	1	0.01	0.000454	0.000454
B22	Background (Offsite)	D-B22-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0859		0.0859	0.0859	1	0.001	0.0000859	0.0000859
B22	Background (Offsite)	D-B22-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00832	U	0	0.00416	0	1	0.00416	0
B22	Background (Offsite)	D-B22-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0522		0.0522	0.0522	1	0.1	0.00522	0.00522
B22	Background (Offsite)	D-B22-0-102719			BaP TEQ									0.13	0.13
B22	Background (Offsite)	D-B22-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B22	Background (Offsite)	D-B22-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B22	Background (Offsite)	D-B22-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B22	Background (Offsite)	D-B22-2.5-3.0	29-Oct-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B22	Background (Offsite)	D-B22-2.5-3.0	29-Oct-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B22	Background (Offsite)	D-B22-2.5-3.0	29-Oct-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B22	Background (Offsite)	D-B22-2.5-3.0	29-Oct-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B22	Background (Offsite)	D-B22-2.5-3.0			BaP TEQ									0.002	0.00
B22	Background (Offsite)	D-B22-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0199		0.0199	0.0199	1	0.1	0.00199	0.00199
B22	Background (Offsite)	D-B22-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0248		0.0248	0.0248	1	1	0.0248	0.0248
B22	Background (Offsite)	D-B22-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0379		0.0379	0.0379	1	0.1	0.00379	0.00379
B22	Background (Offsite)	D-B22-7.5-8.0	29-Oct-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0122		0.0122	0.0122	1	0.01	0.000122	0.000122
B22	Background (Offsite)	D-B22-7.5-8.0	29-Oct-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.0253		0.0253	0.0253	1	0.001	0.0000253	0.0000253
B22	Background (Offsite)	D-B22-7.5-8.0	29-Oct-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B22	Background (Offsite)	D-B22-7.5-8.0	29-Oct-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0143		0.0143	0.0143	1	0.1	0.00143	0.00143
B22	Background (Offsite)	D-B22-7.5-8.0			BaP TEQ									0.03	0.03
B27	Background (Offsite)	D-B27-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B27	Background (Offsite)	D-B27-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0021		0.0021	0.0021	1	1	0.0021	0.0021
B27	Background (Offsite)	D-B27-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00294		0.00294	0.00294	1	0.1	0.000294	0.000294
B27	Background (Offsite)	D-B27-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B27	Background (Offsite)	D-B27-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.00178		0.00178	0.00178	1	0.001	0.00000178	0.00000178
B27	Background (Offsite)	D-B27-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	IJ	0	0.00083	0	1	0.00083	0
B27	Background (Offsite)	D-B27-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0018	Ť	0.0018	0.0018	1	0.1	0.00018	0.00018
B27	Background (Offsite)	D-B27-0-102719			BaP TEQ		-01 10				2,0020			0.003	0.003
B27	Background (Offsite)	D-B27-10.0-10.5	03-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0.003
B27	Background (Offsite)	D-B27-10.0-10.5	03-Nov-19	10.0-10.5	Benzo(a)pyrene	50-33-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-10.0-10.5	03-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg		U	0	0.000835	0	0.1	0.000835	0
B27	Background (Offsite)	D-B27-10.0-10.5	03-Nov-19	10.0-10.5	Benzo(k)fluoranthene	203-99-2	mg/kg		U	0	0.000835	0		0.0000835	0
B27	Background (Offsite)	D-B27-10.0-10.5	03-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg mg/kg	+	U	0	0.000835	0	0.01 0.001	0.00000835	0
	BACKUCHING ICHTSITAL	In-D71-T0'0-T0'3	1 02-MOA-TA	TO:0-TO:2	ICHIAZEHE	1218-01-9	I IIIR/Kg	0.00107	IU	ı U	U.UUU835	U	I U.UUI	1 し.しししししひろろう	U

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B27	Background (Offsite)	D-B27-10.0-10.5	03-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-10.0-10.5			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-B27-2.5-3.0	03-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-2.5-3.0	03-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-2.5-3.0	03-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-2.5-3.0	03-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-B27-2.5-3.0	03-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)	D-B27-2.5-3.0	03-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-2.5-3.0	03-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-2.5-3.0			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-B27-5.0-5.5	03-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-5.0-5.5	03-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-5.0-5.5	03-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-5.0-5.5	03-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-B27-5.0-5.5	03-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)	D-B27-5.0-5.5	03-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-5.0-5.5	03-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-5.0-5.5			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-B27-7.5-8.0	03-Nov-19	7.5-8.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-7.5-8.0	03-Nov-19	7.5-8.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-7.5-8.0	03-Nov-19	7.5-8.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00184		0.00184	0.00184	1	0.1	0.000184	0.000184
B27	Background (Offsite)	D-B27-7.5-8.0	03-Nov-19	7.5-8.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-B27-7.5-8.0	03-Nov-19	7.5-8.0	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)	D-B27-7.5-8.0	03-Nov-19	7.5-8.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-7.5-8.0	03-Nov-19	7.5-8.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-7.5-8.0			BaP TEQ									0.002	0.0002
B27	Background (Offsite)	D-FD01-110319	03-Nov-19	2.5-3.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B27	Background (Offsite)	D-FD01-110319	03-Nov-19	2.5-3.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B27	Background (Offsite)	D-FD01-110319	03-Nov-19	2.5-3.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B27	Background (Offsite)	D-FD01-110319	03-Nov-19	2.5-3.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B27	Background (Offsite)	D-FD01-110319	03-Nov-19	2.5-3.0	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B27	Background (Offsite)	D-FD01-110319	03-Nov-19	2.5-3.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B27	Background (Offsite)	D-FD01-110319	03-Nov-19	2.5-3.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B27	Background (Offsite)	D-FD01-110319			BaP TEQ									0.002	0.00
B28	Background (Offsite)	D-B28-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0999		0.0999	0.0999	1	0.1	0.00999	0.00999
B28	Background (Offsite)	D-B28-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.116		0.116	0.116	1	1	0.116	0.116
B28	Background (Offsite)	D-B28-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.191		0.191	0.191	1	0.1	0.0191	0.0191
B28	Background (Offsite)	D-B28-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.051		0.051	0.051	1	0.01	0.00051	0.00051
B28	Background (Offsite)	D-B28-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.12		0.12	0.12	1	0.001	0.00012	0.00012
B28	Background (Offsite)	D-B28-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B28	Background (Offsite)	D-B28-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0564		0.0564	0.0564	1	0.1	0.00564	0.00564
B28	Background (Offsite)	D-B28-0-102719			BaP TEQ									0.16	0.15
B28	Background (Offsite)	D-B28-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00165	U	0	0.000825	0	0.1	0.0000825	0

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Danilla		Result	Result			BAP TEQ	BAP TEQ
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	Results (mg/kg)	Flag	[U/UJ=0] (mg/kg)	[U/UJ=1/2RL] (mg/kg)	Detect	RPF	[U/UJ=1/2RL] (mg/kg)	[U/UJ=0] (mg/kg)
B28	Background (Offsite)	D-B28-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00165	II	0	0.000825	0	1	0.000825	(IIIg/ Kg/
B28	Background (Offsite)	D-B28-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00248		0.00248	0.000823	1	0.1	0.000823	0.000248
B28	Background (Offsite)	D-B28-10.0-10.5	29-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00165	U	0.00248	0.00248	0	0.01	0.000248	0.000248
B28	Background (Offsite)	D-B28-10.0-10.5	29-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg		U	0	0.000825	0	0.001	0.00000825	0
B28	Background (Offsite)	D-B28-10.0-10.5	29-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3		0.00165	11	0	0.000825	0	0.001	0.00000825	0
B28	Background (Offsite)	D-B28-10.0-10.5	29-Oct-19	10.0-10.5		193-39-5	mg/kg	0.00165	U	0	0.000825	0	0.1	0.000825	0
			25 000 15	10.0 10.5	Indeno(1,2,3-cd)pyrene	193-39-3	mg/kg	0.00103	U	U	0.000823	U	0.1		Ŭ
B28	Background (Offsite)	D-B28-10.0-10.5	20.0 (1.40	5055	BaP TEQ		/1	0.0404		0.0101	2 2 4 2 4			0.002	0.0002
B28	Background (Offsite)	D-B28-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0104	J	0.0104	0.0104	1	0.1	0.00104	0.00104
B28	Background (Offsite)	D-B28-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0177	J	0.0177	0.0177	1	1	0.0177	0.0177
B28	Background (Offsite)	D-B28-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0291	J	0.0291	0.0291	1	0.1	0.00291	0.00291
B28	Background (Offsite)	D-B28-5.0-5.5	29-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00705	J	0.00705	0.00705	1	0.01	0.0000705	0.0000705
B28	Background (Offsite)	D-B28-5.0-5.5	29-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.0148	J	0.0148	0.0148	1	0.001	0.0000148	0.0000148
B28	Background (Offsite)	D-B28-5.0-5.5	29-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B28	Background (Offsite)	D-B28-5.0-5.5	29-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0158	J	0.0158	0.0158	1	0.1	0.00158	0.00158
B28	Background (Offsite)	D-B28-5.0-5.5			BaP TEQ									0.02	0.02
B28	Background (Offsite)	D-FD03-102919	29-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00596	J	0.00596	0.00596	1	0.1	0.000596	0.000596
B28	Background (Offsite)	D-FD03-102919	29-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00826	J	0.00826	0.00826	1	1	0.00826	0.00826
B28	Background (Offsite)	D-FD03-102919	29-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0119	J	0.0119	0.0119	1	0.1	0.00119	0.00119
B28	Background (Offsite)	D-FD03-102919	29-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00307	J	0.00307	0.00307	1	0.01	0.0000307	0.0000307
B28	Background (Offsite)	D-FD03-102919	29-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00764	J	0.00764	0.00764	1	0.001	0.00000764	0.00000764
B28	Background (Offsite)	D-FD03-102919	29-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B28	Background (Offsite)	D-FD03-102919	29-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00471	J	0.00471	0.00471	1	0.1	0.000471	0.000471
B28	Background (Offsite)	D-FD03-102919			BaP TEQ									0.01	0.01
B29	Background (Offsite)	D-B29-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.287		0.287	0.287	1	0.1	0.0287	0.0287
B29	Background (Offsite)	D-B29-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.392		0.392	0.392	1	1	0.392	0.392
B29	Background (Offsite)	D-B29-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.456		0.456	0.456	1	0.1	0.0456	0.0456
B29	Background (Offsite)	D-B29-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.142		0.142	0.142	1	0.01	0.00142	0.00142
B29	Background (Offsite)	D-B29-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.325		0.325	0.325	1	0.001	0.000325	0.000325
B29	Background (Offsite)	D-B29-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.045		0.045	0.045	1	1	0.045	0.045
B29	Background (Offsite)	D-B29-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.218		0.218	0.218	1	0.1	0.0218	0.0218
B29	Background (Offsite)	D-B29-0-102719			BaP TEQ									0.53	0.53
B29	Background (Offsite)	D-B29-10.0-10.5	07-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00596	J	0.00596	0.00596	1	0.1	0.000596	0.000596
B29	Background (Offsite)	D-B29-10.0-10.5	07-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00735	J	0.00735	0.00735	1	1	0.00735	0.00735
B29	Background (Offsite)	D-B29-10.0-10.5	07-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0102	ı	0.0102	0.0102	1	0.1	0.00102	0.00102
B29	Background (Offsite)	D-B29-10.0-10.5	07-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00267	ı	0.00267	0.00267	1	0.01	0.0000267	0.0000267
B29	Background (Offsite)	D-B29-10.0-10.5	07-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.00635	ı	0.00635	0.00207	1	0.001	0.00000635	0.0000207
B29	Background (Offsite)	D-B29-10.0-10.5	07-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	11	0.00033	0.00033	0	1	0.00083	0.00000033
B29	Background (Offsite)	D-B29-10.0-10.5	07-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00507	ı	0.00507	0.00507	1	0.1	0.00083	0.000507
B29	Background (Offsite)	D-B29-10.0-10.5			BaP TEQ	155 55 5	···6/ \\8		,	0.00007	3.00307		0.1	0.00307	0.000307
B29	Background (Offsite)	D-B29-5.0-5.5	07-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00661		0.00661	0.00661	1	0.1	0.000661	0.000661
B29		D-B29-5.0-5.5		5.0-5.5				0.00081							
	Background (Offsite)		07-Nov-19		Benzo(a)pyrene	50-32-8	mg/kg			0.00983	0.00983	1	1	0.00983	0.00983
B29	Background (Offsite)	D-B29-5.0-5.5	07-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0122	J	0.0122	0.0122	1	0.1	0.00122	0.00122
B29	Background (Offsite)	D-B29-5.0-5.5	07-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00358		0.00358	0.00358	1	0.01	0.0000358	0.0000358

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B29 B29	Background (Offsite)	D-B29-5.0-5.5	07-Nov-19 07-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00777		0.00777	0.00777	1	0.001	0.00000777	0.00000777
B29	Background (Offsite)	D-B29-5.0-5.5 D-B29-5.0-5.5	07-Nov-19	5.0-5.5 5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167 0.00727	U	0 00727	0.000835	0	1	0.000835	0 000727
	Background (Offsite)		07-1100-19	3.0-3.3	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00727		0.00727	0.00727	1	0.1	0.000727	0.000727
B29	Background (Offsite)	D-B29-5.0-5.5	20.0 + 10	0.0	BaP TEQ	56.55.0	/1	0.0225		0.0005	0.0005		0.4	0.01	0.01
B30	Background (Offsite)	D-B30-0-102719	28-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0235		0.0235	0.0235	1	0.1	0.00235	0.00235
B30	Background (Offsite)	D-B30-0-102719	28-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.035		0.035	0.035	1	1	0.035	0.035
B30	Background (Offsite)	D-B30-0-102719	28-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0644		0.0644	0.0644	1	0.1	0.00644	0.00644
B30	Background (Offsite)	D-B30-0-102719	28-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0192		0.0192	0.0192	1	0.01	0.000192	0.000192
B30	Background (Offsite)	D-B30-0-102719	28-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0335		0.0335	0.0335	1	0.001	0.0000335	0.0000335
B30	Background (Offsite)	D-B30-0-102719	28-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00334	U	0	0.00167	0	1	0.00167	0
B30	Background (Offsite)	D-B30-0-102719	28-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0175		0.0175	0.0175	1	0.1	0.00175	0.00175
B30	Background (Offsite)	D-B30-0-102719			BaP TEQ									0.05	0.05
B30	Background (Offsite)	D-B30-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0705		0.0705	0.0705	1	0.1	0.00705	0.00705
B30	Background (Offsite)	D-B30-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.115		0.115	0.115	1	1	0.115	0.115
B30	Background (Offsite)	D-B30-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.147		0.147	0.147	1	0.1	0.0147	0.0147
B30	Background (Offsite)	D-B30-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0405		0.0405	0.0405	1	0.01	0.000405	0.000405
B30	Background (Offsite)	D-B30-10.0-10.5	30-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.0867		0.0867	0.0867	1	0.001	0.0000867	0.0000867
B30	Background (Offsite)	D-B30-10.0-10.5	30-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00835	U	0	0.004175	0	1	0.004175	0
B30	Background (Offsite)	D-B30-10.0-10.5	30-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0795		0.0795	0.0795	1	0.1	0.00795	0.00795
B30	Background (Offsite)	D-B30-10.0-10.5			BaP TEQ									0.15	0.15
B30	Background (Offsite)	D-B30-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0376		0.0376	0.0376	1	0.1	0.00376	0.00376
B30	Background (Offsite)	D-B30-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0672		0.0672	0.0672	1	1	0.0672	0.0672
B30	Background (Offsite)	D-B30-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0795		0.0795	0.0795	1	0.1	0.00795	0.00795
B30	Background (Offsite)	D-B30-5.0-5.5	01-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0232		0.0232	0.0232	1	0.01	0.000232	0.000232
B30	Background (Offsite)	D-B30-5.0-5.5	01-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.0484		0.0484	0.0484	1	0.001	0.0000484	0.0000484
B30	Background (Offsite)	D-B30-5.0-5.5	01-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00833	U	0	0.004165	0	1	0.004165	0
B30	Background (Offsite)	D-B30-5.0-5.5	01-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0536		0.0536	0.0536	1	0.1	0.00536	0.00536
B30	Background (Offsite)	D-B30-5.0-5.5			BaP TEQ									0.09	0.08
B30	Background (Offsite)	D-FD01-110119	01-Nov-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0439		0.0439	0.0439	1	0.1	0.00439	0.00439
B30	Background (Offsite)	D-FD01-110119	01-Nov-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0719		0.0719	0.0719	1	1	0.0719	0.0719
B30	Background (Offsite)	D-FD01-110119	01-Nov-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.116		0.116	0.116	1	0.1	0.0116	0.0116
B30	Background (Offsite)	D-FD01-110119	01-Nov-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0307		0.0307	0.0307	1	0.01	0.000307	0.000307
B30	Background (Offsite)	D-FD01-110119	01-Nov-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.0631		0.0631	0.0631	1	0.001	0.0000631	0.0000631
B30	Background (Offsite)	D-FD01-110119	01-Nov-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00832	U	0	0.00416	0	1	0.00416	0
B30	Background (Offsite)	D-FD01-110119	01-Nov-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0441		0.0441	0.0441	1	0.1	0.00441	0.00441
B30	Background (Offsite)	D-FD01-110119			BaP TEQ									0.10	0.09
B31	Background (Offsite)	D-B31-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0182		0.0182	0.0182	1	0.1	0.00182	0.00182
B31	Background (Offsite)	D-B31-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0216		0.0216	0.0216	1	1	0.0216	0.0216
B31	Background (Offsite)	D-B31-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0355		0.0355	0.0355	1	0.1	0.00355	0.00355
B31	Background (Offsite)	D-B31-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0167	U	0	0.00835	0	0.01	0.0000835	0
B31	Background (Offsite)	D-B31-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0242		0.0242	0.0242	1	0.001	0.0000242	0.0000242
B31	Background (Offsite)	D-B31-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B31	Background (Offsite)	D-B31-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0167	U	0	0.00835	0	0.1	0.000835	0

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B31	Background (Offsite)	D-B31-0-102719			BaP TEQ									0.04	0.03
B31	Background (Offsite)	D-B31-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00207	U	0	0.000835	0	0.1	0.0000835	0
B31	Background (Offsite)	D-B31-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B31	Background (Offsite)	D-B31-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B31	Background (Offsite)	D-B31-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B31	Background (Offsite)	D-B31-10.0-10.5	06-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B31	Background (Offsite)	D-B31-10.0-10.5	06-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B31	Background (Offsite)	D-B31-10.0-10.5	06-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B31	Background (Offsite)	D-B31-10.0-10.5			BaP TEQ									0.002	0.00
B31	Background (Offsite)	D-B31-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.115		0.115	0.115	1	0.1	0.0115	0.0115
B31	Background (Offsite)	D-B31-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.217		0.217	0.217	1	1	0.217	0.217
B31	Background (Offsite)	D-B31-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.274		0.274	0.274	1	0.1	0.0274	0.0274
B31	Background (Offsite)	D-B31-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.081		0.081	0.081	1	0.01	0.00081	0.00081
B31	Background (Offsite)	D-B31-5.0-5.5	28-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.149		0.149	0.149	1	0.001	0.000149	0.000149
B31	Background (Offsite)	D-B31-5.0-5.5	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B31	Background (Offsite)	D-B31-5.0-5.5	28-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0885		0.0885	0.0885	1	0.1	0.00885	0.00885
B31	Background (Offsite)	D-B31-5.0-5.5			BaP TEQ									0.27	0.27
B32	Background (Offsite)	D-B32-0-102719	30-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0233		0.0233	0.0233	1	0.1	0.00233	0.00233
B32	Background (Offsite)	D-B32-0-102719	30-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0319		0.0319	0.0319	1	1	0.0319	0.0319
B32	Background (Offsite)	D-B32-0-102719	30-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0581		0.0581	0.0581	1	0.1	0.00581	0.00581
B32	Background (Offsite)	D-B32-0-102719	30-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0167	U	0	0.00835	0	0.01	0.0000835	0
B32	Background (Offsite)	D-B32-0-102719	30-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0342		0.0342	0.0342	1	0.001	0.0000342	0.0000342
B32	Background (Offsite)	D-B32-0-102719	30-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B32	Background (Offsite)	D-B32-0-102719	30-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0258		0.0258	0.0258	1	0.1	0.00258	0.00258
B32	Background (Offsite)	D-B32-0-102719			BaP TEQ									0.05	0.04
B32	Background (Offsite)	D-B32-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0134		0.0134	0.0134	1	0.1	0.00134	0.00134
B32	Background (Offsite)	D-B32-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0192		0.0192	0.0192	1	1	0.0192	0.0192
B32	Background (Offsite)	D-B32-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0339		0.0339	0.0339	1	0.1	0.00339	0.00339
B32	Background (Offsite)	D-B32-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00799		0.00799	0.00799	1	0.01	0.0000799	0.0000799
B32	Background (Offsite)	D-B32-10.0-10.5	06-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.0176		0.0176	0.0176	1	0.001	0.0000176	0.0000176
B32	Background (Offsite)	D-B32-10.0-10.5	06-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00245		0.00245	0.00245	1	1	0.00245	0.00245
B32	Background (Offsite)	D-B32-10.0-10.5	06-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00987		0.00987	0.00987	1	0.1	0.000987	0.000987
B32	Background (Offsite)	D-B32-10.0-10.5			BaP TEQ									0.03	0.03
B32	Background (Offsite)	D-B32-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00468	J	0.00468	0.00468	1	0.1	0.000468	0.000468
B32	Background (Offsite)	D-B32-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00652	J	0.00652	0.00652	1	1	0.00652	0.00652
B32	Background (Offsite)	D-B32-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0113	J	0.0113	0.0113	1	0.1	0.00113	0.00113
B32	Background (Offsite)	D-B32-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00328	J	0.00328	0.00328	1	0.01	0.0000328	0.0000328
B32	Background (Offsite)	D-B32-5.0-5.5	28-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00657	J	0.00657	0.00657	1	0.001	0.00000657	0.00000657
B32	Background (Offsite)	D-B32-5.0-5.5	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B32	Background (Offsite)	D-B32-5.0-5.5	28-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00278	J	0.00278	0.00278	1	0.1	0.000278	0.000278
B32	Background (Offsite)	D-B32-5.0-5.5			BaP TEQ		<u> </u>							0.01	0.01
B32	Background (Offsite)	B-FD02-102819	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00975	J	0.00975	0.00975	1	0.1	0.000975	0.000975
D32 I															

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B32	Background (Offsite)	B-FD02-102819	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.026	J	0.026	0.026	1	0.1	0.0026	0.0026
B32	Background (Offsite)	B-FD02-102819	28-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00721	J	0.00721	0.00721	1	0.01	0.0000721	0.0000721
B32	Background (Offsite)	B-FD02-102819	28-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.013	J	0.013	0.013	1	0.001	0.000013	0.000013
B32	Background (Offsite)	B-FD02-102819	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B32	Background (Offsite)	B-FD02-102819	28-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00772	J	0.00772	0.00772	1	0.1	0.000772	0.000772
B32	Background (Offsite)	B-FD02-102819			BaP TEQ									0.02	0.02
B33	Background (Offsite)	D-B33-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.00834	U	0	0.00417	0	0.1	0.000417	0
B33	Background (Offsite)	D-B33-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.00972		0.00972	0.00972	1	1	0.00972	0.00972
B33	Background (Offsite)	D-B33-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0184		0.0184	0.0184	1	0.1	0.00184	0.00184
B33	Background (Offsite)	D-B33-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00834	U	0	0.00417	0	0.01	0.0000417	0
B33	Background (Offsite)	D-B33-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0113		0.0113	0.0113	1	0.001	0.0000113	0.0000113
B33	Background (Offsite)	D-B33-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00834	U	0	0.00417	0	1	0.00417	0
B33	Background (Offsite)	D-B33-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00834	U	0	0.00417	0	0.1	0.000417	0
B33	Background (Offsite)	D-B33-0-102719			BaP TEQ									0.02	0.01
B33	Background (Offsite)	D-B33-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00986		0.00986	0.00986	1	0.1	0.000986	0.000986
B33	Background (Offsite)	D-B33-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0135		0.0135	0.0135	1	1	0.0135	0.0135
B33	Background (Offsite)	D-B33-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0286		0.0286	0.0286	1	0.1	0.00286	0.00286
B33	Background (Offsite)	D-B33-10.0-10.5	06-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00756		0.00756	0.00756	1	0.01	0.0000756	0.0000756
B33	Background (Offsite)	D-B33-10.0-10.5	06-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.0143		0.0143	0.0143	1	0.001	0.0000143	0.0000143
B33	Background (Offsite)	D-B33-10.0-10.5	06-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00253		0.00253	0.00253	1	1	0.00253	0.00253
B33	Background (Offsite)	D-B33-10.0-10.5	06-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00753		0.00753	0.00753	1	0.1	0.000753	0.000753
B33	Background (Offsite)	D-B33-10.0-10.5			BaP TEQ									0.02	0.02
B33	Background (Offsite)	D-B33-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0745		0.0745	0.0745	1	0.1	0.00745	0.00745
B33	Background (Offsite)	D-B33-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.112		0.112	0.112	1	1	0.112	0.112
B33	Background (Offsite)	D-B33-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.169		0.169	0.169	1	0.1	0.0169	0.0169
B33	Background (Offsite)	D-B33-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0575		0.0575	0.0575	1	0.01	0.000575	0.000575
B33	Background (Offsite)	D-B33-5.0-5.5	28-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.0967		0.0967	0.0967	1	0.001	0.0000967	0.0000967
B33	Background (Offsite)	D-B33-5.0-5.5	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00333	U	0	0.001665	0	1	0.001665	0
B33	Background (Offsite)	D-B33-5.0-5.5	28-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0461		0.0461	0.0461	1	0.1	0.00461	0.00461
B33	Background (Offsite)	D-B33-5.0-5.5			BaP TEQ									0.14	0.14
B34	Background (Offsite)	D-B34-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0335	J	0.0335	0.0335	1	0.1	0.00335	0.00335
B34	Background (Offsite)	D-B34-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0467	J	0.0467	0.0467	1	1	0.0467	0.0467
B34	Background (Offsite)	D-B34-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0888	J	0.0888	0.0888	1	0.1	0.00888	0.00888
B34	Background (Offsite)	D-B34-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0221	J	0.0221	0.0221	1	0.01	0.000221	0.000221
B34	Background (Offsite)	D-B34-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0504	J	0.0504	0.0504	1	0.001	0.0000504	0.0000504
B34	Background (Offsite)	D-B34-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B34	Background (Offsite)	D-B34-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0323	J	0.0323	0.0323	1	0.1	0.00323	0.00323
B34	Background (Offsite)	D-B34-0-102719			BaP TEQ	İ								0.07	0.06
B34	Background (Offsite)	D-B34-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00405	Ī	0.00405	0.00405	1	0.1	0.000405	0.000405
B34	Background (Offsite)	D-B34-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00804		0.00804	0.00804	1	1	0.00804	0.00804
B34	Background (Offsite)	D-B34-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00966		0.00966	0.00966	1	0.1	0.000966	0.000966
B34	Background (Offsite)	D-B34-10.0-10.5	30-Oct-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00302		0.00302	0.00302	1	0.01	0.0000302	0.0000302
B34	Background (Offsite)	D-B34-10.0-10.5	30-Oct-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.00499		0.00499	0.00499	1	0.001	0.00000499	0.00000499

Attachment 7
Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B34	Background (Offsite)	D-B34-10.0-10.5	30-Oct-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B34	Background (Offsite)	D-B34-10.0-10.5	30-Oct-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00452		0.00452	0.00452	1	0.1	0.000452	0.000452
B34	Background (Offsite)	D-B34-10.0-10.5			BaP TEQ									0.01	0.01
B34	Background (Offsite)	D-B34-5.0-5.5-102819	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B34	Background (Offsite)	D-B34-5.0-5.5-102819	28-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00228	J	0.00228	0.00228	1	1	0.00228	0.00228
B34	Background (Offsite)	D-B34-5.0-5.5-102819	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00419	J	0.00419	0.00419	1	0.1	0.000419	0.000419
B34	Background (Offsite)	D-B34-5.0-5.5-102819	28-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B34	Background (Offsite)	D-B34-5.0-5.5-102819	28-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.00191	J	0.00191	0.00191	1	0.001	0.00000191	0.00000191
B34	Background (Offsite)	D-B34-5.0-5.5-102819	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B34	Background (Offsite)	D-B34-5.0-5.5-102819	28-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B34	Background (Offsite)	D-B34-5.0-5.5-102819			BaP TEQ									0.004	0.003
B34	Background (Offsite)	D-FD01-102819	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	UJ	0	0.00083	0	0.1	0.000083	0
B34	Background (Offsite)	D-FD01-102819	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.00234	J	0.00234	0.00234	1	1	0.00234	0.00234
B34	Background (Offsite)	D-FD01-102819	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00385	J	0.00385	0.00385	1	0.1	0.000385	0.000385
B34	Background (Offsite)	D-FD01-102819	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	UJ	0	0.00083	0	0.01	0.0000083	0
B34	Background (Offsite)	D-FD01-102819	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0021	J	0.0021	0.0021	1	0.001	0.0000021	0.0000021
B34	Background (Offsite)	D-FD01-102819	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B34	Background (Offsite)	D-FD01-102819	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	UJ	0	0.00083	0	0.1	0.000083	0
B34	Background (Offsite)	D-FD01-102819			BaP TEQ									0.004	0.003
B35	Background (Offsite)	D-B35-0-102719	27-Oct-19	0-0	Benzo(a)anthracene	56-55-3	mg/kg	0.0211		0.0211	0.0211	1	0.1	0.00211	0.00211
B35	Background (Offsite)	D-B35-0-102719	27-Oct-19	0-0	Benzo(a)pyrene	50-32-8	mg/kg	0.0285		0.0285	0.0285	1	1	0.0285	0.0285
B35	Background (Offsite)	D-B35-0-102719	27-Oct-19	0-0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0541		0.0541	0.0541	1	0.1	0.00541	0.00541
B35	Background (Offsite)	D-B35-0-102719	27-Oct-19	0-0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0167	U	0	0.00835	0	0.01	0.0000835	0
B35	Background (Offsite)	D-B35-0-102719	27-Oct-19	0-0	Chrysene	218-01-9	mg/kg	0.0311		0.0311	0.0311	1	0.001	0.0000311	0.0000311
B35	Background (Offsite)	D-B35-0-102719	27-Oct-19	0-0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B35	Background (Offsite)	D-B35-0-102719	27-Oct-19	0-0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0191		0.0191	0.0191	1	0.1	0.00191	0.00191
B35	Background (Offsite)	D-B35-0-102719			BaP TEQ									0.05	0.04
B35	Background (Offsite)	D-B35-10.0-10.5	05-Nov-19	10.0-10.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0325		0.0325	0.0325	1	0.1	0.00325	0.00325
B35	Background (Offsite)	D-B35-10.0-10.5	05-Nov-19	10.0-10.5	Benzo(a)pyrene	50-32-8	mg/kg	0.064		0.064	0.064	1	1	0.064	0.064
B35	Background (Offsite)	D-B35-10.0-10.5	05-Nov-19	10.0-10.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0898		0.0898	0.0898	1	0.1	0.00898	0.00898
B35	Background (Offsite)	D-B35-10.0-10.5	05-Nov-19	10.0-10.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0255		0.0255	0.0255	1	0.01	0.000255	0.000255
B35	Background (Offsite)	D-B35-10.0-10.5	05-Nov-19	10.0-10.5	Chrysene	218-01-9	mg/kg	0.0474		0.0474	0.0474	1	0.001	0.0000474	0.0000474
B35	Background (Offsite)	D-B35-10.0-10.5	05-Nov-19	10.0-10.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B35	Background (Offsite)	D-B35-10.0-10.5	05-Nov-19	10.0-10.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.039		0.039	0.039	1	0.1	0.0039	0.0039
B35	Background (Offsite)	D-B35-10.0-10.5			BaP TEQ									0.08	0.08
B35	Background (Offsite)	D-B35-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0225		0.0225	0.0225	1	0.1	0.00225	0.00225
B35	Background (Offsite)	D-B35-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0385		0.0385	0.0385	1	1	0.0385	0.0385
B35	Background (Offsite)	D-B35-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0501	J	0.0501	0.0501	1	0.1	0.00501	0.00501
B35	Background (Offsite)	D-B35-5.0-5.5	28-Oct-19	5.0-5.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0167	U	0	0.00835	0	0.01	0.0000835	0
B35	Background (Offsite)	D-B35-5.0-5.5	28-Oct-19	5.0-5.5	Chrysene	218-01-9	mg/kg	0.0343	J	0.0343	0.0343	1	0.001	0.0000343	0.0000343
B35	Background (Offsite)	D-B35-5.0-5.5	28-Oct-19	5.0-5.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B35	Background (Offsite)	D-B35-5.0-5.5	28-Oct-19	5.0-5.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0346		0.0346	0.0346	1	0.1	0.00346	0.00346
B35	Background (Offsite)	D-B35-5.0-5.5			BaP TEQ									0.06	0.05

Attachment 7

Benzo(a)pyrene Toxicity Equivalent Calculations for Surface and Subsurface Soil (0-15 feet) - Background (Offsite) Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)

Notes:

BaP TEQ = Benzo(a)pyrene toxicity equivalent

U = nondetect

UJ = nondetect estimated

J = detect estimated concentration

RL = reporting limit

Attachment 8
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	Results (mg/kg)	Flag	Result [U/UJ=0] (mg/kg)	Result [U/UJ=1/2RL] (mg/kg)	Detect	RPF	BAP TEQ [U/UJ=1/2RL] (mg/kg)	BAP TEQ [U/UJ=0] (mg/kg)
B11	Onsite	D-B11-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0082	riag	0.0082	0.0082	1	0.1	0.00082	0.00082
B11	Onsite	D-B11-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0082		0.0082	0.0082	1	1	0.00082	0.00082
B11	Onsite	D-B11-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0120		0.0120	0.0120	1	0.1	0.00120	0.00120
B11	Onsite	D-B11-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00639		0.00639	0.00639	1	0.01	0.000192	0.000192
B11	Onsite	D-B11-15.0-15.5	30-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.012		0.00039	0.00039	1	0.001	0.000012	0.0000039
B11	Onsite	D-B11-15.0-15.5	30-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	IJ	0.012	0.00083	0	1	0.00083	0.000012
B11	Onsite	D-B11-15.0-15.5	30-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0105		0.0105	0.0105	1	0.1	0.00105	0.00105
B11	Onsite	D-B11-15.0-15.5			BaP TEQ	133 33 3	1116/116			0.0103	0.0103	-	0.1	0.02	0.00103
B11	Onsite	D-B11-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00982		0.00982	0.00982	1	0.1	0.000982	0.000982
B11	Onsite	D-B11-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0154		0.00382	0.00382	1	1	0.000382	0.000982
B11	Onsite	D-B11-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0205		0.0205	0.0134	1	0.1	0.00205	0.00205
B11	Onsite	D-B11-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00677		0.0203	0.0203	1	0.01	0.0000677	0.00203
B11	Onsite	D-B11-19.5-20.0	30-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.0134		0.0134	0.00077	1	0.001	0.0000174	0.0000077
B11	Onsite	D-B11-19.5-20.0	30-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	11	0.0134	0.000835	0	1	0.000835	0.0000134
B11	Onsite	D-B11-19.5-20.0	30-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0114	0	0.0114	0.000833	1	0.1	0.000833	0.00114
B11	Onsite	D-B11-19.5-20.0			BaP TEQ	133 33 3	1116/116			0.0114	0.0114	-	0.1	0.02	0.02
B12	Onsite	D-B12-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.091		0.091	0.091	1	0.1	0.0091	0.0091
B12	Onsite	D-B12-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.148		0.148	0.148	1	1	0.148	0.148
B12	Onsite	D-B12-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.172		0.172	0.172	1	0.1	0.0172	0.0172
B12	Onsite	D-B12-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0507		0.0507	0.0507	1	0.01	0.000507	0.000507
B12	Onsite	D-B12-15.0-15.5	31-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.111		0.111	0.0307	1	0.001	0.000307	0.000307
B12	Onsite	D-B12-15.0-15.5	31-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	11	0.111	0.00835	0	1	0.00835	0.000111
B12	Onsite	D-B12-15.0-15.5	31-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.123		0.123	0.123	1	0.1	0.0123	0.0123
B12	Onsite	D-B12-15.0-15.5			BaP TEQ		6/6			0.220	0.220	_	0.2	0.20	0.19
B12	Onsite	D-B12-19.5-20	31-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.693		0.693	0.693	1	0.1	0.0693	0.0693
B12	Onsite	D-B12-19.5-20	31-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	1.38		1.38	1.38	1	1	1.38	1.38
B12	Onsite	D-B12-19.5-20	31-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	1.49		1.49	1.49	1	0.1	0.149	0.149
B12		D-B12-19.5-20	31-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.453		0.453	0.453	1	0.01	0.00453	0.00453
B12	Onsite	D-B12-19.5-20	31-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.899		0.899	0.899	1	0.001	0.000899	0.000899
B12	Onsite	D-B12-19.5-20	31-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.165		0.165	0.165	1	1	0.165	0.165
B12	Onsite	D-B12-19.5-20	31-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.16		1.16	1.16	1	0.1	0.116	0.116
B12	Onsite	D-B12-19.5-20			BaP TEQ		0, 0							1.88	1.88
B12	Onsite	D-B12-24.5-25.0	31-Oct-19	24.5-25.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0318		0.0318	0.0318	1	0.1	0.00318	0.00318
B12	Onsite	D-B12-24.5-25.0	31-Oct-19	24.5-25.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0675		0.0675	0.0675	1	1	0.0675	0.0675
B12	Onsite	D-B12-24.5-25.0	31-Oct-19	24.5-25.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0709		0.0709	0.0709	1	0.1	0.00709	0.00709
B12	Onsite	D-B12-24.5-25.0	31-Oct-19	24.5-25.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0187		0.0187	0.0187	1	0.01	0.000187	0.000187
B12	Onsite	D-B12-24.5-25.0	31-Oct-19	24.5-25.0	Chrysene	218-01-9	mg/kg	0.0416		0.0416	0.0416	1	0.001	0.0000416	0.0000416
B12	Onsite	D-B12-24.5-25.0	31-Oct-19	24.5-25.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B12	Onsite	D-B12-24.5-25.0	31-Oct-19	24.5-25.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0541		0.0541	0.0541	1	0.1	0.00541	0.00541

Attachment 8
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	Results (mg/kg)	Flag	Result [U/UJ=0] (mg/kg)	Result [U/UJ=1/2RL] (mg/kg)	Detect	RPF	BAP TEQ [U/UJ=1/2RL] (mg/kg)	BAP TEQ [U/UJ=0] (mg/kg)
B12	Onsite	D-B12-24.5-25.0	24.0 + 40	45.0.45.5	BaP TEQ		41	0.055	ļ					0.08	0.08
B13	Onsite	D-B13-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.055	J	0.055	0.055	1	0.1	0.0055	0.0055
B13	Onsite	D-B13-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0817	J	0.0817	0.0817	1	1	0.0817	0.0817
B13	Onsite	D-B13-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0832	J	0.0832	0.0832	1	0.1	0.00832	0.00832
B13	Onsite	D-B13-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0268	J	0.0268	0.0268	1	0.01	0.000268	0.000268
B13	Onsite	D-B13-15.0-15.5	31-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.0607	J	0.0607	0.0607	1	0.001	0.0000607	0.0000607
B13	Onsite	D-B13-15.0-15.5	31-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00962	J	0.00962	0.00962	1	1	0.00962	0.00962
B13	Onsite	D-B13-15.0-15.5	31-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0589	J	0.0589	0.0589	1	0.1	0.00589	0.00589
B13	Onsite	D-B13-15.0-15.5			BaP TEQ									0.11	0.11
B13	Onsite	D-B13-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0355		0.0355	0.0355	1	0.1	0.00355	0.00355
B13	Onsite	D-B13-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0488		0.0488	0.0488	1	1	0.0488	0.0488
B13	Onsite	D-B13-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0504		0.0504	0.0504	1	0.1	0.00504	0.00504
B13	Onsite	D-B13-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0149		0.0149	0.0149	1	0.01	0.000149	0.000149
B13	Onsite	D-B13-19.5-20.0	31-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.038		0.038	0.038	1	0.001	0.000038	0.000038
B13	Onsite	D-B13-19.5-20.0	31-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B13	Onsite	D-B13-19.5-20.0	31-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0329		0.0329	0.0329	1	0.1	0.00329	0.00329
B13	Onsite	D-B13-19.5-20.0			BaP TEQ									0.06	0.06
B13	Onsite	D-FD01-103119	31-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.124	J	0.124	0.124	1	0.1	0.0124	0.0124
B13	Onsite	D-FD01-103119	31-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.184	J	0.184	0.184	1	1	0.184	0.184
B13	Onsite	D-FD01-103119	31-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.196	J	0.196	0.196	1	0.1	0.0196	0.0196
B13	Onsite	D-FD01-103119	31-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0654	J	0.0654	0.0654	1	0.01	0.000654	0.000654
B13	Onsite	D-FD01-103119	31-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.161	J	0.161	0.161	1	0.001	0.000161	0.000161
B13	Onsite	D-FD01-103119	31-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.025	J	0.025	0.025	1	1	0.025	0.025
B13	Onsite	D-FD01-103119	31-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.131	J	0.131	0.131	1	0.1	0.0131	0.0131
B13	Onsite	D-FD01-103119			BaP TEQ		<i>G, G</i>							0.25	0.25
B14	Onsite	D-B14-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0104		0.0104	0.0104	1	0.1	0.00104	0.00104
B14	Onsite	D-B14-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0123		0.0123	0.0123	 1	1	0.0123	0.0123
B14		D-B14-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0181		0.0123	0.0123	1	0.1	0.00123	0.00123
B14		D-B14-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0048		0.0048	0.0048	1	0.01	0.000048	0.000048
B14	Onsite	D-B14-15.0-15.5	29-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.0101		0.0101	0.0101	1	0.001	0.0000101	0.0000101
B14		D-B14-15.0-15.5	29-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	11	0	0.00083	0	1	0.00083	0
B14	Onsite	D-B14-15.0-15.5	29-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0074		0.0074	0.00083	1	0.1	0.00083	0.00074
B14	Onsite	D-B14-15.0-15.5			BaP TEQ	133 33 3	1116/116			0.0074	0.0074		0.1	0.02	0.02
B14		D-B14-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	ma/ka	0.00723		0.00723	0.00723	1	0.1	0.000723	0.000723
B14		D-B14-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)pyrene	50-33-8	mg/kg	0.00723		0.00723	0.00723	1	1	0.000723	0.000723
B14		D-B14-19.5-20.0	30-Oct-19	19.5-20.0	* * * * * * * * * * * * * * * * * * * *	205-99-2	mg/kg	0.0107			ł				
B14	Onsite	D-B14-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(b)fluoranthene		mg/kg	0.0146		0.0146	0.0146	1	0.1	0.00146	0.00146
	Onsite	D-B14-19.5-20.0 D-B14-19.5-20.0		19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg			0.00468	0.00468	1	0.01	0.0000468	0.0000468
B14 B14	Onsite Onsite	D-B14-19.5-20.0 D-B14-19.5-20.0	30-Oct-19 30-Oct-19	19.5-20.0	Chrysene Dibenz(a,h)anthracene	218-01-9 53-70-3	mg/kg mg/kg	0.00799 0.00166	U	0.00799	0.00799 0.00083	0	0.001	0.0000799 0.00083	0.00000799

Attachment 8
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	Results (mg/kg)	Flag	Result [U/UJ=0] (mg/kg)	Result [U/UJ=1/2RL] (mg/kg)	Detect	RPF	BAP TEQ [U/UJ=1/2RL] (mg/kg)	BAP TEQ [U/UJ=0] (mg/kg)
B14	Onsite	D-B14-19.5-20.0	30-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00855		0.00855	0.00855	1	0.1	0.000855	0.000855
B14	Onsite	D-B14-19.5-20.0			BaP TEQ									0.01	0.01
B16	Onsite	D-B16-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0722	J	0.0722	0.0722	1	0.1	0.00722	0.00722
B16	Onsite	D-B16-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.13	J	0.13	0.13	1	1	0.13	0.13
B16	Onsite	D-B16-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.136	J	0.136	0.136	1	0.1	0.0136	0.0136
B16	Onsite	D-B16-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0417		0.0417	0.0417	1	0.01	0.000417	0.000417
B16	Onsite	D-B16-15.0-15.5	30-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.0877	J	0.0877	0.0877	1	0.001	0.0000877	0.0000877
B16	Onsite	D-B16-15.0-15.5	30-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B16	Onsite	D-B16-15.0-15.5	30-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0802	J	0.0802	0.0802	1	0.1	0.00802	0.00802
B16	Onsite	D-B16-15.0-15.5			BaP TEQ									0.16	0.16
B16	Onsite	D-B16-19.5-20.0	29-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0505		0.0505	0.0505	1	0.1	0.00505	0.00505
B16	Onsite	D-B16-19.5-20.0	29-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0851		0.0851	0.0851	1	1	0.0851	0.0851
B16	Onsite	D-B16-19.5-20.0	29-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.1		0.1	0.1	1	0.1	0.01	0.01
B16	Onsite	D-B16-19.5-20.0	29-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0245		0.0245	0.0245	1	0.01	0.000245	0.000245
B16	Onsite	D-B16-19.5-20.0	29-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.0589		0.0589	0.0589	1	0.001	0.0000589	0.0000589
B16	Onsite	D-B16-19.5-20.0	29-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B16	Onsite	D-B16-19.5-20.0	29-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0509		0.0509	0.0509	1	0.1	0.00509	0.00509
B16	Onsite	D-B16-19.5-20.0			BaP TEQ									0.11	0.11
B16	Onsite	D-FD02-102919	29-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0406	J	0.0406	0.0406	1	0.1	0.00406	0.00406
B16	Onsite	D-FD02-102919	29-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0676	J	0.0676	0.0676	1	1	0.0676	0.0676
B16	Onsite	D-FD02-102919	29-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0674	J	0.0674	0.0674	1	0.1	0.00674	0.00674
B16	Onsite	D-FD02-102919	29-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0269		0.0269	0.0269	1	0.01	0.000269	0.000269
B16	Onsite	D-FD02-102919	29-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.046	J	0.046	0.046	1	0.001	0.000046	0.000046
B16	Onsite	D-FD02-102919	29-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B16	Onsite	D-FD02-102919	29-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0401	J	0.0401	0.0401	1	0.1	0.00401	0.00401
B16	Onsite	D-FD02-102919			BaP TEQ									0.08	0.08
B17	Onsite	D-B17-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0191		0.0191	0.0191	1	0.1	0.00191	0.00191
B17	Onsite	D-B17-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0318		0.0318	0.0318	1	1	0.0318	0.0318
B17	Onsite	D-B17-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.033		0.033	0.033	1	0.1	0.0033	0.0033
B17	Onsite	D-B17-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0109		0.0109	0.0109	1	0.01	0.000109	0.000109
B17	Onsite	D-B17-15.0-15.5	30-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.022		0.022	0.022	1	0.001	0.000022	0.000022
B17	Onsite	D-B17-15.0-15.5	30-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B17	Onsite	D-B17-15.0-15.5	30-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0209		0.0209	0.0209	1	0.1	0.00209	0.00209
B17	Onsite	D-B17-15.0-15.5			BaP TEQ									0.04	0.04
B17	Onsite	D-B17-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00405		0.00405	0.00405	1	0.1	0.000405	0.000405
B17	Onsite	D-B17-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00705		0.00705	0.00705	1	1	0.00705	0.00705
B17	Onsite	D-B17-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00759		0.00759	0.00759	1	0.1	0.000759	0.000759
B17	Onsite	D-B17-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00238		0.00238	0.00238	1	0.01	0.0000238	0.0000238
B17	Onsite	D-B17-19.5-20.0	30-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.00454		0.00454	0.00454	1	0.001	0.00000454	0.00000454

Attachment 8
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	Results (mg/kg)	Flag	Result [U/UJ=0] (mg/kg)	Result [U/UJ=1/2RL] (mg/kg)	Detect	RPF	BAP TEQ [U/UJ=1/2RL] (mg/kg)	BAP TEQ [U/UJ=0] (mg/kg)
B17	Onsite	D-B17-19.5-20.0	30-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B17	Onsite	D-B17-19.5-20.0	30-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00508		0.00508	0.00508	1	0.1	0.000508	0.000508
B17	Onsite	D-B17-19.5-20.0			BaP TEQ									0.01	0.01
B19	Onsite	D-B19-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0643		0.0643	0.0643	1	0.1	0.00643	0.00643
B19	Onsite	D-B19-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0937		0.0937	0.0937	1	1	0.0937	0.0937
B19	Onsite	D-B19-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.11		0.11	0.11	1	0.1	0.011	0.011
B19	Onsite	D-B19-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0322		0.0322	0.0322	1	0.01	0.000322	0.000322
B19	Onsite	D-B19-15.0-15.5	02-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.0725		0.0725	0.0725	1	0.001	0.0000725	0.0000725
B19	Onsite	D-B19-15.0-15.5	02-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B19	Onsite	D-B19-15.0-15.5	02-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0547		0.0547	0.0547	1	0.1	0.00547	0.00547
B19	Onsite	D-B19-15.0-15.5			BaP TEQ									0.12	0.12
B19	Onsite	D-B19-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.055		0.055	0.055	1	0.1	0.0055	0.0055
B19	Onsite	D-B19-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0947		0.0947	0.0947	1	1	0.0947	0.0947
B19	Onsite	D-B19-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.104		0.104	0.104	1	0.1	0.0104	0.0104
B19	Onsite	D-B19-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0357		0.0357	0.0357	1	0.01	0.000357	0.000357
B19	Onsite	D-B19-19.5-20.0	02-Nov-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.0666		0.0666	0.0666	1	0.001	0.0000666	0.0000666
B19	Onsite	D-B19-19.5-20.0	02-Nov-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B19	Onsite	D-B19-19.5-20.0	02-Nov-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0594		0.0594	0.0594	1	0.1	0.00594	0.00594
B19	Onsite	D-B19-19.5-20.0			BaP TEQ									0.12	0.12
B20	Onsite	D-B20-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00227		0.00227	0.00227	1	0.1	0.000227	0.000227
B20	Onsite	D-B20-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00367		0.00367	0.00367	1	1	0.00367	0.00367
B20	Onsite	D-B20-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00577		0.00577	0.00577	1	0.1	0.000577	0.000577
B20	Onsite	D-B20-19.5-20.0	02-Nov-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B20	Onsite	D-B20-19.5-20.0	02-Nov-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.00286		0.00286	0.00286	1	0.001	0.00000286	0.00000286
B20	Onsite	D-B20-19.5-20.0	02-Nov-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B20	Onsite	D-B20-19.5-20.0	02-Nov-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00233		0.00233	0.00233	1	0.1	0.000233	0.000233
B20	Onsite	D-B20-19.5-20.0			BaP TEQ									0.01	0.00
B21	Onsite	D-B21-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	1.52		1.52	1.52	1	0.1	0.152	0.152
B21	Onsite	D-B21-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	2.73		2.73	2.73	1	1	2.73	2.73
B21	Onsite	D-B21-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	3.04		3.04	3.04	1	0.1	0.304	0.304
B21	Onsite	D-B21-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.698		0.698	0.698	1	0.01	0.00698	0.00698
B21	Onsite	D-B21-15.0-15.5	01-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	1.89		1.89	1.89	1	0.001	0.00189	0.00189
B21	Onsite	D-B21-15.0-15.5	01-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0333	U	0	0.01665	0	1	0.01665	0
B21	Onsite	D-B21-15.0-15.5	01-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1.88		1.88	1.88	1	0.1	0.188	0.188
B21	Onsite	D-B21-15.0-15.5			BaP TEQ									3.40	3.38
B21	Onsite	D-B21-19.5-20.0	01-Nov-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.156		0.156	0.156	1	0.1	0.0156	0.0156
B21	Onsite	D-B21-19.5-20.0	01-Nov-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.301		0.301	0.301	1	1	0.301	0.301
B21	Onsite	D-B21-19.5-20.0	01-Nov-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.327		0.327	0.327	1	0.1	0.0327	0.0327
B21	Onsite	D-B21-19.5-20.0	01-Nov-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0947		0.0947	0.0947	1	0.01	0.000947	0.000947

Attachment 8
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B21	Onsite	D-B21-19.5-20.0	01-Nov-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.193		0.193	0.193	1	0.001	0.000193	0.000193
B21	Onsite	D-B21-19.5-20.0	01-Nov-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B21	Onsite	D-B21-19.5-20.0	01-Nov-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.213		0.213	0.213	1	0.1	0.0213	0.0213
B21	Onsite	D-B21-19.5-20.0			BaP TEQ									0.38	0.37
B21	Onsite	D-B21-24.5-25.0	01-Nov-19	24.5-25.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0293		0.0293	0.0293	1	0.1	0.00293	0.00293
B21	Onsite	D-B21-24.5-25.0	01-Nov-19	24.5-25.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0544		0.0544	0.0544	1	1	0.0544	0.0544
B21	Onsite	D-B21-24.5-25.0	01-Nov-19	24.5-25.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0596		0.0596	0.0596	1	0.1	0.00596	0.00596
B21	Onsite	D-B21-24.5-25.0	01-Nov-19	24.5-25.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0209		0.0209	0.0209	1	0.01	0.000209	0.000209
B21	Onsite	D-B21-24.5-25.0	01-Nov-19	24.5-25.0	Chrysene	218-01-9	mg/kg	0.0357		0.0357	0.0357	1	0.001	0.0000357	0.0000357
B21	Onsite	D-B21-24.5-25.0	01-Nov-19	24.5-25.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B21	Onsite	D-B21-24.5-25.0	01-Nov-19	24.5-25.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0342		0.0342	0.0342	1	0.1	0.00342	0.00342
B21	Onsite	D-B21-24.5-25.0			BaP TEQ									0.07	0.07
B23	Onsite	D-B23-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B23	Onsite	D-B23-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00292		0.00292	0.00292	1	1	0.00292	0.00292
B23	Onsite	D-B23-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00319		0.00319	0.00319	1	0.1	0.000319	0.000319
B23	Onsite	D-B23-19.5-20.0	31-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B23	Onsite	D-B23-19.5-20.0	31-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.00176		0.00176	0.00176	1	0.001	0.00000176	0.00000176
B23	Onsite	D-B23-19.5-20.0	31-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B23	Onsite	D-B23-19.5-20.0	31-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00285		0.00285	0.00285	1	0.1	0.000285	0.000285
B23	Onsite	D-B23-19.5-20.0			BaP TEQ									0.004	0.004
B24	Onsite	D-B24-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.386		0.386	0.386	1	0.1	0.0386	0.0386
B24	Onsite	D-B24-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.877		0.877	0.877	1	1	0.877	0.877
B24	Onsite	D-B24-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.858		0.858	0.858	1	0.1	0.0858	0.0858
B24	Onsite	D-B24-15.0-15.5	30-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.247		0.247	0.247	1	0.01	0.00247	0.00247
B24	Onsite	D-B24-15.0-15.5	30-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.521		0.521	0.521	1	0.001	0.000521	0.000521
B24	Onsite	D-B24-15.0-15.5	30-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.0167	U	0	0.00835	0	1	0.00835	0
B24	Onsite	D-B24-15.0-15.5	30-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.538		0.538	0.538	1	0.1	0.0538	0.0538
B24	Onsite	D-B24-15.0-15.5			BaP TEQ									1.07	1.06
B24	Onsite	D-B24-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0411	J	0.0411	0.0411	1	0.1	0.00411	0.00411
B24	Onsite	D-B24-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0818	J	0.0818	0.0818	1	1	0.0818	0.0818
B24	Onsite	D-B24-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0813	J	0.0813	0.0813	1	0.1	0.00813	0.00813
B24	Onsite	D-B24-19.5-20.0	30-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0239	J	0.0239	0.0239	1	0.01	0.000239	0.000239
B24	Onsite	D-B24-19.5-20.0	30-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.0506	J	0.0506	0.0506	1	0.001	0.0000506	0.0000506
B24	Onsite	D-B24-19.5-20.0	30-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B24	Onsite	D-B24-19.5-20.0	30-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0649	J	0.0649	0.0649	1	0.1	0.00649	0.00649
B24	Onsite	D-B24-19.5-20.0			BaP TEQ									0.10	0.10
B24	Onsite	D-FD01-103019	30-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00975	J	0.00975	0.00975	1	0.1	0.000975	0.000975
B24	Onsite	D-FD01-103019	30-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0232	J	0.0232	0.0232	1	1	0.0232	0.0232
B24	Onsite	D-FD01-103019	30-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0237	J	0.0237	0.0237	1	0.1	0.00237	0.00237

Attachment 8
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B24	Onsite	D-FD01-103019	30-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00611	J	0.00611	0.00611	1	0.01	0.0000611	0.0000611
B24	Onsite	D-FD01-103019	30-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.0131	J	0.0131	0.0131	1	0.001	0.0000131	0.0000131
B24	Onsite	D-FD01-103019	30-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B24	Onsite	D-FD01-103019	30-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0202	J	0.0202	0.0202	1	0.1	0.00202	0.00202
B24	Onsite	D-FD01-103019			BaP TEQ									0.03	0.03
B25	Onsite	D-B25-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B25	Onsite	D-B25-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B25	Onsite	D-B25-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B25	Onsite	D-B25-15.0-15.5	31-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B25	Onsite	D-B25-15.0-15.5	31-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B25	Onsite	D-B25-15.0-15.5	31-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B25	Onsite	D-B25-15.0-15.5	31-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B25	Onsite	D-B25-15.0-15.5			BaP TEQ									0.002	0.00
B25	Onsite	D-B25-20.0-20.5	30-Oct-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00258		0.00258	0.00258	1	0.1	0.000258	0.000258
B25	Onsite	D-B25-20.0-20.5	30-Oct-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00369		0.00369	0.00369	1	1	0.00369	0.00369
B25	Onsite	D-B25-20.0-20.5	30-Oct-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00466		0.00466	0.00466	1	0.1	0.000466	0.000466
B25	Onsite	D-B25-20.0-20.5	30-Oct-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B25	Onsite	D-B25-20.0-20.5	30-Oct-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.00303		0.00303	0.00303	1	0.001	0.00000303	0.00000303
B25	Onsite	D-B25-20.0-20.5	30-Oct-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B25	Onsite	D-B25-20.0-20.5	30-Oct-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00309		0.00309	0.00309	1	0.1	0.000309	0.000309
B25	Onsite	D-B25-20.0-20.5			BaP TEQ									0.01	0.00
B25	Onsite	D-B25-30.0-30.5	31-Oct-19	30.0-30.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B25	Onsite	D-B25-30.0-30.5	31-Oct-19	30.0-30.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B25	Onsite	D-B25-30.0-30.5	31-Oct-19	30.0-30.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B25	Onsite	D-B25-30.0-30.5	31-Oct-19	30.0-30.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B25	Onsite	D-B25-30.0-30.5	31-Oct-19	30.0-30.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B25	Onsite	D-B25-30.0-30.5	31-Oct-19	30.0-30.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B25	Onsite	D-B25-30.0-30.5	31-Oct-19	30.0-30.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B25	Onsite	D-B25-30.0-30.5			BaP TEQ									0.002	0.00
B25	Onsite	D-B25-40.0-40.5	31-Oct-19	40.0-40.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B25	Onsite	D-B25-40.0-40.5	31-Oct-19	40.0-40.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B25	Onsite	D-B25-40.0-40.5	31-Oct-19	40.0-40.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B25	Onsite	D-B25-40.0-40.5	31-Oct-19	40.0-40.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B25	Onsite	D-B25-40.0-40.5	31-Oct-19	40.0-40.5	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B25	Onsite	D-B25-40.0-40.5	31-Oct-19	40.0-40.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B25	Onsite	D-B25-40.0-40.5	31-Oct-19	40.0-40.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B25	Onsite	D-B25-40.0-40.5			BaP TEQ									0.002	0.00
B25	Onsite	D-FD04-103119	31-Oct-19	40.0-40.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B25	Onsite	D-FD04-103119	31-Oct-19	40.0-40.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B25	Onsite	D-FD04-103119	31-Oct-19	40.0-40.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0

Attachment 8
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	Results (mg/kg)	Flag	Result [U/UJ=0] (mg/kg)	Result [U/UJ=1/2RL] (mg/kg)	Detect	RPF	BAP TEQ [U/UJ=1/2RL] (mg/kg)	BAP TEQ [U/UJ=0] (mg/kg)
B25	Onsite	D-FD04-103119	31-Oct-19	40.0-40.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	11	0	0.000835	0	0.01	0.00000835	0
B25	Onsite	D-FD04-103119	31-Oct-19	40.0-40.5	Chrysene	218-01-9	mg/kg	0.00167	II.	0	0.000835	0	0.001	0.000000835	0
B25	Onsite	D-FD04-103119	31-Oct-19	40.0-40.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	11	0	0.000835	0	1	0.000835	0
B25	Onsite	D-FD04-103119	31-Oct-19	40.0-40.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B25	Onsite	D-FD04-103119			BaP TEQ		6/6			, ,	0.00000		0.2	0.002	0.00
B26	Onsite	D-B26-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B26	Onsite	D-B26-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B26	Onsite	D-B26-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B26	Onsite	D-B26-15.0-15.5	02-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B26	Onsite	D-B26-15.0-15.5	02-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B26	Onsite	D-B26-15.0-15.5	02-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B26	Onsite	D-B26-15.0-15.5	02-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B26	Onsite	D-B26-15.0-15.5			BaP TEQ		<i>G</i> , <i>G</i>							0.002	0.00
B26	Onsite	D-B26-20.0-20.5	02-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-20.0-20.5	02-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00268		0.00268	0.00268	1	1	0.00268	0.00268
B26	Onsite	D-B26-20.0-20.5	02-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00353		0.00353	0.00353	1	0.1	0.000353	0.000353
B26	Onsite	D-B26-20.0-20.5	02-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B26	Onsite	D-B26-20.0-20.5	02-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.00216		0.00216	0.00216	1	0.001	0.00000216	0.00000216
B26	Onsite	D-B26-20.0-20.5	02-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-20.0-20.5	02-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00252		0.00252	0.00252	1	0.1	0.000252	0.000252
B26	Onsite	D-B26-20.0-20.5			BaP TEQ									0.004	0.003
B26	Onsite	D-B26-25.0-25.5	02-Nov-19	25.0-25.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-25.0-25.5	02-Nov-19	25.0-25.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-25.0-25.5	02-Nov-19	25.0-25.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-25.0-25.5	02-Nov-19	25.0-25.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B26	Onsite	D-B26-25.0-25.5	02-Nov-19	25.0-25.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B26	Onsite	D-B26-25.0-25.5	02-Nov-19	25.0-25.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-25.0-25.5	02-Nov-19	25.0-25.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-25.0-25.5			BaP TEQ									0.002	0.00
B26	Onsite	D-B26-30.0-30.5	02-Nov-19	30.0-30.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B26	Onsite	D-B26-30.0-30.5	02-Nov-19	30.0-30.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B26	Onsite	D-B26-30.0-30.5	02-Nov-19	30.0-30.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B26	Onsite	D-B26-30.0-30.5	02-Nov-19	30.0-30.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B26	Onsite	D-B26-30.0-30.5	02-Nov-19	30.0-30.5	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B26	Onsite	D-B26-30.0-30.5	02-Nov-19	30.0-30.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B26	Onsite	D-B26-30.0-30.5	02-Nov-19	30.0-30.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B26	Onsite	D-B26-30.0-30.5			BaP TEQ									0.002	0.00
B26	Onsite	D-B26-40.0-40.5	02-Nov-19	40.0-40.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-40.0-40.5	02-Nov-19	40.0-40.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-40.0-40.5	02-Nov-19	40.0-40.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0

Attachment 8 Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Onsite Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B26	Onsite	D-B26-40.0-40.5	02-Nov-19	40.0-40.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B26	Onsite	D-B26-40.0-40.5	02-Nov-19	40.0-40.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B26	Onsite	D-B26-40.0-40.5	02-Nov-19	40.0-40.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B26	Onsite	D-B26-40.0-40.5	02-Nov-19	40.0-40.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B26	Onsite	D-B26-40.0-40.5			BaP TEQ									0.002	0.00

Notes:

BaP TEQ = Benzo(a)pyrene toxicity equivalent

U = nondetect

UJ = nondetect estimated

J = detect estimated concentration

RL = reporting limit

Attachment 9
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B18	Background (Offsite)	D-B18-15.0-15.5	05-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0139		0.0139	0.0139	1	0.1	0.00139	0.00139
B18	Background (Offsite)		05-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0247		0.0247	0.0247	1	1	0.0247	0.0247
B18	Background (Offsite)	D-B18-15.0-15.5	05-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0324		0.0324	0.0324	1	0.1	0.00324	0.00324
B18	Background (Offsite)	D-B18-15.0-15.5	05-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0106		0.0106	0.0106	1	0.01	0.000106	0.000106
B18	Background (Offsite)	D-B18-15.0-15.5	05-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.0188		0.0188	0.0188	1	0.001	0.0000188	0.0000188
B18	Background (Offsite)		05-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B18	Background (Offsite)	D-B18-15.0-15.5	05-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0163		0.0163	0.0163	1	0.1	0.00163	0.00163
B18	Background (Offsite)	D-B18-15.0-15.5			BaP TEQ									0.03	0.03
B22	Background (Offsite)	D-B22-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00361		0.00361	0.00361	1	0.1	0.000361	0.000361
B22	Background (Offsite)	D-B22-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00418		0.00418	0.00418	1	1	0.00418	0.00418
B22	Background (Offsite)	D-B22-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00699		0.00699	0.00699	1	0.1	0.000699	0.000699
B22	Background (Offsite)	D-B22-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00222		0.00222	0.00222	1	0.01	0.0000222	0.0000222
B22	Background (Offsite)	D-B22-15.0-15.5	29-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00456		0.00456	0.00456	1	0.001	0.00000456	0.00000456
B22	Background (Offsite)		29-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B22	Background (Offsite)	D-B22-15.0-15.5	29-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00238		0.00238	0.00238	1	0.1	0.000238	0.000238
B22	Background (Offsite)	D-B22-15.0-15.5			BaP TEQ									0.01	0.01
B27	Background (Offsite)	D-B27-15.0-15.5	03-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-15.0-15.5	03-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-15.0-15.5	03-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-15.0-15.5	03-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-B27-15.0-15.5	03-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)	D-B27-15.0-15.5	03-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-15.0-15.5	03-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-15.0-15.5			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-B27-20.0-20.5	03-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B27	Background (Offsite)	D-B27-20.0-20.5	03-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B27	Background (Offsite)	D-B27-20.0-20.5	03-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B27	Background (Offsite)	D-B27-20.0-20.5	03-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B27	Background (Offsite)	D-B27-20.0-20.5	03-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B27	Background (Offsite)	D-B27-20.0-20.5	03-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B27	Background (Offsite)	D-B27-20.0-20.5	03-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B27	Background (Offsite)	D-B27-20.0-20.5			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-B27-25.0-25.5	02-Nov-19	25.0-25.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)		02-Nov-19	25.0-25.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-25.0-25.5	02-Nov-19	25.0-25.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-25.0-25.5	02-Nov-19	25.0-25.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)		02-Nov-19	25.0-25.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)		02-Nov-19	25.0-25.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)		02-Nov-19	25.0-25.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)				BaP TEQ									0.002	0.00

Attachment 9
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B27	Background (Offsite)	D-B27-30.0-30.5	04-Nov-19	30.0-30.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)		04-Nov-19	30.0-30.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-30.0-30.5	04-Nov-19	30.0-30.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)		04-Nov-19	30.0-30.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-B27-30.0-30.5	04-Nov-19	30.0-30.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)		04-Nov-19	30.0-30.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	J	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-30.0-30.5	04-Nov-19	30.0-30.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-30.0-30.5			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-B27-40.0-40.5	04-Nov-19	40.0-40.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-40.0-40.5	04-Nov-19	40.0-40.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-40.0-40.5	04-Nov-19	40.0-40.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-40.0-40.5	04-Nov-19	40.0-40.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-B27-40.0-40.5	04-Nov-19	40.0-40.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)	D-B27-40.0-40.5	04-Nov-19	40.0-40.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-B27-40.0-40.5	04-Nov-19	40.0-40.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-B27-40.0-40.5			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-FD01-110219	02-Nov-19	30.0-30.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-FD01-110219	02-Nov-19	30.0-30.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-FD01-110219	02-Nov-19	30.0-30.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-FD01-110219	02-Nov-19	30.0-30.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-FD01-110219	02-Nov-19	30.0-30.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)	D-FD01-110219	02-Nov-19	30.0-30.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-FD01-110219	02-Nov-19	30.0-30.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-FD01-110219			BaP TEQ									0.002	0.00
B27	Background (Offsite)	D-FD02-110319	03-Nov-19	25.0-25.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B27	Background (Offsite)	D-FD02-110319	03-Nov-19	25.0-25.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00198		0.00198	0.00198	1	1	0.00198	0.00198
B27	Background (Offsite)	D-FD02-110319	03-Nov-19	25.0-25.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00204		0.00204	0.00204	1	0.1	0.000204	0.000204
B27	Background (Offsite)	D-FD02-110319	03-Nov-19	25.0-25.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B27	Background (Offsite)	D-FD02-110319	03-Nov-19	25.0-25.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B27	Background (Offsite)	D-FD02-110319	03-Nov-19	25.0-25.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B27	Background (Offsite)	D-FD02-110319	03-Nov-19	25.0-25.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00178		0.00178	0.00178	1	0.1	0.000178	0.000178
B27	Background (Offsite)	D-FD02-110319			BaP TEQ									0.003	0.002
B28	Background (Offsite)	D-B28-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B28	Background (Offsite)	D-B28-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B28	Background (Offsite)	D-B28-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00201		0.00201	0.00201	1	0.1	0.000201	0.000201
B28	Background (Offsite)	D-B28-15.0-15.5	29-Oct-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B28	Background (Offsite)	D-B28-15.0-15.5	29-Oct-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B28	Background (Offsite)		29-Oct-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B28	Background (Offsite)		29-Oct-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B28	Background (Offsite)				BaP TEQ									0.002	0.0002

Attachment 9
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
		6 1 15				246"		Results		[U/UJ=0]	[U/UJ=1/2RL]	5		[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag		(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B28	Background (Offsite)		29-Oct-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.00166		0	0.00083	0	0.1	0.000083	0
B28	Background (Offsite)		29-Oct-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U 	0	0.00083	0	1	0.00083	0
B28	Background (Offsite)		29-Oct-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B28	Background (Offsite)		29-Oct-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg		U	0	0.00083	0	0.01	0.0000083	0
B28	Background (Offsite)		29-Oct-19	19.5-20.0	Chrysene	218-01-9	mg/kg		U	0	0.00083	0	0.001	0.00000083	0
B28	Background (Offsite)		29-Oct-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B28	Background (Offsite)		29-Oct-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
	Background (Offsite)	D-B28-19.5-20.0			BaP TEQ									0.002	0.00
B29	Background (Offsite)		07-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0376	J	0.0376	0.0376	1	0.1	0.00376	0.00376
B29	Background (Offsite)		07-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0772	J	0.0772	0.0772	1	1	0.0772	0.0772
B29	Background (Offsite)	D-B29-15.0-15.5	07-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0766	J	0.0766	0.0766	1	0.1	0.00766	0.00766
B29	Background (Offsite)	D-B29-15.0-15.5	07-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0253	J	0.0253	0.0253	1	0.01	0.000253	0.000253
B29	Background (Offsite)	D-B29-15.0-15.5	07-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.046	J	0.046	0.046	1	0.001	0.000046	0.000046
B29	Background (Offsite)		07-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B29	Background (Offsite)	D-B29-15.0-15.5	07-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.062	J	0.062	0.062	1	0.1	0.0062	0.0062
B29	Background (Offsite)	D-B29-15.0-15.5			BaP TEQ									0.10	0.10
B29	Background (Offsite)	D-B29-20.0-20.5	07-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.012	J	0.012	0.012	1	0.1	0.0012	0.0012
B29	Background (Offsite)	D-B29-20.0-20.5	07-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.022	J	0.022	0.022	1	1	0.022	0.022
B29	Background (Offsite)	D-B29-20.0-20.5	07-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0257	J	0.0257	0.0257	1	0.1	0.00257	0.00257
B29	Background (Offsite)	D-B29-20.0-20.5	07-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00794	J	0.00794	0.00794	1	0.01	0.0000794	0.0000794
B29	Background (Offsite)	D-B29-20.0-20.5	07-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.0143	J	0.0143	0.0143	1	0.001	0.0000143	0.0000143
B29	Background (Offsite)	D-B29-20.0-20.5	07-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B29	Background (Offsite)	D-B29-20.0-20.5	07-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0128	J	0.0128	0.0128	1	0.1	0.00128	0.00128
B29	Background (Offsite)				BaP TEQ									0.03	0.03
B30	Background (Offsite)	D-B30-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.0168		0.0168	0.0168	1	0.1	0.00168	0.00168
B30	Background (Offsite)	D-B30-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.029		0.029	0.029	1	1	0.029	0.029
B30	Background (Offsite)	D-B30-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0372		0.0372	0.0372	1	0.1	0.00372	0.00372
B30	Background (Offsite)	D-B30-15.0-15.5	01-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0109		0.0109	0.0109	1	0.01	0.000109	0.000109
B30	Background (Offsite)		01-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.0218		0.0218	0.0218	1	0.001	0.0000218	0.0000218
B30	Background (Offsite)		01-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B30	Background (Offsite)		01-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0217		0.0217	0.0217	1	0.1	0.00217	0.00217
B30	Background (Offsite)	D-B30-15.0-15.5			BaP TEQ									0.04	0.04
B30	Background (Offsite)		01-Nov-19	19.5-20.0	Benzo(a)anthracene	56-55-3	mg/kg	0.0246		0.0246	0.0246	1	0.1	0.00246	0.00246
B30	Background (Offsite)		01-Nov-19	19.5-20.0	Benzo(a)pyrene	50-32-8	mg/kg	0.0424		0.0424	0.0424	1	1	0.0424	0.0424
B30	Background (Offsite)		01-Nov-19	19.5-20.0	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0558		0.0558	0.0558	1	0.1	0.00558	0.00558
B30	Background (Offsite)		01-Nov-19	19.5-20.0	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0135		0.0135	0.0135	1	0.01	0.000135	0.000135
B30	Background (Offsite)		01-Nov-19	19.5-20.0	Chrysene	218-01-9	mg/kg	0.0327		0.0327	0.0327	1	0.001	0.0000327	0.0000327
B30	Background (Offsite)		01-Nov-19	19.5-20.0	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B30	Background (Offsite)		01-Nov-19	19.5-20.0	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0297	1	0.0297	0.0297	1	0.1	0.00297	0.00297
	Background (Offsite)				BaP TEQ		3,0		1		212_27			0.05	0.05

Attachment 9
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								Results		Result [U/UJ=0]	Result [U/UJ=1/2RL]			BAP TEQ [U/UJ=1/2RL]	BAP TEQ [U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag		(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B31	Background (Offsite)	· ·	06-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B31	Background (Offsite)		06-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B31	Background (Offsite)	D-B31-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00241		0.00241	0.00241	1	0.1	0.000241	0.000241
B31	Background (Offsite)		06-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B31	Background (Offsite)	D-B31-15.0-15.5	06-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B31	Background (Offsite)	D-B31-15.0-15.5	06-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B31	Background (Offsite)	D-B31-15.0-15.5	06-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B31	Background (Offsite)	D-B31-15.0-15.5			BaP TEQ									0.002	0.0002
B31	Background (Offsite)	D-B31-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B31	Background (Offsite)	D-B31-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B31	Background (Offsite)	D-B31-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B31	Background (Offsite)	D-B31-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00166	U	0	0.00083	0	0.01	0.0000083	0
B31	Background (Offsite)	D-B31-20.0-20.5	06-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.00166	U	0	0.00083	0	0.001	0.00000083	0
B31	Background (Offsite)	D-B31-20.0-20.5	06-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B31	Background (Offsite)		06-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00166	U	0	0.00083	0	0.1	0.000083	0
B31	Background (Offsite)	D-B31-20.0-20.5			BaP TEQ									0.002	0.00
B32	Background (Offsite)	D-B32-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B32	Background (Offsite)	D-B32-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B32	Background (Offsite)	D-B32-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B32	Background (Offsite)	D-B32-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B32	Background (Offsite)	D-B32-15.0-15.5	06-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B32	Background (Offsite)	D-B32-15.0-15.5	06-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B32	Background (Offsite)	D-B32-15.0-15.5	06-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B32	Background (Offsite)	D-B32-15.0-15.5			BaP TEQ									0.002	0.00
B32	Background (Offsite)	D-B32-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B32	Background (Offsite)	D-B32-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B32	Background (Offsite)	D-B32-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B32	Background (Offsite)	D-B32-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B32	Background (Offsite)	D-B32-20.0-20.5	06-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B32	Background (Offsite)	D-B32-20.0-20.5	06-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B32	Background (Offsite)	D-B32-20.0-20.5	06-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B32	Background (Offsite)	D-B32-20.0-20.5			BaP TEQ									0.002	0.00
B33	Background (Offsite)	D-B33-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B33	Background (Offsite)	D-B33-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B33	Background (Offsite)	D-B33-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00198		0.00198	0.00198	1	0.1	0.000198	0.000198
B33	Background (Offsite)	D-B33-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B33	Background (Offsite)		06-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B33	Background (Offsite)		06-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B33	Background (Offsite)	D-B33-15.0-15.5	06-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B33	Background (Offsite)	D-B33-15.0-15.5			BaP TEQ									0.002	0.0002

Attachment 9
Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Background (Offsite)
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

								1		Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)
B33	Background (Offsite)	D-B33-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00178		0.00178	0.00178	1	0.1	0.000178	0.000178
B33	Background (Offsite)	D-B33-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00274		0.00274	0.00274	1	1	0.00274	0.00274
B33	Background (Offsite)	D-B33-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00552		0.00552	0.00552	1	0.1	0.000552	0.000552
B33	Background (Offsite)	D-B33-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00176		0.00176	0.00176	1	0.01	0.0000176	0.0000176
B33	Background (Offsite)	D-B33-20.0-20.5	06-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.00425		0.00425	0.00425	1	0.001	0.00000425	0.00000425
B33	Background (Offsite)		06-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B33	Background (Offsite)	D-B33-20.0-20.5	06-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00175		0.00175	0.00175	1	0.1	0.000175	0.000175
B33	Background (Offsite)	D-B33-20.0-20.5			BaP TEQ									0.005	0.004
B34	Background (Offsite)	D-B34-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00634		0.00634	0.00634	1	0.1	0.000634	0.000634
B34	Background (Offsite)	D-B34-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0109		0.0109	0.0109	1	1	0.0109	0.0109
B34	Background (Offsite)	D-B34-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.0142		0.0142	0.0142	1	0.1	0.00142	0.00142
B34	Background (Offsite)	D-B34-15.0-15.5	06-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00443		0.00443	0.00443	1	0.01	0.0000443	0.0000443
B34	Background (Offsite)	D-B34-15.0-15.5	06-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00809		0.00809	0.00809	1	0.001	0.00000809	0.00000809
B34	Background (Offsite)	D-B34-15.0-15.5	06-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00166	U	0	0.00083	0	1	0.00083	0
B34	Background (Offsite)	D-B34-15.0-15.5	06-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00593		0.00593	0.00593	1	0.1	0.000593	0.000593
B34	Background (Offsite)	D-B34-15.0-15.5			BaP TEQ									0.01	0.01
B34	Background (Offsite)	D-B34-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B34	Background (Offsite)	D-B34-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B34	Background (Offsite)	D-B34-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B34	Background (Offsite)	D-B34-20.0-20.5	06-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00167	U	0	0.000835	0	0.01	0.00000835	0
B34	Background (Offsite)	D-B34-20.0-20.5	06-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.00167	U	0	0.000835	0	0.001	0.000000835	0
B34	Background (Offsite)	D-B34-20.0-20.5	06-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B34	Background (Offsite)	D-B34-20.0-20.5	06-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00167	U	0	0.000835	0	0.1	0.0000835	0
B34	Background (Offsite)	D-B34-20.0-20.5			BaP TEQ									0.002	0.00
B35	Background (Offsite)	D-B35-15.0-15.5	05-Nov-19	15.0-15.5	Benzo(a)anthracene	56-55-3	mg/kg	0.00266		0.00266	0.00266	1	0.1	0.000266	0.000266
B35	Background (Offsite)	D-B35-15.0-15.5	05-Nov-19	15.0-15.5	Benzo(a)pyrene	50-32-8	mg/kg	0.00431		0.00431	0.00431	1	1	0.00431	0.00431
B35	Background (Offsite)	D-B35-15.0-15.5	05-Nov-19	15.0-15.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.00604		0.00604	0.00604	1	0.1	0.000604	0.000604
B35	Background (Offsite)	D-B35-15.0-15.5	05-Nov-19	15.0-15.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.00187		0.00187	0.00187	1	0.01	0.0000187	0.0000187
B35	Background (Offsite)	D-B35-15.0-15.5	05-Nov-19	15.0-15.5	Chrysene	218-01-9	mg/kg	0.00352		0.00352	0.00352	1	0.001	0.00000352	0.00000352
B35	Background (Offsite)		05-Nov-19	15.0-15.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B35	Background (Offsite)	D-B35-15.0-15.5	05-Nov-19	15.0-15.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.00395		0.00395	0.00395	1	0.1	0.000395	0.000395
B35	Background (Offsite)	D-B35-15.0-15.5			BaP TEQ									0.01	0.01
B35	Background (Offsite)	D-B35-20.0-20.5	05-Nov-19	20.0-20.5	Benzo(a)anthracene	56-55-3	mg/kg	0.044		0.044	0.044	1	0.1	0.0044	0.0044
B35	Background (Offsite)	D-B35-20.0-20.5	05-Nov-19	20.0-20.5	Benzo(a)pyrene	50-32-8	mg/kg	0.0882		0.0882	0.0882	1	1	0.0882	0.0882
B35	Background (Offsite)	D-B35-20.0-20.5	05-Nov-19	20.0-20.5	Benzo(b)fluoranthene	205-99-2	mg/kg	0.117		0.117	0.117	1	0.1	0.0117	0.0117
B35	Background (Offsite)	D-B35-20.0-20.5	05-Nov-19	20.0-20.5	Benzo(k)fluoranthene	207-08-9	mg/kg	0.0313		0.0313	0.0313	1	0.01	0.000313	0.000313
B35	Background (Offsite)		05-Nov-19	20.0-20.5	Chrysene	218-01-9	mg/kg	0.0629		0.0629	0.0629	1	0.001	0.0000629	0.0000629
B35	Background (Offsite)		05-Nov-19	20.0-20.5	Dibenz(a,h)anthracene	53-70-3	mg/kg	0.00167	U	0	0.000835	0	1	0.000835	0
B35	Background (Offsite)	D-B35-20.0-20.5	05-Nov-19	20.0-20.5	Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	0.0579		0.0579	0.0579	1	0.1	0.00579	0.00579
B35	Background (Offsite)	D-B35-20.0-20.5			BaP TEQ									0.11	0.11

Attachment 9

Benzo(a)pyrene Toxicity Equivalent Calculations for Deep Soil (>15 feet) - Background (Offsite)

Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

										Result	Result			BAP TEQ	BAP TEQ
								Results		[U/UJ=0]	[U/UJ=1/2RL]			[U/UJ=1/2RL]	[U/UJ=0]
Sample Location	Area	Sample ID	Sample Date	Top Depth	Analyte	CAS#	Units	(mg/kg)	Flag	(mg/kg)	(mg/kg)	Detect	RPF	(mg/kg)	(mg/kg)

Notes:

BaP TEQ = Benzo(a)pyrene toxicity equivalent

U = nondetect

UJ = nondetect estimated

J = detect estimated concentration

RL = reporting limit

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1	Attachm	ent 10										
2	ProUCL (Outputs for	Surface and	Subsurfac	e Soil (0-15	feet) - On	site					
3	Human I	Health Risk A	Assessment	, Former M	anufacture	d Gas Plan	t Site, Doug	glas, Arizoi	na			
4												
5					UCL Statis	stics for Data	Sets with Nor	n-Detects		•		
6												
7			ected Options									
8		Date/Time of (12/4/2019 5:0							
9			From File		out_Soil_0-15	_Onsite.xls						
10			ull Precision	OFF								
11			e Coefficient	95%								
12	Numb	er of Bootstrap	Operations	2000								
13												
14	.											-
15	Arsenic											
16						Canaral	Ctatistics					
17			Total	al Number of	Ohaamiatiana		Statistics		Niconala	or of Distinct	Observations	63
18			1016	ai Nullibel of	Observations	/3					Observations	0
19					Minimum	7.38			Nullip	ei oi iviissiiig	Mean	17.22
20					Maximum						Median	15.4
21					SD					Std I	Error of Mean	0.899
22				Coefficier	nt of Variation					Otd. I	Skewness	1.949
23				Cociliciei	it or variation	0.440					OKCWICSS	1.040
24 25						Normal (GOF Test					
26				Shapiro Wilk	Test Statistic				Shapiro Wi	lk GOF Test		
27				•	Wilk P Value			Data N		5% Significan	ice Level	
28					Test Statistic					GOF Test		
29				5% Lilliefors				Data N		5% Significan	ice Level	
30							 5% Significand					
31												
32					A	ssuming Nori	mal Distributio	n				
33			95% No	ormal UCL				95%	6 UCLs (Adju	sted for Skew	ness)	
34				95% Stu	udent's-t UCL	18.72			95% Adjus	ted-CLT UCL	(Chen-1995)	18.92
35									95% Modi	fied-t UCL (Jo	ohnson-1978)	18.75
36												
37						Gamma	GOF Test					
38				A-D	Test Statistic	0.742		Ande	erson-Darling	Gamma GOF	Test	
39				5% A-D	Critical Value	0.753	Detecte	ed data appe	ar Gamma D	istributed at 5	5% Significance	e Level
40				K-S	Test Statistic	0.0659		Kolmo	gorov-Smirno	v Gamma GO	OF Test	
41					Critical Value					istributed at 5	5% Significance	e Level
42				Detecte	d data appea	r Gamma Dis	stributed at 5%	6 Significanc	e Level			
43												
44							Statistics					
45					k hat (MLE)					`	rrected MLE)	6.1
46			_		eta hat (MLE)				Theta	`	rrected MLE)	2.823
47					nu hat (MLE)						as corrected)	890.6
48			N	/ILE Mean (bi	as corrected)	17.22				•	as corrected)	6.972
49						0.040=					value (0.05)	822.3
50			Adjı	usted Level o	t Significance	0.0467				Adjusted Chi	Square Value	821
51							B!					
52		050/ *		1101 ′			nma Distributio		A -1:	1101 /		10.00
53		95% Appro	oximate Gamr	na UCL (use	wnen n>=50)	18.65		95% /	agusted Gan	nma UCL (use	e when n<50)	18.68
54												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
55							GOF Test					
56				•	Test Statistic	0.966				gnormal GOF		
57				•	Wilk P Value	0.142		• • • • • • • • • • • • • • • • • • • •	Ū	al at 5% Signif		
58					Test Statistic	0.0674				ormal GOF Te		
59				5% Lilliefors	Critical Value	0.104			ar Lognorma	al at 5% Signif	icance Level	
60					Data appear	Lognormal	at 5% Significa	ance Level				
61						•	LOUGHER					
62				Minimum of	Lagged Date		I Statistics			Maana	florand Data	2.765
63					Logged Data Logged Data	1.999 3.918					f logged Data f logged Data	2.765 0.395
64				Maximum oi	Logged Data	3.916				20.0	i logged Data	0.395
65					Δεςι	ımina Loano	rmal Distribut	ion				
66 67					95% H-UCL	18.67			900	% Chebyshev	(MVUE) UCL	19.61
68			95%	6 Chebyshev		20.72				% Chebyshev	,	22.27
69				6 Chebyshev	,	25.31					()	
70					(- ,							
71					Nonparame	tric Distribut	ion Free UCL	Statistics				
72				Data appe	ar to follow a [nce Level			
73												
74					Nonpa	rametric Dist	ribution Free	UCLs				
75				9:	5% CLT UCL	18.7				95% J	ackknife UCL	18.72
76			959	% Standard B	ootstrap UCL	18.7				95% Bo	otstrap-t UCL	18.97
77				95% Hall's B	ootstrap UCL	19.14			95%	% Percentile B	ootstrap UCL	18.75
78				95% BCA B	ootstrap UCL	19.02						
79			90% C	Chebyshev(Me	ean, Sd) UCL	19.92			95% (Chebyshev(Mo	ean, Sd) UCL	21.14
80			97.5% C	Chebyshev(Me	ean, Sd) UCL	22.83			99% (Chebyshev(Mo	ean, Sd) UCL	26.16
81											,	
82						Suggested	UCL to Use					
83			95%	Approximate	Gamma UCL	18.65						
84												
85		Note: Sug	gestions rega		ection of a 95%						te 95% UCL.	
86					dations are bas	•	-	•			(0000)	
87					upon the resu				_			
88		nowever, sir	nuiauons res	uits will flot co	over all Real V	vonu uata se	ets, for addition	nai insigni un	e user may	want to consu	it a StatiStiClaff	•
89	Benzo[a]antl	hracene										
90	Denzolajanu	illacerie										
91						General	Statistics					
93			Tota	al Number of	Observations	73			Numl	per of Distinct	Observations	69
94				Numb	er of Detects	66				Number of	Non-Detects	7
95				Number of Dis		65			Num	ber of Distinct		4
96				Mir	nimum Detect	0.00177				Minimur	m Non-Detect	0.00167
97				Max	kimum Detect	17.5				Maximur	m Non-Detect	0.00834
98				Vari	ance Detects	6.633				Percent	Non-Detects	9.589%
99				N	Mean Detects	0.963					SD Detects	2.576
100				Me	edian Detects	0.132					CV Detects	2.675
101				Skew	ness Detects	4.837				Kui	rtosis Detects	27.25
102				Mean of Lo	gged Detects	-2.139				SD of Lo	gged Detects	2.304
103												
104					Norm	al GOF Tes	t on Detects C	Only				
105				Shapiro Wilk		0.419				etected Observ		
106				•	Wilk P Value	0		Detected Da		_	ificance Level	
107					Test Statistic	0.355				GOF Test		
108				5% Lilliefors	Critical Value	0.109		Detected Da	ta Not Norm	nal at 5% Sign	ificance Level	

	Α	В	С	D		E	F	G H I J K	L
109					Detect	ted Data	Not Norma	l at 5% Significance Level	
110									
111			Kapla	an-Meier	• •			itical Values and other Nonparametric UCLs	
112						1 Mean	0.871	KM Standard Error of Mean	0.289
113						KM SD	2.447	95% KM (BCA) UCL	1.431
114					95% KM (1.351	95% KM (Percentile Bootstrap) UCL	1.369
115					95% KM (-	1.345	95% KM Bootstrap t UCL	1.902
116					M Chebyshe		1.736	95% KM Chebyshev UCL	2.128
117				97.5% KI	M Chebyshe	ev UCL	2.673	99% KM Chebyshev UCL	3.742
118					0	005	T4 D-	As and Observations Only	
119					A-D Test S			stected Observations Only	
120				E0/	A-D Test S		2.092 0.859	Anderson-Darling GOF Test	ovol
121				5%	K-S Test S		0.859	Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF	evei
122				E0/					evel
123					K-S Critica		0.119	Detected Data Not Gamma Distributed at 5% Significance L	evei
124				L	Detected Da	ita Not G	amma Distr	ributed at 5% Significance Level	
125							Otatiatias an	Detected Date Only	
126								Detected Data Only	0.22
127						(MLE)	0.324	k star (bias corrected MLE)	0.32
128					Theta hat	` '	2.97	Theta star (bias corrected MLE)	3.013
129					nu hat Mean (d	(MLE)	42.79 0.963	nu star (bias corrected)	42.18
130					wean (u	etects)	0.963		
131					Comm	POS	Statistics us	sing Imputed Non-Detects	
132			CDOS m	any not b				% NDs with many tied observations at multiple DLs	
133		CDOS ~		•				is <1.0, especially when the sample size is small (e.g., <15-20)	
134		GROSTI						yield incorrect values of UCLs and BTVs	
135				i di suci			_	en the sample size is small.	
136		For o	amma distril	huted de			-	ay be computed using gamma distribution on KM estimates	
137			arrina distri			inimum	0.00177	Mean	0.871
138						ximum	17.5	Median	0.103
139						SD	2.463	CV	2.827
140 141					k hat	(MLE)	0.307	k star (bias corrected MLE)	0.304
142					Theta hat	` '	2.838	Theta star (bias corrected MLE)	2.87
143						(MLE)	44.83	nu star (bias corrected)	44.32
-			Adiust	ed Level	of Significa	` ′	0.0467	(2.62 32.133334)	
144 145		Aı	oproximate C				30.05	Adjusted Chi Square Value (44.32, β)	29.81
146			na Approxim			-	1.285	95% Gamma Adjusted UCL (use when n<50)	1.295
147			, p			/		.,	
148					Estimat	tes of Ga	amma Paran	neters using KM Estimates	
149						n (KM)	0.871	SD (KM)	2.447
150					Varianc		5.986	SE of Mean (KM)	0.289
151						at (KM)	0.127	k star (KM)	0.131
152						at (KM)	18.48	nu star (KM)	19.06
152					theta ha	, ,	6.876	theta star (KM)	6.669
						, ,			2.518
			80	0% gamr	ma percentil	le (KM)	0.835	90% gamma percentile (KM)	
154				•	ma percentil ma percentil	, ,	4.909	90% gamma percentile (KM)	12.06
154 155				•	•	, ,			
154 155 156				•	•	le (KM)	4.909	99% gamma percentile (KM)	
154 155 156 157		Aı		5% gamr	na percentil	Gamm	4.909		
154 155 156 157 158	95%		9!	5% gamr	ma percentil	Gamm 9.06, α)	4.909 a Kaplan-Mo	99% gamma percentile (KM)	12.06
154 155 156 157 158 159	95%		99 pproximate C	5% gamr	ma percentil	Gamm 9.06, α)	4.909 a Kaplan-M e 10.16	99% gamma percentile (KM) eier (KM) Statistics Adjusted Chi Square Value (19.06, β)	12.06
154 155 156 157 158 159 160	95%		99 pproximate C	5% gamr	re Value (19	Gamma 9.06, α) n>=50)	4.909 a Kaplan-Me 10.16 1.633	99% gamma percentile (KM) eier (KM) Statistics Adjusted Chi Square Value (19.06, β)	12.06
154 155 156 157 158 159	95%	Gamma A	99 pproximate C	5% gamr Chi Squai KM-UCL	re Value (19 (use when the Lognor	Gamma 9.06, α) n>=50)	4.909 a Kaplan-Me 10.16 1.633	99% gamma percentile (KM) eier (KM) Statistics Adjusted Chi Square Value (19.06, β) 95% Gamma Adjusted KM-UCL (use when n<50)	12.06

	Α	В	C	D		Ε		F	G	Н				J		- 1	K	L
163			-	5% Shap	ro Wi		alue	0.151	De	etected D			-			gnifica	ance Le	vel
164				Lilliefo	rs Te	st Stati	istic	0.0616						OF Te				
165				5% Lilliefo	rs Cri	tical Va	alue	0.109	De	etected D)ata ap	pear L	ognori	nal at !	5% Si	gnifica	ance Le	vel
166				C	etect	ed Dat	ta appe	ear Lognor	mal at 5% Si	gnificand	e Leve	el						
167																		
168					-			Statistics U	Jsing Imputed	d Non-De	etects							
169				Mean i	_			0.871						N		_	Scale	-2.593
170				SD i	n Orig	jinal So	cale	2.464									Scale	2.623
171		95%	t UCL (assun		•			1.351					95% F	Percent			-	1.376
172				95% BCA		-		1.599						959	% Boo	tstrap	t UCL	1.845
173				95% H-I	JCL (Log Ro	OS)	8.647										
174																		
175			Sta					Logged D	ata and Assu	ıming Lo	gnorm	al Distr	ibutio	1				
176						n (logg		-2.525									Mean	0.08
177						D (logg		2.481					95% C				M-Log)	4.044
178			KM Stand	dard Error o				0.293								•	l -Log)	5.662
179				ŀ	KM SI	D (logg	ged)	2.481					95% C	Critical	H Val	ue (KN	M-Log)	4.044
180			KM Stand	dard Error o	f Mea	n (logg	ged)	0.293										
181																		
182								DL/2 S	tatistics									
183			DL/2	Normal								DL/2 L	og-Tra					
184				Mean i	_			0.871						N			Scale	-2.547
185						jinal So		2.464								_	Scale	2.54
186				t UCL (Assı				1.351							95%	H-Sta	at UCL	6.772
4.0-			DL/	/2 is not a re	comr	nende	d meth	nod, provid	ed for compa	risons aı	nd hist	orical r	eason	s				
187								-										
187 188																		
-							rametri		tion Free UCI									
188				Detecto			rametri		ion Free UCI			e Level						
188 189				Detecto			rametri ear Lo	gnormal D	istributed at !			e Level						
188 189 190				Detecto	ed Da	ta app	rametri ear Log	gnormal D Suggested				e Level						
188 189 190 191				Detecto	ed Da		rametri ear Log	gnormal D	istributed at !			e Level						
188 189 190 191 192					ed Da	ta app	rametri ear Log S	ognormal D Suggested 5.662	istributed at s	5% Signi	ficance							
188 189 190 191 192 193		Note: Sugg	gestions rega	arding the s	election	ta app	rametri ear Log S JCL	Guggested 5.662 UCL are pr	UCL to Use	5% Signi	ficance	elect th	e mos	t appro	ppriate	95%	UCL.	
188 189 190 191 192 193 194 195				arding the s	election	ta app	rametri ear Log S JCL	Suggested 5.662 UCL are predupon date	UCL to Use rovided to he ta size, data	5% Signi	er to se	elect th	e mos					
188 189 190 191 192 193 194 195		These rec	commendation	arding the s Recomme	ed Da	KM H-L on of a ons are	rametri pear Log S JCL a 95% t e base	Suggested 5.662 UCL are pred upon dates of the sin	UCL to Use rovided to helta size, data anulation studi	lp the usedistributions	er to se on, and	elect th d skewi	e mos ness. gh, Ma	aichle,	and L	ee (20	006).	
188 189 190 191 192 193 194 195		These rec	commendation	arding the s Recomme	ed Da	KM H-L on of a ons are	rametri pear Log S JCL a 95% t e base	Suggested 5.662 UCL are pred upon dates of the sin	UCL to Use rovided to he ta size, data	lp the usedistributions	er to se on, and	elect th d skewi	e mos ness. gh, Ma	aichle,	and L	ee (20	006).	
188 189 190 191 192 193 194 195 196 197 198		These red However, sin	commendation	arding the s Recomme	ed Da	KM H-L on of a ons are	rametri pear Log S JCL a 95% t e base	Suggested 5.662 UCL are pred upon dates of the sin	UCL to Use rovided to helta size, data anulation studi	lp the usedistributions	er to se on, and	elect th d skewi	e mos ness. gh, Ma	aichle,	and L	ee (20	006).	
188 189 190 191 192 193 194 195 196 197 198	Benzo[a]pyre	These red However, sin	commendation	arding the s Recomme	ed Da	KM H-L on of a ons are	rametri pear Log S JCL a 95% t e base	Suggested 5.662 UCL are pred upon dates of the sin	UCL to Use rovided to helta size, data anulation studi	lp the usedistributions	er to se on, and	elect th d skewi	e mos ness. gh, Ma	aichle,	and L	ee (20	006).	
188 189 190 191 192 193 194 195 196 197 198 199		These red However, sin	commendation	arding the s Recomme	ed Da	KM H-L on of a ons are	rametri pear Log S JCL a 95% t e base	Suggested 5.662 UCL are pred upon datas of the sin orld data se	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skewi	e mos ness. gh, Ma	aichle,	and L	ee (20	006).	
188 189 190 191 192 193 194 195 196 197 198 199 200		These red However, sin	commendations res	arding the s Recomme ons are bas sults will not	k k eelectii endatii eed up	on of a ons are on the	SUCL a 95% to be based results eal Wo	Suggested 5.662 UCL are pred upon data softhe sin orld data se	UCL to Use rovided to helta size, data anulation studi	lp the usedistributions	er to se on, and	elect th d skewi d in Sin user m	e mos ness. gh, Ma ay wa	aichle,	and L	ee (20 a stat	006). istician.	
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203		These red However, sin	commendations res	arding the s Recomme ons are bas sults will not	k election end of Obs	CM H-L on of a ons are on the r all Re	S JCL a 95% to base a results eal Wo	Suggested 5.662 UCL are pred upon datas of the sin orld data se	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skewi d in Sin user m	e mos ness. gh, Ma ay wa	nt to co	and Lonsult	ee (20 a stat	006). istician.	72
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 203		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not	k election endation cover	con of a constant on the rall Reservation of Determinant	s JCL s 95% t e base e results eal Wo	Suggested 5.662 UCL are produced upon datas of the sin orld data see General 73 70	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist	and Lonsult	ee (20 a stat	oo6). istician. rations	72 3
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not	k election endation cover	con of a constant on the rall Reservation of Determinant	s JCL s 95% t e base e results eal Wo	Suggested 5.662 UCL are pred upon datas of the sin orld data se	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	nt to co	and Lonsult	ee (20 a stat	oo6). istician. rations	72 3 2
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not tal Number of	ed Da	con of a ons are on the r all Reservation of Detection D	s JCL s 95% t e base e results e eal Wo	Suggested 5.662 UCL are pred upon datas of the sin orld data see General 73 70 70 0.00222	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist	and Lonsult	ee (20 a stat Observ Non-D Non-D	ovations Detects	72 3 2 0.00167
188 189 190 191 192 193 194 195 196 197 200 201 201 202 203 204 205 206 207		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not all Number of Number of	ed Da	on of a ons are on the rall Reservation of Detection Det	support of the control of the contro	General 73 70 0.00222 28.9	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis	and Lonsult	ee (20 a stat	vations vetects Detect Detect	72 3 2 0.00167 0.00832
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not all Number of Number of	ed Da	con of a constant on the constant of Detection	system street st	Suggested 5.662 UCL are pred upon datas of the sin orld data see General 73 70 70 0.00222 28.9 16.79	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis	and Lonsult	ee (20 a stat	vations Detects Detect Detects	72 3 2 0.00167 0.00832 4.11%
188 189 190 191 195 196 197 200 201 202 203 204 205 206 207 208 209		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not Number of Number of N	ed Da	servation Determine Determ	rametri pear Log S JCL a 95% t pe base presults peat Wo ions pect	General 73 70 70 0.00222 28.9 16.79 1.53	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis	and Lonsult	ee (20 a stat	rations Detects Detect Detect Detects	72 3 2 0.00167 0.00832 4.11% 4.097
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not tal Number of Number of V	ed Da	on of a ons are on the rall Reservation of Detection Det	rametri pear Log S JCL a 95% t e basee results eal Wo ions ects ects ects ects ects ects ects	General 73 70 70 0.00222 28.9 16.79 1.53 0.172	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis	and L onsult tinct C er of I stinct I nimum rimum rimum	Dbserv Non-D Non-D Non-D Non-D SD D	vations vetects Detect Detect Detects Detects Detects Detects Detects Detects Detects	72 3 2 0.00167 0.00832 4.11% 4.097 2.678
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not Number of Number of V. Ske	ed Da	servation Detection ametri pear Log S JCL a 95% U e based results eal Wo ions ects ects ects ects ects ects ects ect	General 73 70 70 0.00222 28.9 16.79 1.53 0.172 5.007	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis Min Max Pei	and L nnsult tinct C er of I stinct I kimum Kurt	ee (20) a stat Dibserv Non-D Non-D Non-D SD D CV D oosis D	vations Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects	72 3 2 0.00167 0.00832 4.11% 4.097 2.678 29.78	
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208 209 210 211 212		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not tal Number of Number of V	ed Da	servation Detection ametri pear Log S JCL a 95% U e based results eal Wo ions ects ects ects ects ects ects ects ect	General 73 70 70 0.00222 28.9 16.79 1.53 0.172	UCL to Use rovided to helta size, data enulation studiets; for addition	lp the usedistributions	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis Min Max Pei	and L nnsult tinct C er of I stinct I kimum Kurt	ee (20) a stat Dibserv Non-D Non-D Non-D SD D CV D oosis D	vations vetects Detect Detect Detects Detects Detects Detects Detects Detects Detects	72 3 2 0.00167 0.00832 4.11% 4.097 2.678	
188 189 190 191 195 196 197 200 201 205 206 207 208 209 210 211 198 199		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not Number of Number of V. Ske	ed Da	on of a ons are on the rall Reservation of Detection Det	rametri lear Log S JCL a 95% t e basee results eal Wo lions lects ects ects ects ects ects ects ects	General 73 70 70 0.00222 28.9 16.79 1.53 0.172 5.007 -1.841	UCL to Use rovided to helta size, data anulation studiets; for additions statistics	lp the used distribution of the summonal insigna	er to se on, and	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis Min Max Pei	and L nnsult tinct C er of I stinct I kimum Kurt	ee (20) a stat Dibserv Non-D Non-D Non-D SD D CV D oosis D	vations Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects	72 3 2 0.00167 0.00832 4.11% 4.097 2.678 29.78
188 189 190 191 192 193 196 197 201 202 203 204 205 206 207 208 209 210 211 212		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not tal Number of Number of N V Ske Mean of	ed Da	servation Detection ametri rear Log S JCL a 95% U e based results eal Wo ions ects ects ects ects ects ects ects ect	General 73 70 70 0.00222 28.9 16.79 1.53 0.172 5.007 -1.841	UCL to Use rovided to helta size, data enulation studiets; for addition	Ip the used distribution is summonal insignal in	er to se on, and narized that the	elect th d skew d in Sin user m	e mos ness. gh, Ma ay wa	of Dist Numb r of Dist Min Max Per	and L onsult tinct C one of I	ee (20 a stat	vations Detects	72 3 2 0.00167 0.00832 4.11% 4.097 2.678 29.78	
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213		These red However, sin	commendation res	arding the s Recomme ons are bas sults will not Number of Number of V. Ske	ed Da	servation Detection ametri ear Log S JCL a 95% U e base results eal Wo ions ects ects ects ects ects ects ects ect	General 73 70 70 0.00222 28.9 16.79 1.53 0.172 5.007 -1.841	UCL to Use rovided to helta size, data anulation studiets; for additions statistics	lp the used distribution of the summonal insigna	er to se on, and narized the the	elect the diskewing size of the skewing size o	e mos ness. gh, Ma ay wa	of Dist Numb r of Dis Min Max Per	and L onsult tinct C er of I stinct I Kurt Kurt of Log	ee (200 a stat	rations Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects Petects	72 3 2 0.00167 0.00832 4.11% 4.097 2.678 29.78	

	Α		В	С	D	Е	F	G	Н	I	J	K	L
217						Test Statistic					GOF Test		
218						Critical Value					al at 5% Sign	ificance Level	
219						Detected Dat	a Not Norma	at 5% Signif	icance Level				
220						0		141 1 3 7 .			101		
221				Kapla	n-Meier (KM)	Statistics using	•	itical Values a	and other No	•			0.474
222						KM Mean						Error of Mean	0.471
223					050	KM SD				OFO/ IZM		M (BCA) UCL	2.348
224						% KM (t) UCL				95% KIVI	`	ootstrap) UCL	2.292
225						% KM (z) UCL						otstrap t UCL	2.963 3.52
226				0		ebyshev UCL ebyshev UCL	4.408					ebyshev UCL ebyshev UCL	6.153
227					17.5% KIVI CII	ebysilev UCL	4.408				99% KIVI CITI	sbysnev occ	0.103
228						Gamma GOF	Teete on De	tected Ohser	vations Only				
229						Test Statistic		lected Obser			rling GOF Tes	et	
230						Critical Value		Dete				6 Significance	Level
231						Test Statistic		Detec			Smirnov GOF	•	Level
232						Critical Value		Dete		_		6 Significance	Level
233						ted Data Not						- Jigiiiiodiioe	
234 235					26.60	544 1401	_a Didu		-ig.illicarios				
236						Gamma	Statistics on	Detected Da	ta Only				
237						k hat (MLE)				ŀ	star (bias co	rrected MLE)	0.3
238					Th	eta hat (MLE)					,	rrected MLE)	5.095
239						nu hat (MLE)					,	as corrected)	42.03
240						lean (detects)					,		
241						· , ,							
242						Gamma ROS	Statistics us	ing Imputed	Non-Detects				
243				GROS m	ay not be use	ed when data	set has > 50%	6 NDs with m	any tied obse	ervations at n	nultiple DLs		
244		G	GROS m	nay not be us	ed when ksta	r of detects is	small such a	s <1.0, espec	cially when th	ne sample siz	e is small (e.g	j., <15-20)	
245				l	For such situa	ations, GROS	method may	yield incorre	ct values of L	JCLs and BT	Vs		
246						This is espec	cially true whe	en the sample	size is smal	I.			
247			For g	amma distrib	uted detecte	d data, BTVs	and UCLs ma	ay be comput	ed using gam	nma distributi	on on KM est	imates	
248						Minimum	0.00222					Mean	1.467
249						Maximum	28.9					Median	0.161
250						SD	4.022					CV	2.741
251						k hat (MLE)	0.296			ļ	star (bias co	rrected MLE)	0.293
252					Th	eta hat (MLE)				Theta	a star (bias co	rrected MLE)	5.014
253						nu hat (MLE)					nu star (bi	as corrected)	42.72
254						gnificance (β)							
255				•	•	alue (42.72, α)				•	•	lue (42.72, β)	28.51
256		95%	% Gamn	na Approxima	ate UCL (use	when n>=50)	2.181		95% (Gamma Adju	sted UCL (use	e when n<50)	2.199
257						• • • • • • • • • • • • • • • • • • • •			Z.A.E				
258						Estimates of G		neters using	KM Estimate:	S		00 //40	2.005
259						Mean (KM)					25	SD (KM)	3.995
260					\	/ariance (KM)					SE (of Mean (KM)	0.471
261						k hat (KM)						k star (KM)	0.138
262						nu hat (KM)					ـاء	nu star (KM)	20.21
263				0.0		heta hat (KM) ercentile (KM)				00		ercentile (KM)	10.6 4.294
264						ercentile (KM)						ercentile (KM)	19.7
265				95	v ⁄o yanınıa pe	ercennie (NIVI)	0.193			98	v ⁄o yanınıa p€	ncende (NIVI)	13./
266						Comm	na Kaplan-Me	ajer (KM) Sta	tietice				
267			Δ.	nnrovimate C	thi Square Va	Gamr alue (20.21, α)	-	PICI (L/MI) 2(9	u3U03	Adjusted C	thi Square Va	lue (20.21, β)	10.87
268		95% C-		•	•	when n>=50)			95% Cam	-		e when n<50)	2.728
269		JJ /0 G	лина А	pproximate r	avi-oct (use	wiieii ii/-30)	2.034		90 /0 Gam	ıma Aujusted	INIVI-OCE (US	, wileli ii>30)	2.720
270													

	Α	В	C	D	Е	F	G	Н	I	J	K		L
271					ognormal GO		etected Obse	rvations Only					
272			Shapiro Wilk			0.959			-	lk GOF Test			
273					Wilk P Value	0.0607	De	tected Data	appear Logno		Significanc	e Lev	/el
274					Test Statistic	0.0661				GOF Test	o: :e		
275					Critical Value ected Data ap	0.106			appear Logno	ormai at 5% 8	Significanc	e Lev	/ei
276				Det	ected Data ap	pear Lognor	mai at 5% Si	ynilicance Le	evei				
277				1	ognormal RO	S Statistics I	lsina Imputed	l Non-Detect	·e				
278 279					Original Scale	1.467	Joing Imputed	THOIP DOLOGI		Mear	n in Log Sc	ale	-2.062
280					Original Scale	4.022					O in Log So		2.629
281		95%	t UCL (assum		•	2.251			95%	Percentile E			2.267
282					ootstrap UCL	2.657					ootstrap t U		3.104
283				95% H-UC	L (Log ROS)	15.01					·		
284													
285			Sta	tistics using K	(M estimates	on Logged D	ata and Assu	ming Lognor	mal Distributi	on			
286				KM M	lean (logged)	-2.019				ŀ	KM Geo Me	ean	0.133
287				KM	SD (logged)	2.524			95%	Critical H Va	alue (KM-L	og)	4.102
288			KM Standa	ard Error of M	lean (logged)	0.298				95% H-U	ICL (KM -L	og)	10.87
289					SD (logged)	2.524			95%	Critical H Va	alue (KM-L	og)	4.102
290			KM Standa	ard Error of M	lean (logged)	0.298							
291													
292						DL/2 S	tatistics						
293			DL/2 I	Normal					DL/2 Log-T	ransformed			
294					Original Scale	1.467					n in Log So		-2.035
				SD in C	Original Scale	4.022				SL	o in Log So	aie	2.572
295			050/ +	1101 //	124- A	2.251				0.00		101	10.01
296				UCL (Assum		2.251	ad for compo	ricens and hi	iotorical races		% H-Stat L	ICL	12.61
296 297					es normality) ommended me		ed for compa	risons and hi	istorical reasc		% H-Stat U	ICL	12.61
296 297 298					ommended me	ethod, provide			istorical reaso		% H-Stat U	ICL	12.61
296 297 298 299				2 is not a reco	ommended me	ethod, provide	ion Free UCL	. Statistics			% H-Stat U	ICL	12.61
296 297 298 299 300				2 is not a reco	ommended me	ethod, provide	ion Free UCL	. Statistics			% H-Stat U	ICL	12.61
296 297 298 299 300 301				2 is not a reco	ommended me	ethod, provide	ion Free UCL	. Statistics			% H-Stat U	ICL	12.61
296 297 298 300 301 302				2 is not a reco	ommended me	ethod, provide etric Distribut Lognormal D	ion Free UCL	. Statistics			% H-Stat C	ICL	12.61
296 297 298 299 300 301 302 303				2 is not a reco	nmended me Nonparame Data appear I	ethod, provide etric Distribut Lognormal D Suggested	ion Free UCL	. Statistics			% H-Stat L	ICL	12.61
296 297 298 300 301 303		Note: Sug	DL/2	2 is not a reco	nmended me Nonparame Data appear I	ethod, provide etric Distribut Lognormal D Suggested 10.87	ion Free UCL istributed at 5 UCL to Use	. Statistics 5% Significan	nce Level	ons			12.61
296 297 298 300 301 302 303 304 305		Note: Sug	DL/2	Detected rding the sele	Nonparame Data appear I	ethod, provide etric Distribut Lognormal D Suggested 10.87	ion Free UCL istributed at 5 UCL to Use	. Statistics 5% Significan	select the mo	ons ost appropria			12.61
296 297 298 300 301 302 303 304 305 306		These re	gestions rega	Detected Trding the seles Recommend in sare based	Nonparame Nonparame MM H-UCL Section of a 959 Stations are base upon the resu	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on mulation studion	. Statistics 5% Significan p the user to distribution, a es summariz	select the mo	ost appropria s. Maichle, and	te 95% UC).	12.61
296 297 298 300 301 303 304 305 307 308		These re	gestions rega	Detected Trding the seles Recommend in sare based	Nonparame Data appear I KM H-UCL ection of a 959 dations are base	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on mulation studion	. Statistics 5% Significan p the user to distribution, a es summariz	select the mo	ost appropria s. Maichle, and	te 95% UC).	12.61
296 297 298 300 301 303 304 306 307 308 309 309		These re	gestions rega	Detected Trding the seles Recommend in sare based	Nonparame Nonparame MM H-UCL Section of a 959 Stations are base upon the resu	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on mulation studion	. Statistics 5% Significan p the user to distribution, a es summariz	select the mo	ost appropria s. Maichle, and	te 95% UC).	12.61
296 297 298 300 301 303 304 305 306 307 308 309 310	Benzo[b]fluo	These re	gestions rega	Detected Trding the seles Recommend in sare based	Nonparame Nonparame MM H-UCL Section of a 959 Stations are base upon the resu	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on mulation studion	. Statistics 5% Significan p the user to distribution, a es summariz	select the mo	ost appropria s. Maichle, and	te 95% UC).	12.61
296 297 298 300 301 303 304 307 308 309 310 311 311 307 311 311 308 311 311 308 311 311 308 311 311 308 311 311 308 311 311 308 311 311 308 311 311 308 311 311 308 311 311 311 308 311 311 311 308 311 311 311 308 311 311 311 308 311 311 311 308 311 311 311 308 311 311 311 311 308 308 311 311 311 308 311		These re	gestions rega	Detected Trding the seles Recommend in sare based	Nonparame Nonparame MM H-UCL Section of a 959 Stations are base upon the resu	ethod, provide etric Distribut Lognormal D Suggested 10.87 6 UCL are prosed upon data ults of the sim	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the mo	ost appropria s. Maichle, and	te 95% UC).	12.61
296 297 298 300 301 303 306 307 308 309 311 311 312		These re	gestions rega commendatio mulations resi	Detected To be the commend of the selection of the selec	Nonparame Nonparame Management I KM H-UCL Section of a 95% Stations are base Support the result over all Real V	ethod, providentic Distribut Lognormal D Suggested 10.87 6 UCL are presed upon datallts of the sin	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the mo	ost appropria s. Maichle, and vant to consu	te 95% UC Lee (2006 Ilt a statisti	L.	
296 297 298 300 301 302 303 304 305 306 307 308 309 310 311 312 313		These re	gestions rega commendatio mulations resi	Detected Detected rding the sele Recommend ns are based ults will not co	Nonparame Nonparame Data appear I KM H-UCL ection of a 95% dations are base upon the result over all Real V Observations	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the mo	ost appropria s. Maichle, and want to consu	te 95% UC Lee (2006 Ilt a statisti	Dons	71
296 297 298 300 301 305 306 307 310 311 312 313 314		These re	gestions rega commendatio mulations resu	Detected Detected rding the sele Recommend ns are based ults will not co	Nonparame Data appear I KM H-UCL ection of a 95% dations are base upon the result over all Real V Observations are of Detects	ethod, provident betric Distribut Lognormal D Suggested 10.87 6 UCL are properties of the simulation o	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	ost appropria s. Maichle, and vant to consu er of Distinct Number o	te 95% UC Lee (2006 Ilt a statistic	DODES DODES	71 2
296 297 298 300 301 303 306 307 308 311 312 313 314 315		These re	gestions rega commendatio mulations resu	Detected To ding the selection Recommender are based all Number of Oliving Number of Discourage and Discourage	Nonparame Data appear I KM H-UCL ection of a 95% dations are base upon the result over all Real V Observations are of Detects	ethod, providential providentia	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	ons Ost appropria S. Maichle, and want to consuler of Distinct Number of Der of Distinct	te 95% UC Lee (2006 Ilt a statistic	Dons exts	71 2 1
296 297 298 300 301 305 307 308 311 311 315 316 315 316		These re	gestions rega commendatio mulations resu	Detected Detected rding the sele Recommend ns are based ults will not co	Nonparame Nonparame Nonparame KM H-UCL Ection of a 95% dations are base upon the result over all Real V Observations are of Detects etinct Detects	ethod, provident betric Distribut Lognormal D Suggested 10.87 6 UCL are properties of the simulation o	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	ost appropria S. Maichle, and vant to consu er of Distinct Number of Distinct Minimul	te 95% UC Lee (2006 Ilt a statisti Observati f Non-Dete t Non-Dete	DDD DDD DDD DDD DDD DDD DDD DDD DDD DD	71 2
296 297 298 300 301 302 303 304 305 306 307 308 310 311 312 313 314 315 316 317		These re	gestions rega commendatio mulations resu	Detected Total Period of Control	Nonparame Nonparame	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	er of Distinct Number of Distinct Minimul Maximul	te 95% UC Lee (2006 ilt a statistic Observation f Non-Dete t Non-Dete m Non-De	DDD DDD DDD DDD DDD DDD DDD DDD DDD DD	71 2 1 0.00167
296 297 298 300 301 302 303 304 305 306 307 308 310 311 312 313 314 315 316 317 318		These re	gestions rega commendatio mulations resu	Detected Total Period of the selection	Nonparame Data appear I KM H-UCL ection of a 959 dations are bar upon the result over all Real V Observations her of Detects stinct Detects imum Detect	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	er of Distinct Number of Distinct Minimul Maximul	te 95% UC Lee (2006 Ilt a statistic f Non-Dete t Non-Dete m Non-Dete	Dons ects ects ects ects ects	71 2 1 0.00167
296 297 298 300 301 302 303 304 305 306 307 308 310 311 312 313 314 315 316 317 318 318		These re	gestions rega commendatio mulations resu	Detected Detected rding the sele Recommend ns are based ults will not co	Nonparame Nonparame	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	er of Distinct Number of Distinct Minimul Maximul	te 95% UC Lee (2006 Ilt a statistic Observation f Non-Dete m Non-Dete m Non-Dete t Non-Dete t Non-Dete	DDD DDD DDD DDD DDD DDD DDD DDD DDD DD	71 2 1 0.00167 0.00167 2.74%
296 297 298 300 301 302 303 304 305 306 307 308 310 311 312 313 314 315 316 317 318 319 320		These re	gestions rega commendatio mulations resu	Detected Total Properties To	Nonparame Data appear I KM H-UCL ection of a 95% dations are base upon the result over all Real V Observations her of Detects stinct Detects dimum Detect ance Detects Mean Detects	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	er of Distinct Number of Distinct Mainmu Maximu Percen	te 95% UC Lee (2006 Ilt a statistic Observation f Non-Dete t Non-Dete m Non-Dete t Non-Dete SD Dete	DODE DODE DODE DODE DODE DODE DODE DODE	71 2 1 0.00167 0.00167 2.74% 3.825
296 297 298 300 301 303 304 305 307 311 312 313 314 315 316 317 318 319 320 321 321		These re	gestions rega commendatio mulations resu	Detected Total Period of the selection	Nonparame Data appear I KM H-UCL ection of a 95% dations are barrely upon the result over all Real V Observations her of Detects stinct Detects and Detects and Detects dean Detects dian Detects dian Detects	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	ost appropria S. Maichle, and want to consu er of Distinct Number of Der of Distinct Minimul Maximul Percent	Observation Observation f Non-Detect m Non-Detect t Non-Detect t Non-Detect SD Detect CV Detect	DODOS DOCES	71 2 1 0.00167 2.74% 3.825 2.494
296 297 298 300 301 302 303 304 305 306 307 308 310 311 312 313 314 315 316 317 318 319 320		These re	gestions rega commendatio mulations resu	Detected Total Period of the selection	Nonparame Nonparame Nonparame Nonparame KM H-UCL Ection of a 95% dations are base upon the result of the properties of the propertie	ethod, provident	ion Free UCL istributed at 5 UCL to Use rovided to hel ta size, data on ulation studiots; for addition	. Statistics 5% Significan p the user to distribution, a es summariz	select the monant skewness and skewness are user may we have a second skewness and skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness and skewness are user may we have a second skewness are user may we have a second skewness and skewness are user may we have a second skewness are user skewness and skewness are user skewness and skewness are user skewness and skewness are user skewness are user skewness and skewness are user skewness are user skewness are user skewness are user skewness and skewness are user skewness are	ost appropria S. Maichle, and want to consu er of Distinct Number of Der of Distinct Minimul Maximul Percent	te 95% UC Lee (2006 Ilt a statistic Observation f Non-Dete m Non-Dete t Non-Dete SD Dete CV Dete rtosis Dete	DODOS DOCES	71 2 1 0.00167 0.00167 2.74% 3.825 2.494 26.52

	Α	В	C	D	E	F	G	Н	1	J	K	L
325				•	Test Statistic	0.451				etected Obsen		
326				•	Wilk P Value	0		Detected Dat		mal at 5% Sign	ificance Level	
327					Test Statistic	0.344				rs GOF Test		
328				5% Lilliefors	Critical Value	0.105			a Not Nor	mal at 5% Sign	ificance Level	
329					Detected Data	Not Normal	at 5% Signif	icance Level				
330					_							
331			Kapla	an-Meier (KM)	Statistics using		itical Values a	and other Non	parametri			
332					KM Mean	1.492				KM Standard		0.442
333					KM SD	3.753			0=0/.1/1		M (BCA) UCL	2.362
334					% KM (t) UCL	2.229			95% KN	// (Percentile Bo		2.231
335					% KM (z) UCL	2.219					ootstrap t UCL	2.906
336					ebyshev UCL	2.819 4.255					ebyshev UCL	3.42
337				97.5% KM Ch	ebysnev UCL	4.255				99% KW Cn	ebyshev UCL	5.894
338					Gamma GOF	Tooto on Do	tastad Obsan	votiono Only				
339				Λ D	Test Statistic	1.799	lected Obser	•	ndorson D	Parling GOF Tes	ot .	
340					Critical Value	0.859	Detec			Distributed at 59		Level
341					Test Statistic	0.839	Detec			v-Smirnov GOI	-	_GVGI
342					Critical Value	0.126	Detec			istributed at 5%		l evel
343					ted Data Not G					not ibated at 07	o organicance	
344 345				Doloc	nea Data Not C		ibatea at 070	Olgrinica ico E				
345					Gamma	Statistics on	Detected Da	ta Onlv				
347					k hat (MLE)	0.327				k star (bias co	orrected MLE)	0.323
347				Th	eta hat (MLE)	4.686			The	eta star (bias co	<i>'</i>	4.751
2/10											ias corrected)	45.84
348 349					nu hat (MLE)	46.47						
349				N	nu hat (MLE) lean (detects)	46.47 1.534					,	
349 350				M	nu hat (MLE) lean (detects)							
349 350 351				M		1.534	ing Imputed I	Non-Detects				
349 350 351 352			GROS n		lean (detects)	1.534 Statistics us			vations at			
349 350 351 352 353		GROS m		nay not be use	lean (detects) Gamma ROS	1.534 Statistics us et has > 50%	NDs with m	any tied obse		t multiple DLs	g., <15-20)	
349 350 351 352 353 354		GROS m		nay not be use	Gamma ROS	1.534 Statistics us et has > 50% small such as	NDs with m	any tied obser	sample s	multiple DLs	g., <15-20)	
349 350 351 352 353 354 355		GROS m		nay not be use	Gamma ROS ed when data so	1.534 Statistics us et has > 50% small such as method may	NDs with m s <1.0, espec	any tied obsercially when the	sample s	multiple DLs	g., <15-20)	
349 350 351 352 353 354			nay not be u	nay not be use sed when ksta For such situ	Gamma ROS ed when data sear of detects is sations, GROS r	Statistics uset has > 50% small such as method may ally true whe	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s	multiple DLs ize is small (e.g		
349 350 351 352 353 354 355 356 357			nay not be u	nay not be use sed when ksta For such situ	Gamma ROS ed when data so ar of detects is seations, GROS of	Statistics uset has > 50% small such as method may ally true whe	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s	multiple DLs ize is small (e.g		1.492
349 350 351 352 353 354 355 356 357 358			nay not be u	nay not be use sed when ksta For such situ	Gamma ROS ed when data se ar of detects is se ations, GROS r This is especie d data, BTVs a	Statistics us et has > 50% small such as method may ally true whe	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s	multiple DLs ize is small (e.g	timates	1.492 0.193
349 350 351 352 353 354 355 356 357 358 359			nay not be u	nay not be use sed when ksta For such situ	Gamma ROS ed when data so ar of detects is s ations, GROS r This is especia d data, BTVs a	1.534 Statistics us et has > 50% small such as method may ally true whe nd UCLs ma 0.00248	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s	multiple DLs ize is small (e.g	timates Mean	
349 350 351 352 353 354 355 356 357 358 359			nay not be u	nay not be use sed when ksta For such situ	Gamma ROS ed when data sear of detects is sations, GROS r This is especial d data, BTVs a Minimum Maximum	Statistics uset has > 50% small such as method may ally true when d UCLs made of the control of	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s	multiple DLs ize is small (e.g	timates Mean Median CV	0.193
349 350 351 352 353 354 355 356 357 358 359 360			nay not be u	nay not be use sed when ksta For such situa buted detecte	Gamma ROS ed when data set or of detects is set ations, GROS r This is especie d data, BTVs a Minimum Maximum SD	Statistics us et has > 50% small such as method may ally true whend UCLs ma 0.00248 26.4 3.779 0.32 4.659	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s CLs and B ma distribu	multiple DLs size is small (e.g TVs ution on KM est	timates Mean Median CV prrected MLE)	0.193 2.533
349 350 351 352 353 354 355 356 357 358 359 360 361			nay not be u	nay not be use sed when ksta For such situa buted detecte	Gamma ROS ed when data sear of detects is seations, GROS of this is especial data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE)	1.534 Statistics us et has > 50% small such as method may ally true whend UCLs may 26.4 3.779 0.32 4.659 46.75	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s CLs and B ma distribu	i multiple DLs size is small (e.g TVs ution on KM est k star (bias co	timates Mean Median CV prrected MLE)	0.193 2.533 0.316
349 350 351 352 353 354 355 356 357 358 359 360 361 362		For g	nay not be u	nay not be use sed when ksta For such situa buted detecte Th	Gamma ROS ed when data sear of detects is seations, GROS of the data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) ignificance (β)	1.534 Statistics us et has > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser- cially when the ct values of UO size is small.	sample s CLs and B ma distribu	it multiple DLs ize is small (e.g. iTVs ution on KM est k star (bias contact star (bias	Mean Median CV Orrected MLE) Orrected MLE) ias corrected)	0.193 2.533 0.316 4.718 46.16
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363		For g	Adjus	nay not be use sed when kstar For such situal buted detecte The ted Level of Si Chi Square Va	Gamma ROS ed when data so ar of detects is seations, GROS r This is especia d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) un hat (MLE) significance (β)	1.534 Statistics us et has > 50% small such amethod may ally true whend UCLs made of the control of the contro	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser cially when the ct values of U e size is small. ed using gami	sample s CLs and B ma distribu The	imultiple DLs size is small (e.g. TVs ution on KM est k star (bias co eta star (bias co nu star (bi	Mean Median CV Drrected MLE) Drrected MLE) ias corrected)	0.193 2.533 0.316 4.718 46.16
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366		For g	Adjus	nay not be use sed when ksta For such situa buted detecte Th	Gamma ROS ed when data so ar of detects is seations, GROS r This is especia d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) un hat (MLE) significance (β)	1.534 Statistics us et has > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467	NDs with m s <1.0, espect yield incorrect on the sample	any tied obser cially when the ct values of U e size is small. ed using gami	sample s CLs and B ma distribu The	it multiple DLs ize is small (e.g. iTVs ution on KM est k star (bias contact star (bias	Mean Median CV Drrected MLE) Drrected MLE) ias corrected)	0.193 2.533 0.316 4.718 46.16
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367		For g	Adjus	anay not be use sed when kstar For such situal buted detecte The ted Level of Si Chi Square Value use	Gamma ROS ed when data so ar of detects is so ations, GROS or This is especia d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) ignificance (β) slue (46.16, α) when n>=50)	1.534 Statistics us et has > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467 31.57 2.181	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The	imultiple DLs size is small (e.g. TVs ution on KM est k star (bias co eta star (bias co nu star (bi	Mean Median CV Drrected MLE) Drrected MLE) ias corrected)	0.193 2.533 0.316 4.718 46.16
349 350 351 353 354 355 356 357 358 360 361 362 363 364 365 367 368		For g	Adjus	anay not be use sed when kstar For such situal buted detecte The ted Level of Si Chi Square Value use	Gamma ROS ed when data set of detects is set of detects is set of data, BTVs and Minimum Maximum SD k hat (MLE) eta hat (MLE) in u hat (MLE) in the set of Gamma Minimum (MLE) is the set of Gamma Minimum (MLE)	1.534 Statistics us et has > 50% small such as method may ally true whend UCLs made of the control of the cont	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The	imultiple DLs size is small (e.g. TVs ution on KM est k star (bias co eta star (bias co nu star (bi	Mean Median CV Orrected MLE) Orrected MLE) ias corrected) alue (46.16, β) e when n<50)	0.193 2.533 0.316 4.718 46.16 31.33 2.198
349 350 351 352 353 354 355 356 357 368 361 362 363 364 365 367 368 369		For g	Adjus	anay not be use sed when kstar For such situal buted detecte The ted Level of Si Chi Square Vanate UCL (use	Gamma ROS ed when data so ar of detects is so ations, GROS or This is especial d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) inu hat (MLE) gnificance (β) alue (46.16, α) when n>=50) Estimates of Game	1.534 Statistics us et has > 50% small such as method may ally true whend UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467 31.57 2.181	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The	k star (bias con un star (bi	Mean Median CV Orrected MLE) Orrected MLE) dias corrected) alue (46.16, β) e when n<50)	0.193 2.533 0.316 4.718 46.16 31.33 2.198
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370		For g	Adjus	anay not be use sed when kstar For such situal buted detecte The ted Level of Si Chi Square Vanate UCL (use	Gamma ROS ed when data so ar of detects is seations, GROS in This is especial d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) ignificance (β) alue (46.16, α) when n>=50) Estimates of Game Mean (KM)	1.534 Statistics us et has > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467 31.57 2.181 amma Param 1.492 14.09	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The	k star (bias con un star (bi	Mean Median CV Orrected MLE) Orrected MLE) orrected MLE) alue (46.16, β) e when n<50) SD (KM) of Mean (KM)	0.193 2.533 0.316 4.718 46.16 31.33 2.198
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370 371		For g	Adjus	anay not be use sed when kstar For such situal buted detecte The ted Level of Si Chi Square Vanate UCL (use	Gamma ROS ed when data sear of detects is seations, GROS or This is especial data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) in the hat (MLE) in the hat (MLE) is difference (β) alue (46.16, α) when n>=50) Estimates of Game Mean (KM) k hat (KM)	1.534 Statistics uset has > 50% small such as method may ally true whend UCLs made of the control of the contr	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The	k star (bias con un star (bi	Mean Median CV Orrected MLE) Orrected MLE) ias corrected) alue (46.16, β) e when n<50) SD (KM) of Mean (KM) k star (KM)	0.193 2.533 0.316 4.718 46.16 31.33 2.198 3.753 0.442 0.161
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370 371 372		For g	Adjus	The ted Level of Sinate UCL (use	Gamma ROS ed when data so ar of detects is so ations, GROS or This is especial data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) or the modern of t	1.534 Statistics uset has > 50% small such as method may ally true whend UCLs mare an under the control of the	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The	it multiple DLs ize is small (e.g. iTVs ution on KM est k star (bias constant to bias constant (bias constant (bias constant)) Chi Square Valiusted UCL (us	timates Mean Median CV Directed MLE) Directed MLE) ias corrected) alue (46.16, β) e when n<50) SD (KM) of Mean (KM) k star (KM) nu star (KM)	0.193 2.533 0.316 4.718 46.16 31.33 2.198 3.753 0.442 0.161 23.44
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370 371 372 373		For g	Adjus: pproximate na Approxim	Th ted Level of Si ate UCL (use	Gamma ROS ed when data so ar of detects is so ations, GROS in This is especial d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) ignificance (β) alue (46.16, α) when n>=50) Estimates of Game Mean (KM) //ariance (KM) k hat (KM) nu hat (KM) heta hat (KM)	1.534 Statistics use thas > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467 31.57 2.181 amma Param 1.492 14.09 0.158 23.06 9.445	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The Adjusted amma Adj	i multiple DLs ize is small (e.g. iTVs ution on KM est k star (bias co nu star (bi Chi Square Va justed UCL (us	Mean Median CV Orrected MLE) Orrected MLE) orrected MLE) alue (46.16, β) e when n<50) SD (KM) of Mean (KM) k star (KM) nu star (KM)	0.193 2.533 0.316 4.718 46.16 31.33 2.198 3.753 0.442 0.161 23.44 9.29
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370 371 372 373		For g	Adjus: pproximate in Approxim	anay not be used sed when kstar For such situation buted detected buted detected buted Level of Sinchi Square Variate UCL (use the sed Level of Sinchi Square Variate UCL (use	Gamma ROS ed when data so ar of detects is so attions, GROS or This is especial data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) eta hat (MLE) ignificance (β) alue (46.16, α) when n>=50) Estimates of Game Mean (KM) k hat (KM) nu hat (KM) heta hat (KM) ercentile (KM) ercentile (KM)	1.534 Statistics uset has > 50% small such as method may ally true whend UCLs may ally true whend UCLs may ally true whend UCLs may ally true whend UCLs may ally true whend UCLs may ally true whend UCLs may ally true whend UCLs may ally ally ally ally ally ally ally	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The Adjusted amma Adj	k star (bias con nu star (bias	Mean Median CV Orrected MLE) Orrected MLE) ias corrected) alue (46.16, β) e when n<50) SD (KM) of Mean (KM) k star (KM) nu star (KM) heta star (KM)	0.193 2.533 0.316 4.718 46.16 31.33 2.198 3.753 0.442 0.161 23.44 9.29 4.46
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375		For g	Adjus: pproximate in Approxim	anay not be used sed when kstar For such situation buted detected buted detected buted Level of Sinchi Square Variate UCL (use the sed Level of Sinchi Square Variate UCL (use	Gamma ROS ed when data so ar of detects is so ations, GROS in This is especial d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) ignificance (β) alue (46.16, α) when n>=50) Estimates of Game Mean (KM) //ariance (KM) k hat (KM) nu hat (KM) heta hat (KM)	1.534 Statistics use thas > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467 31.57 2.181 amma Param 1.492 14.09 0.158 23.06 9.445	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using game 95% G	sample s CLs and B ma distribu The Adjusted amma Adj	i multiple DLs ize is small (e.g. iTVs ution on KM est k star (bias co nu star (bi Chi Square Va justed UCL (us	Mean Median CV Orrected MLE) Orrected MLE) ias corrected) alue (46.16, β) e when n<50) SD (KM) of Mean (KM) k star (KM) nu star (KM) heta star (KM)	0.193 2.533 0.316 4.718 46.16 31.33 2.198 3.753 0.442 0.161 23.44 9.29
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376		For g	Adjus: pproximate in Approxim	anay not be used sed when kstar For such situation buted detected buted detected buted level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square Variate UCL (use level of Si Chi Square Variate UCL) for the sed Level of Si Chi Square	Gamma ROS ed when data so ar of detects is so ations, GROS r This is especia d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) nu hat (MLE) ignificance (β) alue (46.16, α) when n>=50) Estimates of Ga Mean (KM) /ariance (KM) nu hat (KM) nu hat (KM) ercentile (KM) ercentile (KM)	1.534 Statistics us et has > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467 31.57 2.181 amma Param 1.492 14.09 0.158 23.06 9.445 1.712 8.097	NDs with m s <1.0, espective the sample of t	any tied obsercially when the ct values of UC esize is small. ed using gamined using gamined with the control of the control o	sample s CLs and B ma distribu The Adjusted amma Adj	k star (bias con nu star (bias	Mean Median CV Orrected MLE) Orrected MLE) ias corrected) alue (46.16, β) e when n<50) SD (KM) of Mean (KM) k star (KM) nu star (KM) heta star (KM)	0.193 2.533 0.316 4.718 46.16 31.33 2.198 3.753 0.442 0.161 23.44 9.29 4.46
349 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375		Ap 95% Gamm	Adjus: pproximate on Approximate 9	The ted Level of Sichi Square Valate UCL (use	Gamma ROS ed when data so ar of detects is so ations, GROS r This is especia d data, BTVs a Minimum Maximum SD k hat (MLE) eta hat (MLE) nu hat (MLE) ignificance (β) alue (46.16, α) when n>=50) Estimates of Ga Mean (KM) /ariance (KM) nu hat (KM) nu hat (KM) ercentile (KM) ercentile (KM)	1.534 Statistics us et has > 50% small such as method may ally true when d UCLs ma 0.00248 26.4 3.779 0.32 4.659 46.75 0.0467 31.57 2.181 amma Param 1.492 14.09 0.158 23.06 9.445 1.712 8.097	6 NDs with m s <1.0, espec yield incorrec en the sample by be comput	any tied obsercially when the ct values of UC esize is small. ed using gamined using gamined with the control of the control o	sample s CLs and B ma distribu The Adjusted amma Adj	k star (bias con nu star (bias	Mean Median CV Directed MLE)	0.193 2.533 0.316 4.718 46.16 31.33 2.198 3.753 0.442 0.161 23.44 9.29 4.46

	L
	2.635
Shapiro Wilk Approximate Test Statistics 0.96	
383 3% Shapiro Wilk P Value 0.068 Detected Data appear Lognormal at 5% Significance Level 384 Lillidors Tost Statestic 0.0796 Lillidors GOF Test 385 Shillidors Cricical Value 0.165 Detected Data appear Lognormal at 5% Significance Level 386 Detected Data appear Lognormal at 5% Significance Level 387 Lillidors Control Value 2.079 Detected Data appear Lognormal at 5% Significance Level 388 Lognormal ROS Statistics Using Imputed Non-Detects Mean in Log Scale 1.492 Mean in Log Scale 3.779 SD In Log Scale 3.779 SD In Log Scale 3.779 SD In Log Scale 3.779 SD In Log Scale 3.779 SD In Log Scale 3.90 95% LUCL (assumes normality of ROS data) 2.229 95% Percentile Bootstrap UCL 2.531 95% Bootstrap UCL 2.531	
Second	el
Detected Data appear Lognormal at 5% Significance Level	
387	el
Mean in Driginal Scale 1.492	
SD in Original Scale 3.779 95% Percentile Bootstrap UCL 2.531 95% Percentile Bootstrap UCL 2.531 95% Percentile Bootstrap UCL 2.531 95% Percentile Bootstrap UCL 333 95% H-UCL (tog ROS) 13.15	
95% 95% Percentile Bootstrap UCL 392 95% Percentile Bootstrap UCL 393 95% Percentile Bootstrap UCL 2.531 95% Bootstrap 1 UCL 393 95% Percentile Bootstrap UCL 2.531 95% Bootstrap 1 UCL 393 95% Percentile Bootstrap UCL 2.531 95% Bootstrap 1 UCL 393 95% Percentile Bootstrap 1 UCL 393 95% Percentile Bootstrap 1 UCL 393 Percentile Bootstrap 1 UCL 393 Percentile Bootstrap 1 UCL 393 Percentile Bootstrap 1 UCL 393 Percentile Bootstrap 1 UCL 394 Percentile Bootstrap 1 UCL 395 Percentile Bootstrap	-1.812
	2.519
	2.315
	2.927
Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution	
Signature Sign	
Sage	
Suggested Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL are provided to help the user to select the most ap	0.169
Sage	3.98
Maximum Maxi	10.18
Montain	3.98
DL/2 Statistics DL/2 Normal DL/2 Log-Transformed	
August A	
Mean in Original Scale 1.492 Mean in Log Scale 405 SD in Original Scale 3.779 SD in Log Scale 406 95% t UCL (Assumes normality) 2.229 95% H-Stat UCL 407 DL/2 is not a recommended method, provided for comparisons and historical reasons 408 Monparametric Distribution Free UCL Statistics 409 Nonparametric Distribution Free UCL Statistics 410 Detected Data appear Lognormal Distributed at 5% Significance Level 411 412 Suggested UCL to Use 413 KM H-UCL 10.18 Mote: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 416 Recommendations are based upon data size, data distribution, and skewness. 417 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). 418 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 419 420 Chromium 420 421 Chromium 422 424 Total Number of Observations 73 Number of Distinct Observations Number of Missing Observations 426 Minimum 5.51 Mean 43.2 Median	
SD in Original Scale 3.779 SD in Log Scale 406 95% t UCL (Assumes normality) 2.229 95% H-Stat UCL 407 DL/2 is not a recommended method, provided for comparisons and historical reasons 408 409 Nonparametric Distribution Free UCL Statistics 410 Detected Data appear Lognormal Distributed at 5% Significance Level 411 412 Suggested UCL to Use 413 KM H-UCL 10.18 414 415 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL 416 Recommendations are based upon data size, data distribution, and skewness. 417 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). 418 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 419 420 Chromium 420 Chromium 421 Chromium 422 General Statistics 424 Total Number of Observations 73 Number of Distinct Observations 425 Number of Missing Observations 426 Minimum 5.51 Mean 427 Median 43.2 Median 43.2 Median 43.2 Median 43.2 Median 43.2 Median 44.2 Me	
Month Mont	-1.799
DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level Suggested UCL to Use KM H-UCL 10.18 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium Chromium Chromium Augusta Statistics Total Number of Observations 73 Number of Distinct Observations Number of Missing Observations Augusta Maximum 43.2 Median	2.488
Nonparametric Distribution Free UCL Statistics Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level Suggested UCL to Use KM H-UCL 10.18 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon data size, data distribution, and skewness. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium Chromium Chromium Chromium Seneral Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Alagorium Maximum Alagorium	12.01
Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level Suggested UCL to Use Half Suggested UCL to Use Hove Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium Chromium General Statistics Total Number of Observations Analysis Statistics Number of Distinct Observations Number of Missing Observations Analysis Mean Analysis Maximum Analysis Maximum Analysis Significance Level Significance Level Suggested UCL to Use Level Suggested UCL to Use Level Suggested UCL to Use Level Suggested UCL to Use Level Suggested UCL to Use Level Analysis An	
Detected Data appear Lognormal Distributed at 5% Significance Level	
Suggested UCL to Use 10.18	
Suggested UCL to Use	
A13	
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium Chromium Ceneral Statistics Total Number of Observations Total Number of Observations Minimum Maximum Maximum 43.2 Median	
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium Chromium Ceneral Statistics Total Number of Observations Augument of Distinct Observations Number of Missing Observations Minimum S.51 Mean Maximum Max	
Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium Ceneral Statistics Total Number of Observations Total Number of Observations Minimum S.51 Mean Maximum M	
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium General Statistics Total Number of Observations Total Number of Observations Minimum 5.51 Mean Maximum 43.2 Median	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Chromium Chromium General Statistics A24 Total Number of Observations 73 Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Maximum 5.51 Mean Median	
419 420 421 Chromium 422 423 General Statistics 424 Total Number of Observations 73 Number of Distinct Observations 425 Number of Missing Observations 426 Minimum 5.51 Mean 427 Maximum 43.2 Median	
420 Chromium 422 General Statistics 423 Total Number of Observations 73 Number of Distinct Observations Number of Missing Observations 425 Number of Missing Observations 426 Minimum 5.51 Mean 427 Maximum 43.2 Median	
421 Chromium 422 General Statistics 423 Total Number of Observations 424 Number of Distinct Observations 425 Number of Missing Observations 426 Minimum 5.51 Mean 427 Maximum 43.2 Median	
422 423 General Statistics 424 Total Number of Observations 73 Number of Distinct Observations 425 Number of Missing Observations 426 Minimum 5.51 Mean 427 Maximum 43.2 Median	
General Statistics424Total Number of Observations73Number of Distinct Observations425Number of Missing Observations426Minimum5.51Mean427Maximum43.2Median	
424 Total Number of Observations 73 Number of Distinct Observations 425 Number of Missing Observations 426 Minimum 5.51 Mean 427 Maximum 43.2 Median	
425 Number of Missing Observations 426 Minimum 5.51 Mean 427 Maximum 43.2 Median	62
426 Minimum 5.51 Mean 427 Maximum 43.2 Median	62 0
427 Maximum 43.2 Median	13.07
721	13.07
428 3D 0.200 3td. Error of Mean	0.726
	2.735
427	۷./٥٥
430 Normal GOF Test	
	
Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test	

	Α	В	С	D	E	F	G	Н	I	J	K	L
433					Wilk P Value			Data No		5% Significar	nce Level	
434					Test Statistic					GOF Test		
435				5% Lilliefors	Critical Value				ot Normal at	5% Significar	ice Level	
436					Data No	ot Normal at 5	% Significand	e Level				
437					A	ecumina Na	nal Diotribust					
438 439			95% No	ormal UCL	A	ssuming Norn	nai Distributio		UCI s (Adiu	sted for Skev	vness)	
-					udent's-t UCL	14.28					(Chen-1995)	14.51
440 441						14.20			•		ohnson-1978)	14.31
442												
443						Gamma (GOF Test					
444				A-D	Test Statistic	1.866		Ande	rson-Darling	Gamma GOI	- Test	
445				5% A-D	Critical Value	0.753	Γ	Data Not Gan	nma Distribu	ted at 5% Sig	nificance Leve	ı
446				K-S	Test Statistic	0.151		Kolmog	orov-Smirno	v Gamma Go	OF Test	
447				5% K-S	Critical Value	0.105	Γ	Data Not Gan	nma Distribu	ted at 5% Sig	nificance Leve	I
448					Data Not Gam	nma Distribute	d at 5% Signi	ificance Leve	I			
449												
450						Gamma	Statistics					
451					k hat (MLE)	6.622			ŀ	k star (bias co	orrected MLE)	6.359
452				Th	eta hat (MLE)				Theta	a star (bias co	orrected MLE)	2.055
453					nu hat (MLE)					,	ias corrected)	928.4
454			N	/ILE Mean (b	ias corrected)	13.07				•	ias corrected)	5.181
455											e Value (0.05)	858.6
456			Adjı	usted Level o	of Significance	0.0467			•	Adjusted Chi	Square Value	857.3
457					Α.	ina Com	Dieteibusti					
458		05% Appro	ximate Gamm	a LICL /usa		ssuming Gam	ma Distributio		diusted Can	nma LICL (us	e when n<50)	14.15
459		95% Appro.	XIIIIale Gailiii	ia OCL (use	witeri 11>=50),	14.13		95% P	lujusieu Gan	illia UCL (us	e when h<50)	14.15
460 461						Lognormal	GOF Test					
462				Shapiro Wilk	Test Statistic			Shar	piro Wilk Log	normal GOF	Test	
463				5% Shapiro	Wilk P Value	0.00838		_	_	at 5% Signific		
464					Test Statistic			Lil	liefors Logno	ormal GOF To	est	
465				5% Lilliefors	Critical Value	0.104		Data Not	Lognormal a	at 5% Signific	ance Level	
466					Data Not	Lognormal at	5% Significar	nce Level				
467												
468						Lognorma	l Statistics					
469					Logged Data						of logged Data	2.493
470				Maximum of	Logged Data	3.766				SDo	of logged Data	0.371
471												
472						suming Logno	rmal Distribut	tion		/ OL	(AA) (LIE)	41.05
473			050	Oh-l-	95% H-UCL					•	(MVUE) UCL	14.68
474					(MVUE) UCL				97.5%	o Cnebyshev	(MVUE) UCL	16.56
475			99%	chebysnev	(MVUE) UCL	18.7						
476					Nonnaram	netric Distribut	ion Free I ICI	Statistics				
477					<u>-</u>	follow a Disce						
478 479												
480					Nonpa	arametric Dist	ribution Free	UCLs				
481				9	5% CLT UCL					95% J	ackknife UCL	14.28
482			95%		Bootstrap UCL						otstrap-t UCL	14.59
483					Bootstrap UCL				95%		Bootstrap UCL	14.25
484				95% BCA B	Bootstrap UCL	14.48						
485			90% C	hebyshev(M	ean, Sd) UCL	15.24			95% C	Chebyshev(M	ean, Sd) UCL	16.23
486			97.5% C	hebyshev(M	ean, Sd) UCL	17.6			99% (Chebyshev(M	ean, Sd) UCL	20.29
						<u></u>						

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL	4.31	
1	68 9	
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL	68 9	
Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Biometric Alphanthracene General Statistics General Statistics General Statistics General Statistics General Statistics General Statistics Total Number of Desterts 5 Number of Distinct Observations 6, 100 Number of Desterts 100 Number o	9	
Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Read World data sets; for additional insight the user may want to consult a statistician.	9	
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. When the statistic of the simulations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. General Statistics General Statistics General Statistics General Statistics Summber of Distinct Observations of Distinct Detects of Summber of Distinct Observations of Number of Distinct Detects of Summber of Distinct Non-Detects of Summber of	9	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.	9	
	9	
	9	
	9	
498 General Statistics 499 Total Number of Deservations 73 Number of Distinct Observations 2 500 Number of Distinct Detects 5 Number of Distinct Non-Detects 5 501 Number of Distinct Non-Detects 5 Number of Distinct Non-Detects 5 502 Minimum Detect 0.00541 Minimum Non-Detect 0 503 Maximum Maximum Detect 0.257 Percent Non-Detects 5 504 Variance Detects 0.364 SD Detects 5 505 Median Detects 0.364 SD Detects 6 507 Skewness Detects 2.094 Kurtosis Detects 5 508 Mean of Logged Detects 2.012 SD of Logged Detects 5 509 Skewness Detects 2.094 Kurtosis Detects 5 509 Skewness Detects 2.012 SD of Logged Detects 5 510 Shapiro Wilk Test Statistic 6.09 Statistic 5 512 Shapiro Wilk Cest Statistic <td>9</td>	9	
Total Number of Observations 73	9	
Number of Detects 5	9	
Number of Distinct Detects 5	9	
Minimum Detect Minimum Detect Minimum Non-Detect Minimum Non-Detected Minimum Non-Det		
	00 100	
Sociation Soci	.00166	
Sociation Soci	0.669	
Median Detects 0.175 CV Detects 507 Skewness Detects 2.094 Kurtosis Detects 508 Mean of Logged Detects 2.094 SD of Logged Detects 509 SD of Logged Detects 509 SD of Logged Detects 509 Shapiro Wilk Test Statistic 0.692 Shapiro Wilk GOF Test 512 58 Shapiro Wilk Critical Value 0.762 Detected Data Not Normal at 5% Significance Level 513 Lilliefors Test Statistic 0.42 Lilliefors GOF Test 514 58 Lilliefors Critical Value 0.343 Detected Data Not Normal at 5% Significance Level 515 Detected Data Not Normal at 5% Significance Level 516 Superior Wilk Gof Test Statistic 0.42 Lilliefors GOF Test 516 Superior Wilk Gof Test Superior Wilk Gof Tes	3.15%	
Skewness Detects 2.094 Kurtosis Detects 508 Mean of Logged Detects -2.012 SD of Logged Detects 509	0.507	
Sol Mean of Logged Detects -2.012 SD of Logged Detects	1.392	
Solid	4.555	
Normal GOF Test on Detects Only 511 Shapiro Wilk Test Statistic 0.692 Shapiro Wilk GOF Test 512 5% Shapiro Wilk Critical Value 0.762 Detected Data Not Normal at 5% Significance Level 513 Lilliefors Test Statistic 0.42 Lilliefors GOF Test 514 5% Lilliefors Critical Value 0.343 Detected Data Not Normal at 5% Significance Level 515 Detected Data Not Normal at 5% Significance Level 516 Significance Level 517 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 518 KM Standard Error of Mean O.0268 KM Standard Error of Mean O.0596 Significance Level 519 KM Standard Error of Mean O.0596 Significance Level 520 95% KM (BCA) UCL O.0595 95% KM (Percentile Bootstrap) UCL O.0591 Significance Level 521 95% KM Chebyshev UCL O.0591 95% KM Chebyshev UCL O.0591 95% KM Chebyshev UCL O.0595 95% KM Chebyshev UCL O.0495 95% KM Chebyshev UCL O.0495 95% KM Chebyshev UCL O.0595	1.978	
Shapiro Wilk Test Statistic 0.692 Shapiro Wilk GOF Test		
Significance Sign		
513 Lilliefors Test Statistic 0.42 Lilliefors GOF Test 514 5% Lilliefors Critical Value 0.343 Detected Data Not Normal at 5% Significance Level 515 Detected Data Not Normal at 5% Significance Level 516 Significance Level 517 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 518 KM Standard Error of Mean O.0268 KM Standard Error of Mean O.0268 KM Standard Error of Mean O.0268 Colspan="3">Significance Level 519 KM Standard Error of Mean O.0268 Significance Level 520 Significance Level 521 O.0268 KM (Percentile Bootstrap) UCL O.0595 O.0268 Significance Level 521 O.0268 KM (Percentile Bootstrap) UCL O.0591 O.0268 Significance Level 522 O.0268 O.0268 O.0268 Significance Level 523 O.0268 O.0268 O.0268 O.0268 <td colsp<="" td=""><td></td></td>	<td></td>	
Significance Sign		
Detected Data Not Normal at 5% Significance Level		
Sama Gof Tests on Detected Observations Only Statistics Using Normal Critical Values and other Nonparametric UCLs		
Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 518 KM Mean 0.0268 KM Standard Error of Mean 0.0268 519 KM SD 0.15 95% KM (BCA) UCL 0.0595 520 95% KM (Percentile Bootstrap) UCL 0.0591 95% KM Bootstrap t UCL 521 95% KM Chebyshev UCL 0.0857 95% KM Chebyshev UCL 522 97.5% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 524 Gamma GOF Tests on Detected Observations Only		
518 KM Mean 0.0268 KM Standard Error of Mean 0.0268 519 KM SD 0.15 95% KM (BCA) UCL 0.0595 520 95% KM (Percentile Bootstrap) UCL 0.0591 95% KM Bootstrap t UCL 521 90% KM Chebyshev UCL 0.0591 95% KM Chebyshev UCL 522 90% KM Chebyshev UCL 0.0857 95% KM Chebyshev UCL 523 97.5% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 524 Gamma GOF Tests on Detected Observations Only		
516 KM SD 0.15 95% KM (BCA) UCL 0.0595 95% KM (Percentile Bootstrap) UCL 0.0595 95% KM (Percentile Bootstrap) UCL 0.0591 95% KM Bootstrap t UCL 0.0591 95% KM Chebyshev UCL 95% KM Chebyshev UCL 0.0857 95% KM Chebyshev UCL 95% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 99% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 0.149	0.0196	
520 95% KM (t) UCL 0.0595 95% KM (Percentile Bootstrap) UCL 0.0591 95% KM Bootstrap t UCL 0.0591 95% KM Chebyshev UCL 95% KM Chebyshev UCL 0.0857 95% KM Chebyshev UCL 95% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 99% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 0.0591 0.0857<	0.0613	
521 95% KM (z) UCL 0.0591 95% KM Bootstrap t UCL 522 90% KM Chebyshev UCL 0.0857 95% KM Chebyshev UCL 523 97.5% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 524 Gamma GOF Tests on Detected Observations Only	0.0607	
522 90% KM Chebyshev UCL 0.0857 95% KM Chebyshev UCL 523 97.5% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 524 525 Gamma GOF Tests on Detected Observations Only	0.1	
523 97.5% KM Chebyshev UCL 0.149 99% KM Chebyshev UCL 524 Gamma GOF Tests on Detected Observations Only	0.112	
524 525 Gamma GOF Tests on Detected Observations Only	0.222	
Gamma GOF Tests on Detected Observations Only		
525		
A-D Test Statistic 0.441 Anderson-Darling GOF Test		
526 A-D Test Statistic 0.441 Anderson-Darling GOF Test 527 5% A-D Critical Value 0.705 Detected data appear Gamma Distributed at 5% Significance Le	vel	
528 K-S Test Statistic 0.281 Kolmogorov-Smirnov GOF		
529 5% K-S Critical Value 0.369 Detected data appear Gamma Distributed at 5% Significance Le	vel	
530 Detected data appear Gamma Distributed at 5% Significance Level	-	
531		
532 Gamma Statistics on Detected Data Only		
332	0.379	
333	0.961	
337	3.792	
536 Mean (detects) 0.364		
537		
538 Gamma ROS Statistics using Imputed Non-Detects		
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs		
539 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)		

	Α	B C D E	F	G H I J K	L
541				yield incorrect values of UCLs and BTVs	
542		·	-	en the sample size is small.	
543		_		ay be computed using gamma distribution on KM estimates	0.0040
544		Minimum	0.00541	Mean	0.0343
545		Maximum	1.26	Median	0.01
546		SD k bet (MLE)	0.15	CV	4.368
547		k hat (MLE)	0.588	k star (bias corrected MLE) Theta star (bias corrected MLE)	0.573
548		Theta hat (MLE)	85.85	nu star (bias corrected)	0.0598 83.66
549		Adjusted Level of Significance (β)	0.0467	nu star (bias correcteu)	63.00
550		Approximate Chi Square Value (83.66, α)	63.58	Adjusted Chi Square Value (83.66, β)	63.22
551		95% Gamma Approximate UCL (use when n>=50)	0.0451	95% Gamma Adjusted UCL (use when n<50)	0.0453
552		33% damina Approximate GOL (use when its –30)	0.0431	33% danima Aujusted GOE (use when it 1909)	0.0433
553		Estimates of Ga	amma Paran	neters using KM Estimates	
554		Mean (KM)	0.0268	SD (KM)	0.15
555		Variance (KM)	0.0225	SE of Mean (KM)	0.0196
556		k hat (KM)	0.0319	k star (KM)	0.0397
557 558		nu hat (KM)	4.652	nu star (KM)	5.794
558		theta hat (KM)	0.84	theta star (KM)	0.675
560		80% gamma percentile (KM)	0.00142	90% gamma percentile (KM)	0.0286
561		95% gamma percentile (KM)	0.128	99% gamma percentile (KM)	0.634
562		, /		<u> </u>	
563		Gamma	a Kaplan-Me	eier (KM) Statistics	
564		Approximate Chi Square Value (5.79, α)	1.536	Adjusted Chi Square Value (5.79, β)	1.493
565	959	% Gamma Approximate KM-UCL (use when n>=50)	0.101	95% Gamma Adjusted KM-UCL (use when n<50)	0.104
566					
567		Lognormal GOI	F Test on De	etected Observations Only	
568		Shapiro Wilk Test Statistic	0.861	Shapiro Wilk GOF Test	
569		5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Lev	/el
570		Lilliefors Test Statistic	0.349	Lilliefors GOF Test	
571		5% Lilliefors Critical Value	0.343	Detected Data Not Lognormal at 5% Significance Leve	I
572		Detected Data appear Ap	oproximate L	ognormal at 5% Significance Level	
573					
574				Jsing Imputed Non-Detects	
575		Mean in Original Scale	0.0251	Mean in Log Scale	-10.64
576		SD in Original Scale	0.151	SD in Log Scale	3.667
577		95% t UCL (assumes normality of ROS data)	0.0546	95% Percentile Bootstrap UCL	0.059
578		95% BCA Bootstrap UCL	0.0923	95% Bootstrap t UCL	0.19
579		95% H-UCL (Log ROS)	0.232		
580		0		A second Association and District	
581		-		ata and Assuming Lognormal Distribution	0.0000
582		KM SD (logged)	-6.075	KM Geo Mean	0.0023
583		KM SD (logged)	1.215	95% Critical H Value (KM-Log)	2.475
584		KM Standard Error of Mean (logged)	0.163 1.215	95% H-UCL (KM -Log)	0.00686
585		KM SD (logged) KM Standard Error of Mean (logged)	0.163	95% Critical H Value (KM-Log)	2.475
586		Nivi Standard Error of Mean (logged)	0.103		
587			DL/2 St	tatistics	
588		DL/2 Normal	DU2 3	DL/2 Log-Transformed	
589		Mean in Original Scale	0.0379	Mean in Log Scale	-5.385
590		SD in Original Scale	0.155	SD in Log Scale	1.73
		95% t UCL (Assumes normality)	0.0681	95% H-Stat UCL	0.0382
591			0.0001	33 75 TI GLET GOE	5.5552
591 592		` .	thod. provide	ed for comparisons and historical reasons	
591		` .	thod, provide	ed for comparisons and historical reasons	

595	Α	В	С	D	E Nonparame	F etric Distribut	G ion Free UCL	H Statistics		I		J	K		L
596				Detected	d Data appear				nce Lev	rel					
597					•••										
598						Suggested	UCL to Use								
599			95% KM	Approximate	Gamma UCL	0.101									
600				<u> </u>											
601		Note: Sug	gestions rega	rding the sele	ection of a 95%	6 UCL are pr	ovided to help	the user t	o selec	t the m	nost ap	propriat	e 95% U	CL.	
602			<u> </u>		ations are bas										
603		These re	commendatio		upon the resu	•						le, and I	_ee (2006	3).	
604		However, si	mulations res	ults will not co	ver all Real W	Vorld data se	ets; for addition	nal insight	the use	er may	want to	o consul	t a statist	ician.	
605										-					
	Indeno[1,2,3	-cd]pyrene													
607	• • •														
608						General	Statistics								
609			Tota	al Number of (Observations	73				Numl	ber of	Distinct	Observat	ions	69
610				Numb	er of Detects	69					Nu	ımber of	Non-Det	ects	4
611				Number of Dis	stinct Detects	67				Num	nber of	Distinct	Non-Det	ects	2
612				Min	imum Detect	0.00187						Minimur	n Non-De	etect	0.00167
613				Max	imum Detect	21.5					N	Maximur	n Non-De	etect	0.00832
614					ance Detects	8.909							Non-Det		5.479%
615	<u> </u>			N	Mean Detects	1.106							SD Det	ects	2.985
616	<u> </u>				dian Detects	0.142							CV Det		2.698
617	<u> </u>				ness Detects	5.241						Kur	tosis Det		32.8
					gged Detects	-2.111					Ç		gged Det		2.37
618 619					9904 2 010010							0. 20	9904 201		2.07
620					Norm	al GOF Tes	t on Detects C	nlv							
				Shapiro Wilk		0.417		Normal G	OF Tes	t on De	etected	l Observ	ations O	nlv	
621					Wilk P Value	0		Detected [
622					Test Statistic	0.356		Detected i		illiefors			ilicarioo E		
623 624				5% Lilliefors		0.107		Detected [_				ficance I	evel	
					Detected Data						ilai at c	o o o o o o o o o o o o o o o o o o o			
625				'			- a. o /o o.g								
626 627			Kanlar	n-Meier (KM)	Statistics usin	a Normal Cr	itical Values a	nd other N	lonnara	metric	UCLs				
			Tapiai	T MOIOT (RMI)	KM Mean	1.046	luodi Valdoo d		ioripare				Error of M	lean	0.341
628					KM SD	2.892							M (BCA) I		1.689
629				050	6 KM (t) UCL	1.614			Q.	5% KM	(Derce		otstrap)		1.663
630					KM (z) UCL	1.606				70 IXIVI	•		otstrap t		2.179
631				90% KM Che		2.068							ebyshev l		2.532
632				7.5% KM Che	•	3.175							ebyshev l		4.438
633				7.070 1401 0110	byshev dol	0.170					33 70	TOWN ON	obyonev (OOL	4.400
634					Gamma GOF	Tests on De	tected Ohsen	/ations Onl	lv						
635					Test Statistic	2.334	lected Observ	rauons Om	-	eon-Ds	arlina (GOF Tes	·†		
636					Critical Value	0.863	Detec	ted Data N			_			ance l	evel
C 2 - 1					Test Statistic	0.863	Detec	icu Dala N				nov GOF	•	unc e l	-0401
					Critical Value	0.136	Detec	ted Data N		-				ance I	evel
638				J /U IN-U I	ontiour value						Julul	ou at J/	, orginilo	unoc l	-0401
638 639				Detect	ed Data Not C	amma Dietr	ibuted at 5% '	>IUDILITY	A I A''^						
638 639 640				Detect	ed Data Not G	Samma Distr	ibuted at 5% s	Significanc	e Leve						
638 639 640 641				Detect					e Leve						
638 639 640 641 642				Detect	Gamma	Statistics on	Detected Dat		e Leve		k etar	(hige oo	rrected M	N EV	0.306
638 639 640 641 642 643					Gamma k hat (MLE)	Statistics on			e Leve			•	rrected M		0.306
638 639 640 641 642 643 644				The	Gamma k hat (MLE) eta hat (MLE)	Statistics on 0.31 3.568			e Leve		ta star	(bias co	rrected M	1LE)	3.612
638 639 640 641 642 643 644 645				The	Gamma k hat (MLE) eta hat (MLE) nu hat (MLE)	Statistics on 0.31 3.568 42.79			e Leve		ta star	(bias co		1LE)	
637 638 639 640 641 642 643 644 645				The	Gamma k hat (MLE) eta hat (MLE)	Statistics on 0.31 3.568			e Leve		ta star	(bias co	rrected M	1LE)	3.612
638 639 640 641 642 643 644 645				The Mo	Gamma k hat (MLE) eta hat (MLE) nu hat (MLE)	0.31 3.568 42.79 1.106	Detected Dat	ta Only			ta star	(bias co	rrected M	1LE)	3.612

649	A B C D E	F	G H I J K	L
	·		6 NDs with many tied observations at multiple DLs	
650	•		s <1.0, especially when the sample size is small (e.g., <15-20)	
651		-	yield incorrect values of UCLs and BTVs	
652	·	•	en the sample size is small.	
653			by be computed using gamma distribution on KM estimates	
654	Minimum	0.00187	Mean	1.046
655	Maximum	21.5	Median	0.108
656	SD LL (MES)	2.912	CV	2.783
657	k hat (MLE)	0.301	k star (bias corrected MLE)	0.297
658	Theta hat (MLE) nu hat (MLE)	3.48 43.89	Theta star (bias corrected MLE) nu star (bias corrected)	3.517
659	Adjusted Level of Significance (β)		nu star (bias correcteu)	43.42
660	Augusted Level of Significance (p) Approximate Chi Square Value (43.42, α)	0.0467 29.31	Adjusted Chi Square Value (43.42, β)	29.08
661	95% Gamma Approximate UCL (use when n>=50)	1.55	95% Gamma Adjusted UCL (use when n<50)	1.562
662	95% Gamma Approximate OCL (use when hiz-50)	1.55	95% Gainina Aujusteu OCL (use when IIN50)	1.502
663	Estimates of G	amma Daran	neters using KM Estimates	
664	Mean (KM)	1.046	SD (KM)	2.892
665	Variance (KM)	8.362	SE of Mean (KM)	0.341
666	k hat (KM)	0.131	k star (KM)	0.135
667	nu hat (KM)	19.09	nu star (KM)	19.64
668	theta hat (KM)	7.997	theta star (KM)	7.774
669	80% gamma percentile (KM)	1.033	90% gamma percentile (KM)	3.044
670 671	95% gamma percentile (KM)	5.869	99% gamma percentile (KM)	14.26
	30% gamma percentile (Kill)	0.000	55% gamma percentile (KW)	14.20
672 673	Gamm	na Kaplan-Me	eier (KM) Statistics	
674	Approximate Chi Square Value (19.64, α)	10.58	Adjusted Chi Square Value (19.64, β)	10.45
675	95% Gamma Approximate KM-UCL (use when n>=50)	1.94	95% Gamma Adjusted KM-UCL (use when n<50)	1.965
676			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
677	Lognormal GO	F Test on De	etected Observations Only	
011		1 10000101100	stected Observations Only	
678	Shapiro Wilk Approximate Test Statistic	0.959	-	
678 679	_		Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev	el
679	Shapiro Wilk Approximate Test Statistic	0.959	Shapiro Wilk GOF Test	el
679 680	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value	0.959 0.0616	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev	
679 680 681	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.959 0.0616 0.0841 0.107	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test	
679 680 681 682	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.959 0.0616 0.0841 0.107	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev	
679 680 681 682 683	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap	0.959 0.0616 0.0841 0.107 pear Lognor	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev	
679 680 681 682 683 684	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap	0.959 0.0616 0.0841 0.107 pear Lognor	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level	
679 680 681 682 683 684 685	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap	0.959 0.0616 0.0841 0.107 pear Lognor	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Jsing Imputed Non-Detects	el
679 680 681 682 683 684	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics U	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Jsing Imputed Non-Detects Mean in Log Scale	-2.399
679 680 681 682 683 684 685 686	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale	-2.399 2.61
679 680 681 682 683 684 685 686 687	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-2.399 2.61 1.631
679 680 681 682 683 684 685 686 687	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-2.399 2.61 1.631
679 680 681 682 683 684 685 686 687 688	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-2.399 2.61 1.631
679 680 681 682 683 684 685 686 687 688 689 690	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Dising Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean	-2.399 2.61 1.631
679 680 681 682 683 684 685 686 687 688 689 690	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	-2.399 2.61 1.631 2.172 0.0966 4.035
679 680 681 682 683 684 685 686 687 688 689 690 691	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal ROS Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Dising Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean	-2.399 2.61 1.631 2.172
679 680 681 682 683 684 685 686 687 688 690 691 692 693 694	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics U 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292 2.474	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	-2.399 2.61 1.631 2.172 0.0966 4.035
679 680 681 682 683 684 685 686 687 688 690 691 692 693 694	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal ROS Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	-2.399 2.61 1.631 2.172 0.0966 4.035 6.683
679 680 681 682 683 684 685 686 687 689 690 691 692 693 694	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292 2.474 0.292	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Dising Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	-2.399 2.61 1.631 2.172 0.0966 4.035 6.683
679 680 681 682 683 684 685 686 687 690 690 691 692 693 694 695 696 697	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM STandard Error of Mean (logged) KM SD (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics U 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292 2.474	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Desired Imputed Non-Detects Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	-2.399 2.61 1.631 2.172 0.0966 4.035 6.683
679 680 681 682 683 684 685 686 687 690 690 691 692 693 694 695 696 697	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292 2.474 0.292 DL/2 Si	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Leve mal at 5% Significance Level Desing Imputed Non-Detects Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	-2.399 2.61 1.631 2.172 0.0966 4.035 6.683 4.035
679 680 681 682 683 684 685 686 687 690 691 692 693 694 695 696 697 698	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO: Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292 2.474 0.292 DL/2 St	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev mal at 5% Significance Level Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) Matistics DL/2 Log-Transformed Mean in Log Scale	-2.399 2.61 1.631 2.172 0.0966 4.035 6.683 4.035
679 680 681 682 683 684 685 686 687 690 691 692 693 694 695 696 697 698	Shapiro Wilk Approximate Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged)	0.959 0.0616 0.0841 0.107 pear Lognor S Statistics L 1.046 2.912 1.613 1.843 10.01 on Logged D -2.337 2.474 0.292 2.474 0.292 DL/2 Si	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Leve mal at 5% Significance Level Desing Imputed Non-Detects Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	-2.399 2.61 1.631 2.172 0.0966 4.035 6.683 4.035

	Α	В	C D E	F	G H I J K	<u>L</u>
703			DL/2 is not a recommended me	thod, provid	ed for comparisons and historical reasons	
704						
705			Nonparame	tric Distribut	tion Free UCL Statistics	
706			Detected Data appear I	_ognormal D	istributed at 5% Significance Level	
707						
708				Suggested	UCL to Use	
709			KM H-UCL	6.683		
710						
711		Note: Sugg	estions regarding the selection of a 95%	6 UCL are pr	rovided to help the user to select the most appropriate 95% UCL.	
712			Recommendations are bas	sed upon da	ta size, data distribution, and skewness.	
713		These rec	ommendations are based upon the resu	ılts of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
714		However, sim	nulations results will not cover all Real W	Vorld data se	ets; for additional insight the user may want to consult a statistician.	
715						
716	lead					
717						
718					Statistics	
719			Total Number of Observations	73	Number of Distinct Observations	71
720					Number of Missing Observations	0
721			Minimum	8.74	Mean	52.27
722			Maximum	531	Median	28.7
723			SD	81.25	Std. Error of Mean	9.51
724			Coefficient of Variation	1.554	Skewness	4.338
725						
726					GOF Test	
727			Shapiro Wilk Test Statistic	0.514	Shapiro Wilk GOF Test	
728			5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
729			Lilliefors Test Statistic	0.296	Lilliefors GOF Test	
730			5% Lilliefors Critical Value	0.104	Data Not Normal at 5% Significance Level	
731			Data Not	Normal at 5	% Significance Level	
732						
733			As	suming Norr	mal Distribution	
734			95% Normal UCL		95% UCLs (Adjusted for Skewness)	
735			95% Student's-t UCL	68.12	95% Adjusted-CLT UCL (Chen-1995)	73.07
736					95% Modified-t UCL (Johnson-1978)	68.92
737						
738				Gamma	GOF Test	
739			A-D Test Statistic	3.039	Anderson-Darling Gamma GOF Test	
740			5% A-D Critical Value	0.779	Data Not Gamma Distributed at 5% Significance Level	
741			K-S Test Statistic	0.146	Kolmogorov-Smirnov Gamma GOF Test	
742			5% K-S Critical Value	0.107	Data Not Gamma Distributed at 5% Significance Level	
743			Data Not Gamr	na Distribute	ed at 5% Significance Level	
744						
745					Statistics	
746			k hat (MLE)	1.088	k star (bias corrected MLE)	1.052
747			Theta hat (MLE)	48.05	Theta star (bias corrected MLE)	49.67
748			nu hat (MLE)	158.8	nu star (bias corrected)	153.6
749			MLE Mean (bias corrected)	52.27	MLE Sd (bias corrected)	50.96
750					Approximate Chi Square Value (0.05)	126
751			Adjusted Level of Significance	0.0467	Adjusted Chi Square Value	125.5
752						
753					nma Distribution	
754		95% Approx	imate Gamma UCL (use when n>=50))	63.74	95% Adjusted Gamma UCL (use when n<50)	64
755						
756				Lognorma	I GOF Test	

\leftarrow	Α	В	C	D	E	F	G	Н		J	K	L
757			_	Shapiro Wilk	Test Statistic	0.934			apiro Wilk Log	normal GOF		_
758				5% Shapiro	Wilk P Value	0.00101		Data No	t Lognormal a	at 5% Signific	ance Level	
759				Lilliefors	Test Statistic	0.0925		L	illiefors Logn	ormal GOF To	est	
760				5% Lilliefors	Critical Value	0.104		Data appe	ar Lognorma	l at 5% Signif	icance Level	
761				Data	appear Appro	oximate Logn	ormal at 5% S	Significance	Level			
762												
763						Lognorma	l Statistics					
764				Minimum of	f Logged Data	2.168				Mean o	f logged Data	a 3.431
765				Maximum of	f Logged Data	6.275				SD o	f logged Data	a 0.923
766												
767					Ass	uming Logno	rmal Distribut	ion				
768					95% H-UCL	60.03			90%	6 Chebyshev	(MVUE) UCI	64.7
769			95	% Chebyshev	(MVUE) UCL	72.74			97.5%	6 Chebyshev	(MVUE) UCI	83.9
770			99	% Chebyshev	(MVUE) UCL	105.8						
771												
772					Nonparam	etric Distribut	ion Free UCL	Statistics				
773				Data appe	ear to follow a	Discernible D	Distribution at	5% Significa	nce Level			
774												
775					Nonpa	rametric Dist	ribution Free	UCLs				
776				g	95% CLT UCL	67.91				95% J	ackknife UCI	68.12
777			95	5% Standard B	Bootstrap UCL	67.78				95% Bo	otstrap-t UCI	83.2
778				95% Hall's B	Bootstrap UCL	143			95%	6 Percentile B	Sootstrap UC	68.96
779				95% BCA B	Bootstrap UCL	75.26						
780			90%	Chebyshev(M	ean, Sd) UCL	80.8			95% (Chebyshev(M	ean, Sd) UCI	93.72
781			97.5%	Chebyshev(M	ean, Sd) UCL	111.7			99% (Chebyshev(M	ean, Sd) UCI	146.9
782												
783						Suggested	UCL to Use					
784					95% H-UCL	60.03						
/ O4												
785		Note: Sug	gestions reg	garding the sel	ection of a 95°	UCL are pr	ovided to help	the user to	select the m	ost appropria	te 95% UCL.	
785 786		Note: Sug	gestions reg		ection of a 95 ^o	•					te 95% UCL.	
785 786 787			-		dations are ba	sed upon dat	ta size, data d	istribution, a	and skewness	S.		
785 786 787 788		These rec	commendati	Recommend	dations are ba	ults of the sin	ta size, data d	istribution, a	and skewness red in Singh,	S. Maichle, and	Lee (2006).	n.
785 786 787 788 789		These rec	commendati	Recommendions are based	dations are ba	ults of the sin	ta size, data d	istribution, a	and skewness red in Singh,	S. Maichle, and	Lee (2006).	n.
785 786 787 788 789 790		These rec	commendati	Recommendions are based	dations are bad upon the res	ased upon dat ults of the sin World data se	ta size, data d nulation studie ets; for addition	istribution, a es summariz nal insight th	and skewness zed in Singh, ne user may v	Maichle, and want to consu	Lee (2006).	n.
785 786 787 788 789 790 791		These red	commendati mulations re	Recommendations are based sults will not constitute the constitute of the constitute	dations are bad upon the restover all Real votes and output	ults of the sin World data se	ta size, data d nulation studie ets; for additio	istribution, a es summariz nal insight th for historica	and skewness red in Singh, ne user may v	Maichle, and want to consu	Lee (2006). It a statisticia	n.
785 786 787 788 789 790 791		These red	commendati mulations re	Recommendions are based sults will not corrouch computation unstable	dations are bad upon the restover all Real votes and output	ults of the sin World data se uts H-statistic nd low) value	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as	istribution, a es summariz nal insight th for historica s shown in e	and skewness red in Singh, ne user may v I reasons only examples in the	Maichle, and want to consu	Lee (2006). It a statisticia	n.
785 786 787 788 789 790 791 792 793		These red However, sin	commendati mulations re F tic often resi	Recommendions are based sults will not corrouch computation unstable	dations are bad upon the restover all Real values and outpute (both high all e recommended)	ults of the sin World data se uts H-statistic nd low) value ed to avoid the	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as le use of H-sta	istribution, a es summariz nal insight th for historica s shown in e atistic based	and skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs.	Maichle, and vant to consu	Lee (2006). It a statisticia Guide.	n.
785 786 787 788 789 791 792 794 794		These red However, sin H-statis	commendati mulations re fitic often resi	Recommendions are based sults will not compute the computation of the	dations are bad upon the restover all Real values and outpute (both high all e recommended)	ults of the sin World data se uts H-statistic nd low) value ed to avoid the	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as le use of H-sta	istribution, a es summariz nal insight th for historica s shown in e atistic based	and skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs.	Maichle, and vant to consu	Lee (2006). It a statisticia Guide.	n.
785 786 787 788 790 791 792 793 795 795		These red However, sin H-statis	commendati mulations re fitic often resi	Recommendions are based sults will not compute the computation of the	dations are bad upon the restover all Real values and outpute (both high all e recommended)	ults of the sin World data se uts H-statistic nd low) value ed to avoid the	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as le use of H-sta	istribution, a es summariz nal insight th for historica s shown in e atistic based	and skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs.	Maichle, and vant to consu	Lee (2006). It a statisticia Guide.	n.
785 786 787 788 789 791 792 793 795 796 796 796 796 796 796 786		These red However, sin H-statis	commendati mulations re fitic often resi	Recommendions are based sults will not compute the computation of the	dations are bad upon the restover all Real values and outpute (both high all e recommended)	ults of the sin World data se uts H-statistic nd low) value ed to avoid th pute UCL95 f	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as le use of H-sta	istribution, a es summariz nal insight th for historica s shown in e atistic based	and skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs.	Maichle, and vant to consu	Lee (2006). It a statisticia Guide.	n.
785 786 787 788 789 790 791 792 793 794 795		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendions are based sults will not compute the computation of the	dations are bad upon the restover all Real votes and outputes (both high are recommended ferred to com	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consu	Lee (2006). It a statisticia Guide. istribution.	
785 786 787 788 790 791 792 795 796 797 798		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not compute the computation of th	dations are bad upon the restover all Real votes and outputes (both high are recommended ferred to com	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consu	Lee (2006). It a statisticia Guide. istribution.	s 77
785 786 787 788 789 790 791 792 793 794 795 796 797 798		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendions are based sults will not consults will not consults in unstable It is therefore ethods are presented Number of Number of Number Number Number of Number	dations are bad upon the restover all Real values and outpute (both high are recommendaterred to com	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consu	Lee (2006). It a statisticia Guide. istribution. Observations	5 77 5 5
785 786 787 788 789 790 791 792 793 794 795 796 797 798 800		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not compute the sults in unstable and the sults in unstable are presented are presented and sumber of Number of Discourse the sults are presented and sults are present	dations are bad upon the response and outputes and outpute (both high are recommendatered to commendate to commend	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General 79 74 74	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consult. Maichle, and vant to consult. Maichle, and vant to consult. Maichle, and vant to consult. Maichle, and vant to consult.	Lee (2006). It a statisticia Guide. istribution. Observations	5 77 5 5 5 3
785 786 787 788 790 791 792 793 794 795 796 797 798 799 800		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not compute the sults in unstable and the sults in unstable are presented are presented and sumber of Number of Dimensions and Dimensions are presented and Number of Dimensions are presented and Number of Dimensions are presented and Number of Dimensions are presented and Number of Dimensions are presented and Number of Dimensions are presented and Number of Dimensions are presented and Number of Dimensions are presented and Number of Dimensions are particular to the Number of Dimensions are passed and Number of Dimensions are passed and Number of Dimensions are passed and Number of Dimensions are passed and Number of Dimensions are passed and Number of Dimensions are passed and Number of Dimensions and Number of Dimensions are passed and Number of Dimensio	dations are bad upon the restover all Real values and outpute (both high alle recommendations). Observations ber of Detects istinct Detects	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General 79 74 74 0.00358	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consult. The Technical (We a gamma description of Distinct Minimum and the consult of Distinct Minimum and Minimum	Lee (2006). It a statisticia Guide. istribution. Observation: f Non-Detect:	5 77 5 5 5 3 tt 0.00193
785 786 787 788 790 791 792 793 794 795 796 797 798 800 801 802		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not consults in unstable at the standard substant of the standard	dations are bad upon the response and outputes and outpute (both high are recommended aftered to commended aftered to commend after of Detects are informed better the commendation of the	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General 79 74 74 0.00358 35.56	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and want to consult. Me Technical (w a gamma desert of Distinct Number of Distinct Minimum Maximum	Lee (2006). It a statisticia Guide. istribution. Observations f Non-Detects t Non-Detects m Non-Detects	5 77 5 5 6 3 t 0.00193 t 0.0105
785 786 787 788 790 791 792 793 794 795 796 797 798 799 800 801 802 803		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not consults in unstable it is therefore ethods are presented in Number of Dimensional Number of Di	dations are bad upon the restover all Real Values and outpute (both high alle recommendations). Observations ber of Detects istinct Detects inimum Detect ximum Detects inance Detects in detects in the property of the prop	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General 79 74 74 0.00358 35.56 26.1	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and want to consult. Me Technical (w a gamma desert of Distinct Number of Distinct Minimum Maximum	Lee (2006). It a statisticia Guide. istribution. Observation: f Non-Detect: t Non-Detect: m Non-Detect: m Non-Detect: t Non-Detect:	5 77 5 5 5 6 3 tt 0.00193 tt 0.0105 5 6.329%
785 786 787 788 790 790 791 792 793 794 795 796 797 798 800 801 802 803		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not consults will not consults in unstable at the substitution of the s	dations are bad upon the restover all Real Values and outpute (both high alle recommendatered to commendate of Detects is stinct Detects nimum Detect iance Detects Mean Detects	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General 79 74 74 0.00358 35.56 26.1 2.023	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and want to consult. Me Technical (w a gamma desert of Distinct Number of Distinct Minimum Maximum	Lee (2006). It a statisticia Guide. istribution. Observations f Non-Detects t Non-Detects m Non-Detects t Non-Detects t Non-Detects SD Detects	5 77 5 5 6 3 1t 0.00193 1t 0.0105 6 6.329% 5 5.109
785 786 787 788 790 791 792 793 794 795 796 797 798 800 801 802 803 804 805		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not consults in unstable at the standard presentation of the standard present	dations are bad upon the restover all Real Values and outpute (both high alle recommendations). Observations ber of Detects istinct Detects inimum Detect ximum Detects inance Detects in detects in the property of the prop	ults of the sin World data se uts H-statistic and low) value ed to avoid th pute UCL95 f General 79 74 74 0.00358 35.56 26.1 2.023 0.254	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consult. Maichle, and vant to consult. Me Technical (We a gamma description of Distinct Number of Distinct Minimum Maximum Percent)	Lee (2006). It a statisticia Guide. istribution. Observation: f Non-Detect: t Non-Detect: m Non-Detect: m Non-Detect: t Non-Detect:	5 77 5 5 3 1t 0.00193 tt 0.0105 6 6.329% 5 5.109 6 2.525
785 786 787 788 790 791 792 793 794 795 796 797 798 800 801 802 803 804 805 806		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not consults will not consults in unstable it is therefore ethods are presented in Number of Dimensional Number of Dimens	dations are bad upon the restover all Real Values and outpute (both high alle recommendations). Observations ber of Detects istinct Detects inimum Detect innce Detects Mean Detects edian Detects viness Detects prices Detects.	dised upon data ults of the sin World data set uts H-statistic and low) value ed to avoid the pute UCL95 f General 79 74 74 0.00358 35.56 26.1 2.023 0.254 4.638	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consult. We Technical Consults and the series of Distinct Mumber of Distinct Minimum Maximum Percent	Lee (2006). It a statisticia Guide. istribution. Observations f Non-Detects t Non-Detects m Non-Detects t Non-Detects t Non-Detects CV Detects rtosis Detects	5 77 5 5 6 3 tt 0.00193 tt 0.0105 6 6.329% 5 5.109 5 2.525 6 26.15
785 786 787 788 790 791 792 793 794 795 796 797 798 800 801 802 803 804 805 806 807		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not consults will not consults in unstable it is therefore ethods are presented in Number of Dimensional Number of Dimens	dations are bad upon the restover all Real values and outpute (both high are recommended ferred to commended ferred fe	dised upon data ults of the sin World data set uts H-statistic and low) value ed to avoid the pute UCL95 f General 79 74 74 0.00358 35.56 26.1 2.023 0.254 4.638	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight th for historica s shown in e atistic based	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consult. We Technical Consults and the series of Distinct Number of Distinct Minimum Maximum Percent	Lee (2006). It a statisticia Guide. Guide. Observations f Non-Detects m Non-Detects m Non-Detects t Non-Detects SD Detects CV Detects	5 77 5 5 6 3 tt 0.00193 tt 0.0105 6 6.329% 5 5.109 5 2.525 6 26.15
785 786 787 788 790 791 792 793 796 797 798 799 800 801 802 803 804 805 807 808		These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendations are based sults will not consults will not consults will not consults in unstable it is therefore ethods are presented in Number of Dimensional Number of Dimens	dations are bad upon the response over all Real values and outpute (both high are recommended ferred to commended ferred to commended ferred to commend to the recommendation of Detects in the property of Detects in the property of Detects where the property of Detects in the property of Detects in the property of Detects in the property of Detects in the property of Detects in the property of Detects in the property of Detects of Detect	dised upon data ults of the sin World data set uts H-statistic and low) values ed to avoid the pute UCL95 f General 79 74 74 0.00358 35.56 26.1 2.023 0.254 4.638 -1.363	ta size, data dinulation studie ets; for addition based UCLs as of UCL95 as the use of H-state for skewed data. Statistics	istribution, a es summariz nal insight th for historica s shown in e atistic based ta sets which	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consult. We Technical Consults and the series of Distinct Number of Distinct Minimum Maximum Percent	Lee (2006). It a statisticia Guide. istribution. Observations f Non-Detects t Non-Detects m Non-Detects t Non-Detects t Non-Detects CV Detects rtosis Detects	5 77 5 5 6 3 tt 0.00193 tt 0.0105 6 6.329% 5 5.109 5 2.525 6 26.15
785 786 787 788 790 791 792 793 794	BaP_TEQ_H	These red However, sin H-statis	commendati mulations re Fitic often resi arametric mo	Recommendions are based sults will not consults will not consults in unstable it is therefore ethods are presented in the summer of Diagram of Diagram of Diagram of Local Number of Local Number of Diagram of Local Number of Local Number of Diagram of Diagram	dations are bad upon the response over all Real values and outpute (both high are recommended ferred to commended ferred to commended ferred to commend to the recommendation of Detects in the property of Detects in the property of Detects where the property of Detects in the property of Detects in the property of Detects in the property of Detects in the property of Detects in the property of Detects in the property of Detects of Detect	sed upon data ults of the sin World data set uts H-statistic and low) value ed to avoid the pute UCL95 f General 79 74 74 0.00358 35.56 26.1 2.023 0.254 4.638 -1.363	ta size, data d nulation studie ets; for addition based UCLs s of UCL95 as the use of H-state for skewed da	istribution, a es summariz nal insight the for historica is shown in e atistic based ta sets which	end skewness red in Singh, ne user may v I reasons only examples in the 195% UCLs. th do not follow	Maichle, and vant to consult. J. The Technical Consults of Distinct Number of Distinct Minimul Maximul Percent Kunner of Long Consults of Lo	Lee (2006). It a statisticia Guide. istribution. Observations f Non-Detects m Non-Detects m Non-Detects t Non-Detects c Non-Detects t Non-Detects t Non-Detects t Non-Detects sop Detects c V Detects rtosis Detects	5 77 5 5 6 3 tt 0.00193 tt 0.0105 6 6.329% 5 5.109 5 2.525 6 26.15

	Α	В	С	D		E	F	G	Н	I	J	K	L
811			•	5% Shap	oiro Wilk	P Value	0		Detected Da	ata Not Norr	nal at 5% Sigr	ificance Level	
812				Lilliefo	ors Test	Statistic	0.346				GOF Test		
813				5% Lilliefo	ors Critic	al Value	0.103		Detected Da	ata Not Norr	nal at 5% Sign	ificance Level	
814					Detec	cted Data	Not Norma	at 5% Signif	ficance Level				
815													
816			Kapla	ın-Meier (K	•		-	itical Values	and other No	•			
817						M Mean	1.895					Error of Mean	0.559
818						KM SD	4.935					M (BCA) UCL	2.947
819					95% KM		2.826			95% KM	`	ootstrap) UCL	2.888
820					95% KM		2.815					otstrap t UCL	3.638
821				90% KM (3.573					ebyshev UCL	4.332
822				97.5% KM (Chebysh	ev UCL	5.387				99% KM Ch	ebyshev UCL	7.458
823													
824								tected Obser	rvations Only				
825					A-D Test		2.469	_			arling GOF Te		
826					-D Critica		0.859	Dete				% Significance	Level
827					K-S Test		0.15				-Smirnov GO		
828					C-S Critica		0.112				stributed at 59	% Significance	Level
829				Det	tected Da	ata Not G	amma Distr	ibuted at 5%	Significance	Level			
830													
831								Detected Da	ata Only				0.004
832				 ;		t (MLE)	0.329					orrected MLE)	0.324
833					Theta ha		6.159			The		orrected MLE)	6.24
834						t (MLE)	48.62				nu star (b	ias corrected)	47.98
835					Mean (detects)	2.023						
836					0	DOC	Chatlatian	المحقد بسمسا بمسا	Non Detecto				
837			CBOS ==	any not bo u					Non-Detects nany tied obse	anyatiana at	multiple DLa		
838		CDOS ~		-					-		ze is small (e.	a <15 20\	
839		GINOSTI							ct values of U		-	g., <13-20)	
840				1 Of Such Si				-	e size is smal				
841		For o	namma distril	huted detec			-				tion on KM es	timates	
842		1019				linimum	0.00358	y be compar	ica asing gan	illa distribu	uon on raw co	Mean	1.896
843						aximum	35.56					Median	0.216
844 845						SD	4.967					CV	2.62
-					k ha	t (MLE)	0.311				k star (bias co		0.307
846 847					Theta ha		6.105			The	,	orrected MLE)	6.172
848						it (MLE)	49.06				•	ias corrected)	48.53
849			Adiust	ed Level of			0.047				(,	
850		Aı	pproximate C		•	,	33.54			Adjusted	Chi Square Va	alue (48.53, β)	33.31
851			na Approxima		•		2.743		95% (-		e when n<50)	2.762
852						- /						- 3/	
853					Estima	ites of Ga	amma Parar	neters usina	KM Estimates	S			
854						an (KM)	1.895	3				SD (KM)	4.935
855						ce (KM)	24.36				SE	of Mean (KM)	0.559
856						at (KM)	0.147					k star (KM)	0.15
857						at (KM)	23.3					nu star (KM)	23.75
858						at (KM)	12.85				th	neta star (KM)	12.61
859			80	0% gamma	a percent	ile (KM)	2.067			g	00% gamma po	ercentile (KM)	5.622
860				5% gamma	•	, ,	10.43					ercentile (KM)	24.37
861						*		<u> </u>			·	. /	
862						Gamm	a Kaplan-M	eier (KM) Sta	itistics				
863		Aı	pproximate C		Value (2		13.66	-		Adjusted	Chi Square Va	alue (23.75. β)	13.52
00.3				Chi Square	Value (2	, - ,1						(/ - /	
864	95	% Gamma A	pproximate l				3.296		95% Gam	-		e when n<50)	3.33

1 .	Α	A B C D E F G H I J K											L
865								-			_		
866					Lognormal GC		etected Obse	rvations Only					
867			Shapiro Wilk		Test Statistic					ilk GOF Test			
868					Wilk P Value		De	tected Data	appear Logn		Significa	nce Le	vel
869					Test Statistic	0.0633				GOF Test			
870					Critical Value				appear Logn	ormal at 5%	Significa	nce Le	vel
871				De	tected Data ap	opear Lognor	mal at 5% Siq	gnificance Le	vel				
872													
873					ognormal RO		Ising Imputed	l Non-Detect	s 				
874					Original Scale						an in Log		-1.683
875					Original Scale	4.967					D in Log		2.535
876		95%	t UCL (assum	-	of ROS data)	2.826			95%	Percentile		•	2.856
877					ootstrap UCL	3.271				95% B	ootstrap	t UCL	3.494
878				95% H-UC	CL (Log ROS)	15.19							
879			04-		/\\:\		A						
880			Sta	_	KM estimates		ata and Assu	ming Lognor	mai Distribut		KM Geo	Maan	0.101
881					Mean (logged)	-1.657 2.467			OE0	6 Critical H V			0.191 4.058
882			KW C+		/I SD (logged) /lean (logged)				95%		JCL (KM		12.41
883			VINI SIGNO		// SD (logged)				Ω Ε0/	95% H-0 6 Critical H V	•	٠,	4.058
884			KM Stand		// SD (logged) //ean (logged)	0.28			33 /	Cilicai i i v	raiue (Kiv	vi-Log)	4.000
885			INVI Stariu	a.a <u>L</u> .1101 01 1\	nean (logged)	0.20							
886						DL/2 St	atistics						
887			DI /2 I	Normal		DEZO	ausuos		DI /2 I on-1	Fransformed	1		
888 889			002		Original Scale	1.895			DDZ LOg-		n in Log	Scale	-1.682
ואאאו					Original Scale						D in Log		2.531
-				· · · · ·	ongman ocaro							000.0	
890			95% t	UCL (Assum	nes normality)	2.826					5% H-Sta	at UCL	15.04
890 891				•	nes normality)	2.826 ethod, provide	ed for compa	risons and hi	storical reaso	95	5% H-Sta	at UCL	15.04
890 891 892				•	nes normality) ommended m		ed for compa	risons and hi	storical reaso	95	5% H-Sta	at UCL	15.04
890 891 892 893				•	ommended me				storical rease	95	5% H-Sta	at UCL	15.04
890 891 892 893 894				2 is not a reco	ommended me	ethod, provide	on Free UCL	. Statistics		95	5% H-Sta	at UCL	15.04
890 891 892 893 894 895				2 is not a reco	ommended mo	ethod, provide	on Free UCL	. Statistics		95	5% H-Sta	at UCL	15.04
890 891 892 893 894				2 is not a reco	ommended mo	ethod, provide	on Free UCL	. Statistics		95	5% H-Sta	at UCL	15.04
890 891 892 893 894 895 896				2 is not a reco	ommended mo	ethod, provide etric Distributi Lognormal Di	on Free UCL	. Statistics		95	5% H-Sta	at UCL	15.04
890 891 892 893 894 895 896				2 is not a reco	ommended me Nonparame	ethod, provide etric Distributi Lognormal Di Suggested	on Free UCL	. Statistics		95	5% H-Sta	at UCL	15.04
890 891 892 893 894 895 896 897 898		Note: Sug	DL/:	2 is not a reco	ommended me Nonparame	ethod, provide etric Distributi Lognormal Di Suggested I 12.41	ion Free UCL istributed at 5 UCL to Use	. Statistics 5% Significan	ice Level	95 Ons			15.04
890 891 892 893 894 895 896 897		Note: Sug	DL/:	Detected	Nonparame Data appear	ethod, provide etric Distributi Lognormal Di Suggested I 12.41	ion Free UCL istributed at 5 UCL to Use	. Statistics 5% Significan	select the ma	95 ons ost appropri			15.04
890 891 892 893 894 895 896 897 898 899			DL/2	Detected Triding the selection Recommender	Nonparamol Data appear KM H-UCL ection of a 95	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon dat	ion Free UCL stributed at 5 UCL to Use ovided to help a size, data of	. Statistics 5% Significan p the user to	select the m	95 ons ost appropria	ate 95%	UCL.	15.04
890 891 892 893 894 895 896 897 898 899 900		These re	gestions rega	Detected Tricking the selections are based	Nonparamed Data appear KM H-UCL ection of a 95° dations are ba	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon datuits of the sim	ion Free UCL istributed at 5 UCL to Use ovided to help a size, data control is studion studion.	p the user to distribution, a es summariz	select the mand skewnessed in Singh,	ost appropria	ate 95%	UCL.	
890 891 892 893 894 895 896 897 898 899 900 901 902 903		These re	gestions rega	Detected Tricking the selections are based	Nonparamed Data appear KM H-UCL ection of a 95° dations are ball upon the res	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon datuits of the sim	ion Free UCL istributed at 5 UCL to Use ovided to help a size, data control is studion studion.	p the user to distribution, a es summariz	select the mand skewnessed in Singh,	ost appropria	ate 95%	UCL.	
890 891 892 893 894 895 896 897 898 899 900 901 902 903	BaP TEQ _Z	These re	gestions rega	Detected Tricking the selections are based	Nonparamed Data appear KM H-UCL ection of a 95° dations are ball upon the res	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon datuits of the sim	ion Free UCL istributed at 5 UCL to Use ovided to hely a size, data outliation studion	p the user to distribution, a es summariz	select the mand skewnessed in Singh,	ost appropria	ate 95%	UCL.	
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904		These re	gestions rega	Detected Tricking the selections are based	Nonparamed Data appear KM H-UCL ection of a 95° dations are ball upon the res	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon dat ults of the sim World data se	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh,	ost appropria	ate 95%	UCL.	
890 891 892 893 894 895 896 897 900 901 902 903 904 905		These re	gestions rega	Detected Tricking the selections are based	Nonparamed Data appear KM H-UCL ection of a 95° dations are ball upon the res	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon datuits of the sim	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh,	ost appropria	ate 95%	UCL.	
890 891 892 893 894 895 896 897 900 901 902 903 903 904 905 905		These re	gestions rega commendatio mulations res	Detected Tree properties of the selection of the selecti	Nonparamed Data appear KM H-UCL ection of a 95° dations are ball upon the res	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are provide upon data ults of the simple vorid data see	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mond skewnessed in Singh, e user may v	ost appropria s. Maichle, and vant to cons	ate 95% I Lee (20 ult a stati	UCL.	
890 891 892 893 894 895 896 897 900 901 902 903 903 904 905 906 907		These re	gestions rega commendatio mulations res	Detected Tricking the selection of the	Nonparamed Data appear KM H-UCL ection of a 95° dations are bad upon the resover all Real V	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon dat ults of the sim World data se General S 79 74	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to consi	ate 95% d Lee (20 ult a stati	UCL. 006). istician. rations	77 5
890 891 892 893 894 895 896 897 898 900 901 902 903 904 905 905 906 907		These re	gestions rega commendatio mulations res	Detected Tricking the selection of the	Nonparamol Data appear KM H-UCL ection of a 95° dations are bad upon the resover all Real V	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are provided upon data ults of the simple vorid data se General S 79 74 74	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to consider of Distinct Number of Distinct Dist	ate 95% d Lee (20 ult a stati	UCL. 006). istician. rations letects letects	77 5 3
890 891 892 893 894 895 896 897 900 901 902 903 903 904 905 906 907		These re	gestions rega commendatio mulations res	Detected Trading the selection of the s	Nonparamol Data appear KM H-UCL ection of a 950 dations are bad upon the resover all Real V Observations per of Detects stinct Detects nimum Detect	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are pri sed upon dat ults of the sim World data se General 3 79 74 74 0.00266	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to consider of Distinct Number of ber of Distinct Minimum	ate 95% d Lee (20 ult a stati	UCL. 006). istician. rations retects retects Detect	77 5 3 0
890 891 892 893 894 895 896 897 898 900 901 902 903 904 905 906 907 908 909		These re	gestions rega commendatio mulations res	Detected Tricking the selection of the	Nonparamore Nonpar	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are prosed upon data ults of the sim World data se General S 79 74 74 0.00266 35.53	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to cons ver of Distinc Number of ber of Distinc Minimum Maximum	ate 95% d Lee (20 ult a stati	UCL. 1006). 1016	77 5 3 0
890 891 892 893 894 895 896 897 900 901 903 904 905 906 907 908 909 910 911 911		These re	gestions rega commendatio mulations res	Detected Trick of the selection of the	Nonparamol Data appear KM H-UCL ection of a 95° dations are bad upon the resover all Real V Observations per of Detects stinct Detects inimum Detect inimum Detect inimum Detect inimum Detect inimum Detect inimum Detects inimum Detect inim	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are provided upon data ults of the sim World data se General S 79 74 74 0.00266 35.53 25.97	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to cons ver of Distinc Number of ber of Distinc Minimum Maximum	ate 95% d Lee (20 ult a stati	UCL. O06). istician. etects etects Detect Detect etects	77 5 3 0 0.00463 6.329%
890 891 892 893 894 895 896 897 898 900 901 903 904 905 906 907 908 909 910 911 912 913 914		These re	gestions rega commendatio mulations res	Detected Trick of the selection of the	Nonparamol Data appear KM H-UCL ection of a 95° dations are ball upon the resover all Real Volume of Detects stinct Detects nimum Detect ximum Detect iance Detects Mean Detects	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are pri sed upon dat ults of the sim World data se General 3 79 74 74 0.00266 35.53 25.97 2.01	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to cons ver of Distinc Number of ber of Distinc Minimum Maximum	ate 95% d Lee (20 ult a stati	UCL. 006). istician. rations retects retects retects retects retects retects retects retects	77 5 3 0 0.00463 6.329% 5.096
890 891 892 893 895 896 897 898 900 901 903 904 905 907 908 909 911 912 913		These re	gestions rega commendatio mulations res	Detected Tricking the selection of the	Nonparamed Data appear KM H-UCL ection of a 95° dations are bated at upon the restover all Real V Observations per of Detects stinct Detects innum Detect innum Detect innum Detect innum Detects inner Detects i	ethod, provide etric Distributi Lognormal Di Suggested II 12.41 % UCL are prosed upon dat ults of the sim World data se General S 79 74 74 0.00266 35.53 25.97 2.01 0.244	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to cons ver of Distinc Number of ber of Distinc Minimum Maximum Percei	ate 95% d Lee (20 ult a stati	UCL. O06). istician. etects etects Detect Detect etects etects etects	77 5 3 0 0.00463 6.329% 5.096 2.536
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916		These re	gestions rega commendatio mulations res	Detected Tricking the selection of the	Nonparamol Data appear KM H-UCL ection of a 95° dations are ball upon the resover all Real Volume of Detects stinct Detects nimum Detect ximum Detect iance Detects Mean Detects	ethod, provide etric Distributi Lognormal Di Suggested I 12.41 % UCL are pri sed upon dat ults of the sim World data se General 3 79 74 74 0.00266 35.53 25.97 2.01	stributed at 5 UCL to Use ovided to hely a size, data of	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to cons ver of Distinc Number of ber of Distinc Minimum Maximum Percei	ate 95% d Lee (20 ult a stati	UCL. O06). istician. etects etects Detect Detect etects etects etects	77 5 3 0 0.00463 6.329% 5.096
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915		These re	gestions rega commendatio mulations res	Detected Tricking the selection of the	Nonparamode Data appear KM H-UCL ection of a 95° dations are based upon the result over all Real V Observations over of Detects stinct Detects nimum Detect in the control of the contr	ethod, provide etric Distributi Lognormal Di Suggested II 12.41 % UCL are prosed upon dat ults of the sim World data se General S 79 74 74 0.00266 35.53 25.97 2.01 0.244	ion Free UCL istributed at 5 UCL to Use ovided to hely a size, data or audition studiets; for addition	p the user to distribution, a es summariz	select the mand skewnessed in Singh, le user may v	ost appropria S. Maichle, and vant to cons ver of Distinc Number of ber of Distinc Minimum Maximum Percei	ate 95% d Lee (20 ult a stati	UCL. O06). istician. etects etects Detect Detect etects etects etects	77 5 3 0 0.00463 6.329% 5.096 2.536

	Α	В	С	D	E	F	G	Н	I	J	K	L
919			•	Shapiro Wilk	Test Statistic	0.448		Normal GOF		etected Observ	vations Only	
920				5% Shapiro	Wilk P Value	0		Detected Da	ta Not Norm	nal at 5% Sign	ificance Level	
921				Lilliefors	Test Statistic	0.347			Lilliefors	GOF Test		
922				5% Lilliefors	Critical Value	0.103		Detected Da	ta Not Norm	nal at 5% Sign	ificance Level	
923					Detected Data	Not Norma	l at 5% Signif	icance Level				
924								·			-	
925			Kapla	an-Meier (KM)	Statistics usin	g Normal Cr	ritical Values	and other Non	-			
926					KM Mean	1.883			ı	KM Standard I	Error of Mean	0.558
927					KM SD	4.923				95% KI	M (BCA) UCL	2.954
928					% KM (t) UCL	2.811			95% KM	(Percentile Bo	. ,	
929				95%	6 KM (z) UCL	2.8				95% KM Bo	otstrap t UCL	
930				90% KM Ch	ebyshev UCL	3.555				95% KM Ch	ebyshev UCL	4.313
931				97.5% KM Ch	ebyshev UCL	5.365				99% KM Ch	ebyshev UCL	7.431
932												
933					Gamma GOF	Tests on De	etected Obser	vations Only				
934				A-D	Test Statistic	2.349				arling GOF Tes		
935				5% A-D	Critical Value	0.86	Detec			stributed at 5%	•	Level
936				K-S	Test Statistic	0.148			•	-Smirnov GOF		
937					Critical Value	0.112				stributed at 5%	6 Significance	Level
938				Detec	ted Data Not (amma Distr	ributed at 5%	Significance I	Level			
939												
940					Gamma	Statistics on	Detected Da	ta Only				
941					k hat (MLE)	0.323				k star (bias co	rrected MLE)	0.319
942				Th	eta hat (MLE)	6.219			Thet	a star (bias co	rrected MLE)	6.299
943					nu hat (MLE)	47.83				nu star (bi	as corrected)	47.22
944				М	ean (detects)	2.01						
945												
946				E	stimates of G		meters using	KM Estimates	;			
947					Mean (KM)	1.883					SD (KM)	
948				V	ariance (KM)	24.23				SE (of Mean (KM)	
949					k hat (KM)	0.146					k star (KM)	0.149
950					nu hat (KM)	23.11					nu star (KM)	23.56
951					heta hat (KM)	12.87					neta star (KM)	
952				30% gamma pe		2.039				0% gamma pe		
953			9	95% gamma pe	ercentile (KM)	10.37			9:	9% gamma pe	rcentile (KM)	24.31
954												
955					Gamm	ıa Kaplan-Me	eier (KM) Sta	tistics				
956									•	ted Level of Si		0.047
957				Chi Square Va	,	13.52			•	Chi Square Va	, , , ,	
958	95	% Gamma A	Approximate	KM-UCL (use	when n>=50)	3.282		95% Gamr	na Adjusted	d KM-UCL (use	e when n<50)	3.317
959												
960			St	atistics using I			ata and Assu	ming Lognorn	nal Distribut			
961					lean (logged)	N/A					M Geo Mean	
962					1 SD (logged)	N/A			95%	% Critical H Va		
963			KM Stand	dard Error of N		N/A					CL (KM -Log)	
964					1 SD (logged)	N/A			95%	% Critical H Va	ılue (KM-Log)	N/A
965			KM Stand	dard Error of N	lean (logged)	N/A						
966												
967							tatistics					
968					Original Scale	1.883				SD in (Original Scale	4.954
969				t UCL (Assum		2.81						
970			DL	/2 is not a reco	ommended me	thod, provid	led for compa	risons and his	storical reas	ons		
971												
-					Nonnarame	tric Distribut	tion Free UCL	Statistics				
971					Tionpulant							

	Α	В	С	D	Е	F	G	Н	I	J	K	L
973				Data do r	not follow a D	iscernible Dis	tribution at 5	% Significand	ce Level			
974												
975						Suggested	UCL to Use					
976			9	9% KM (Che	byshev) UCL	7.431						
977												
978		Note: Sugg	estions rega	rding the sele	ection of a 95°	% UCL are pr	ovided to hel	p the user to	select the mo	st appropriate	e 95% UCL.	
979				Recommend	ations are ba	sed upon dat	a size, data d	listribution, a	nd skewness	=		
980		These rec	ommendatio	ns are based	upon the res	ults of the sim	nulation studio	es summarize	ed in Singh, N	laichle, and L	.ee (2006).	
981		However, sim	nulations resu	ılts will not co	ver all Real \	Norld data se	ts; for additio	nal insight th	e user may w	ant to consult	a statisticiai	١.
982												
<u> </u>												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1	Attachm	ent 11	•									
2	ProUCL (Outputs for	Surface and	Subsurfac	e Soil (0-15	feet) - Bad	ckground (C	Offsite)				
3	Human I	Health Risk /	Assessment	. Former M	anufacture	d Gas Plan	nt Site, Doug	glas, Arizor	na			
4												
5					UCL Statis	stics for Data	Sets with No	n-Detects		•		
6												
7			lected Options									
8		Date/Time of (•		12/4/2019 5:0							
9			From File		ut_Soil_0-15	_Offsite.xls						
10			ull Precision	OFF								
11			e Coefficient	95%								
12	Numb	er of Bootstrap	o Operations	2000								
13												
14												
15	Arsenic											
16						Canaral	Otatiatias					
17			Tota	al Number of	Ohservations		Statistics		Numb	er of Distinct	Observations	37
18			1018	ai Nullibel OI	Onsei valions	39					Observations	0
19					Minimum	7.22			INUITID	ci oi iviissiiig	Mean	14.34
20					Maximum						Median	14.6
21					SD					Std I	Error of Mean	0.856
22				Coefficier	nt of Variation					Otd. I	Skewness	0.453
23				Cocinciei	it or variation	0.575					ORCWICSS	0.400
24 25						Normal (GOF Test					
26				Shapiro Wilk	Test Statistic				Shapiro Wi	ik GOF Test		
27				Shapiro Wilk				Data N		5% Significan	nce Level	
28					Test Statistic					GOF Test		
29				5% Lilliefors				Data N		5% Significar	nce Level	
30					Data No	t Normal at 5	│ 5% Significand					
31												
32					A	ssuming Nori	mal Distributio	on				
33			95% No	ormal UCL				95%	6 UCLs (Adju	sted for Skew	/ness)	
34				95% Stu	ıdent's-t UCL	15.78			95% Adjus	ted-CLT UCL	(Chen-1995)	15.81
35									95% Modi	fied-t UCL (Jo	ohnson-1978)	15.79
36						1	1				ļ.	
37						Gamma	GOF Test					
38				A-D	Test Statistic	0.961		Ande	rson-Darling	Gamma GOF	Test	
39				5% A-D	Critical Value	0.75	Γ	Data Not Gar	mma Distribu	ted at 5% Sig	nificance Leve	I
40					Test Statistic			Kolmog	gorov-Smirno	v Gamma GO	OF Test	
41					Critical Value					ted at 5% Sig	nificance Leve	l _
42				D	ata Not Gam	ma Distribute	ed at 5% Signi	ificance Leve	el			
43												
44							Statistics					
45					k hat (MLE)					•	rrected MLE)	6.888
46					eta hat (MLE)				Theta	•	rrected MLE)	2.081
47					nu hat (MLE)						as corrected)	537.3
48			N	/ILE Mean (bi	as corrected)	14.34				•	as corrected)	5.462
49						001=					e Value (0.05)	484.5
50			Adjı	usted Level of	t Significance	0.0437				Adjusted Chi	Square Value	482.6
51					-							
52		050/ 6	• • •	LIC! /		-	nma Distributio		A 1' · · / C	1107 1		45.00
53		95% Appro	oximate Gamm	ia UCL (use v	vnen n>=50))	15.9		95% A	Adjusted Gan	nma UCL (us	e when n<50)	15.96
54												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
55						Lognormal	GOF Test					
56				·	Test Statistic				piro Wilk Log			
57			5%	Shapiro Wilk					Lognormal a	-		
58					Test Statistic				lliefors Logno			
59				5% Lilliefors	Critical Value				Lognormal a	t 5% Signific	ance Level	
60					Data Not I	_ognormal at	5% Significar	nce Level				
61												
62						Lognorma	l Statistics					
63					Logged Data						f logged Data	
64				Maximum of	Logged Data	3.25				SD o	f logged Data	0.378
65												
66							rmal Distribut	tion				
67					95% H-UCL	16.08				-	(MVUE) UCL	17.02
68				6 Chebyshev		18.24			97.5%	6 Chebyshev	(MVUE) UCL	19.92
69			99%	6 Chebyshev	(MVUE) UCL	23.22						
70												
71					Nonparame	etric Distribut	ion Free UCL	. Statistics				
72					Data do not f	follow a Disce	ernible Distrib	ution (0.05)				
73												
74					<u>-</u>		ribution Free	UCLs				
75					5% CLT UCL	15.74					ackknife UCL	15.78
76			959	% Standard B	ootstrap UCL	15.72				95% Bo	otstrap-t UCL	15.9
77				95% Hall's B	•	15.76			95%	Percentile B	ootstrap UCL	15.8
78					ootstrap UCL	15.93						
79				Chebyshev(Me		16.9				-	ean, Sd) UCL	18.06
80			97.5% C	Chebyshev(Me	ean, Sd) UCL	19.68			99% C	Chebyshev(M	ean, Sd) UCL	22.85
81												
82						Suggested	UCL to Use					
83				95% Stu	udent's-t UCL	15.78				or 95% M	lodified-t UCL	15.79
84												
85		Note: Sug	gestions rega	arding the sele	ection of a 959	% UCL are pr	ovided to help	the user to	select the mo	ost appropria	ie 95% UCL.	
86					dations are ba	•	=					
87				ons are based					_			
88		However, sir	mulations res	sults will not co	over all Real V	Vorld data se	ts; for additio	nal insight th	e user may w	ant to consu	lt a statistician	
89												
90												
91	Chromium											
92												
93						General	Statistics					
94			Tota	al Number of	Observations	39					Observations	33
95									Numbe	er of Missing	Observations	0
96					Minimum						Mean	10.95
97					Maximum	22.6					Median	10.3
98					SD	3.308				Std.	Error of Mean	0.53
99				Coefficier	nt of Variation	0.302					Skewness	1.496
100												
101						Normal C	OF Test					
102				Shapiro Wilk	Test Statistic	0.893				lk GOF Test		
103			5%	Shapiro Wilk				Data N	ot Normal at	_	ice Level	
104				Lilliefors	Test Statistic	0.168			Lilliefors	GOF Test		
105				5% Lilliefors	Critical Value	0.14		Data N	ot Normal at	5% Significar	nce Level	
106					Data No	t Normal at 5	% Significand	e Level				
107											-	
108					A:	ssuming Norr	nal Distributio	on				

	Α	В	C C	D	Е	F	G	Н		J	K	L
109			95% No	rmal UCL	المداد الساد	44.04		959		usted for Skew	· ·	11.00
110				95% Stu	ıdent's-t UCL	11.84			_	sted-CLT UCL		11.96
111									95% Moc	lified-t UCL (Jo	onnson-1978)	11.87
112						Gamme	GOF Test					
113				Δ-D	Test Statistic		GOF TEST	Ande	reon_Darling	g Gamma GOF	- Toet	
114					Critical Value		Detecte				5% Significance	a l evel
115 116					Test Statistic		Detecto			ov Gamma GO	_	Level
117					Critical Value	****	Detecte		_		5% Significance	e Level
118							tributed at 5%					
119												
120						Gamma	Statistics					
121					k hat (MLE)	13.07				k star (bias co	rrected MLE)	12.08
122				The	eta hat (MLE)	0.838			Thet	a star (bias co	rrected MLE)	0.907
123					nu hat (MLE)	1019				nu star (bi	ias corrected)	942.1
124			М	LE Mean (bia	as corrected)	10.95				MLE Sd (bi	ias corrected)	3.151
125									Approxima	ate Chi Square	e Value (0.05)	871.8
126			Adju	sted Level of	f Significance	0.0437				Adjusted Chi	Square Value	869.2
127											'	
128		-					ma Distributio					
129		95% Appro	ximate Gamm	a UCL (use	when n>=50)	11.83		95%	Adjusted Ga	mma UCL (us	e when n<50)	11.87
130												
131						-	GOF Test					
132					Test Statistic				-	gnormal GOF		
133			5% 5		Critical Value				-	al at 5% Signif		
134			,		Test Statistic					ormal GOF Te		
135				5% Lillelors	Critical Value		at 5% Significa		ear Lognorma	al at 5% Signif	icance Level	
136 137					Data appear	Logiloilliai	at 5 /6 Significa	IIICE LEVEI				
137						Lognorma	l Statistics					
139				Minimum of	Logged Data					Mean o	f logged Data	2.355
140					Logged Data						of logged Data	0.275
141												
142					Ass	uming Logno	rmal Distributi	on				
143					95% H-UCL	11.84			90	% Chebyshev	(MVUE) UCL	12.4
144			95%	Chebyshev	(MVUE) UCL	13.06			97.5	% Chebyshev	(MVUE) UCL	13.99
145			99%	Chebyshev	(MVUE) UCL	15.8						
146												
147					•		ion Free UCL					
148				Data appea	ar to follow a	Discernible D	Distribution at 5	% Significa	nce Level			
149												
150					· .		ribution Free U	JCLs				
151					5% CLT UCL						ackknife UCL	11.84
152					ootstrap UCL	11.77					otstrap-t UCL	12.04
153					ootstrap UCL	12.09			959	% Percentile B	sootstrap UCL	11.86
154					ootstrap UCL ean, Sd) UCL	11.89 12.54			OE0/	Chobyoboy/M	oon 64/1101	12.26
155					ean, Sd) UCL	14.26				Chebyshev(Mo Chebyshev(Mo		13.26 16.22
156			97.5% Cl	ienysnev(ivie	an, su) UCL	14.20			99%	Chebyshev(IVI	ean, ou) UCL	10.22
157						Suggested	UCL to Use					
158			95	% Adiusted	Gamma UCL		10 O3E				Ţ	
159 160						/						
161		Note: Sug	gestions regar	ding the sele	ection of a 959	% UCL are pr	ovided to help	the user to	select the m	nost appropriat	te 95% UCL.	
162			· · ·				ta size, data di					
102						•						

	Α	В	С	D	E	F	G	Η		J	K	L		
163		These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.												
164		However, sin	nulations resu	ılts will not co	ver all Real V	World data se	ts; for additio	nal insight the	e user may w	ant to consul	t a statistician	l.		
165														

	Α	В	С	D	E	F	G	Н	I	J	K	L
1	Attachm	ent 12										
2	ProUCL (Outputs for I	Deep Soil (>	> 15 feet) -	Onsite							
-		- Health Risk A				d Gas Plan	t Site, Doug	alas, Arizor	na			
4								, ,				
5					UCL Statis	tics for Data	Sets with Nor	n-Detects		-		
6		User Sele	ected Options	3								
7		Date/Time of C	Computation	ProUCL 5.1	12/4/2019 5:1	0:22 PM						
8			From File	ProUCL_Inp	out_Soil_More	Than15_Ons	site.xls					
9		Fı	ull Precision	OFF								
10		Confidence	Coefficient	95%								
11	Numbe	er of Bootstrap	Operations	2000								
12												
13												
	Chromium											
15												
16						General	Statistics					
17			Tota	al Number of	Observations				Numb	er of Distinct	Observations	25
18											Observations	0
19					Minimum	3.78				559	Mean	24.54
20					Maximum	129					Median	19.5
21					SD	23.82				Std. I	Error of Mean	4.585
22				Coefficier	nt of Variation	0.971					Skewness	3.449
23						0.07.						
						Normal (GOF Test					
24 25				Shapiro Wilk	Test Statistic				Shapiro W	ilk GOF Test		
26					Critical Value			Data N	<u> </u>	5% Significar	ice Level	
27					Test Statistic					GOF Test		
28					Critical Value			Data N		5% Significar	nce I evel	
29							% Significand					
30												
31					As	ssumina Norr	nal Distributio	n				
32			95% No	ormal UCL		y			UCLs (Adiu	sted for Skew	/ness)	
33					udent's-t UCL	32.36			, ,		(Chen-1995)	35.33
34									•		hnson-1978)	32.86
35										•	,	
36						Gamma	GOF Test					
37				A-D	Test Statistic			Ande	rson-Darling	Gamma GOF	- Test	
38					Critical Value	0.758	Detecte		-		5% Significand	e Level
39					Test Statistic		_ 2.0000			ov Gamma GC	_	
40					Critical Value		Detecte				5% Significand	e Level
41							tributed at 5%				<u> </u>	-
41								<u> </u>	-			
43						Gamma	Statistics					
44					k hat (MLE)	1				k star (bias co	rrected MLE)	1.722
45				The	eta hat (MLE)					•	rrected MLE)	14.25
46					nu hat (MLE)	103.1				,	as corrected)	92.97
47			N		as corrected)	24.54					as corrected)	18.7
48			.,,						Approxima	•	e Value (0.05)	71.73
49			Adiı	usted Level o	f Significance	0.0401					Square Value	70.54
50			,						•	.,. ,	1	
51					As	sumina Gam	ma Distributio	on				
52		95% Appro	ximate Gamr	na UCL (use	when n>=50)	31.8			Adjusted Gar	nma UCL (use	e when n<50)	32.34
53		-2707 April	2.0 001111	(000	55)				.,	552 (45)		
54						Lognorma	GOF Test					
J 4												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
55		-	•	Shapiro Wilk		0.976			-	gnormal GOF		
56			5%	Shapiro Wilk	Critical Value	0.923			-	al at 5% Signif		
57				Lilliefors	Test Statistic	0.11		L	illiefors Logr	normal GOF To	est	
58				5% Lilliefors		0.167			ear Lognorma	al at 5% Signif	icance Level	
59					Data appear	Lognormal	at 5% Significa	ance Level				
60												
61							l Statistics					
62					Logged Data	1.33					f logged Data	2.916
63				Maximum of	Logged Data	4.86				SD o	f logged Data	0.748
64												
65							rmal Distribut	ion				
66					95% H-UCL	33.79				% Chebyshev	,	35.44
67				Chebyshev	` '	40.57			97.5	% Chebyshev	(MVUE) UCL	47.69
68			99%	Chebyshev	(MVUE) UCL	61.67						
69												
70					-		tion Free UCL					
71				Data appea	ar to follow a [Discernible D	Distribution at !	5% Signification	ance Level			
72												
73							ribution Free	JCLs				
74					5% CLT UCL	32.08					ackknife UCL	32.36
75			959	% Standard Bo	•	31.89					otstrap-t UCL	39.28
76				95% Hall's Bo		64.8			959	% Percentile B	Sootstrap UCL	32.5
77					ootstrap UCL	35.82						
78				Chebyshev(Me	,	38.29				Chebyshev(M	-	44.52
79			97.5% C	Chebyshev(Me	ean, Sd) UCL	53.17			99%	Chebyshev(M	ean, Sd) UCL	70.16
80												
81					T		UCL to Use				T	
82			9	5% Adjusted	Gamma UCL	32.34						
83												
84		Note: Sug	gestions rega							nost appropria	te 95% UCL.	
85							ta size, data d					
86					•				•	Maichle, and	, ,	
87		However, sir	mulations res	ults will not co	over all Real V	Vorld data se	ets; for addition	nal insight t	he user may	want to consu	lt a statistician.	
00	As											
89												
90				151 1 6			Statistics			(5:::	01	
91			I ota	al Number of (Observations	27				ber of Distinct		25
92						1.10			Numl	per of Missing		0
93					Minimum	4.16					Mean	14.83
94					Maximum	24.5				2::	Median	16.4
95	<u> </u>			O- 11.	SD staf Variation	5.788				Std.	Error of Mean	1.114
96	ļ			Coefficien	t of Variation	0.39					Skewness	-0.234
97	ļ					N 13	OOF T					
98				Ob: 1400	T+ 00 00 00 00		GOF Test		0/	##- OOF T		
99				Shapiro Wilk		0.944		Б.:		/ilk GOF Test		
100			5%	Shapiro Wilk		0.923		рата ар		at 5% Signific	ance Level	
101					Test Statistic	0.2		D		GOF Test	need surel	
102				5% Lilliefors		0.167	mal et E0/ O'			t 5% Significar	ice Level	
103	ļ			Data	a appear Appi	oximate Noi	rmal at 5% Sig	nincance L	.evei			
104							mal Disamir at					
105			APA: 11		As	suming Norr	mal Distributio		W 1161 11			
106			95% No	ormal UCL		40.70		95	, ,	usted for Skev	•	10.0
107				95% Stu	ident's-t UCL	16.73				sted-CLT UCL	, ,	16.6
108									95% Mod	dified-t UCL (J	onnson-19/8)	16.72

	Α		В		С		D		E	F	G	Н				J		K	L
109											-								
110											GOF Test								
111									Statistic						_	nma GO			
112									al Value			Data Not							l
113									Statistic							amma G			
114									al Value			Data Not		a Distrib	outed a	at 5% Sig	gnificar	nce Leve	l
115								Data I	Not Gam	ma Distribute	ed at 5% Sign	ificance	Level						
116										0	01-11-11								
117								I. I.	-+ /NAL (T)		Statistics				14-	/l-:		-1 841 (-)	4.005
118							т.		at (MLE)							r (bias co		<i>'</i>	4.905
119							ır		at (MLE)					THE		ır (bias co nu star (b			3.023
120						NAI E	- Maan /la		at (MLE)	296.5 14.83						LE Sd (b		,	264.9 6.694
121						IVILE	E Mean (b	Jias cc	orrected)	14.63			^			hi Squar		,	228.2
122					له ۸	l:a+.	م ا میرما د	of Cian	-:f:	0.0401			A	pproxim		sted Chi			226.2
123					Ad	ıjuste	ed Level o	or Sigr	nificance	0.0401					Aaju	stea Cni	Squar	e value	226
124									Λ.	aumina Com	Dietrikusti								
125		OE0/	. V mmra		- Cam	I	ICI /vaa			ssuming Gam 17.21	ıma Distributi		E0/ A ali.	into d C		UCL (us		FO\	17.38
126		95%	Approx	хіпа	ie Gami	ma u	JCL (use	wnen	11>=50))	17.21		9	o% Auji	istea G	апппа	UCL (us	se whe	n n<50)	17.30
127										Lognormo	GOF Test								
128						Ch	apiro Will	k Toot	Ctatiatia		I GOF Test		Chanira	NA/HL L	0000	mal GOF	Toot		
129					E 0/		apiro Wilk									6 Signific		ovol	
130					370	5 5116			Statistic			Dala		-		d GOF T		-evei	
131						E0/	Lilliefors					Data		-		6 Signific		ovol	
132						3 /	Lillelois			Lognormal at	E% Significa			gnomia	ı at J/	o Sigriffic	ance L	-evei	
133									ala NOL	Logiloimai at	3 /0 Significa	iice Leve	71						
134										Lognorma	l Statistics								
135						М	inimum o	of Logo	ned Data	-	li Otatiotico					Mean	of loans	ed Data	2.603
136							aximum o											ed Data	0.474
137						1410	axiiiiuiii o	, Loge	jeu Dulu	0.100							or logge	ou Dutu	0.474
138									Ass	suming Logno	rmal Distribu	tion							
139 140								95%	6 H-UCL					90	0% Ch	ebyshev	(MVU	E) UCL	19.31
141					95	% C	hebyshev									ebyshev	•	,	23.93
142							hebyshev	•	,							,	(*****	_,	
143							,	(-,										
144								No	onparam	etric Distribut	ion Free UCL	_ Statistic	s						
145							Data appo		•	Discernible D				Level					
146																			
147									Nonpa	rametric Dist	ribution Free	UCLs							
148							(95% C	CLT UCL							95% .	Jackkn	ife UCL	16.73
149					95	5% S	Standard E									95% Bo			16.68
150							% Hall's E							95	5% Pe	rcentile E	-		16.58
151							5% BCA E											-	
152					90%		byshev(N							95%	Cheb	yshev(N	lean, S	d) UCL	19.68
153		97.5% Chebyshev(Mean, S														yshev(N			25.91
154							•			<u> </u>						-			
155										Suggested	UCL to Use								
156							95% St	tudent	t's-t UCL	16.73									
157										<u> </u>									
158					When	a da	ata set fol	llows a	an appro	ximate (e.g.,	normal) distri	bution pa	assing o	ne of th	ne GOI	F test			
-		,	When a	applic						pased upon a			_				in Prol	JCL	
1591				•						-				-					
159 160																			
160		No	te: Sug	gesti	ons reg	jardi	ng the sel	lection	of a 95	% UCL are pr	ovided to hel	p the use	er to sel	ect the i	most a	appropria	te 95%	UCL.	
-		No	te: Sug	gesti	ons reg		_			% UCL are pr used upon dat						appropria	ite 95%	UCL.	

	A B C D E	F	G H I J K	L
163	These recommendations are based upon the resul	Its of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
164	However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statistician.	
165				
166		•	e.g., Chen, Johnson, Lognormal, and Gamma) may not be	
167	reliable. Chen's and Johnson's met	hods provide	e adjustments for positvely skewed data sets.	
168				
105	BaP TEQ Half RL for ND			
170				
171		General		
172	Total Number of Observations	35	Number of Distinct Observations	29
173	M:	0.00100	Number of Missing Observations	0
174	Minimum	0.00192	Mean	0.239
175	Maximum	3.4	Median	0.0295
176	SD Coefficient of Verintian	0.655	Std. Error of Mean	0.111
177	Coefficient of Variation	2.738	Skewness	4.025
178		Normal C	20E Toet	
179	Shapiro Wilk Test Statistic	0.406	Shapiro Wilk GOF Test	
180	5% Shapiro Wilk Critical Value	0.406	Data Not Normal at 5% Significance Level	
181	5% Snapiro Wilk Critical Value Lilliefors Test Statistic	0.934	Lilliefors GOF Test	
182	5% Lilliefors Critical Value	0.364	Data Not Normal at 5% Significance Level	
183			% Significance Level	
184	Data Not	. Joinnal at 3	A Organization Euroi	
185	Ass	sumina Norn	nal Distribution	
186 187	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
188	95% Student's-t UCL	0.427	95% Adjusted-CLT UCL (Chen-1995)	0.502
189			95% Modified-t UCL (Johnson-1978)	0.439
190			(** ***	
191		Gamma (GOF Test	
192	A-D Test Statistic	2.088	Anderson-Darling Gamma GOF Test	
193	5% A-D Critical Value	0.852	Data Not Gamma Distributed at 5% Significance Level	
194	K-S Test Statistic	0.205	Kolmogorov-Smirnov Gamma GOF Test	
195	5% K-S Critical Value	0.161	Data Not Gamma Distributed at 5% Significance Level	
196	Data Not Gamm	na Distribute	d at 5% Significance Level	
197				
198		Gamma	Statistics	
199	k hat (MLE)	0.322	k star (bias corrected MLE)	0.313
200	Theta hat (MLE)	0.744	Theta star (bias corrected MLE)	0.765
201	nu hat (MLE)	22.51	nu star (bias corrected)	21.91
202	MLE Mean (bias corrected)	0.239	MLE Sd (bias corrected)	0.428
203			Approximate Chi Square Value (0.05)	12.27
204	Adjusted Level of Significance	0.0425	Adjusted Chi Square Value	11.93
205				
206			ma Distribution	
207	95% Approximate Gamma UCL (use when n>=50))	0.427	95% Adjusted Gamma UCL (use when n<50)	0.44
208				
209		Lognormal		
210	Shapiro Wilk Test Statistic	0.922	Shapiro Wilk Lognormal GOF Test	
211	5% Shapiro Wilk Critical Value	0.934	Data Not Lognormal at 5% Significance Level	
212	Lilliefors Test Statistic	0.124	Lilliefors Lognormal GOF Test	
213	5% Lilliefors Critical Value	0.148	Data appear Lognormal at 5% Significance Level	
214	Data appear Approx	timate Logno	ormal at 5% Significance Level	
215		_		
216		Lognorma	I Statistics	

Maximum of Logged Data 3-25 Size Si		Α	В	С	D	Е	F	G	Н	I	J	K	L
Assuming Lagrormal Distribution	217				Minimum of	Logged Data	-6.256			-	Mean of	f logged Data	-3.55
Page	218				Maximum of	Logged Data	1.224				SD of	f logged Data	2.153
1964 1941 1941 1941 1942	219												
	220					Assı	uming Logno	ormal Distributi	on				
232 89% Chebyshev (MVUE) UCL 1.468	221						1.341				•	, ,	0.611
Notes Suggeston Recommendations are based upon data size, data distribution, and skewness. However, simulations results will not cover all Real However, simulations r	222			95%	Chebyshev	(MVUE) UCL	0.779			97.5%	6 Chebyshev	(MVUE) UCL	1.011
Page	223			99%	Chebyshev	(MVUE) UCL	1.468						
	224												
Nonparametric Distribution Free UCLs	225					Nonparame	etric Distribut	tion Free UCL	Statistics				
Section Property Control Co	226				Data appe	ar to follow a [Discernible Γ	Distribution at §	5% Significa	nce Level			
	227												
1985 1985	228					Nonpa	rametric Dist	tribution Free l	JCLs				
232 95% Hall's Bootstrap UCL 0.948 95% Percentile Bootstrap UCL 0.435	229				9	5% CLT UCL	0.422				95% Ja	ackknife UCL	0.427
232 98% BCA Bootstrap UC 0.535 97% Chebyshev(Mean, Sd) UC 0.722 95% Chebyshev(Mean, Sd) UC 0.722 0.931 0.93	230			95%	Standard B	ootstrap UCL	0.418				95% Boo	otstrap-t UCL	0.818
1	231				95% Hall's B	ootstrap UCL	0.948			95%	Percentile B	ootstrap UCL	0.435
390% Chebyshev(Mean, Sd) UCL 0.972 95% Chebyshev(Mean, Sd) UCL 0.972	232				95% BCA B	ootstrap UCL	0.535						
323				90% C	hebyshev(Me	ean, Sd) UCL	0.572			95% C	Chebyshev(Me	ean, Sd) UCL	0.722
235 326 327 327.5% Chebyshev (Mean, Sd) UCL 0.931				97.5% C	hebyshev(Me	ean, Sd) UCL	0.931			99% (Chebyshev(Me	ean, Sd) UCL	1.342
236 Suggested Use to Use 237 97.5% Chebyshev (Mean, St) UC. 9.301 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 240 Recommendations are based upon the results of the state state state and stribution, and skewness. Value of Recommendations are based upon the results of the state	_							I.					
237 97.5% Chebyshev (Mean, Sd) UCL 0.931 Image: Company of the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 1							Suggested	UCL to Use					
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. A				97.5% Ch	nebyshev (Me	ean, Sd) UCL	0.931						
239 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 240 Recommendations are based upon data size, data distribution, and skewness. 241 However, simulations results will not cover all Real Worth Statistics and the provincing of	_												
240 Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). 241 However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician. 242 However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician. 243 BAP TEQ Zero for ND 246 Separate Sets Sets Sets Sets Sets Sets Sets Se	_		Note: Sugg	gestions regar	rding the sele	ection of a 95%	6 UCL are pr	rovided to help	the user to	select the me	ost appropriat	e 95% UCL.	
241 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). 242 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 243 44 245 BaP TEQ Zero for ND 246 Septenal Statistics 247 General Statistics 248 Total Number of Observations S 249 Number of Missing Observations 0 250 Mainimum 0 Number of Missing Observations 0.237 251 Maximum 3.383 Median 0.0286 252 Coefficient of Variation 2.752 Skewness 4.022 253 Coefficient of Variation 2.752 Skewness 4.022 254 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 255 Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 256 Shapiro Wilk Critical Value 0.388 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.388 <td< td=""><td></td><td></td><td></td><td></td><td>Recommend</td><td>lations are bas</td><td>sed upon da</td><td>ta size, data d</td><td>istribution, a</td><td>nd skewness</td><td>š.</td><td></td><td></td></td<>					Recommend	lations are bas	sed upon da	ta size, data d	istribution, a	nd skewness	š.		
242 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 243 3 244 4 245 58PTEQ Zero for ND 246 SPATEQ Zero for ND 247 Ceneral Statistics 248 Total Number of Observations 35 Number of Distinct Observations 0 249 Maximum 0 Number of Missing Observations 0 250 Minimum 0 Number of Missing Observations 0 251 Maximum 3.383 Median 0.0286 252 Ocefficient of Variation 2.752 Skewness 4.022 253 Coefficient of Variation 2.752 Skewness 4.022 254 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 255 Shapiro Wilk Critical Value 0.388 Lilliefors GOF Test 259 Sk Lilliefors Est Statistic 0.406 Shapiro Wilk Coff Test 259 Sk Lilliefors Critical Value 0.148 Data Not Normal at 5% Significa			These rec	commendation	ns are based	upon the resu	ılts of the sir	mulation studie	s summariz	ed in Singh, l	Maichle, and I	Lee (2006).	
243 344 445 8aP TeQ Zero for ND 345 346 347 348			However, sir	mulations resu	ults will not co	over all Real V	Vorld data se	ets; for addition	nal insight th	e user may v	vant to consul	t a statistician.	
244 BaP TEQ Zero for ND 246 Seperal Statistics 247 General Statistics 248 Total Number of Observations 35 Number of Missing Observations 28 249 Number of Missing Observations 0 0 250 Maximum 3.383 Median 0.0286 252 O.653 Std. Error of Mean 0.11 253 Coefficient of Variation 2.752 Skewness 4.022 254 Very State of Variation 2.752 Skewness 4.022 255 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 257 Shapiro Wilk Test Statistic 0.384 Data Not Normal at 5% Significance Level 258 Stilliefors Test Statistic 0.388 Lilliefors GOF Test 259 Stilliefors Test Statistic 0.388 Lilliefors GOF Test 259 Stilliefors Stilliefors Critical Value 0.388 Lilliefors GOF Test 260 Data Not Normal at 5% Significance Level Significance Level 261 Stilliefors GOF S	243			-							-		
Page													
247 General Statistics 248 Total Number of Observations 35 Number of Distinct Observations on Number of Missing Observations 0 250 Minimum 0 Number of Missing Observations 0 251 Maximum 3.383 Median 0.0237 252 SD 0.653 Std. Error of Mean 0.11 253 Coefficient of Variation 2.752 Skewness 4.022 254 Normal UCL Shapiro Wilk GOF Test 5kewness 4.022 255 Shapiro Wilk Test Statistic 0.946 Shapiro Wilk GOF Test 5kewness 4.022 257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 5kewness 1.018		BaP TEQ Ze	ro for ND										
	246												
Number of Missing Observations O Number of Missing Observations O O O O O O O O O	247						General	Statistics					
249 Mumber of Missing Observations 0 250 Minimum 0 Mean 0.237 251 Maximum 3.383 Std. Error of Mean 0.11 252 Coefficient of Variation 2.752 Skewness 4.022 254 Normal GOF Test 255 Normal GOF Test 256 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 258 Lilliefors Test Statistic 0.888 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.934 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level 261 Statistical Value 0.148 Data Not Normal at 5% Significance Level 262 Assuming Normal at 5% Significance Level 263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Normal Statistics 265 Oscillation of Skewness	248			Tota	I Number of	Observations	35			Numb	er of Distinct	Observations	28
Sample S	249									Numb	er of Missing	Observations	0
251 Maximum 3.383 Median 0.0286 252 0.653 Std. Error of Mean 0.11 253 Coefficient of Variation 2.752 Skewness 4.022 254 Normal GOF Test 255 Normal GOF Test 256 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 258 Lilliefors Test Statistic 0.388 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.148 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level 261 Statisticial Value 95% UCLs (Adjusted for Skewness) 262 Assuming Normal Distribution 263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Adjusted-CLT UCL (Chen-1995) 0.436 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Garma Statistics Not Available						Minimum	0					Mean	0.237
Scale						Maximum	3.383					Median	0.0286
253 Coefficient of Variation 2.752 Skewness 4.022 254 Normal GOF Test 255 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 258 Lilliefors Critical Value 0.148 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level Significance Level 261 Standard Normal Distribution 95% UCLs (Adjusted for Skewness) 262 95% Normal UCL 95% UCLs (Adjusted for Skewness) 0.499 264 95% Student's-t UCL 0.424 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 Garma Statistics Not Available 266 Lognormal Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics	_					SD	0.653				Std. E	Error of Mean	0.11
254 255 Normal GOF Test 256 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 258 Lilliefors Test Statistic 0.388 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.148 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level Significance Level 261 Shapiro Wilk GOF Test Significance Level 262 Data Not Normal at 5% Significance Level Significance Level 263 Shapiro Wilk Critical Value 95% UCLs (Adjusted for Skewness) Statistic 264 95% Normal UCL 95% UCLs (Adjusted for Skewness) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.490 266 Garma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics					Coefficier	nt of Variation	2.752					Skewness	4.022
Normal GOF Test 256 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 258 Lilliefors Test Statistic 0.388 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.148 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level 261 Significance Level 262 Assuming Normal Distribution 263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Normal UCL 0.424 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Garma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparamic Distribution Free UCL Statistics													
256 Shapiro Wilk Test Statistic 0.406 Shapiro Wilk GOF Test 257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 258 Lilliefors Test Statistic 0.388 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.148 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level 261 Assuming Normal Distribution 262 Assuming Normal Distribution 263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Normal UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Garma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics	_						Normal (GOF Test					
257 5% Shapiro Wilk Critical Value 0.934 Data Not Normal at 5% Significance Level 258 Lilliefors Test Statistic 0.388 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.148 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level 261 Assuming Normal Distribution 262 Assuming Normal Distribution 263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Student's-t UCL 0.424 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Gamma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics	_				Shapiro Wilk	Test Statistic	0.406			Shapiro Wi	ilk GOF Test		
258 Lilliefors Test Statistic 0.388 Lilliefors GOF Test 259 5% Lilliefors Critical Value 0.148 Data Not Normal at 5% Significance Level 260 Data Not Normal at 5% Significance Level 261 Assuming Normal Distribution 262 Assuming Normal Distribution 263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Gamma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics							0.934		Data N			ice Level	
Second Second					•		0.388				•		
Data Not Normal at 5% Significance Level 260 Assuming Normal Distribution 261 95% Normal UCL 95% UCLs (Adjusted for Skewness) 263 95% Normal UCL 0.424 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Garma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics	_				5% Lilliefors	Critical Value			Data N			ice Level	
263 264 Assuming Normal Distribution 265 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Garma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics								│ 5% Significance					
262 Assuming Normal Distribution 263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Garma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics	_							•					
263 95% Normal UCL 95% UCLs (Adjusted for Skewness) 264 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Gamma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics						As	sumina Nor	mal Distribution	n				
264 95% Student's-t UCL 0.424 95% Adjusted-CLT UCL (Chen-1995) 0.499 265 95% Modified-t UCL (Johnson-1978) 0.436 266 Gamma Statistics Not Available 267 Lognormal Statistics Not Available 268 Nonparametric Distribution Free UCL Statistics				95% No	rmal UCL					6 UCLs (Adiu	sted for Skew	/ness)	
265 95% Modified-t UCL (Johnson-1978) 0.436 266 Gamma Statistics Not Available 267 Lognormal Statistics Not Available 268 269 Nonparametric Distribution Free UCL Statistics	_					udent's-t UCI	0.424						0,499
266 Gamma Statistics Not Available 267 Lognormal Statistics Not Available 268 269 Nonparametric Distribution Free UCL Statistics										-		` '	
Lognormal Statistics Not Available Lognormal Statistics Not Available Nonparametric Distribution Free UCL Statistics						Gai	mma Statisti	cs Not Availah	ile	23.0 111001			
268 269 Nonparametric Distribution Free UCL Statistics	_												
Nonparametric Distribution Free UCL Statistics						Logii		HOLAVAIIA					
203						Nonnaram/	atric Distribu	tion Free LICI	Statistics				
2/U Data do not follow a Discernible Distribution (0.05)	-					· ·							
	270					Data UU 110(1	UIIOW a DISC	CITIDIE DISKIDI	(0.05)				

Α	В	С	D	Е	F	G	Н	I	J	K	L
				Nonpa	rametric Dist	ribution Free	UCLs				
			9!	5% CLT UCL	0.419				95% Ja	ackknife UCL	0.424
		95%	6 Standard Bo	ootstrap UCL	0.408				95% Boo	otstrap-t UCL	0.802
			95% Hall's Bo	ootstrap UCL	0.945			95%	Percentile B	ootstrap UCL	0.434
			95% BCA B	ootstrap UCL	0.518						
		90% C	hebyshev(Me	an, Sd) UCL	0.568			95% C	hebyshev(Me	ean, Sd) UCL	0.718
		97.5% C	hebyshev(Me	an, Sd) UCL	0.927			99% C	hebyshev(Me	ean, Sd) UCL	1.335
						•				<u>, </u>	
					Suggested	UCL to Use					
		95% Cł	nebyshev (Me	ean, Sd) UCL	0.718						
	Note: Sugg	gestions rega	rding the sele	ection of a 95°	% UCL are pr	ovided to help	p the user to	select the mo	st appropriat	e 95% UCL.	
			Recommend	ations are ba	sed upon dat	ta size, data d	distribution, a	nd skewness			
	These rec	commendatio	ns are based	upon the res	ults of the sin	nulation studie	es summariz	ed in Singh, N	laichle, and l	_ee (2006).	
	However, sin	nulations resu	ults will not co	ver all Real \	Vorld data se	ts; for additio	nal insight th	e user may w	ant to consul	t a statistician	-
		Note: Sugg	95% Ch Note: Suggestions rega	95% Standard Bo 95% Hall's Bo 95% BCA Bo 95% Chebyshev (Me 97.5% Chebyshev (Me 95% Chebyshev (Me Note: Suggestions regarding the selection of the selection o	Nonpa 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev (Mean, Sd) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon the resi	Nonparametric Dist 95% CLT UCL 0.419 95% Standard Bootstrap UCL 0.408 95% Hall's Bootstrap UCL 0.945 95% BCA Bootstrap UCL 0.518 90% Chebyshev(Mean, Sd) UCL 0.568 97.5% Chebyshev(Mean, Sd) UCL 0.927 Suggested 95% Chebyshev (Mean, Sd) UCL 0.718 Note: Suggestions regarding the selection of a 95% UCL are pr Recommendations are based upon dat These recommendations are based upon the results of the sin	Nonparametric Distribution Free 95% CLT UCL 0.419 95% Standard Bootstrap UCL 0.408 95% Hall's Bootstrap UCL 0.945 95% BCA Bootstrap UCL 0.518 90% Chebyshev(Mean, Sd) UCL 0.568 97.5% Chebyshev(Mean, Sd) UCL 0.927 Suggested UCL to Use 95% Chebyshev (Mean, Sd) UCL 0.718 Note: Suggestions regarding the selection of a 95% UCL are provided to hel Recommendations are based upon data size, data of These recommendations are based upon the results of the simulation studies.	Nonparametric Distribution Free UCLs 95% CLT UCL 0.419 95% Standard Bootstrap UCL 0.408 95% Hall's Bootstrap UCL 0.945 95% BCA Bootstrap UCL 0.518 90% Chebyshev(Mean, Sd) UCL 0.568 97.5% Chebyshev(Mean, Sd) UCL 0.927 Suggested UCL to Use 95% Chebyshev (Mean, Sd) UCL 0.718 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to Recommendations are based upon data size, data distribution, a These recommendations are based upon the results of the simulation studies summarized.	Nonparametric Distribution Free UCLs 95% CLT UCL	Nonparametric Distribution Free UCLs 95% CLT UCL 0.419 95% Jac 95% Standard Bootstrap UCL 0.408 95% Bootstrap UCL 0.408 95% Percentile B 95% BCA Bootstrap UCL 0.945 95% Percentile B 95% BCA Bootstrap UCL 0.518 90% Chebyshev(Mean, Sd) UCL 0.568 95% Chebyshev(Mean, Sd) UCL 0.927 99% Chebyshev(Mean, Sd) UCL 0.927 99% Chebyshev(Mean, Sd) UCL 0.927 99% Chebyshev(Mean, Sd) UCL 0.718 Suggested UCL to Use 95% Chebyshev (Mean, Sd) UCL 0.718 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriat Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and I	Nonparametric Distribution Free UCLs 95% CLT UCL 0.419 95% Jackknife UCL 95% Standard Bootstrap UCL 0.408 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 0.945 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 0.518 90% Chebyshev(Mean, Sd) UCL 0.568 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 0.927 99% Chebyshev(Mean, Sd) UCL Suggested UCL to Use 95% Chebyshev (Mean, Sd) UCL 0.718 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

	А	В	С	D	Е	F	G	Н	I	J	K	L
1	Attachm	ent 13	•									
2	ProUCL (Outputs for I	Deep Soil (>	> 15 feet) -	Background	d (Offsite)						
3	Human I	Health Risk A	Assessment,	, Former M	anufacture	d Gas Plan	t Site, Doug	glas, Arizor	na			
4												
5			J.	II.	UCL Statis	tics for Data	Sets with Nor	n-Detects	1	1	+	
6												
7		User Sele	ected Options	3								
8		Date/Time of C	Computation	ProUCL 5.1	12/4/2019 5:1	1:44 PM						
9			From File	ProUCL_Inp	out_Soil_More	Than15_Offs	site.xls					
10		Fı	ull Precision	OFF								
11		Confidence	Coefficient	95%								
12	Numb	er of Bootstrap	Operations	2000								
13												
14												
15	Arsenic											
16												
17						General	Statistics					
18			Tota	al Number of	Observations	22			Numb	er of Distinct	Observations	21
19									Numb	er of Missing	Observations	0
20					Minimum	8.59					Mean	15.79
21					Maximum	32.6					Median	14.65
22					SD	5.799				Std. I	Error of Mean	1.236
23				Coefficier	nt of Variation	0.367					Skewness	1.268
24												
25						Normal C	GOF Test					
26				Shapiro Wilk	Test Statistic	0.905			Shapiro Wi	ilk GOF Test		
27			5%	Shapiro Wilk	Critical Value	0.911		Data N	ot Normal at	5% Significar	ice Level	
28				Lilliefors	Test Statistic	0.167			Lilliefors	GOF Test		
29				5% Lilliefors	Critical Value	0.184		Data app	ear Normal a	at 5% Significa	ance Level	
30				Dat	a appear App	roximate Nor	mal at 5% Sig	gnificance Le	vel			
31												
32					As	suming Norr	mal Distributio	n				
33			95% No	ormal UCL					UCLs (Adju	sted for Skew	/ness)	
34				95% Stu	udent's-t UCL	17.92			95% Adjus	ted-CLT UCL	(Chen-1995)	18.18
35									95% Modi	fied-t UCL (Jo	ohnson-1978)	17.97
36										•		
37						Gamma (GOF Test					
38				A-D	Test Statistic	0.279		Ande	rson-Darling	Gamma GOF	Test	
39					Critical Value	0.744	Detecte		-		5% Significanc	e Level
40					Test Statistic					ov Gamma GO	•	
41					Critical Value	0.185	Detecte				5% Significanc	e Level
42					d data appea							
43												
44						Gamma	Statistics					
45					k hat (MLE)				ŀ	k star (bias co	rrected MLE)	7.645
46				The	eta hat (MLE)	1.791				•	rrected MLE)	2.065
47					nu hat (MLE)	388				•	as corrected)	336.4
48			N	//LE Mean (bi		15.79					as corrected)	5.71
48			.,						Approxima	,	e Value (0.05)	294.9
50			Adiı	usted Level of	f Significance	0.0386				-	Square Value	292
51			,							.,	1	
51					As	sumina Gam	ma Distributio	on				
52		95% Annroy	kimate Gamm	na UCL (use v		18.01			Adjusted Gan	nma UCI (use	e when n<50)	18.19
53			G.G Guiiiii	0 0L (400 V				JO 70 F	,uotou dull	332 (43)	311 11 100)	. 5. 10
54												

	Α	В		С		D		E	F	G	Н	I	J K		L
55										I GOF Test					
56							k Test S		0.975			•	ognormal GOF Test		
57				5%			Critical		0.911			-	nal at 5% Significance Le	vel	
58							s Test S		0.0995			-	normal GOF Test		
59					5% L	illiefors	Critical		0.184			ar Lognorn	nal at 5% Significance Le	vel	
60							Data	appear	Lognormal	at 5% Signific	ance Level				
61															
62										I Statistics					
63							f Logge		2.151				Mean of logged I		2.702
64					Maxi	imum of	f Logge	d Data	3.484				SD of logged I	Data	0.342
65										151.11					
66							050/ 1		18.16	ormal Distribut	ion	0	20/ Ob about to (MA) // IE)	101	10.07
67				05	.0/ Ob -	l		H-UCL					0% Chebyshev (MVUE)		19.27
68						•	(MVUE	<i>'</i>	20.86			97.	5% Chebyshev (MVUE)	JCL	23.06
69				99	% Cne	ebysnev	(MVUE	E) UCL	27.4						-
70							Nan		ada Distallar	taa Faa HOL	Otatiatiaa				-
71						uto ====		-		tion Free UCL		noo l accel			
72					Da	иа арре	381 TO TO	niow a l	JISCEMIDIE L	Distribution at	o% Significa	IIICE LEVEI			
73								Monno	romotrio Dio	tribution Free	LICI a				
74							95% CL	-	17.82	indulion Free	UCLS		95% Jackknife	ICI	17.92
75				05	E0/ C+o		Bootstra		17.82				95% Bootstrap-t		18.66
76				90				-				01	<u>-</u>		
77							Bootstra		18.96 18.11			9:	5% Percentile Bootstrap	UCL	17.76
78				000/			Bootstra lean, So		19.5			059/	Chebyshev(Mean, Sd)	ICI	21.18
79					-	•	lean, So	<i>'</i>	23.51				Chebyshev(Mean, Sd)		28.09
80				97.5%	Cileby	Si lev(ivi	<u>ean, 30</u>	I) UCL	23.31			33 /0	Chebyshev(Mean, 3u)	UCL	20.09
81									Suggested	UCL to Use					
82						05% St	tudent's	+ 1101	17.92	OCL to OSE					
83						90 /0 01	.uuent s	-t OCL	17.32						
84				W/hen	a data	set foll	lows an	annrov	rimate (e.a	normal) distril	nution nassir	ng one of th	a GOE tast		
85		Whe	n annl										oth GOF tests in ProUCI		
86 87		******	паррі	iloubio, it		geolea		I OOL D	asca apon c	r distribution (o.g., gamma	, passing b		_	
88		Note: S	Sugges	stions rea	arding	the sel	ection c	of a 95%	6 UCL are n	rovided to heli	n the user to	select the	most appropriate 95% U	CI	
89			-99						·	ta size, data c					
90		These	recor	nmendati					•				, Maichle, and Lee (2006	3).	
91													want to consult a statist		
92															
93															
94	Chromium														
95															
96									General	Statistics					
97				То	tal Nur	mber of	Observ	ations	22			Nun	nber of Distinct Observat	ions	20
98													ber of Missing Observat		0
99		Minin						nimum	5.12					lean	14.64
100		Maxin						ximum	63				Me	dian	12.55
101								SD	11.58				Std. Error of M	lean	2.47
101					С	oefficie	ent of Va	riation	0.791				Skewr	ness	3.733
103										1					
103									Normal (GOF Test					
105					Shap	iro Wilk	c Test S	tatistic	0.553			Shapiro \	Wilk GOF Test		
105				5%	•		Critical		0.911		Data N	-	at 5% Significance Level		
107							s Test S		0.306				rs GOF Test		
107					5% L	illiefors	Critical	l Value	0.184		Data N	ot Normal	at 5% Significance Level		
.00	<u> </u>									1					

4.5	Α		В		(C		D		E Doto No	F	G Securifican	H		I		J		K	L
109									l	∪ata No	ı Normal at 5	% Significand	æ Level							
110												mal District								
111					-	F0/ *:				As	ssuming Nor	mal Distributio)E0/ **	OL = (* "		f O'			
112					9	5% No					10.00		9		CLs (Adj				•	00.0
113								95% Sti	udent'	s-t UCL	18.89				5% Adju					
114															95% Mo	dified-1	UCL (J	ohnso	on-19/8	19.22
115																				
116												GOF Test		•						
117		A-D Test \$												n-Darlin	-					
118							5						Data Not C				-			el
119										Statistic				-	ov-Smirr					
120							5			al Value			Data Not C		a Distrib	uted a	t 5% Siç	gnifica	ince Lev	rel
121									Data N	lot Gam	ma Distribute	ed at 5% Sign	ificance Lo	evel						
122																				
123												Statistics								T
124										t (MLE)							•		ed MLE)	
125										t (MLE)	4.425				The		•		ed MLE)	
126										t (MLE)							•		orrected)	
127						М	ILE N	lean (bi	ias co	rrected)	14.64						•		orrected)	
128														Α	pproxim					
129						Adju	sted	Level o	of Sign	ificance	0.0386					Adjus	ted Chi	Squa	re Value	100.3
130																				
131												ma Distribution								
132		95	% Appr	oxim	nate (Gamma	a UC	L (use v	when	n>=50))	18.23		95	% Adjı	usted Ga	amma	UCL (us	se whe	en n<50	18.54
133																				
134												I GOF Test								
135						5	Shap	iro Wilk	Test	Statistic				•	Wilk Lo	-				
136						5% S	Shapi	ro Wilk	Critica	al Value			Data I		gnormal		·		Level	
137										Statistic					fors Logi					
138						í	5% L	illiefors	Critica	al Value	0.184		Data I	Not Lo	gnormal	at 5%	Signific	cance	Level	
139									Da	ata Not I	_ognormal at	5% Significa	nce Level							
140																				
141												I Statistics								
142										ed Data									ged Data	
143						l	Maxii	mum of	f Logg	ed Data	4.143						SD	of logo	ged Data	0.521
144																				
145											uming Logno	ormal Distribu	tion							
146										H-UCL	18							•	JE) UCL	
147								-		E) UCL	21.38				97.5	% Che	ebyshev	(MVU	JE) UCL	. 24.49
148						99%	Che	byshev	(MVU	E) UCL	30.58									
149																				
150												tion Free UCL								
151									Data	do not	follow a Disc	ernible Distrib	ution (0.0	5)						
152																				
153												tribution Free	UCLs							
154										LT UCL	18.7						95% .	Jackkı	nife UCL	. 18.89
155						95%	Star	ndard B	Bootstr	ap UCL	18.53								ap-t UCL	
156						(95%	Hall's B	Bootstr	ap UCL	36.23				95	% Per	centile E	Bootst	rap UCL	19.3
157							95%	BCA B	Bootstr	ap UCL	20.82									
158					Ś	90% CI	hebys	shev(Me	lean, S	d) UCL	22.05				95%	Cheby	/shev(N	lean,	Sd) UCL	25.4
159					97	′.5% Cl	hebys	shev(Me	ean, S	d) UCL	30.06				99%	Cheby	yshev(N	lean,	Sd) UCL	. 39.21
160											<u>I</u>	1								1
161											Suggested	UCL to Use								
					9	5% Ch	ebys	hev (Me	ean, S	d) UCL	25.4									
162											i	<u> </u>								1

	Α	В	С	D	E	F	G	CDEFGHIJK									
163																	
164		Note: Sugg	estions rega	rding the sele	ction of a 95°	% UCL are pr	ovided to help	the user to	select the mo	st appropriate	e 95% UCL.						
165				Recommend	ations are ba	sed upon dat	a size, data d	listribution, a	nd skewness								
166		These rec	ommendatio	ns are based	upon the res	ults of the sim	nulation studie	es summarize	ed in Singh, N	laichle, and L	ee (2006).						
167		However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.									l.						
168																	

Attachment 14
Risk Calculations for Soil Waste Characterization Results for Cyanide
Human Health Risk Assessment, Former Manufactured Gas Plant Site, Douglas, Arizona

	Sample ID					D-B12-5.0-5.5	D-B12-7.5-8.0*	D-B13-2.5-3.0	D-B14-1.0-1.5	D-B15-5.0-5.5	D-B16-2.5-3.0	D-B17-5.0-5.5
	Sample Depth (ft bgs)				1.0-1.5	5.0-5.5	7.5-8.0	2.5-3.0	1.0-1.5	5.0-5.5	2.5-3.0	5.0-5.5
	Sar	nple Date	30-Oct-19	30-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	31-Oct-19	29-Oct-19	01-Nov-19	29-Oct-19	30-Oct-19
Analyte	CAS#	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Cyanide, Total	57-12-5	MG/KG	0.65		0.0588U	0.19		0.0668J	0.0554U	0.0601U	0.144	0.204

Attachment 14 Risk Calculations for Soil Waste Characterization Results for Cyanide Human Health Risk Assessment, Former Manufactured Gas Plant Site, Dou

	Sample ID	D-B19-2.5-3.0	D-B21-2.5-3.0	D-B25-0-102719	D-B25-2.5-3.0	D-B28-5.0-5.5	D-B29-5.0-5.5	D-B30-5.0-5.5	D-B35-5.0-5.5	Maximum Detected	RSL	RSL	Residential			
	Sample Depth (ft bgs)	2.5-3.0	2.5-3.0	0-0.25	2.5-3.0	5.0-5.5	5.0-5.5	5.0-5.5	5.0-5.5	Result	(TR = 1E-05) (THQ = 1)	(THQ = 1)	ELCR	HQ	ELCR	HQ
	Sample Date	01-Nov-19	01-Nov-19	27-Oct-19	30-Oct-19	29-Oct-19	07-Nov-19	01-Nov-19	28-Oct-19	1	(1110 - 1)	(111Q - 1)				
Analyte	CAS # Units	Result	Result	Result	Result	Result	Result	Result	Result							
Cyanide, Total	57-12-5 MG/KG	0.065U	0.0715	0.0635	0.0286U	0.0286U	0.0545UJ	0.0565U	0.0588U	0.65	23 N	150 N		0.03		0.004

Notes:

Cells highlighted in yellow indicate that the compound exceeded the Residential Soil Remediation Level only.

Cells highlighted in red indicate that the compound exceeded the Non-residential Soil Remediation Level only.

J = Analyte is present but the reported value might not be accurate or precise (estimate).

U = Analyte was not detected at the specified detection limit.

UJ = Analyte was not detected at the specified detection limit, detection limit is estimated. ft bgs = foot (feet) below ground surface ID = identification number mg/kg = milligram(s) per kilogram

^{* =} Locations added to waste characterization results

Appendix L Groundwater Protection Level Modeling

1/1/2013

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)θ (vol/vol)= moisture content (minimum GPL default = .15) (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Acenaphthene

GPL (mg/kg) = 90330.52 Saturation conc. (mg/kg) 394.86

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

1
0.006355
4.24
4898
100000
100000
0.25
1.514
0.019
0.019

7000

0.7

0.5

0.007

10

807

807

807

30

10

8.2

10

0.007

Acenaphthene	
	1
1	00000
1	00000
New Soil Type	
	0.25

100000	boldan for the ar E Model (ABEA, 2010)
New Soil Type	2019 Field Measurements
0.25	Default for the CDI Model (ADEC 2012)
	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
	Risk-based standard (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)

Compound-specific value (ADEQ, 2013)

Compound-specific value (ADEQ, 2013)

Compound-specific value (ADEQ, 2013)
Default for the GPL Model (ADEQ, 2013)

Default for the GPL Model (ADEQ, 2013)

1/1/2013

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

29102.17 GPL (mg/kg) =840.09 Saturation conc. (mg/kg)

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

Acenaphthylene

1
0.00451
16
2760
100000
100000
0.05

Enter chemical prope	erties
0.0	0045
	1
	276
1(0000
1(0000
New Soil Type	

Compound-specific value (NJDEP, 2019
Compound-specific value (NJDEP, 2019
Compound-specific value (NJDEP, 2019
Default for the GPL Model (ADEQ, 2013)
Default for the GPL Model (ADEQ, 2013)
2019 Field Measurements

0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
20
807
807
3650
807
30
10
8.2
420
10
0.007

0.2	25
1.5°	
0.0	19
0.0	19
700	00
0	.7
	.5
0.09	
0.00	07
	20
80	
80	
365	_
80	_
	30
	10
	.2
	20
	10
0.00)/

0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
20	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
420	Risk-based standard (ADEQ, 1992)
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 (minimum GPL default = .001) foc (vadose zone) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Anthracene

796424458.57 GPL (mg/kg) =

19.38 Saturation conc. (mg/kg)

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

1	
0.002665	
0.0434	
23500	
100000	
100000	
0.25	
1.514	
0.010	

100000
0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
10
807
807
3650
807
30
10
8.2
1800

10

0.007

Anthracene	
	1
100	000
	000
New Soil Type	

0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
10
807
807
3650
807
30
10
8.2
10
0.007

Compound-specific value (ADEQ, 2013) Compound-specific value (ADEQ, 2013) Compound-specific value (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements

Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements 2019 Field Measurements 2019 Field Measurements Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Assume equal to depth of vadose zone 2019 Field Measurements Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Risk-based standard (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)(.5 = default)d(diffusion layer thickness,cm) (minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

Saturation conc. (mg/kg) 32.15

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

Benzo(a)anthracene

Compound-specific value (U.S. EPA, 2019)

Compound-specific value (U.S. EPA, 2019)

Compound-specific value (U.S. EPA, 2019) Default for the GPL Model (ADEQ, 2013)

Default for the GPL Model (ADEQ, 2013)

1	
0.00049	
0.0094	
180000	
100000	
100000	
	_

100000
0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
5
807
807
3650
807
30
10
8.2
0.003
10

0.007

Enter chemical properties
1
0.00049
0.0094
180000
100000
100000
New Soil Type

100000	belault for the GI E Model (ABEQ, 2015)
New Soil Type	2019 Field Measurements
0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
5	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
0.003	Health-based Guidance Level
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 (minimum GPL default = .001) foc (vadose zone) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

Saturation conc. (mg/kg) 17.94

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

0.007

10

807

807

807

30

10

8.2

10

0.007

Data Enter

		Enter cher
1		
0.000019		
0.0016		
590000		
100000		
100000		
	-	New
0.25		
1.514		
0.019		
0.019		
7000		
0.7		
0.5		

Enter chemical properties
0.000019
0.0016
59000
100000
100000
New Soil Type

0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
10
807
807
3650
807
30
10
8.2
0.2
10
0.007

Benzo(a)pyrene

Compound-specific value (U.S. EPA, 2019) Compound-specific value (U.S. EPA, 2019) Compound-specific value (U.S. EPA, 2019) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements

0.25Default for the GPL Model (ADEQ, 2013)1.5142019 Field Measurements0.0192019 Field Measurements0.0192019 Field Measurements7000Default for the GPL Model (ADEQ, 2013)0.7Default for the GPL Model (ADEQ, 2013)0.5Default for the GPL Model (ADEQ, 2013)

2019 Field Measurements

Default for the GPL Model (ADEQ, 2013)

Default for the GPL Model (ADEQ, 2013)

Assume equal to depth of vadose zone

2019 Field Measurements
Default for the GPL Model (ADEQ, 2013)

2019 Field Measurements

Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013)

Default for the GPL Model (ADEQ, 2013) Aguifer water quality standard

Default for the GPL Model (ADEQ, 2013)

Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

############## GPL (mg/kg) =

17.10 Saturation conc. (mg/kg)

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

Benzo(b)fluoranthene

1	
0.000027	
0.0015	
600000	
100000	
100000	

Enter chemical properties
0.00002
0.001
60000
10000
10000
New Soil Type

0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
10
807
807
3650
807
30
10
8.2
0.003
10
0.007

0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
10
807
807
3650
807
30
10
8.2
0.003
10
0.007

0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
0.003	Health-based Guidance Level
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

############## GPL (mg/kg) =

8.97 Saturation conc. (mg/kg)

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

Benzo(k)fluoranthene

1
0.000024
0.0008
590000
100000
100000

7000

0.7

0.5

0.007

10

807

807

807

30

10

8.2

10

0.007

ļ	
0.000024	0.000
0.0008	0.0
590000	590
100000	100
100000	100
	New Soil Type
0.25	C
1.514	1.3
0.019	0.0
0.019	0

0.000024	Compound-specific value (U.S. EPA, 2019)
0.0008	Compound-specific value (U.S. EPA, 2019)
590000	Compound-specific value (U.S. EPA, 2019)
100000	Default for the GPL Model (ADEQ, 2013)
100000	Default for the GPL Model (ADEQ, 2013)
New Soil Type	2019 Field Measurements
0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEO, 2013)

100000	bolden for the ar E Meder (ABEA, 2010)
100000	Default for the GPL Model (ADEQ, 2013)
New Soil Type	2019 Field Measurements
0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
0.003	Health-based Guidance Level
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb) Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (vadose zone) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list (minimum GPL default = .25) Φ(total porosity) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 (minimum GPL default = .001) foc (vadose zone) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)θ (vol/vol)= moisture content (minimum GPL default = .15) Jw (water flux- cm/d) (minimum GPL default = .007) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Chrysene

Saturation conc. (mg/kg) 12.10

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

	Chrysene	
1	1	
0.0038786		Compound-specific value (ADEQ, 2013)
0.0016		Compound-specific value (ADEQ, 2013)
398000		Compound-specific value (ADEQ, 2013)
100000	100000	Default for the GPL Model (ADEQ, 2013)
100000	100000	Default for the GPL Model (ADEQ, 2013)
	New Soil Type	2019 Field Measurements
0.25	0.25	Default for the GPL Model (ADEQ, 2013)
1.514	1.514	2019 Field Measurements
0.019	0.019	2019 Field Measurements
0.019	0.019	2019 Field Measurements
7000	7000	Default for the GPL Model (ADEQ, 2013)
0.7	0.7	Default for the GPL Model (ADEQ, 2013)
0.5	0.5	Default for the GPL Model (ADEQ, 2013)
0.099	0.099	2019 Field Measurements
0.007	0.007	Default for the GPL Model (ADEQ, 2013)
0.5	0.5	Modified to capture peak liquid phase concentration
807	807	Assume equal to depth of vadose zone
807	807	2019 Field Measurements
3650	3650	Default for the GPL Model (ADEQ, 2013)
807	807	2019 Field Measurements
30	30	Default for the GPL Model (ADEQ, 2013)
10	10	Default for the GPL Model (ADEQ, 2013)
8.2	8.2	Default for the GPL Model (ADEQ, 2013)
1.5		Risk-based standard (ADEQ, 2013)
10	10	Default for the GPL Model (ADEQ, 2013)
0.007	0.007	Default for the GPL Model (ADEQ, 2013)

Kh (dimensionless)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default) θ (vol/vol)= moisture content (minimum GPL default = .15) (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

Saturation conc. (mg/kg) 20.52

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

Dibenz(a,h)anthracene

Compound-specific value (ADEQ, 2013)

Compound-specific value (ADEQ, 2013) Compound-specific value (ADEQ, 2013)

Default for the GPL Model (ADEQ, 2013)

1	
0.000	0708
0.00	006
1800	0000
100	000
100	000
<u> </u>	

100000
100000
0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
2
807
807
3650
807
30
10
0 0

0.003

10

0.007

Enter chemical properties	
	1
0.000070	8
0.000	6
180000	0
10000	0
10000	0
New Soil Type	

100000	Boldan for the ar E Meder (ABEA, 2010)
100000	Default for the GPL Model (ADEQ, 2013)
New Soil Type	2019 Field Measurements
0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
2	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
0.003	Risk-based standard (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)
	,

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

############## GPL (mg/kg) =

271.72 Saturation conc. (mg/kg)

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

0.00036

0.26

55000

100000

100000

0.25

1.514

0.019

0.019

7000

0.7

0.5

0.007

10

807

807

807

30

10

8.2

10

0.007

Data Enter

Enter chemical properties
1
0.00036
0.26
55000
100000
100000
New Soil Type

0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
10
807
807
3650
807
30
10
8.2
280
10
0.007

Fluoranthene

Compound-specific value (U.S. EPA, 2019
Compound-specific value (U.S. EPA, 2019
Compound-specific value (U.S. EPA, 2019
Default for the GPL Model (ADEQ, 2013)
Default for the GPL Model (ADEQ, 2013)
2019 Field Measurements

0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
280	Health-based Guidance Level
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)

Kh (dimensionless)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Fluorene

2824865.37 GPL (mg/kg) =498.30 Saturation conc. (mg/kg)

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

1	
0.003157	
1.9	
13800	
100000	
100000	
•	
•	
0.25	
1.514	
0.019	

0.019

7000

0.7

0.5

0.007

10

807

807

807

30

10

8.2

10

0.007

Fluorene
1
100000
100000
New Soil Type
0.25
1.514
0.040

0.25
1.514
0.019
0.019
7000
0.7
0.5
0.099
0.007
10
807
807
3650
807
30
10
8.2
10
0.007

Compound-specific value (ADEQ, 2013) Compound-specific value (ADEQ, 2013) Compound-specific value (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements

New John Type	2013 Field Medadichients
0.05	Defects for the ODL Model (ADEO 2010)
0.25	Default for the GPL Model (ADEQ, 2013)
1.514	2019 Field Measurements
0.019	2019 Field Measurements
0.019	2019 Field Measurements
7000	Default for the GPL Model (ADEQ, 2013)
0.7	Default for the GPL Model (ADEQ, 2013)
0.5	Default for the GPL Model (ADEQ, 2013)
0.099	2019 Field Measurements
0.007	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
807	Assume equal to depth of vadose zone
807	2019 Field Measurements
3650	Default for the GPL Model (ADEQ, 2013)
807	2019 Field Measurements
30	Default for the GPL Model (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
8.2	Default for the GPL Model (ADEQ, 2013)
	Risk-based standard (ADEQ, 2013)
10	Default for the GPL Model (ADEQ, 2013)
0.007	Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb) Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 (minimum GPL default = .001) foc (vadose zone) foc (aquifer) Dq^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)θ (vol/vol)= moisture content (minimum GPL default = .15) Jw (water flux- cm/d) (minimum GPL default = .007) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Enter chemical properties

#DIV/0!

GPL based upon risk based water quality standard

Calculation values

Data Enter

Indeno(1,2,3-c,d)pyrene

Default for the GPL Model (ADEQ, 2013)

	Enter chemical properties	
1	1	
0.0000119	0.0000119	Compound-specific value (ADEQ, 2013)
0.00019	0.00019	Compound-specific value (ADEQ, 2013)
31000000	31000000	Compound-specific value (ADEQ, 2013)
100000	100000	Default for the GPL Model (ADEQ, 2013)
100000	100000	Default for the GPL Model (ADEQ, 2013)
	New Soil Type	2019 Field Measurements
0.25	0.25	Default for the GPL Model (ADEQ, 2013)
1.514	1.514	2019 Field Measurements
0.019	0.019	2019 Field Measurements
0.019	0.019	2019 Field Measurements
7000	7000	Default for the GPL Model (ADEQ, 2013)
		• • • • • • • • • • • • • • • • • • • •
0.7	0.7	Default for the GPL Model (ADEQ, 2013)
0.5	0.5	Default for the GPL Model (ADEQ, 2013)
0.099	0.099	2019 Field Measurements
0.007	0.007	Default for the GPL Model (ADEQ, 2013)
0.25	0.25	Modified to capture peak liquid phase concentration
807	807	Assume equal to depth of vadose zone
807	807	2019 Field Measurements
3650	3650	Default for the GPL Model (ADEQ, 2013)
807	807	2019 Field Measurements
30	30	Default for the GPL Model (ADEQ, 2013)
10	10	Default for the GPL Model (ADEQ, 2013)
8.2	8.2	Default for the GPL Model (ADEQ, 2013)
0.003	0.003	Risk-based standard (ADEQ, 2013)
10	10	Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb) Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 (minimum GPL default = .001) foc (vadose zone) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)θ (vol/vol)= moisture content (minimum GPL default = .15) Jw (water flux- cm/d) (minimum GPL default = .007) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Naphthalene

GPL (mg/kg) = 112.98 Saturation conc. (mg/kg) 703.59

GPL based upon risk based water quality standard

Calculation values

Data Enter

	Naphthalene	
1	1	
0.019803		Compound-specific value (ADEQ, 2013)
31		Compound-specific value (ADEQ, 2013)
1191		Compound-specific value (ADEQ, 2013)
100000	100000	Default for the GPL Model (ADEQ, 2013)
100000	100000	Default for the GPL Model (ADEQ, 2013)
	New Soil Type	2019 Field Measurements
0.25	0.25	Default for the GPL Model (ADEQ, 2013)
1.514	1.514	2019 Field Measurements
0.019	0.019	2019 Field Measurements
0.019	0.019	2019 Field Measurements
7000	7000	Default for the GPL Model (ADEQ, 2013)
0.7	0.7	Default for the GPL Model (ADEQ, 2013)
0.5	0.5	Default for the GPL Model (ADEQ, 2013)
0.099	0.099	2019 Field Measurements
0.007	0.007	Default for the GPL Model (ADEQ, 2013)
20	20	Modified to capture peak liquid phase concentration
807	807	Assume equal to depth of vadose zone
807	807	2019 Field Measurements
3650	3650	Default for the GPL Model (ADEQ, 2013)
807	807	2019 Field Measurements
30	30	Default for the GPL Model (ADEQ, 2013)
10	10	Default for the GPL Model (ADEQ, 2013)
8.2	8.2	Default for the GPL Model (ADEQ, 2013)
6.2		Risk-based standard (ADEQ, 2013)
10	10	Default for the GPL Model (ADEQ, 2013)
0.007	0.007	Default for the GPL Model (ADEQ, 2013)

Model Inputs

Select chemical name from drop down list

Ct = Initial total soil contamination, ug/kg (ug/kg = (ug/l)/Pb)

Kh (dimensionless) S (water solubility, mg/l) Koc (L/Kg) T1/2 (d) (vadose zone) (enter 100,000 if no biodegradation, 1000 for BTEX) T1/2 (d) (groundwater zone) (enter 100,000 if no biodegradation, 1000 for BTEX) Select Soil Type from drop down list Φ(total porosity) (minimum GPL default = .25) Pb (g/cm³) (dry bulk density) (minimum GPL default = 1.5 foc (vadose zone) (minimum GPL default = .001) foc (aquifer) Dg^{a (cm2/d)} (gaseous diffusion coefficient) (7000 = default)D1^{w(cm2/d)} (liquid diffusion coefficient) (.7 = default)d(diffusion layer thickness,cm) (.5 = default)(minimum GPL default = .15) θ (vol/vol)= moisture content (minimum GPL default = .007) Jw (water flux- cm/d) time step (days) vary until output graphs shows complete curve, Jury 1 solution) L (cm)(depth of incorporation- Jury 1 solution) Z -cm(depth to water, or depth of interest, Jury 1 solution) depth profile time (d), Jury 2 solution) total vadose zone depth (cm, Jury 2 solution) Distance to compliance point (Sc) (meters) (minimum GPL default = 30) Release width (w) (meters) (minimum GPL default = 10) Well screen interval (s) (meters) (minimum GPL default = 8.2) Water Quality Standard (ug/l)- see note regarding standard Groundwater velocity (cm/d) (actual velocity not Darcy velocity) (minimum GPL default = 10) Infiltration rate outside of source area (cm/d) (minimum GPL default = .007)

Run GPL

Pyrene

############## GPL (mg/kg) =

269.33 Saturation conc. (mg/kg)

GPL exceeds saturation, discuss with specific ADEQ Program

GPL based upon risk based water quality standard

Calculation values

Data Enter

1
0.000451
0.135
105000
100000
100000

Pyrene	
	1
•	100000
•	100000
New Soil Type	е

0.2 1.514 0.019 0.019 700 0.7 0.5 0.09 0.00 80 80 0.00

Compound-specific value (ADEQ, 2013) Compound-specific value (ADEQ, 2013) Compound-specific value (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements

Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements 2019 Field Measurements 2019 Field Measurements Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Assume equal to depth of vadose zone 2019 Field Measurements Default for the GPL Model (ADEQ, 2013) 2019 Field Measurements Default for the GPL Model (ADEQ. 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Risk-based standard (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Default for the GPL Model (ADEQ, 2013) Appendix M
Southwest Gas Corporation Excavation
Guidelines

This information is to assist excavators in the proper identification of gas facilities, and precautions to be taken when working around gas facilities. The information provided here is not to be considered all-inclusive. All excavators digging within the vicinity of gas pipelines must protect the pipelines in accordance with the applicable One-Call law. The following are guidelines that will assist you in protecting the public, you, and the gas facilities.

If any gas pipelines are damaged, federal law requires that you call Southwest Gas Corporation (SWG). Additionally, if the damage results in the escape of gas, you must call the Emergency Number 911. Note: Damage includes damage to steel pipeline coatings, gouges in plastic pipe, damaged tracer wire, dents or scrapes in steel pipe, etc.

Gas pipeline markers are used to alert the public that gas pipelines are buried in the general area. These markers may or may not be placed directly over the gas facility. When performing an excavation within 10' of a "High Pressure" marked facility, please contact SWG to arrange for stand by personnel to be present.

PLASTIC PIPELINES: Polyvinyl Chloride (PVC) pipe is one type of plastic pipe used in the SWG gas distribution system. PVC may be faint yellow, gray or white in color and range in size from ½" to 2" in diameter. PVC is not as flexible as the polyethylene (PE) pipe that SWG installs today. The integrity of PVC can be compromised if scratched or subjected to external loads and/or stresses. PE is another type of plastic pipe used in SWG's system. PE may be found in various colors and range in size from ½" to 8" in diameter. Although PE is a more flexible material, its integrity can be compromised if scratched or nicked. Many plastic gas pipelines are installed with a tracer wire in order to locate the facility. If a tracer wire is or has been severed or damaged, call SWG. We will repair the damaged wire at no charge.

STEEL PIPELINES: Steel gas pipelines, used in both SWG gas distribution and high pressure transmission systems, range in size from ½" to 24" in diameter and are also susceptible to damage. Dents and gouges in the steel will affect the integrity of the pipe, so precautionary measures must be taken during excavation. Steel pipelines are protected with an approved coating material that helps prevent deterioration of the pipe and can be found in various colors. If during excavation the coating is torn or damaged, contact SWG immediately to facilitate the repairs at no charge. Call us before disturbing any mastic coating on active or abandoned steel pipe. The coating is likely to contain regulated asbestos fibers that can be harmful to your employees.

Typically, most gas pipes have specific identification markings on them or on the coating. Care should be taken to support and protect all gas pipelines, as required by law, when exposed or crossed during excavation activities. Additionally, care must be taken while exposing existing facilities as they may or may not have padding and shading surrounding them as outlined below. If any gas pipeline is damaged, call SWG immediately to facilitate the proper pipeline repairs. When excavations have been completed, gas pipelines must be properly padded, shaded, and backfilled per SWG standards, as shown in the drawing below. SWG specifications for padding and shading material call for it to be able to sift through a 3/8" screen, and be smooth and relatively rock free. Excavations must be compacted to meet the requirements of local authorities. During backfill activities it is very important to compact the soil beneath the gas pipe in order to properly support it. Also it is important to avoid mechanically compacting the soil directly over the gas pipe to eliminate any unnecessary external stresses. Steps must be taken during this process to protect the gas pipeline from excessive external loadings. If other utilities or substructures are to be installed in the same excavation as a gas pipeline, the proper clearances shown in the drawing must be maintained.

If at any time during excavation activities you smell gas, call SWG and 911.

- DO NOT attempt to control or stop the flow of natural gas, or make repairs.
- DO NOT turn on, turn off, or attempt to move or operate equipment near the line break or point of leakage.
- DO NOT enter the area where the natural gas is escaping.
- DO NOT allow others to enter the area.
- DO NOT leave the scene of the incident until assistance has arrived.
- DO secure the area and prevent others from entering.
- DO eliminate sources of ignition, such as sparks or flames, near the gaseous atmosphere.

For more information on the types of gas pipe used by SWG, positive identification of gas facilities, or if you have any questions, please contact the SWG office nearest you. Additional information on natural gas safety is included in our Material Safety Data Sheet (MSDS) located at www.swgas.com/emergencysafety.

SWG Contact Number: ()

Suitable
Compactible
Material

Backfill

3 in. minus

6 in.

Shading

Other utilities

Please forward to the appropriate excavator.

**	2.	
	Use	ti
$\overline{}$	Con	

STANDBY CHECKLIST **SOUTHWEST GAS CORPORATION** his form whenever notification of a standby has been received to document that the appropriate safety information has provided to the excavator. pany Name: Date: One-Call Ticket #(s): Review the following responsibilities with the excavator. Hand dig within 24-inches of SWG facilities. Vacuum excavation is acceptable. California excavators are required to get facility owner authorization when using vacuum excavation to pothole. Verify the One-Call ticket request is valid. Provide the Form 284.0 Gas Pipe Identification pamphlet. Provide Form 279.0 Excavator Precautionary Guidelines, and review with the excavator when PVC is present. **HIGH PRESSURE STANDBY** Implement the standby when excavation is within 5-feet of high pressure facilities. Positively identify gas facilities prior to the excavation. Exposed facilities must be protected and supported. Avoid pulling excavation material towards the gas facility. Pull material away from the facility whenever possible. If the facility's coating is damaged, qualified personnel will follow the appropriate Corrosion Control Procedure. When the excavation has extended 5-feet from the facility, the standby may be concluded. **BORE STANDBY** Implement the standby when boring across or parallel within 5-feet of gas facilities. Positively identify gas facilities prior to the bore operation. Inspect the boring operation while in progress until there is no longer a threat to the facility. **Boring Across Gas Facilities** Prior to boring across within 24-inches, expose the full circumference of the facility (see procedure). Pothole must be deep enough to see the bore bit and reamer. Maintain a minimum of 12-inches of separation between the bore bit and reamer. Less than 12-inches of separation requires approval from Southwest Gas. Gas facilities deeper than the proposed bore path require an additional pothole of 24-inches to ensure adequate separation (see procedure). Measure distance between gas facility and bore bit and reamer to determine adequate separation. If bore bit has not reached predetermined distance, request the operation to stop to inspect gas facilities. Leave the inspection pothole open during bore crossings. Verify the bore crossing occurred as expected, or visually inspect SWG facilities during the boring operation to ensure that no damage occurs. Electronically measure depth of bore bit and reamer to ensure adequate separation before & after crossing. Boring Parallel to Gas Facilities Request the excavator to perform inspection potholes of the gas facility at appropriate increments. Gas facilities deeper than the proposed bore path require an additional pothole of 12-inches to ensure adequate separation. Monitor the bore path to ensure adequate separation is maintained from SWG facilities. ☐ After the excavation has been extended 5-feet from the facility, the standby may be concluded. Excavator Name (Print): Contact #: Signature: Date Signed: Comments:

Southwest Gas Corporation Name (Print):

Signature:

Date Reviewed:

Appendix N ADEQ 2001 Letter regarding MGP Remediation Waste

Jane Dee Hull Governor

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY

Jacqueline E. Schafer Director

3033 North Central Avenue • Phoenix, Arizona 85012-2809 (602) 207-2300 • www.adeq.state.az.us

CERTIFIED MAIL RETURN RECEIPT REQUESTED

April 16, 2001

REF: HWICU01-0092

Barbara Davis Lockwood, P.E., Pinnacle West 400 North Fifth Street Post Office Box 53999 Phoenix, Arizona 85072-3999

RE: Manufactured Gas Plant (MGP) Remediation Wastes

Dear Ms. Lockwood:

This letter is in response to your inquiry letter of March 12, 2001, to the Arizona Department of Environmental Quality (ADEQ), regarding the State's adoption of the federal judgement concerning manufactured gas plant (MGP) remediation wastes.

Research of available literature and discussions with US EPA Region 9 with respect to MGP remediation wastes yield these findings;

- 1. In a case decided April 21, 2000 by the District of Columbia Court of Appeals, the requirement to use the TCLP for evaluating MGP waste was vacated.
- Guidance from the US EPA point of view further clarifies this issue. MGP wastes are not subject to TCLP testing if the only hazardous characteristic is toxicity. Wastes that exhibit other characteristics or that are listed would still be required to be handled as RCRA wastes.

Provided a waste determination is completed for each site and the MGP wastes do not exhibit other hazardous waste characteristics or are not listed as specified in 40 CFR §261 Subpart C and D, ADEQ concurs with the conclusion that TCLP is not required for MGP remediation wastes.

If you have any questions regarding this letter, please contact me at (602) 207-4105.

Sincerely,

Laura Malone, Manager

Hazardous Waste Inspections and Compliance Unit

Mail Station: 8376
Tel. 602-250-3361
Fax 602-250-3872
e-mail:Barbara.Lockwood@pinnaclewest.com

Name: Barbara Davis Lockwood, P.E.

Title: Environmental Consultant

Department: Environmental, Health and Safety

March 12, 2001

Ms. Laura Malone
Manager, Hazardous Waste Inspections & Compliance Unit
Hazardous Waste Section
Arizona Department of Environmental Quality
3033 North Central Avenue
Phoenix, AZ 85012

Subject: Manufactured Gas Plant (MGP) Remediation Wastes

Dear Ms. Malone:

Arizona Public Service Company (APS) has eight (8) MGP sites throughout Arizona. APS and its parent company, Pinnacle West Capital Corporation (PWCC), have been working through the Arizona Department of Environmental Quality's (ADEQ's) voluntary remediation program (VRP) to clean up five (5) of those sites. APS and PWCC recently completed, in Prescott, Arizona, what is expected to be their largest MGP remediation project, and the remaining sites are scheduled for remediation in the next few years.

At each of these MGP sites, there is the potential to encounter soils and/or tar-like material that tests hazardous for benzene and/or lead under the toxicity characteristic leaching procedure (TCLP). At the Prescott site, most of the soil generated that exceeded the TCLP limits was managed under the area of contamination (AOC) policy, as approved by ADEQ last year. However, MGP wastes that exceeded the TCLP limits that could not be managed using the AOC policy were stored, transported, and disposed as hazardous waste.

In April of last year, the United States Court of Appeals for the District of Columbia Circuit vacated the use of the TCLP for the purpose of determining whether MGP wastes exhibit the characteristic of toxicity under the federal hazardous waste program. See Association of Battery Recyclers, Inc. v. EPA, 208 F.3d 1047 (D.C. Cir. April 21, 2000). Since MGP wastes are not listed under the federal program, MGP wastes are no longer considered hazardous under the federal program unless they exhibit the characteristics of ignitability, corrosivity, or reactivity.

See letter dated March 16, 2000 from Alan Roesler, ADEQ, to Judy Heywood, PWCC, and ADEQ Interoffice Memorandum dated March 15, 2000 from Greg Workman, ADEQ, to Alan Roesler, ADEQ).

Ms. Laura Malone Arizona Department of Environmental Quality Page 2

A.R.S. § 49-922.A. provides that ADEQ may not adopt standards that are more stringent than or that conflict with federal hazardous waste standards or identify wastes as hazardous that are not hazardous under the federal hazardous waste program. Because the TCLP may no longer be used to determine whether MGP wastes are hazardous under the federal program, and because ADEQ may not impose standards that are more stringent than or in conflict with the federal program, we believe that the TCLP is no longer applicable to MGP wastes in Arizona. Therefore, MGP wastes should not be considered hazardous wastes in Arizona unless they meet other state hazardous waste criteria. We request ADEQ's written concurrence.

From a practical perspective, APS and PWCC plan to continue to send any MGP wastes that exceed the TCLP to hazardous waste treatment, storage and/or disposal facilities. The treatment and disposal methods that APS and PWCC use for non-hazardous MGP wastes are not well suited to handle higher levels of contaminants, and we believe that TSDs are the safest and most appropriate facilities to manage any MGP wastes exceeding the TCLP limits. However, we do not anticipate labeling, manifesting, or reporting this material as hazardous waste. Of course, MGP wastes will still be subject to Arizona Special Waste requirements if they qualify as "petroleum contaminated soils."

We would be available to meet with you if you would like to discuss this issue further. If you have any questions, please contact me at (602) 250-3361.

Lochwood

Sincerely,

Barbara Davis Lockwood, P.E.

ON THE WAY THE WAY THE THE PARTY OF THE PART

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE

MEMORANDUM

Subject:

Implementation of Vacature of TCLP Use for Evaluating Manufactured Gas Plant

(MGP) Wastes in the Battery Recyclers, Case

From:

Elizabeth Cotsworth

Director, Office of Solld Waste

To:

RCRA Senior Policy Advisors,

RCRA/Waste Enforcement Program Managers

Regions I-X

This memo is to notify you that the D. C. Court of Appeals, ruling in the case:

<u>Association of Battery Recyclers, Inc. et al. v. U.S. Environmental Protection Agency</u> (decided April 21, 2000), vacated the use of the Toxicity Characteristic Leaching Procedure (TCLP) for evaluating manufactured gas plant (MGP) wastes.

In the Battery Recyclers case, several aspects of the Agency's Phase IV Land Disposal Restrictions (LDR) final regulations (63 FR 28556, May 26, 1998) were challenged. Among the issues addressed in the Phase IV final regulation was the Agency's earlier court remand in Edison Electric Institute v. EPA 2F.3rd 438 (D.C. Circuit, 1993), regarding application of the TCLP to evaluating whether mineral processing and MGP wastes are hazardous wastes. In Edison Electric, the plaintiffs challenged application of TCLP to their waste on the argument that the waste is not managed in MSW landfills, as presumed by the TCLP mismanagement scenario. The court held that the information in the record at the time was insufficient to show a rational relationship between the TCLP and a likely mismanagement scenario for mineral processing wastes. The Court's remand required that the Agency provide some factual support that the TCLP mismanagement scenario is plausible for mineral processing and MGP waste. The Phase IV proposal and final rule responded to the Court's remand by providing the required factual support. In the Battery Recyclers case, the affected industries challenged the adequacy of EPA's response to the Edison Electric remand.

In ruling in the Battery Recyclers case, the court found that EPA produced insufficient evidence that MSW disposal of MGP waste has happened or Is likely to happen. The Court concluded that "...the EPA has not justified its application of the TCLP to MGP waste" and consequently ruled to "...vacate the Phase IV rule Insofar as it provides for the use of TCLP to determine whether MGP waste exhibits the characteristic of toxicity."

Since the court decision, we have received several inquiries concerning the implications of this decision for MGP cleanups. In a recent response to a letter from Vectren Corporation, an Indiana utility company owning a number of MGP sites, Michael Shapiro, Principal Deputy Assistant Administrator for Solid Waste and Emergency Response, provided EPA's view on this question. As the response states, under the Court's ruling, MGP waste cannot be classified as Toxicity Characteristic (TC) hazardous, since the TCLP test is part of the TC regulatory definition. Also, because MGP wastes are unlikely to exhibit any of the other hazardous characteristics, they are unlikely to be classified as hazardous under the federal program. As a practical matter, this means that individual MGP cleanups will probably not be regulated under federal RCRA Subtitle C.

For your information, I have attached a copy of Mr. Shapiro's letter to Vectren. Also, I call your attention to the preamble to the proposed Corrective Action Management Unit (CAMU) Rule, which makes the same point on the Battery Recycling decision and MGP wastes (See 65 FR 51087, footnote 6, August 22, 2000).

Of course, as you know, states may have regulations that are broader in scope than the federal regulations, and they may regulate MGP wastes as hazardous under their own state requirements. Also, many states regulate MGP cleanups under Independent state cleanup programs, and state industrial waste requirements may also apply. Therefore, we are encouraging utilities and other parties conducting MGP cleanups to consult with the appropriate state regulatory authorities.

If Regional Office staff have any questions about TCLP or waste classification they may contact Greg Helms at 703-308-8845, or for questions on corrective action issues, Mike Fitzpatrick, at 703-308-8411.

Attachment

cc: RCRA Key Contacts, Regions I-X